
Process Algebra with Five-Valued Conditions

Jan A. Bergstra1,2 and Alban Ponse1

1 University of Amsterdam, Programming Research Group, Kruislaan 403,
NL-1098 SJ Amsterdam, The Netherlands.

http://www.wins.uva.nl/research/prog/ alban@wins.uva.nl
2 Utrecht University, Department of Philosophy, P.O. Box 80126,

NL-3508 TC Utrecht, The Netherlands.
http://www.phil.uu.nl/eng/home.html

Abstract. We propose a five-valued logic that can be motivated from
an algorithmic point of view and from a logical perspective. This logic is
combined with process algebra. For process algebra with five-valued logic
we present an operational semantics in SOS-style and a completeness
result. Finally, we discuss some generalizations.

Key words & Phrases: Concurrency, process algebra, many-valued logic,
conditional guard construct, conditional composition.

1991 CR Categories: F.3, F.4.3, I.1.

1 Introduction

Assume P is some simple program or algorithm. Then the initial behaviour of

if φ then P else P

depends on evaluation of the condition φ: either it yields an immediate error, or
it starts performing P , or it diverges in evaluation of φ. Note that the second
possibility only requires that φ is either true or false. The following three non-
classical truth values accommodate these intuitions:

Meaningless. Typical examples are errors that are detectable during execution
such as a type-clash or division by zero.

Choice or undetermined. A typical example is alternative composition, i.e. in if
φ then Q else P either P or Q is executed.

Divergent or undefined. Typically, evaluation of a partial predicate can diverge.

We describe a propositional logic that incorporates these three non-classical
truth values and discuss its combination with process algebra. Here process al-
gebra is used as a vehicle to specify and analyze concurrent algorithms: a (closed)
process term is considered an algebraic notation for an algorithm. We shall use an
if then else construct in which the condition ranges over five-valued propo-
sitions. We end the paper with some generalizations and conclusions.

Acknowledgement. We thank Bas Luttik and Piet Rodenburg for discussion,
proof reading, and verifying a completeness result (on K4).

2 Five-Valued Logic

First we shortly consider the incorporation of each of the previously mentioned
non-classical truth values in classical two-valued logic. In [8] it is established that
there are only two three-valued logics that satisfy the (nice) algebraic properties
defined by the axioms in Table 1, where T stands for “true”, F for “false”, and
∗ denotes a “third truth value”:

Kleene’s three-valued logic K3. This three-valued logic, which we call K3, is
introduced in [18] to model propositional combination of partial predicates.
K3 is defined by the following truth tables:

x ¬x
T F

F T

∗ ∗

∧ T F ∗
T T F ∗
F F F F

∗ ∗ F ∗

∨ T F ∗
T T T T

F T F ∗
∗ T ∗ ∗

and is characterized (cf. [8]) by the axioms in Table 1 and the absorption
axiom

(Abs) x ∨ (x ∧ y) = x.

Strict three-valued logic S3. This three-valued is due to Bochvar [14]. Citing
[8]: “Here, on the theory that one bad apple spoils the barrel, an expression
has value ∗ as soon as it has a component with that value”. S3 is defined by

x ¬x
T F

F T

∗ ∗

∧ T F ∗
T T F ∗
F F F ∗
∗ ∗ ∗ ∗

∨ T F ∗
T T T ∗
F T F ∗
∗ ∗ ∗ ∗

According to [8], S3 is characterized by the axioms in Table 1 and axioms

(S1) x ∨ (¬x ∧ y) = x ∨ y,
(S2) ∗ ∧ x = ∗.

The combination of these logics is studied in [8], which also comprises an account
of McCarthy’s asymmetric connectives.

Table 1. Axioms for three-valued logic.

(1) ¬T = F (5) x ∧ y = y ∧ x

(2) ¬∗ = ∗ (6) x ∧ (y ∧ z) = (x ∧ y) ∧ z

(3) ¬¬x = x (7) T ∧ x = x

(4) ¬(x ∧ y) = ¬x ∨ ¬y (8) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

We observe that two different intuitions for Kleene’s non-classical truth value
can be distinguished: choice or undetermined, further written as C, and divergent
or undefined , denoted by D. Incorporation of both C and D leads to a four-valued
logic that we call

K4

and that—as far as we know—has not been studied before. It can be argued that
the axioms given for K3 allow at most two distinct elements that satisfy ¬∗ = ∗,
and with C and D in this role imply the identity

C ∧ D = F.

Adding this identity and replacing (2) in Table 1 by ¬C = C and ¬D = D yields
with axiom (Abs) a complete axiomatization for K4 [20]. Note that S3 cannot
be generalized in a similar fashion because of axiom (S2). Following [8] we set
M, called meaningless, for the non-classical truth value occurring in S3.

Combining S3 and K4 yields a five-valued logic with constants in T5 =
{M,C,T, F,D}. In order to combine this logic with process algebra we shall add
McCarthy’s asymmetric connectives and conditional composition, and we shall
incorporate fluents to represent “deterministic conditions”.

