
Proposition algebra and short-circuit logic

Jan A. Bergstra and Alban Ponse

Section Theory of Computer Science
Informatics Institute, Faculty of Science

University of Amsterdam, The Netherlands
www.science.uva.nl/{~janb/,~alban/}

Abstract. Short-circuit evaluation denotes the semantics of proposi-
tional connectives in which the second argument is only evaluated if the
first argument does not suffice to determine the value of the expression.
In programming, short-circuit evaluation is widely used.
We review proposition algebra [2010], an algebraic approach to proposi-
tional logic with side effects that models short-circuit evaluation. Propo-
sition algebra is based on Hoare’s conditional [1985], which is a ternary
connective comparable to if-then-else. Starting from McCarthy’s notion
of sequential evaluation [1963] we discuss a number of valuation con-
gruences on propositional statements and we introduce Hoare-McCarthy
algebras as the structures that model these congruences. We also briefly
discuss the associated short-circuit logics, i.e., the logics that define these
congruences if one restricts to sequential binary connectives.
Key words: Conditional composition, reactive valuation, sequential con-
nective, short-circuit evaluation, side effect.

1 Introduction

Short-circuit evaluation is a folk term1 that describes how the common propo-
sitional connectives are evaluated in a setting of programming languages: eval-
uation stops as soon as the value T (true) or F (false) of the expression is
determined. In particular, the “conjunction” of x and y in a notation commonly
used to prescribe short-circuit evaluation, is often explained by the identity

x && y = if x then y else F ,

and the connective or in short-circuit interpretation, notation || , is then ex-
plained by the identity

x || y = if x then T else y.

So, evaluation of x && y stops if x yields F and then y is not evaluated, and
similarly, evaluation of x || y stops if x yields T and then y is not evaluated.
In the most general case, both && and || are not commutative.
1 Other names used for short-circuit evaluation are Minimal evaluation and McCarthy

evaluation.

Following this lay-out, the evaluation of a “conditional expression” is con-
sidered a natural candidate for short-circuit evaluation, and hence justifies our
choice for Hoare’s ternary connective

x / y . z,

i.e., the conditional connective that represents if y then x else z, as a basic
connective. Hoare’s conditional connective is introduced in 1985 in the paper [9]
(accounts of a similar ternary connective can be found in [7, 8]). So,

x && y = y / x . F and x || y = T / x . y. (1)

The conditional connective satisfies the three equational laws

x / T . y = x, x / F . y = y and T / x . F = x. (2)

Interestingly, in the most general case the conditional connective cannot be de-
fined in terms of the common binary connectives, where by “most general” we
refer to a semantics in which all possible “side effects” can occur, and thus a
semantics that identifies least. As an example, in many imperative-based pro-
gramming languages, assignments such as x=x+1 when interpreted as atoms (i.e.,
atomic propositions) yield upon evaluation the interpretation of the assigned
value next to having the intended side effect. It is trivial to find a propositional
statement P such that P 6= P / (x=x+1).F , or equivalently, P 6= (x=x+1) && P ,
e.g.,

(x==2) 6= (x==2) / (x=x+1) . F

if the initial value of x is either 1 or 2, == is interpreted as an equality test, and
the interpretation of values different from zero is T . However, the three laws for
the conditional (2) are valid in this most general case.

In case side effects do not occur, the conditional can be defined: 2 using the
common notation for connectives, a definition is

y / x . z = (x ∧ y) ∨ (¬x ∧ z),

which is easily seen by substituting T respectively F for x. An example in a
setting with side effects that refutes this translation is

(y==2) / ((x=x+1) ∧ (x==2)) . (y=y+1).

This follows easily: if both x and y have initial value 1, the interpretation of this
conditional expression yields F with the side effect that x has final value 2, while
the above-mentioned translation yields T with the side effect that the final value
of x is 3 and the final value of y is 2 (note that this argument holds irrespective
of the question whether ∧ is interpreted as a short-circuit operator).

2 This is the semantical setting in Hoare’s paper [9], where the conditional was intro-
duced to provide an equational basis for propositional logic.

2

A way to settle whether side effects have impact, and if so, to what extent, is
to distinguish various types of valuation semantics. Typically, and illustrated by
the above examples, a valuation may return different values for the same atom
during the sequential evaluation of a propositional statement (a closed term),
and valuation semantics is about such reactive valuations. We adopt the condi-
tional connective as a primitive connective and both T and F as constants. A
proposition algebra is a model of the three axioms mentioned in (2) and an axiom
for decomposing a compound central condition c in x / c . z. By adding more
axioms, more propositional statements are identified, and all proposition alge-
bras we consider are defined by concise equational axiomatizations. Given some
proposition algebra, a valuation semantics can be defined that is constructed
from so-called valuation functions, that is, functions defined on sequences of
atoms that return either T or F . Propositional statements are identified if they
yield in each context for each valuation function the same result. This context
requirement refers to the fact that upon the evaluation of an atom that yields
a side effect, the valuation value of future atoms in the propositional statement
under evaluation is possibly flipped, as is clear from the previous examples.

Concerning conjunction and disjunction, we will consider sequential versions
of these connectives that by their notation prescribe short-circuit evaluation and
that are defined with the conditional (cf. the equations in (1)). Also, negation
can be easily defined in terms of the conditional:

¬x = F / x . T.

