
The Syntax and Semantics of µCRL

Jan Friso Groote
Alban Ponse

Department of software technology, CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract

A simple specification language based on CRL (Common Representation Language) and there-

fore called µCRL (micro CRL) is proposed. It has been developed to study processes with data.

So the language contains only basic constructs with an easy semantics. To obtain executability,

effective µCRL has been defined. In effective µCRL equivalence between closed data-terms is

decidable and the operational behaviour is finitely branching and computable. This makes ef-

fective µCRL a good platform for tooling activities.

Key Words & Phrases: Specification Language, Abstract Data Types, Process Algebra, Op-

erational Semantics.

1985 Mathematics Subject Classification: 68N99.

1987 CR Categories: D.2.1, D.3.1, D.3.3.

Note: The authors are supported by the European Communities under RACE project no. 1046,

Specification and Programming Environment for Communication Software (SPECS). The first

author is also supported by ESPRIT Basic Research Action 3006 (CONCUR). This document

does not necessarily reflect the view of the SPECS project.

1 Introduction

In telecommunication applications the necessity of the use of formal methods has been ob-
served several times. For that purpose several specification languages have been developed
(SDL [6], LOTOS [15], PSF [18] and CRL [22]). These languages are designed to optimise
usability. However, they turn out to be rather complicated, especially as far as their semantic
basis is concerned. An enormous amount of manpower has already been invested into tooling
these languages. But, although some major achievements have been made, this turns out to
be hard and results often lag behind expectations.

In this paper we define a language called µCRL (micro CRL, where CRL stands for Common
Representation Language [22]) as it consists of the essence of CRL. It has been developed
under the assumption that an extensive study of the basic constructs of specification languages
will yield fundamental insights that are hard to obtain via the languages mentioned above.
These insights may assist further development of these languages. So our language is indeed
very small although its definition still requires quite some pages. As µCRL only contains
core constructs, it may not be so well suited as an actual specification language.

1

2 2 THE SYNTAX OF µCRL

An advantage of our ‘simple’ approach is that when in the future several constructs that
are not included in the language will be well understood and will have a concise and natu-
ral semantics, we can add them to the language without a time and manpower consuming
redesign of existing but not optimally devised features.

The language µCRL consists of data and processes. The data part contains equational
specifications: one can declare sorts and functions working upon these sorts, and describe
the meaning of these functions by equational axioms. The process part contains processes
described in the style of CCS [19], CSP [12] or ACP [2, 3], where the particular process syntax
has been taken from ACP. It basically consists of a set of uninterpreted actions that may be
parameterised by data. These actions can represent all kinds of real world activities, depend-
ing on the usage of the language. There are sequential, alternative and parallel composition
operators. Furthermore, recursive processes are specified in a simple way.

An important feature is executability. To obtain this, we define effective µCRL. In effec-
tive µCRL it is required that the equations specifying data constitute a semi-complete term
rewriting system. This implies that data equivalence is decidable. Moreover, the specifica-
tion of recursive processes must be guarded and sums over data sorts must be finite. This
guarantees that the operational behaviour of every effective µCRL specification is finitely
branching and computable. We believe that effective µCRL is an excellent base for building
tools.

Acknowledgements. The idea for µCRL comes from Jan Bergstra, who had also a pervasive
influence on its current form, especially in keeping the language small. We further thank
Jos Baeten, Michel Dauphin, Arie van Deursen, Willem Jan Fokkink, Bertrand Gruson,
Jan Gustafsson, Georg Karner, Martin Kooij, Henri Korver, Sjouke Mauw, Emma van der
Meulen, Jan Rekers and Gert Veltink for their valuable comments.

2 The syntax of µCRL

In this section we present the syntax of µCRL. It contains two major components, namely
data specified by a many sorted term rewriting system and processes which are based on
process algebra [3]. The syntax is defined in the BNF formalism. Syntactical categories are
written in italics and we use a ‘.’ to end each BNF clause. In reasoning about the syntax of
µCRL we use the symbol ≡ to denote syntactic equivalence.