Asymmetric connectives. With ∧b we denote McCarthy’s left to right conjunc-
tion (cf. [21]), adopting the asymmetric notation from [8]. First the left argument
is evaluated, and if necessary the right argument. From [8] and the intuitions
provided for M,C, and D it follows that

c ∧b x = c for c ∈ {M, F,D} and c ∧b x = c ∧ x for c ∈ {C,T}.

With ∨
b

we denote the dual of ∧b , called left-sequential disjunction and defined
by x ∨
b
y = ¬(¬x ∧b ¬y). So in accordance with the intuition of sequential eval-

uation, logics with divergence D or meaningless M are asymmetric with respect
to these connectives.

We now list the complete truth tables for ¬,∧, and ∧b :
x ¬x
M M

C C

T F

F T

D D

∧ M C T F D

M M M M M M

C M C C F F

T M C T F D

F M F F F F

D M F D F D

∧b M C T F D

M M M M M M

C M C C F F

T M C T F D

F F F F F F

D D D D D D

and we define disjunction ∨ as usual: x∨y = ¬(¬x∧¬y). We denote the resulting
five-valued logic by Σ5(¬,∧, ∧b), or shortly Σ5. Note that the axioms from
Table 1 are valid for Σ5 (with ∗ ranging over {M,C,D}) and that ∧b and its dual
∨
b

are idempotent and associative. The five truth values in T5 can be arranged in
the following partial ordering, reflecting information order and (argumentwise)
monotony of ∧ and ∧b :

�
��

�
�
�

H
HH

@
@
@

T F

D

M

C

(The outer rhombus represents the original

lattice from [8, 13], without C.)

Conditional composition. The expression x / y . z, of which the notation stems
from [17], denotes if y then x else z. Sequential connectives provide a useful
intuition if conditional composition is introduced in the logic:

y ∧b x = x / y . F.

This is plausible because it provides the very underlying intuition of ∧b (first
evaluate y, then, if necessary, x). Similarly, we have y ∨

b
x = T / y . x. We first

define / . as a ternary operation:

x / M . y = M

x / T . y = x
x / F . y = y
x / D . y = D

/ C . M C T F D

M M M M M M

C M C C C C

T M C T C T

F M C C F F

D M C T F D

Notice that x / C . y (as a binary operation) is idempotent, commutative, and
associative. This operation can be defined by:

x / C . y = (C ∧ x) ∨ (C ∧ y) ∨ (x ∧ y).

Proposition 2.1. Conditional composition x / y . z can be defined in Σ5 by

x / y . z = ((y ∨ D) ∧b (x ∨b G)) / C . ((¬y ∨ D) ∧b (z ∧b H)),

where x / C . y is given above, G = (y ∧b x)∨(¬y ∧b z), andH = (¬y ∨
b
x)∧(y ∨
b
z).

Fluents. Following McCarthy and Hayes [23], let f, g, ... be names for fluents, i.e.,
objects that in any state (i.e., at each instance of time) may take a deterministic
value, thus a value in {M,T, F,D}. We write

f : DetFluent

to express this, and f : BoolFluent if fluent f ranges over {T, F}. Fluents are used
to model deterministic conditions, for example conditions that can occur in an
algorithm or a program. Deterministic conditions are further considered in the
next section. Let P4 be a set of fluents of type DetFluent. We write

Σ5(P4)

for the extension of Σ5 with the fluents in P4, and we let Σ5(P2) denote the
extension of Σ5 with fluents of type BoolFluent in set P2. In order to equate
conditions defined in Σ5(DetFluent) we use substitution of fluents:

[φ/f]g
4
= g, [φ/f]c

4
= c for c ∈ {M,C,T, F,D},

[φ/f]f
4
= φ, [φ/f]¬ψ 4= ¬[φ/f]ψ,

[φ/f](ψ1 ♦ ψ2)
4
= [φ/f]ψ1 ♦ [φ/f]ψ2 for ♦ ∈ {∧, ∧b },

and as a proof rule the excluded fifth rule (cf. [13]):

σ(φ) = σ(ψ) for all σ ∈ {[M/f], [T/f], [F/f], [D/f]}

φ = ψ
.

Together with the identities generated by the truth tables this yields a com-
plete evaluation system for equations over Σ5(P4). With the associated excluded
third rule (on substitution of T and F for fluents of type BoolFluent) we find an
evaluation system for Σ5(P2). We write

Σ5(P4) |= φ = ψ

if φ = ψ follows from the system defined above and the truth tables for Σ5. The
identity stated in the following lemma is used later on, and can be easily proved.

Lemma 2.2. Σ5(P4) |= φ ∨ D = φ ∨
b

D.

3 ACP with Five-Valued Conditions

The axiom system ACP(A, γ) (see e.g., [9, 10, 6]) is parameterized with a set A of
constants a, b, c, ... denoting atomic actions (atoms), i.e., processes that are not
subject to further division, and that execute in finite time. In ACP(A, γ) there
is a constant δ 6∈ A, denoting the inactive process. We write Aδ for A∪{δ}. The
six operations of ACP(A, γ) are

Sequential composition: X · Y denotes the process that performs X, and upon
completion of X starts with Y .