Given some axiomatization of a proposition algebra, a short-circuit logic is a logic
that implies all consequences that can be expressed using only binary sequential
conjunction, negation and the constant T . Typical examples are the associativity
of sequential conjunction and the double negation shift ¬¬x = x.

In this paper we present a survey of our work based on proposition alge-
bra [4]. In the next section we briefly discuss so-called Hoare-McCarthy algebras
(HMAs). HMAs were introduced in [6] in order to provide a more elegant and
generic framework for the valuation semantics associated with proposition alge-
bra (we return to this point in Section 7). We construct an HMA that identifies
least and characterizes structural congruence. In Section 3 we consider the short-
circuit logic that is associated with structural congruence (short-circuit logics
were introduced in [5]). Section 4 is about contractive congruence, a congruence
that identifies more propositional statements than structural congruence. We
construct a characterizing HMA and we briefly consider the short-circuit logic
associated with contractive congruence. In Section 5 we discuss memorizing con-
gruence, a congruence that identifies more than contractive congruence and less
than propositional logic, and we argue that the associated short-circuit logic
also defines this congruence because the conditional is definable in this setting
(whereas it is not in contractive congruence, see Section 7). In Section 6 we con-
sider static congruence and its short-circuit logic; apart from the notation, this
is the setting of conventional propositional logic and no side effects are possible.
In Section 7 we end the paper with a brief summary and discussion about our
work described in [4–6].

3

x / T . y = x (CP1)

x / F . y = y (CP2)

T / x . F = x (CP3)

x / (y / z . u) . v = (x / y . v) / z . (x / u . v) (CP4)

Table 1. The set CP of axioms for proposition algebra

2 Proposition algebras and HMAs

In this section we define proposition algebras, and in order to capture their
valuation semantics we briefly discuss Hoare-McCarthy algebras, a certain type
of two-sorted algebras that we introduced in [6].

Throughout this paper let A be a non-empty, denumerable set of atoms
(atomic propositions) with typical elements a, b, Define C as the sort of
conditional expressions with signature

ΣA
ce = {a : C, T : C, F : C, . / . . . : C × C × C → C | a ∈ A},

thus each atom in A is a constant of sort C. In ΣA
ce, ce stands for “conditional

expressions”. We write TΣA
ce

for the set of closed terms over ΣA
ce. Given an ex-

pression t1 / t2 . t3 we will sometimes refer to t2 as the central condition. We
assume that conditional composition satisfies the axioms in Table 1 and we refer
to this set of axioms with CP (Conditional Propositions). Axiom (CP4) also
stems from [9] and defines decomposition of the central condition by distributiv-
ity. We argue in Section 3 that CP characterizes all valid identities in the case
that unrestricted side effects occur.

Definition 1. A ΣA
ce-algebra is a proposition algebra if it is a model of CP.

A non-trivial initial algebra I(ΣA
ce,CP) exists. This can be easily shown in

the setting of term rewriting [12]. It is not hard to show that directing all CP-
axioms from left to right yields a strongly normalizing TRS (term rewriting
system) for closed terms. However, the normal forms resulting from this TRS
are not particularly suitable for systematic reasoning, and we introduce another
class of closed terms for this purpose.

Definition 2. A term t ∈ TΣA
ce

is a basic form if for a ∈ A,

t ::= T | F | t / a . t.

Lemma 1. For each closed term t ∈ TΣA
ce

there exists a unique basic form t′

with CP ` t = t′.

Proof. Let t′′ be the unique normal form of t. Replace in t′′ each subterm that
is a single atom a and occurs as an outer argument by T / a . F . This results in
a unique basic form t′ and clearly CP ` t = t′. ut

4

Let S be a sort of states with constant c. We extend the signature ΣA
ce to

ΣA
sce = ΣA

ce ∪ {c : S, . / . . . : S × C × S → S},

where sce stands for “states and conditional expressions”.

Definition 3. A ΣA
sce-algebra is a two-sorted proposition algebra if its ΣA

ce-
reduct is a proposition algebra, and if it satisfies the following axioms where x
ranges over conditional expressions and s, s′ range over states:

s / T . s′ = s, (TS1)
s / F . s′ = s′, (TS2)

x 6= T ∧ x 6= F → s / x . s′ = c. (TS3)

So, the state set of a two-sorted proposition algebra can be seen as one that
is equipped with an if-then-else construct and conditions that stem from CP.
We extend the signature ΣA

sce to

ΣA
spa = ΣA

sce ∪ { ! : C × S → S, • : C × S → C},

where spa stands for “stateful proposition algebra” (see below). The operator
! is called “reply” and the operator • is called “apply” and we further assume
that these operators bind stronger than conditional composition. The reply and
apply operator are taken from [3].

Definition 4. A ΣA
spa-algebra is a stateful proposition algebra, SPA for

short, if its reduct to ΣA
sce is a two-sorted proposition algebra, and if it satis-

fies the following axioms where x, y, z range over conditional expressions and s
ranges over states:

T ! s = T, (SPA1)
F ! s = F, (SPA2)

(x / y . z) ! s = x ! (y • s) / y ! s . z ! (y • s), (SPA3)
T • s = s, (SPA4)
F • s = s, (SPA5)

(x / y . z) • s = x • (y • s) / y ! s . z • (y • s), (SPA6)
x ! s = T ∨ x ! s = F, (SPA7)

∀s(x ! s = y ! s ∧ x • s = y • s)→ x = y. (SPA8)

We refer to (SPA7) as two-valuedness and we write CTS (abbreviating CP
and TS and SPA) for the set that exactly contains all fifteen axioms involved.