Alternative composition: X + Y denotes the process that performs either X or
Y .

Merge or parallel composition: X ‖ Y denotes the parallel execution of X and
Y (including the possibility of synchronization).

Left merge, an auxiliary operator: X ‖ Y denotes X ‖ Y with the restriction
that the first action stems for the left argument X.

Communication merge, an auxiliary operator: X | Y denotes X ‖ Y with the
restriction that the first action is a synchronization of both X and Y .

Encapsulation: ∂H(X) (where H ⊆ A) renames atoms in H to δ.

We mostly suppress the · in process expressions, and brackets according to the
following rules: · binds strongest, and ‖, ‖ , | all bind stronger than +.

In ACP(A, γ) the communication function γ : A × A → Aδ defines whether
actions communicate, and if so, i.e., γ(a, b) 6= δ, to what result. In Table 2 we
present a slight modification of ACP(A, γ). This modification concerns commu-
tativity of the communication merge | (axiom (CMC), explaining the missing
(CM6) and (CM9)). We set |�(A×A)= γ.

Table 2. The axiom system ACP(A, γ), where a, b, c ∈ Aδ, H ⊆ A.

(A1) X + (Y + Z) = (X + Y) + Z

(A2) X + Y = Y +X

(A3) X +X = X

(A4) (X + Y)Z = XZ + Y Z

(A5) (XY)Z = X(Y Z)

(A6) X + δ = X

(A7) δX = δ

(C1) a | b = b | a
(C2) (a | b) | c = a | (b | c)
(C3) δ | a = δ

(CM1) X ‖ Y = (X ‖ Y + Y ‖ X) +X |Y
(CM2) a ‖ X = aX

(CM3) aX ‖ Y = a(X ‖ Y)

(CM4) (X + Y) ‖ Z = X ‖ Z + Y ‖ Z
(CMC) X |Y = Y |X
(CM5) aX |b = (a |b)X
(CM7) aX |bY = (a |b)(X ‖ Y)

(CM8) (X + Y) |Z = X |Z + Y |Z

(D1) ∂H(a) = a if a 6∈ H
(D2) ∂H(a) = δ if a ∈ H
(D3) ∂H(X + Y) = ∂H(X) + ∂H(Y)

(D4) ∂H(XY) = ∂H(X)∂H(Y)

A (very) simple ACP(A, γ) process term is a ‖ b, the interleaving of two atomic
actions a, b, i.e., the setting in which a | b = δ. It easily follows that

ACP(A, γ) ` a ‖ b = ab+ ba.

A key feature of process algebra is conditional composition

X / φ . Y,

which represents if φ then X else Y where X,Y range over processes and
φ is a condition. Its introduction in process algebra is described in [3]. In [11–
13] we have extended the scope of the condition in conditional composition to
various many-valued logics as described in [8], with the intention to model and
analyze the occurrence of error-prone conditions in algorithms. Repeated use of
conditional composition can lead to cumbersome notation, e.g.,

a1 ·X1 / φ1 . (a2 ·X2 / φ2 . (a3 ·X3 / φ3 . a4 ·X4)),

and to laborious inspection of the outer arguments of conditional composition
(either processes or again conditions). Therefore we introduce the following al-
ternative notation

X+
φ
Y = X / φ . Y,

which has been borrowed from the conventions in probabilistic process algebra
[5]. We use association to the right. The above term then reads as

a1 ·X1+
φ1
a2 ·X2+

φ2
a3 ·X3+

φ3
a4 ·X4,

which is easier to grasp. A condition in Σ5(P4) is called deterministic if it does
not contain C. There is a fundamental difference between C and the other non-
classical constants: the truth values M and D can be established by some ex-
ternal device (e.g., a type checker or a mathematician), whereas C is—on pur-
pose—beyond any means of analysis. We only know it either behaves as T or as
F. Of course, a process such as ab + ba can also be described by ab+

C
ba and,

more generally, we may consider + as a derived construct if C and conditional
composition are available. Stated differently: the alternative composition + of
process algebra can be viewed as a notational device which allows one to re-
move the non-classical truth value C from process expressions involving atoms,
sequential composition, and conditional composition (cf. Lemma 4.3).

Instead of conditional composition we shall often use the conditional guard
construct

φ :→ X,

which (roughly) expresses if φ then X. In Table 3 axioms are given for combin-
ing ACP(A, γ) with five-valued conditions. Here the constant µ represents the
operational contents of M and was introduced in [11, 13]. Furthermore, the φ in
the conditional guard construct ranges over Σ5(P4), so φ :→ is considered as a
unary operation and related to conditional composition by axiom (Cond). Later
on we show that φ :→ X = X / φ . δ. The conditional guard construct binds
weaker than · and stronger than ‖, ‖ , and |.

Observe that the axioms (GC7) and (GC8) generalize (CM5) and (CM7),
respectively. Also observe that φ :→ X | ψ :→ Y 6= φ ∧ ψ :→ (X | Y) (set
φ :→ X ≡ T :→ µ and ψ :→ Y ≡ F :→ δ). We use the acronym

ACPC,µ(A, γ,P4)

both to refer to the axioms of Tables 2 and 3, and to the signature thus defined.

In order to combine process algebra and five-valued logic, we finally introduce
the ‘rule of equivalence’

(ROE)
|= φ = ψ

` φ :→ X = ψ :→ X

This rule reflects the ‘rule of consequence’ in Hoare’s Logic (cf. [1]). We write

ACPC,µ(A, γ,P4) + ROE5 ` X = Y,

or shortly ` X = Y , if X = Y follows from the axioms of ACPC,µ(A, γ,P4), the
axioms and rules for Σ5(P4), and the appropriate rule of equivalence

(ROE5)
Σ5(P4) |= φ = ψ

ACPC,µ(A, γ,P4) ` φ :→ X = ψ :→ X

Table 3. Remaining axioms of ACPC,µ(A, γ,P4), a, b ∈ Aδ, H ⊆ A, and φ ∈ Σ5(P4).

(M1) X + µ = µ

(M2) µ ·X = µ

(M3) µ |X = µ

(GM) M :→ X = µ

(GC) C :→ X = X

(GT) T :→ X = X

(GF) F :→ X = δ

(GD) D :→ X = δ

(Cond) X / φ . Y = φ :→ X + ¬φ :→ Y

(GC1) φ :→ X + ψ :→ X = φ ∨ ψ :→ X

(GC2) φ :→ X + φ :→ Y = φ :→ (X + Y)

(GC3) (φ :→ X)Y = φ :→ XY

(GCL4) φ :→ (ψ :→ X) = φ ∧b ψ :→ X

(GC5) φ :→ X ‖ Y = φ :→ (X ‖ Y)

(GC6) φ :→ a |ψ :→ b = φ ∧ ψ :→ a |b
(GC7) φ :→ aX |ψ :→ b = φ ∧ ψ :→ (a |b)X
(GC8) φ :→ aX |ψ :→ bY = φ ∧ ψ :→ (a |b)(X ‖ Y)

(GC9) ∂H(φ :→ X) = φ :→ ∂H(X)

We end this section with some useful derivabilities, applied in the remainder of
the paper.

Lemma 3.1. 1. ACPC,µ(A, γ,P4) + ROE5 ` φ :→ X = φ ∨
b

D :→ X,

2. ACPC,µ(A, γ,P4) + ROE5 ` φ ∨
b
ψ :→ X = φ ∨ (¬φ ∧b ψ) :→ X,

3. ACPC,µ(A, γ,P4) + ROE5 ` φ ∧ ψ :→ X = (φ ∧b ψ) ∨ (ψ ∧b φ) :→ X.

Proof. As for 1. We apply ROE5 on the identity proved in Lemma 2.2:

φ :→ X = φ :→ X + δ = φ :→ X + D :→ X = φ ∨ D :→ X
2.2
= φ ∨
b

D :→ X.

As for 2 and 3. By inspection, taking all possible value-pairs for φ, ψ, and axioms
(GM)–(GD).

Using 3.1.1,2 and (Cond) one easily derives φ :→ X = X+
φ
δ.

4 Operational Semantics and Completeness

In this section we provide ACPC,µ(A, γ,P4) with an operational semantics and
come up with a completeness result. Of course, interpretations of the conditions
occurring at ‘top level’ in a process expression also determine its semantics. As
an example, consider for fluent f and action a the expression f :→ a. Depending
on the interpretation of f , this process either behaves as µ, as a, or as δ.

Given a (non-empty) set P4 of fluents, let w range over W, the valuations
(interpretations) of P4 in {M,T, F,D}. In the usual way we extend w to Σ5(P4):

w(c)
4
= c for c ∈ {M,C,T, F,D},

w(¬φ)
4
= ¬(w(φ)),

w(φ♦ ψ)
4
= w(φ)♦ w(ψ) for ♦ ∈ {∧, ∧b }.

From the evaluation system defined in Section 2, it follows that

∀w ∈ W
(
|= w(φ) = w(ψ)

)
=⇒ |= φ = ψ.

In Table 4 we define for each w ∈ W a unary predicate meaningless, notation
µ(w,), over process terms in ACPC,µ(A, γ,P4). This predicate defines whether
a process expression represents the meaningless process µ under valuation w.

Table 4. Rules for µ(w,) in panth-format.

µ µ(w, µ)

:→ µ(w, φ :→ X) if w(φ) = M
µ(w,X)

µ(w, φ :→ X)
if w(φ) ∈ {C, T}

+, ·, ‖, ‖ , |, ∂H
µ(w,X)

µ(w,X + Y)
µ(w, Y +X)
µ(w,X · Y)
µ(w, ∂H(X))

µ(w,X)
µ(w,X ‖ Y)
µ(w, Y ‖ X)
µ(w,X ‖ Y)
µ(w,X | Y)

The axioms and rules for µ(w,) given in Table 4 are extended by axioms and
rules given in Table 5, which define transitions

w,a−−−→ ⊆ ACPC,µ(A, γ,P4)× ACPC,µ(A, γ,P4)

and unary “tick-predicates” or “termination transitions”
w,a−−−→

√
⊆ ACPC,µ(A, γ,P4)

for all w ∈ W and a ∈ A. Transitions characterize under which interpretations
a process expression defines the possibility to execute an atomic action, and
what remains to be executed (if anything, otherwise