In a stateful proposition algebra S with domain C ′ of conditional expressions
and domain S′ of states, a propositional statement t ∈ TΣA

ce
can be associated

with a ‘valuation function’ t ! : S′ → {T, F} (the evaluation of t according to
some initial valuation function or ‘state’) and a ‘state transformer’ t• : S′ → S′.

5

Definition 5. A Hoare-McCarthy algebra, HMA for short, is the ΣA
ce-reduct

of a stateful proposition algebra.

For each HMA A we have by definition A |= CP. In Theorem 1 below we
prove the existence of an HMA that characterizes CP in the sense that a closed
equation is valid only if it is derivable from CP.

We define structural congruence, notation =sc, on TΣA
ce

as the congruence
generated by CP.

Theorem 1. An HMA that characterizes CP exists: there is an HMA Asc such
that for all t, t′ ∈ TΣA

ce
, CP ` t = t′ ⇐⇒ Asc |= t = t′.

Proof. We construct the ΣA
spa-algebra Ssc with C ′ = TΣA

ce
/=sc as its set of con-

ditional expressions and, writing A+ for the set of finite, non-empty strings over
the set A of atoms, the function space

S′ = {T, F}A
+

as its set of states. For each state f and atom a ∈ A define a ! f = f(a) and a • f
as the function defined for σ ∈ A+ by

(a • f)(σ) = f(aσ).

The state constant c is given an arbitrary interpretation, and the axioms (TS1)–
(TS3) define . / . . . : S′ × C ′ × S′ in Ssc. The axioms (SPA1)–(SPA6) fully
determine the functions ! and •, and this is well-defined: if t =sc t

′ then for all
f , t ! f = t′ ! f and t • f = t′ • f (this follows by inspection of the CP axioms).
The axiom (SPA7) holds by construction of S′. In order to prove that Ssc is a
SPA it remains to be shown that axiom (SPA8) holds, i.e., for all t, t′ ∈ TΣA

ce
,

∀f(t ! f = t′ ! f ∧ t • f = t′ • f)→ t =sc t
′.

This follows by contraposition. By Lemma 1 we may assume that t and t′ are
basic forms, and we apply induction on the complexity of t, where we use ≡ to
denote syntactic equivalence:

1. Suppose t ≡ T , then t′ ≡ F yields t ! f 6= t′ ! f for any f , and if t′ ≡ t1 /a . t2
then consider f with f(a) = T and f(aσ) = F for σ ∈ A+. We find t • f = f
and t′ • f 6= f because (t′ • f)(a) = (t1 • f)(aσ) = F .

2. If t ≡ F a similar argument applies.
3. Suppose t ≡ t1 /a. t2, then the cases t′ ∈ {T, F} can be dealt with as above.

If t′ ≡ t3 / a . t4 then assume t1 / a . t2 6=sc t3 / a . t4 because t1 6=sc t3. By
induction there exists f with t1 • f 6= t3 • f or t1 ! f 6= t3 ! f . Take some g
such that a•g = f and a !g = T , then g distinguishes t1 /a.t2 and t3 /a.t4.
If t1 =sc t3, then a similar argument applies for t2 6=sc t4.
If t′ ≡ t3 / b . t4 with a and b different, then (t1 / a . t2) • f 6= (t3 / b . t4) • f
for f defined by f(a) = f(aσ) = T and f(b) = f(bσ) = F because
((t1 /a.t2)•f)(a) = (t1 • (a•f))(a) = f(aρa) = T , and ((t3 /b.t4)•f)(a) =
(t4 • (b • f))(a) = f(bρ′a) = F (where ρ, ρ′ possibly equal the empty string).

6

So Ssc is a SPA. Define the HMA Asc as the ΣA
ce-reduct of Ssc. The validity of

axiom (SPA8) proves ⇐= as stated in the theorem (the implication =⇒ holds
by definition of a SPA). ut

Observe that Asc ∼= I(ΣA
ce,CP) and that by the proof of the above theorem

we find for all t, t′ ∈ TΣA
ce

,

CP ` t = t′ ⇐⇒ Ssc |= t = t′.

In [10] it is shown that the axioms of CP are independent, and also that they
are ω-complete if the set of atoms involved contains at least two elements.

3 Free short-circuit logic: FSCL

In this section we recall our generic definition of a short-circuit logic introduced
in [5] and discuss free short-circuit logic (FSCL), the least identifying short-
circuit logic we consider and that is associated with CP.

We first return to our discussion of short-circuit evaluation started in the
Introduction. Our interest can be captured by the following question: Given
some programming language, what is the logic that implies the equivalence of
conditions, notably in if-then-else and while-do constructs and the like? In [5] we
study sequential variants of propositional logic that are based on left-sequential
conjunction, i.e., conjunction that prescribes short-circuit evaluation and that is
defined by

x ∧rb y = y / x . F

where the fresh symbol ∧rb is taken from [1] (the small circle indicates that the
left argument must be evaluated first). It is not hard to find examples that show
that the laws x ∧rb x and its weaker version a ∧rb a = a are not valid in the most
general case (cf. the examples discussed in the Introduction), which is the case
characterized by CP. We define a set of equations that is sound in FSCL and
raise the question of its completeness.