√
symbolizes successful

termination).
The axioms and rules in Tables 4 and 5 yield a structured operational semantics
(SOS) with negative premises in the style of Groote [16]. Moreover, they satisfy
the so called panth-format defined by Verhoef [24] and define the following notion
of bisimulation equivalence:

Definition 4.1. Let B ⊆ ACPC,µ(A, γ,P4) × ACPC,µ(A, γ,P4). Then B is a
bisimulation if for all P, Q with PBQ the following conditions hold for all
w ∈ W and a ∈ A:

• µ(w,P) ⇐⇒ µ(w,Q),
• ∀P ′ (P w,a−−−→ P ′ =⇒ ∃Q′(Q w,a−−−→ Q′ ∧ P ′BQ′)),
• ∀Q′ (Q w,a−−−→ Q′ =⇒ ∃P ′(P w,a−−−→ P ′ ∧ P ′BQ′)),
• P w,a−−−→

√
⇐⇒ Q

w,a−−−→
√

.
Two processes P, Q are bisimilar, notation P ↔ Q, if there exists a bisimu-

lation containing the pair (P,Q).

Table 5. Transition rules in panth-format.

a ∈ A a
w,a−−−→

√

·, ‖
X

w,a−−−→
√

X · Y w,a−−−→ Y

X ‖ Y w,a−−−→ Y

X
w,a−−−→ X ′

X · Y w,a−−−→ X ′Y

X ‖ Y w,a−−−→ X ′ ‖ Y

+, ‖
X

w,a−−−→
√
¬µ(w, Y)

X + Y
w,a−−−→

√

Y +X
w,a−−−→

√

X ‖ Y w,a−−−→ Y

Y ‖ X w,a−−−→ Y

X
w,a−−−→ X ′ ¬µ(w, Y)

X + Y
w,a−−−→ X ′

Y +X
w,a−−−→ X ′

X ‖ Y w,a−−−→ X ′ ‖ Y
Y ‖ X w,a−−−→ Y ‖ X ′

a | b = c
X

w,a−−−→
√

Y
w,b−−−→
√

X | Y w,c−−−→
√

X ‖ Y w,c−−−→
√

a | b = c
X

w,a−−−→
√

Y
w,b−−−→ Y ′

X | Y w,c−−−→ Y ′

X ‖ Y w,c−−−→ Y ′

a | b = c

X
w,a−−−→ X ′ Y

w,b−−−→
√

X | Y w,c−−−→ X ′

X ‖ Y w,c−−−→ X ′

a | b = c
X

w,a−−−→ X ′ Y
w,b−−−→ Y ′

X | Y w,c−−−→ X ′ ‖ Y ′
X ‖ Y w,c−−−→ X ′ ‖ Y ′

a | b = c

∂H
X

w,a−−−→
√

∂H(X) w,a−−−→
√ if a 6∈ H

X
w,a−−−→ X ′

∂H(X) w,a−−−→ ∂H(X ′)
if a 6∈ H

:→
X

w,a−−−→
√

φ :→ X
w,a−−−→

√ if w(φ) ∈ {C, T}
X

w,a−−−→ X ′

φ :→ X
w,a−−−→ X ′

if w(φ) ∈ {C, T}

Furthermore, from [16, 24] it easily follows that the transitions and meaningless
instances defined by these axioms and rules are uniquely determined. This can
be established with help of the following stratification S:

S(µ(w,X)) = 0, S(X w,a−−−→ X ′) = S(X w,a−−−→
√

) = 1.

By the main result in [24] it follows that bisimilarity is a congruence relation for
all operations involved. Notice that conditional guard constructs are considered
here as unary operations: for each φ ∈ Σ5(P4) there is an operation φ :→ .

We write ACPC,µ(A, γ,P4)/↔ |= P = Q whenever P ↔ Q according to the
notions just defined, and for X = X1, ..., Xn

ACPC,µ(A, γ,P4)/↔|= t1(X) = t2(X)

if for all P = P1, ..., Pn it holds that t1(P) = t2(P). It is not difficult, but
tedious to establish that in the bisimulation model thus obtained all equations
of Table 2 are true. Hence we conclude:

Lemma 4.2. The system ACPC,µ(A, γ,P4) + ROE5 is sound with respect to
bisimulation: if ACPC,µ(A, γ,P4) + ROE5 ` t1(X) = t2(X), then

ACPC,µ(A, γ,P4)/↔|= t1(X) = t2(X).

Finally, we provide a completeness result for ACPC,µ(A, γ,P4)+ROE5. Our proof
refers to the completeness result in [13], which is based on a representation of
closed process terms for which bisimilarity implies derivability in a straightfor-
ward way (so called “basic terms”). A crucial observation is that terms over
ACPC,µ(A, γ,P4) can be represented without C.

Lemma 4.3. In ACPC,µ(A, γ,P4) each closed process expression can be proved
equal to one in which C does not occur.