We define short-circuit logics such as FSCL in a generic way. Intuitively, a
short-circuit logic is a logic that implies all consequences of CP that can be ex-
pressed in the signature {T,¬, ∧rb }. The definition below uses the export-operator
� of module algebra [2] to define this in a precise manner, where it is assumed
that CP satisfies the format of a module specification. In module algebra, Σ � X
is the operation that exports the signature Σ from module X while declaring
other signature elements hidden. In this case it declares conditional composition
to be an auxiliary operator.

Definition 6. A short-circuit logic is a logic that implies the consequences
of the module expression

SCL = {T,¬, ∧rb } � (CP + 〈 ¬x = F / x . T 〉+ 〈x ∧rb y = y / x . F 〉).

For example, SCL ` ¬¬x = x can be easily shown. Following Definition 6,
the most basic (least identifying) short-circuit logic we distinguish is this one:

7

F = ¬T (SCL1)

x ∨qa y = ¬(¬x ∧qa ¬y) (SCL2)

¬¬x = x (SCL3)

T ∧qa x = x (SCL4)

x ∧qa T = x (SCL5)

F ∧qa x = F (SCL6)

(x ∧qa y) ∧qa z = x ∧qa (y ∧qa z) (SCL7)

(x ∨qa y) ∧qa (z ∧qa F) = (¬x ∨qa (z ∧qa F)) ∧qa (y ∧qa (z ∧qa F)) (SCL8)

(x ∨qa y) ∧qa (z ∨qa T) = (x ∧qa (z ∨qa T)) ∨qa (y ∧qa (z ∨qa T)) (SCL9)

((x ∧qa F) ∨qa y) ∧qa z = (x ∧qa F) ∨qa (y ∧qa z) (SCL10)

Table 2. EqFSCL, a set of equations for FSCL

Definition 7. FSCL (free short-circuit logic) is the short-circuit logic that
implies no other consequences than those of the module expression SCL.

Although the constant F does not occur in the exported signature of SCL, we
discuss FSCL using this constant to enhance readability. This is not problematic
because

CP + 〈 ¬x = F / x . T 〉 ` F = ¬T,

so F can be used as a shorthand for ¬T in FSCL.
In Table 2 we provide equations for FSCL and we use the name EqFSCL

for this set of equations. Some comments: equation (SCL1) defines the constant
F , and equation (SCL2) defines ∨rb , so-called left-sequential disjunction. Equa-
tions (SCL3) − (SCL7) need no comment. Equation (SCL8) defines a property
of the mix of negation and the sequential connectives, and its soundness can
perhaps be easily grasped by considering the evaluation values of x (observe
that z ∧rb F = (z ∧rb F) ∧rb ...). Equation (SCL9) defines a restricted form of right-
distributivity of ∧rb , and so does equation (SCL10) (because (x ∧rb F) ∧rb z = x ∧rb F).

We note that equations (SCL2) and (SCL3) imply sequential versions of
De Morgan’s laws, which allows us to use sequential versions of the duality
principle. Furthermore, we note that the equation x ∧rb F = F should not be
a consequence of EqFSCL: it is easily seen that Asc 6|= F / a . F = F (see
Theorem 1). A simple consequence of equation (SCL8) is

x ∧rb F = ¬x ∧rb F (SCL8∗)

(take y = z = F), which we will use in Section 5, and another interesting
EqFSCL-consequence is (x ∨rb T) ∧rb y = (x ∧rb F) ∨rb y (for a proof see [5]).

Proposition 1 (Soundness). The equations in EqFSCL (see Table 2) are
derivable in FSCL.

8

While not having found any equations that are derivable in FSCL but not
from EqFSCL, we failed to prove completeness of EqFSCL in the following sense
(of course, =⇒ follows from Proposition 1):

For all SCL-terms t and t′, EqFSCL ` t = t′ ⇐⇒ FSCL ` t = t′. (3)

4 Contractive congruence

In this section we consider the congruence defined by the axioms of CP and these
axiom schemes (a ∈ A):

(x / a . y) / a . z = x / a . z, (CPcr1)
x / a . (y / a . z) = x / a . z. (CPcr2)

Following [4], we write CPcr for this set of axioms. Typically, successive equal
atoms are contracted according to the axiom schemes (CPcr1) and (CPcr2).

Let contractive congruence, notation =cr, be the congruence on TΣA
ce

gener-
ated by the axioms of CPcr.

Definition 8. A term t ∈ TΣA
ce

is a cr-basic form if for a ∈ A,

t ::= T | F | t1 / a . t2

and ti (i = 1, 2) is a cr-basic form with the restriction that the central condition
(if present) is different from a.

Lemma 2. For each t ∈ TΣA
ce

there exists a cr-basic form t′ with CPcr ` t = t′.

Proof. By structural induction; see [4] for a full proof. ut

Theorem 2. For |A| > 1, an HMA that characterizes CPcr exists, i.e. there is
an HMA Acr such that for all t, t′ ∈ TΣA

ce
, CPcr ` t = t′ ⇐⇒ Acr |= t = t′.

Proof. Let Acr ⊂ A+ be the set of strings that contain no consecutive occur-
rences of the same atom. Construct the ΣA

spa-algebra Scr with TΣA
ce
/=cr

as its set
of conditional expressions and the function space

S′ = {T, F}A
cr

as its set of states. For each state f and atom a ∈ A define a ! f = f(a) and a • f
by

(a • f)(σ) =

{
f(σ) if σ = a or σ = aρ,

f(aσ) otherwise.

Clearly, a•f ∈ {T, F}Acr

if f ∈ {T, F}Acr

. Similar as in the proof of Theorem 1,
the state constant c is given an arbitrary interpretation, and the axioms (TS1)–
(TS3) define the function s / f . s′ in Scr. The axioms (SPA1)–(SPA6) fully
determine the functions ! and •, and this is well-defined: if t =cr t

′ then for all

9

f , t ! f = t′ ! f and t • f = t′ • f follow by inspection of the CPcr axioms. We
show soundness of the axiom scheme (CPcr1): note that a ! (a • f) = a ! f and
a • (a • f) = a • f , and derive

((t1 / a . t2) / a . t) ! f = (t1 / a . t2) ! (a • f) / a ! f . t ! (a • f)
= t1 ! (a • (a • f)) / a ! f . t ! (a • f)
= (t1 / a . t) ! f,

and

((t1 / a . t2) / a . t) • f = (t1 / a . t2) • (a • f) / a ! f . t • (a • f)
= t1 • (a • (a • f)) / a ! f . t • (a • f)
= (t1 / a . t) • f.

The soundness of (CPcr2) follows in a similar way. The axiom (SPA7) holds by
construction of S′. In order to prove that Scr is a SPA it remains to be shown that
axiom (SPA8) holds. This follows by contraposition: by Lemma 2 we may assume
that both t and t′ are cr-basic forms, and apply induction on the complexity of t
(for a detailed proof of this, see [6]). Now define the HMA Acr as the ΣA

ce-reduct
of Scr. The above argument on the soundness of the axiom schemes (CPcr1) and
(CPcr2) proves =⇒ as stated in the theorem, and the validity of axiom (SPA8)
proves ⇐=. Finally, note that Acr ∼= I(ΣA

ce,CPcr). ut
In the proof above we defined the SPA Scr and we found that if |A| > 1, then

for all t, t′ ∈ TΣA
ce

,
CPcr ` t = t′ ⇐⇒ Scr |= t = t′. (4)

If A = {a} then Acr = A and Scr as defined above has only two states, say f
and g with f(a) = T and g(a) = F . It easily follows that

Acr |= T / a . T = T,

so Acr 6∼= I(ΣA
ce,CPcr) if A = {a}. The following corollary is related to Theorem 2

and characterizes contractive congruence in terms of a quasivariety of SPAs that
satisfy an extra condition.

Corollary 1. Let |A| > 1. Let Ccr be the class of SPAs that satisfy for all a ∈ A
and s ∈ S,

a ! (a • s) = a ! s ∧ a • (a • s) = a • s.
Then for all t, t′ ∈ TΣA

ce
, Ccr |= t = t′ ⇐⇒ CPcr ` t = t′.

Proof. By its definition, Scr ∈ Ccr, which by (4) implies =⇒. For the converse,
it is sufficient to show that the axioms (CPcr1) and (CPcr2) hold in any SPA
that is in Ccr. Let such S be given. Consider (CPcr1): if for an interpretation of
s in S, a ! s = F the proof is trivial, and if a ! s = T , then a ! (a • s) = T and thus

((t1 / a . t2) / a . t) ! s = t1 ! (a • (a • s))
= t1 ! (a • s)
= (t1 / a . t) ! s,

and ((t1 / a . t2) / a . t) • s = (t1 / a . t) • s can be proved in a similar way. ut

10

Finally, we briefly discuss a variant of short-circuit logic that is based on
CPcr. We write CPcr(A) to denote CPcr in a notation close to module algebra [2].

Definition 9. CSCL (contractive short-circuit logic) is the short-circuit
logic that implies no other consequences than those of the module expression

{T,¬, ∧rb , a | a ∈ A} � (CPcr(A) + 〈 ¬x = F / x . T 〉+ 〈x ∧rb y = y / x . F 〉).

The equations defined by CSCL include those derivable from EqFSCL, and

a ∧rb (a ∨rb x) = a,

a ∨rb (a ∧rb x) = a.

It is an open question whether the extension of EqFSCL with these two equations
yields an axiomatization of CSCL. Observe that the following equations are
consequences in CSCL:

a ∧rb a = a, a ∨rb a = a,

¬a ∧rb (¬a ∨rb x) = ¬a, ¬a ∨rb (¬a ∧rb x) = ¬a,
¬a ∧rb ¬a = ¬a, ¬a ∨rb ¬a = ¬a.

An example that illustrates the use of CSCL concerns atoms that define
manipulation of Boolean registers:

– Consider atoms set:i:j and eq:i:j with i ∈ {1, ..., n} (the number of reg-
isters) and j ∈ {T, F} (the value of registers).

– An atom set:i:j can have a side effect (it sets register i to value j) and
yields upon evaluation always T .

– An atom eq:i:j has no side effect but yields upon evaluation only T if
register i has value j.

Clearly, the CSCL-consequences mentioned above are valid in the setting of
this example, but x ∧rb x = x is not: assume register 1 has value F and let
t = eq:1:F ∧rb set:1:T . Then t yields T upon evaluation in this state, while
t ∧rb t yields F .