Proof. We omit a full proof based on a representation of closed terms not containing
∂H , ‖, ‖ , |, and / . (both as a logical connective and as a process constructor,
cf. Proposition 2.1). It can be argued that C need not occur in any guard φ in φ :→ X
by induction on the complexity of φ. E.g., if φ ≡ φ1 ∧ φ2 then by Lemma 3.1.3,
φ :→ X = (φ1 ∧b φ2) :→ X+ (φ2 ∧b φ1) :→ X = φ1 :→ (φ2 :→ X) +φ2 :→ (φ1 :→ X).

Theorem 4.4. The system ACPC,µ(A, γ,P4) + ROE5 is complete with respect
to bisimulation: for closed terms P and Q,

ACPC,µ(A, γ,P4) + ROE5 ` P = Q ⇐⇒ ACPC,µ(A, γ,P4)/↔|= P ↔ Q.

Proof. By the previous lemma and soundness it is sufficient to prove⇐= for ACP(A, γ)
with four-valued logic over {M, T, F,D} and P4. A detailed (inductive) proof is spelled
out in [13].

We end this section with a nice correspondence result.

Proposition 4.5. Let t1(X,x) = t2(X,x) be a process identity with process
variables X and condition variables x in which the only constants are in Σ5 and
the only operation is / . . Then

ACPC,µ(A, γ,P4)/↔|= t1(X,x) = t2(X,x)⇐⇒ Σ5(P4) |= t′1(X,x) = t′2(X,x),

where t′i is obtained by regarding the process variables of ti also as condition
variables.

5 Generalization of ACP and CpSP

We discuss various systems that generalize ACP(A, γ) [10] to a setting in which
alternative composition is a special case of conditional composition, and that
provides a parameterized version of the parallel composition operations. Next we
provide an algebraic setting for the Cooperating Sequential Processes (CpSP) of
Dijkstra [15]. We can do this for all logics that contain C. We define the following
operations, where A is the set of atomic actions, Pr is the sort of processes, and
L is the particular logic involved.

— Constants and operations —
a : A ⊆ Pr
δ : Pr, δ 6∈ A
| : Aδ ×Aδ → Aδ
· : Pr× Pr→ Pr

∂H() : Pr→ Pr (H ⊆ A)

— Parametrized operations —
+ : Pr× L× Pr→ Pr
‖ : Pr× L× L× Pr→ Pr
‖ : Pr× L× L× Pr→ Pr
| : Pr× L× L× Pr→ Pr
| : Pr× L× L× Pr→ Pr

We write Gk(Z) for the k-valued generalization of axiomatization Z. We first
describe the simplest generalization

G3

(
ACPC(A, γ,P2)

)
.

and write ΣC
3 (P2) for three-valued logic over {C,T, F} and P2. The system

G3

(
ACPC(A, γ,P2)

)
is defined by the axioms in Table 6, where γ =|�(A×A).

Observe that axiom (GA3) is equivalent with

X+
φ
X = X,

as T / φ . T = T in ΣC
3 (P2). However, the formulation used in Table 6 allows

straightforward generalizations to systems that contain error-prone conditions
(possibly evaluating to M or D). It is easy to see which axioms should be added,
e.g., if only D is considered, the axiom

(GGD) X+
D
Y = δ

should be added to Table 6. Involving M gives rise to µ ∈ Pr and axioms

(GM1) X+
C
µ = µ,

(GGM) X+
M
Y = µ.

Observe that µX = µ is derivable from (GGM) and (GA4). Furthermore,
X

φ
|
ψ
µ = µ

φ
|
ψ
X = µ follows from (GGM) and (GCM8), (GCM9), respec-

tively. The system
G5

(
ACPC,µ(A, γ,P4)

)
is defined as the extension of G3

(
ACPC(A, γ,P2)

)
with (GM1), (GGM), (GGD),

and with conditions ranging over Σ5(P4).

Table 6. G3

(
ACPC(A, γ,P2)

)
, a, b ∈ Aδ, H ⊆ A, and φ, ψ, χ ∈ ΣC

3 (P2).

(GGT) X+
T
Y = X

(GA1) X+
φ

(Y+
φ
Z) = (X+

φ
Y)+

φ
Z

(GA2) X+
φ
Y = Y+¬φX

(GA3) X+
φ
X = X+

(T / φ . T)
X

(GA4) (X+
φ
Y)Z = XZ+

φ
Y Z

(GA5) (XY)Z = X(Y Z)

(GA6) X+
C
δ = X

(GA7) δX = δ

(C1) a | b = b | a
(C2) (a | b) | c = a | (b | c)
(C3) δ | a = δ

(GCM1) X
φ
‖
ψ
Y = (X

φ
‖
ψ
Y+

ψ
Y
φ
‖ ¬ψX)+

φ
X
φ
|
ψ
Y

(GCM2) a
φ
‖
ψ
X = aX

(GCM3) aX
φ
‖
ψ
Y = a(X

φ
‖
ψ
Y)

(GCM4) (X+
φ
Y)