5 Memorizing congruence

In this section we consider the congruence defined by the axioms of CP and this
axiom:

x / y . (z / u . (v / y . w)) = x / y . (z / u . w). (CPmem)

Following [4], we write CPmem for this set of axioms. Axiom (CPmem) defines
how the central condition y may recur in a propositional statement, and defines
a general form of contraction: with u = F we find

x / y . (v / y . w) = x / y . w. (5)

11

The symmetric variants of (CPmem) and (5) all follow easily with y / x . z =
(z / F . y) / x . (z / T . y) = z / (F / x . T) . y (which is a CP-derivation), e.g.,

(x / y . (z / u . v)) / u . w = (x / y . z) / u . w. (6)

Let memorizing congruence, notation =mem, be the congruence on TΣA
ce

gen-
erated by the axioms of CPmem. As in the preceding cases, a special type of
basic forms can be used to construct a SPA Smem that defines the HMA Amem,
which in turn characterizes =mem (for closed terms). Because this construction
is quite involved, we here only define the state set of Smem in order to illustrate
the valuation semantics that goes with CPmem, and refer to [6] for all further
details and proofs. Let Acore ⊂ A+ be the set of strings in which each element
of A occurs at most once. Then the function space

M = {T, F}A
core

is the state set of Smem. Define for f ∈ M the following: a ! f = f(a) and for
σ ∈ Acore,

(a • f)(σ) =

{
f(a) if σ = a or σ = ρa,

f(a(σ−a)) otherwise, where (σ−a) is as σ but with a left out.

For example, (a•f)(a) = (a•f)(ba) = f(a) and (a•f)(b) = (a•f)(ab) = f(ab).
In [6] we proved the following result.

Theorem 3. For |A| > 1, an HMA that characterizes CPmem exists, i.e. there
is an HMA Amem such that for all t, t′ ∈ TΣA

ce
,

CPmem ` t = t′ ⇐⇒ Amem |= t = t′.

Note that if A = {a} then M has only two states, say f and g with f(a) = T
and g(a) = F . It then easily follows that Amem |= T / a . T = T so in that case
Amem 6∼= I(ΣA

ce,CPmem). Furthermore, note that if A ⊇ {a, b}, it easily follows
that Smem 6|= a ∧rb b = b ∧rb a: take f such that f(a) = f(ab) = T and f(b) = F .
The following corollary is related to Theorem 3 and characterizes memorizing
congruence in terms of a quasivariety of SPAs that satisfy an extra condition.

Corollary 2. Let |A| > 1. Let Cmem be the class of SPAs that satisfy for all
a ∈ A and s ∈ S,

a ! (x • (a • s)) = a ! s ∧ a • (x • (a • s)) = x • (a • s).

(Note that with x = T this yields the axiom scheme from Corollary 1 that char-
acterizes contractive congruence.) Then for all t, t′ ∈ TΣA

ce
,

Cmem |= t = t′ ⇐⇒ CPmem ` t = t′.

Proof. Somewhat involved; see [6]. ut

12

F = ¬T (SCL1)

x ∨qa y = ¬(¬x ∧qa ¬y) (SCL2)

¬¬x = x (SCL3)

T ∧qa x = x (SCL4)

x ∧qa T = x (SCL5)

F ∧qa x = F (SCL6)

(x ∧qa y) ∧qa z = x ∧qa (y ∧qa z) (SCL7)

x ∧qa F = ¬x ∧qa F (SCL8∗)

x ∧qa (x ∨qa y) = x (MSCL1)

x ∧qa (y ∨qa z) = (x ∧qa y) ∨qa (x ∧qa z) (MSCL2)

(x ∨qa y) ∧qa (¬x ∨qa z) = (¬x ∨qa z) ∧qa (x ∨qa y) (MSCL3)

((x ∧qa y) ∨qa (¬x ∧qa z)) ∧qa u = (x ∨qa (z ∧qa u)) ∧qa (¬x ∨qa (y ∧qa u)) (MSCL4)

Table 3. EqMSCL, a set of axioms for MSCL

We conclude with a brief discussion about the short-circuit logic that is based
on CPmem. In this logic, only static side effects can occur: during the evaluation
of a propositional statement, the value of each atom remains fixed after its
first evaluation, which is a typical property axiomatized by CPmem. A major
difference with the short-circuit logics discussed in the previous sections is that
in CPmem the conditional is definable:

(y ∧rb x) ∨rb (¬y ∧rb z) = T / (x / y . F) . (z / (F / y . T) . F)
= T / (x / y . F) . (F / y . z)
= (T / x . (F / y . z)) / y . (F / y . z)
= (T / x . F) / y . (F / y . z) by (6)
= x / y . z. by (5)

Definition 10. MSCL (memorizing short-circuit logic) is the short-circuit
logic that implies no other consequences than those of the module expression

{T,¬, ∧rb } � (CPmem + 〈 ¬x = F / x . T 〉+ 〈x ∧rb y = y / x . F 〉).

In Table 3 we present a set of axioms for MSCL and we refer to this set
by EqMSCL. Axioms (SCL1) − (SCL7) occur in EqFSCL (see Table 2) and
thus need no further comment, and neither does axiom (SCL8∗). The EqFSCL-
equations (SCL8)− (SCL10) are derivable from EqMSCL. For any further com-
ments, intuitions and proofs on MSCL we refer to [5], and we end this section
by recalling the main result from that paper:

Theorem 4 (Completeness). For all SCL-terms t and t′,

EqMSCL ` t = t′ ⇐⇒ MSCL ` t = t′.

13

An interesting aspect of this result is that we have a complete axiomatization
EqMSCL of a logic in which ∧rb is not commutative and in which x ∧rb F = F
does not hold, but that is otherwise very close to propositional logic.

6 Static congruence (Propositional logic)

In this section we consider static congruence defined by the axioms of CP and
the axioms

(x / y . z) / u . v = (x / u . v) / y . (z / u . v), (CPstat)
(x / y . z) / y . u = x / y . u. (CPcontr)

Following [4], we write CPstat for this set of axioms. Note that the symmetric
variants of the axioms (CPstat) and (CPcontr), say

x / y . (z / u . v) = (x / y . z) / u . (x / y . v), (CPstat′)
x / y . (z / y . u) = x / y . u, (CPcontr′)

easily follow with the (derivable) identity y /x. z = z / (F /x.T) . y. Moreover,
in CPstat it follows that

x = (x / y . z) / F . x

= (x / F . x) / y . (z / F . x) by (CPstat)
= x / y . x.

We define static congruence =stat on TΣA
ce

as the congruence generated by
CPstat. Let t, t′ ∈ TΣA

ce
. Then under static congruence, t and t′ can be rewritten

into the following special type of basic form: assume the atoms occurring in t and
t′ are a1, ..., an, and consider the full binary tree with at level i only occurrences
of atom ai (there are 2i−1 such occurrences), and at level n+ 1 only leaves that
are either T or F (there are 2n such leaves). Then the axioms in CPstat are
sufficient to rewrite both t and t′ into exactly one such special basic form.

Theorem 5. There exists an HMA that characterizes static congruence, i.e.
there is an HMA Astat such that for all t, t′ ∈ TΣA

ce
,

CPstat ` t = t′ ⇐⇒ Astat |= t = t′.

Proof. Construct the ΣA
spa-algebra Sstat with TΣA

ce
/=stat as the set of conditional

expressions and the function space

S′ = {T, F}A

as the set of states. For each state f and atom a ∈ A define a ! f = f(a) and
a • f = f . Similar as in the proof of Theorem 1, the state constant c is given an
arbitrary interpretation, and the axioms (TS1)–(TS3) define the function s/f .s′

14

in Sstat. The axioms (SPA1)–(SPA6) fully determine the functions ! and •, and
this is well-defined: if t =stat t

′ then for all f , t!f = t′ !f and t•f = t′•f follow by
inspection of the CPstat axioms. The axiom (SPA7) holds by construction of S′.
In order to prove that Sstat is a SPA it remains to be shown that axiom (SPA8)
holds. This follows by contraposition. We may assume that both t and t′ are in
the basic form described above: if t and t′ are different in some leaf then the
reply function f leading to this leaf satisfies t ! f 6= t′ ! f .

Define the HMA Astat as the ΣA
ce-reduct of Sstat. The above argument on

the soundness of the axioms (CPstat) and (CPcontr) proves =⇒ as stated in
the theorem, and the soundness of axiom (SPA8) proves⇐=. Moreover, Astat ∼=
I(ΣA

ce,CPstat).

From the proof above it follows that for all t, t′ ∈ TΣA
ce

,

CPstat ` t = t′ ⇐⇒ Sstat |= t = t′. (7)

Corollary 3. Let Cstat be the class of SPAs that satisfy for all a ∈ A and s ∈ S,

a • s = s.

Then for all t, t′ ∈ TΣA
ce

, Cstat |= t = t′ ⇐⇒ CPstat ` t = t′.

Proof. By its definition, Sstat ∈ Cstat, which by (7) implies =⇒. For the converse,
it is sufficient to show that the axioms (CPstat) and (CPcontr) hold in each SPA
in Cstat. This follows easily from the Cstat-identity t • s = s that holds for all
t ∈ TΣA

ce
(see [6] for a detailed proof). ut

Finally, we return to short-circuit logic. It appears to be the case that the
axiom

x ∧rb F = F (8)

marks the distinction between MSCL and propositional logic (PL): adding this
axiom to EqMSCL yields an equational characterization of PL (be it in sequential
notation and defined with short-circuit evaluation).

We write SSCL (static short-circuit logic) for the extension of the short-
circuit logic MSCL obtained by adding the associated axiom F / x . F = F to
CPmem, and we write EqSSCL for the extension of the axiom set EqMSCL with
axiom (8). It easily follows that

EqSSCL ` x ∧rb ¬x = F,

and hence F and T are definable in SSCL. Also, commutativity of ∧rb is derivable
from EqSSCL (see [5]). By duality it follows that full distributivity holds in
EqSSCL, and it is not difficult to see that EqSSCL defines the mentioned variant
of PL: this follows for example immediately from [11] in which equational bases
for Boolean algebra are provided, and each of these bases can be easily derived
from EqSSCL (we return to this point in Section 7).

15

7 Discussion

In this section we further discuss our papers on proposition algebra and short-
circuit logic and briefly mention some issues not considered earlier.