ψ
‖ χZ = X

ψ
‖ χZ+

φ
Y
ψ
‖ χZ

(GCMC) X
φ
|
ψ
Y = X

φ
|
ψ
Y+

ψ
Y
φ
| ¬ψX

(GCM5) aX
φ
|
ψ
Y = a

φ
|
ψ

(Y
φ
‖ ¬ψX)

(GCM6) a
φ
|
ψ
b = a | b

(GCM7) a
φ
|
ψ
bX = (a | b)X

(GCM8) a
φ
|
ψ

(X+χY) = a
φ
|
ψ
X+χa φ | ψY

(GCM9) (X+
φ
Y)

ψ
| χZ = X

ψ
| χZ+

φ
Y
ψ
| χZ

(GD1) ∂H(a) = a if a 6∈ H
(GD2) ∂H(a) = δ if a ∈ H
(GD3) ∂H(X+

φ
Y) = ∂H(X)+

φ
∂H(Y)

(GD4) ∂H(XY) = ∂H(X)∂H(Y)

Cooperating Sequential Processes, CpSP, in the style of [15] can be abstractly
modeled in G5

(
PAδ,C,µ(A,P4)

)
with action history operator and state oper-

ator. Here, PAδ,C,µ(A,P4) refers to the restriction of parallel composition to
interleaving, thus to a setting without communication, and is obtained from

G5

(
ACPC,µ(A, γ,P4)

)
by restricting

φ
‖
ψ

to
T
‖

C
. We further write ||| for

T
‖

C
,

and ||| instead of
T
‖

C
. The axioms of G5

(
PAδ,C,µ(A,P4)

)
are given in Table 7.

Table 7. G5

(
PAδ,C,µ(A,P4)

)
, a ∈ Aδ ∪ {µ}, σ ∈ A∗, and φ ∈ Σ5(P4).

(GA1) X+
φ

(Y+
φ
Z) = (X+

φ
Y)+

φ
Z (GGT) X+

T
Y = X

(GA2) X+
φ
Y = Y+¬φX (GGD) X+

D
Y = δ

(GA3) X+
φ
X = X+

(T / φ . T)
X (GM1) X+

C
µ = µ

(GA4) (X+
φ
Y)Z = XZ+

φ
Y Z (GGM) X+

M
Y = µ

(GA5) (XY)Z = X(Y Z)

(GA6) X+
C
δ = X

(GA7) δX = δ

(GCM1) X ||| Y = X ||| Y+
C
Y ||| X

(GCM2) a ||| X = aX

(GCM3) aX ||| Y = a(X ||| Y)

(GCM4) (X+
φ
Y) ||| Z = X ||| Z+

φ
Y ||| Z

Action History Logic, AHL, was introduced in [13] as a natural example of
the use of four-valued logic in process algebra. It can be used to express history
dependent properties of processes, and comprises the following ingredients:

In, the assertion which is true of the initial state of a process and false thereafter.
P4(φ), the assertion that φ is valid in the previous state, i.e., the state before

the last action. If there is no such state, P4(φ) = M.
L4(a), the condition that expresses that the last action was a. In case the state

is initial, L4(a) evaluates to M.

Let Σ5(P4) be generated from AHL. Writing ε for the empty history, the action
history operator Hε defined in Table 8 memorizes the action history (trace) of
a fluent-free process. In order to represent a CpSP-process which involves the
interpretation of fluents we consider a data-state space S ⊆ T × W for some
further unspecified set T and the set W of interpretations. We use a state oper-
ator λs() (see [2]) to model how the execution of actions affects interpretations.
Typically, process aX in data-state s is represented as λs(aX) and satisfies

λs(aX) = a′ · λs′(X)

where a′ is the action (or δ or µ) that occurs as the result of executing a in
data-state s, and s′ is the data-state which ensues when executing a in s. We
assume two given functions describing these effects: action : A×S → A∪ {δ, µ}
and effect : A × S → S. We further set action(c, s) = c for c ∈ {δ, µ}. Axioms
for the state operator are also given in Table 8.

Now Hε(λs(P1 ||| ... ||| Pn)) with Pi not containing history/state operators or
||| , ||| typically is an algebraic notation for a CpSP-process with (global) initial
data-state s.

Table 8. Axioms for history and state operator, a ∈ A, σ ∈ A∗, and φ, ψ ∈ Σ5(P4).