In [4] we introduce ‘proposition algebra’ as a generic term for algebras that
model four basic axioms for Hoare’s conditional connective x / y . z (introduced
in [9]). We define valuation semantics using valuation algebras (VAs), which are
algebras over a signature that contains the Boolean constants and valuations as
sorts, and that satisfy axioms comparable to those that define a stateful propo-
sition algebra (a SPA). A valuation variety defines a valuation equivalence by
identifying all propositional statements that yield the same evaluation result in
all VAs in that variety. For example, T and T / a . T are valuation equivalent in
all valuation varieties we consider. The largest congruence contained in a given
valuation equivalence is then the ‘valuation congruence’ to be considered. Main
results in [4] are the concise axiomatizations of various valuation congruences
(some more than discussed in this paper), and a proof that modulo contrac-
tive congruence (or any finer congruence), the conditional, in particular a / b . c
with a, b and c atoms, is not definable by sequential binary operators. The ax-
iom set CP characterizes the least identifying valuation congruence we consider,
and CP extended with the axiom (CPmem) characterizes memorizing congru-
ence, the most identifying valuation congruence below propositional logic that
we distinguish. These valuation congruences are ordered in an incremental way,
gradually identifying more propositional statements, and have axiomatizations
that all share the axioms of CP.3 In [4] we also consider some complexity issues:
in each VA the satisfiability problem SAT can be defined in a natural way and in
all valuation congruences defined thus far, SAT is in NP, and in some cases even
in P: in the free CP-algebra SAT is polynomial, while in memorizing congruence
the complexity of SAT is increased to NP-complete.

In our report [6] we provide an alternative valuation semantics for proposition
algebra in the form of HMAs that appears to be more elegant: HMA-based
semantics has the advantage that one can define a valuation congruence without
first defining the valuation equivalence it is contained in. Furthermore, we show
in [6] that not all proposition algebras are HMAs. In particular, we prove that
CP + 〈T / x . T = T 〉 has a non-trivial initial algebra (which by definition
is a proposition algebra) that is not an HMA because each HMA satisfies the
conditional equation ((T / x . T = T)∧ (T / y . T = T))→ T / x . y = T / y . x,
while CP + 〈T / x . T = T 〉 6` T / a . b = T / b . a for distinct atoms a and b.

In [5] we introduce short-circuit logic: we show that the extension of CPmem
with ¬ and ∧rb (and with F and ∨rb being definable) characterizes a reasonable
logic if one restricts to identities defined over the signature {T,¬, ∧rb }. As recalled
in the present paper, we provide an axiomatization of MSCL (memorizing short-
circuit logic) and we define FSCL (free short-circuit logic) as the most basic
(least identifying) short-circuit logic. Each valuation congruence defines a short-

3 In [10] it is noted that if the set A of atoms contains one element, all valuation con-
gruences other than structural congruence coincide with static valuation congruence.

16

circuit logic, and these logics are put forward for modeling conditions as used in
programming with short-circuit evaluation and for that reason we named them
“short-circuit logics”. Typical axioms that are valid in FSCL (and thus in each
short-circuit logic) are the associativity of ∧rb , the double negation shift and
F ∧rb x = F , and we conjecture that FSCL is axiomatized by the equations in
Table 2. Furthermore, as noted in Section 5, a typical non-validity is x ∧rb F = F ,
which does not hold modulo memorizing congruence (or any finer congruence).
The extension of CPmem with the axiom F /x.F = F that defines SSCL (static
short-circuit logic, comprising x ∧rb F = F), or equivalently, the extension of
CPmem with the axiom T /x.T = T , yields an axiomatization of static valuation
congruence that is perhaps more elegant than our axiomatization CPstat: using
the expressibility of conditional composition and the commutativity of ∧rb and ∨rb
(and hence full distributivity), it is not hard to derive the axiom (CPstat). In [5,
Appendix C] we provide another axiomatization of static valuation congruence
that is even more elegant than CPmem + 〈F / x . F = F 〉. This axiomatization
consists of the five axioms (CP1), (CP2), (CP4) (see Table 1),

T / x . y = T / y . x and (x / y . z) / y . F = x / y . F,

and we also prove that it is independent.

References

1. J.A. Bergstra, I. Bethke, and P.H. Rodenburg. A propositional logic with 4 values:
true, false, divergent and meaningless. Journal of Applied Non-Classical Logics,
5(2):199–218, 1995.

2. J.A. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM,
37(2):335–372, 1990.

3. J.A. Bergstra and C.A. Middelburg. Instruction sequence processing operators.
Available at http://arxiv.org/:ArXiv:0910.5564v2 [cs.LO], 2009.

4. J.A. Bergstra and A. Ponse. Proposition algebra. ACM Transactions on Compu-
tational Logic 12(3), Article 21 (36 pp), 2011.

5. J.A. Bergstra and A. Ponse. Short-circuit logic. Available at http://arxiv.org/

abs/1012.3674v3 [cs.LO], 2010/2011.
6. J.A. Bergstra and A. Ponse. On Hoare-McCarthy algebras. Available at http:

//arxiv.org/abs/1012.5059v1 [cs.LO], 2010.
7. S.L. Bloom and R. Tindell, R. Varieties of “if-then-else”. SIAM Journal of Com-

puting, 12(4), 677–707, 1983.
8. A.H. Mekler and E.M. Nelson. Equational bases for if-then-else. SIAM Journal of

Computing, 16(3), 465–485, 1987.
9. C.A.R. Hoare. A couple of novelties in the propositional calculus. Zeitschrift für

Mathematische Logik und Grundlagen der Mathematik, 31(2):173–178, 1985.
10. B.C. Regenboog. Reactive valuations. MSc. thesis Logic, University of Amsterdam.

December 2010. Available at http://arxiv.org/abs/1101.3132v1 [cs.LO], 2011.
11. F.M. Sioson. Equational bases of Boolean algebras. Journal of Symbolic Logic,

29(3):115–124, 1964.
12. Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, Vol. 55, Cambridge University Press, 2003.

17