Hσ(X+
φ
Y) = Hσ(X)+

φ(σ)
Hσ(Y)

Hσ(c) = c for c ∈ A ∪ {δ, µ}
Hσ(a ·X) = a ·Hσa(X)

c(σ) = c for c ∈ {M,C,T,F,D}
(¬φ)(σ) = ¬(φ(σ))

(φ � ψ)(σ) = φ(σ) � ψ(σ) for � ∈ {∧, ∧b }
λ(t,w)(X+

φ
Y) = λ(t,w)(X)+

w(φ)
λ(t,w)(Y)

λs(c) = action(c, s) for c ∈ A ∪ {δ, µ}

In(ε) = T

In(σa) = F

P4(φ)(ε) = M

P4(φ)(σa) = φ(σ)

L4(a)(ε) = M

L4(a)(σb) = a ≡ b ∈ {T,F}

λs(aX) = action(a, s) · λs′(X)

where s′ = effect(a, s)

6 Conclusions

We observed that Kleene’s three-valued logic K3 allows for two intuitions of the
third, non-classical truth value: undetermined and undefined. Indeed, a complete
axiomatization of K3 leaves room for exactly two non-classical constants, nota-
tion C and D, and implies C ∧ D = F. The resulting four-valued logic K4 has a
complete, equational axiomatization [20]. The combination of K4, or one of its
sublogics containing T, F, with process algebra yields an equational complete-
ness result (adopting our restriction on the interpretation of fluents, discarding
C, and using Lemma 4.3). This follows from [4, 12]. Adding M (meaningless) to
K4 yields a five-valued logic, which we extended with McCarthy’s asymmetric
connectives to provide a useful combination with process algebra. We presented
a non-equational completeness result (using the ‘excluded fifth rule’). Complete-
ness results for all sublogics containing M,T, F follow from [11, 12].

We hope to have indicated that the use of non-classical logics in process
theory is interesting in its own right. Expressivity can be enlarged by involving
recursive ingredients. For process description we propose the (binary) Kleene
star (see [19]), which in process algebra is defined by X∗Y = X · (X∗Y) + Y
(see also [7]). In a more general setting, one can define X∗φY = X · (X∗φY)+

φ
Y

and write X∗Y for X∗CY . Examples with recursively defined conditions, such
as schedulers, are discussed in [13].

References

1. K.R. Apt. Ten years of Hoare’s logic, a survey, part I. ACM Transactions on
Programming Languages and Systems, 3(4):431-483, 1981.

2. J.C.M. Baeten and J.A. Bergstra. Global renaming operators in concrete process
algebra. Information and Computation, 78(3):205-245, 1988.

3. J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions. In
M. Broy, editor, Programming and Mathematical Method, Proceedings Summer
School Marktoberdorf, 1990 NATO ASI Series F, pages 273-323, Springer-Verlag,
1992.

4. J.C.M. Baeten and J.A. Bergstra. Process algebra with propositional signals. The-
oretical Computer Science, 177(2):381-406, 1997.

5. J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka. Axiomatizing probabilistic
processes: ACP with generative probabilities. Information and Computation,
121(2):234-254, 1995.

6. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18. Cambridge University Press, 1990.

7. J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting.
Computer Journal, 37(4):243-258, 1994.

8. J.A. Bergstra, I. Bethke, and P.H. Rodenburg. A propositional logic with 4 values:
true, false, divergent and meaningless. Journal of Applied Non-Classical Logics,
5:199-217, 1995.

9. J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the
algebra of regular processes. In A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, Al-
gebra of Communicating Processes, Utrecht 1994, Workshops in Computing, pages
1-25. Springer-Verlag, 1995. An extended abstract appeared in J. Paredaens, edi-
tor, Proceedings 11th ICALP, Antwerp, volume 172 of Lecture Notes in Computer
Science, pages 82-95. Springer-Verlag, 1984.

10. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1/3):109-137, 1984.

11. J.A. Bergstra and A. Ponse. Bochvar-McCarthy logic and process algebra. Techni-
cal Report P9722, Programming Research Group, University of Amsterdam, 1997
(see also http://www.wins.uva.nl/research/prog/reports/reports.html).

12. J.A. Bergstra and A. Ponse. Kleene’s three-valued logic and process algebra.
Information Processing Letters, 67(2):95-103, 1998.

13. J.A. Bergstra and A. Ponse. Process algebra with four-valued logic. Technical
Report P9724, Programming Research Group, University of Amsterdam, 1997
(see also http://www.wins.uva.nl/research/prog/reports/reports.html). To
appear in Journal of Applied Non-Classical Logics.

14. D.A. Bochvar. On a 3-valued logical calculus and its application to the analysis
of contradictions (in Russian). Matématic̆eskij sbornik, 4:287-308, 1939.

15. E.W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Program-
ming Languages, pages 43-112, Academic Press, New York, 1968.

16. J.F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118(2):263-299, 1993.

17. C.A.R. Hoare, I.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders,
I.H. Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of programming. Communica-
tions of the ACM, 30(8):672-686, August 1987.

18. S.C. Kleene. On a notation for ordinal numbers. Journal of Symbolic Logic, 3:150-
155, 1938.

19. S.C. Kleene. Representation of events in nerve nets and finite automata. In
Automata Studies, pages 3-41. Princeton University Press, Princeton NJ, 1956.

20. S.P. Luttik and P.H. Rodenburg. Personal communications, 1998.
21. J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort

and D. Hirshberg (eds.), Computer Programming and Formal Systems, pages 33-
70, North-Holland, Amsterdam, 1963.

22. J. McCarthy. Formalization of common sense, papers by John McCarthy edited
by V. Lifschitz. Ablex, 1990.

23. J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence
4, pages 463-502. Edinburgh University Press, 1969. Reprinted in [22].

24. C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274-302, 1995.