2.1 Names

We assume the existence of a set N of names that are used to denote sorts, variables,
functions, processes and labels of actions. The names in N are sequences over an alphabet
not containing

⊥,+, ‖, ‖ , |, �, �, ·, δ, τ, ∂, ρ,Σ,
√

,×,→, :,=, (,), {, }, ‘,’, a space and a newline.

The space and the newline serve as separators between names and are used to lay out spec-
ifications. The symbol ⊥ is used in the description of the semantics and the other symbols
have special functions. Moreover, N does not contain the reserved keywords sort, proc, var,
act, func, comm, rew and from.

2.2 Lists 3

2.2 Lists

In the sequel X-list , ×-X-list , and space-X-list for any syntactical category X are defined by
the following BNF syntax:

X-list ::= X | X-list ,X.

×-X-list ::= X | ×-X-list × X.

space-X-list ::= X | space-X-list X.

Lists are often described by the (informal) use of dots, e.g. b1 × ... × bm with m ≥ 1 is a
×-X-list where b1, ..., bm are expressions in the syntactical category X . Note that lists cannot
be empty.

2.3 Sort specifications

A sort-specification consists of a list of names representing sorts, preceded by the keyword
sort.

sort-specification ::= sort space-name-list .

2.4 Function specifications

A function-specification consists of a list of function declarations. A function-declaration
consists of a name-list (the names play the role of constant and function names), the sorts
of their parameters and their target sort:

function-specification ::= func space-function-declaration-list .
function-declaration ::= name-list : → name

| name-list : ×-name-list → name .

2.5 Rewrite specifications

A rewrite-specification is given by a many sorted term rewriting system. Its syntax is given
by the following BNF grammar:

rewrite-specification ::= variable-declaration-section
rewrite-rules-section .

In a variable-declaration-section all variables that are used in a rewrite-rules-section must be
declared. In such a declaration, it is also stated what the sort of a variable is. A variable
declaration section may be empty.

variable-declaration-section ::= var space-variable-declaration-list
| .

4 2 THE SYNTAX OF µCRL

In a variable-declaration , the name-list contains the declared variables and the name denotes
their sort:

variable-declaration ::= name-list : name.

Data-terms are defined in the standard way. The name without brackets in the syntax
represents a variable or a constant.

data-term ::= name
| name(data-term-list).

The equations in a rewrite-rules-section define the meaning of functions operating on data.
The syntax of a rewrite-rules-section is given by:

rewrite-rules-section ::= rew space-rewrite-rule-list .
rewrite-rule ::= name = data-term

| name(data-term-list) = data-term .

2.6 Process expressions and process specifications

In this section we first define what process-expressions look like. Then we define how these
expressions can be used to construct process-specifications .

Process-expressions are defined via the following syntax explicitly taking care of the prece-
dence among operators:

process-expression ::= parallel-expression
| parallel-expression + process-expression .

parallel-expression ::= merge-parallel-expression
| comm-parallel-expression
| cond-expression
| cond-expression ‖ cond-expression .

merge-parallel-expression ::= cond-expression ‖ merge-parallel-expression
| cond-expression ‖ cond-expression .

comm-parallel-expression ::= cond-expression|comm-parallel-expression
| cond-expression|cond-expression .

cond-expression ::= dot-expression
| dot-expression � data-term � dot-expression .

2.6 Process expressions and process specifications 5

dot-expression ::= basic-expression
| basic-expression · dot-expression .

basic-expression ::= δ

| τ

| ∂({name-list}, process-expression)
| τ({name-list}, process-expression)
| ρ({renaming-declaration-list}, process-expression)
| Σ(single-variable-declaration , process-expression)
| name
| name(data-term-list)
| (process-expression).

The + is the alternative composition. A process-expression p + q behaves exactly as the
argument that performs the first step.

The merge or parallel composition operator (‖) interleaves the behaviour of both argu-
ments except that some actions in the arguments may communicate, which means that
they happen at exactly the same moment and result in a communication action. In a
communication-specification it can be declared which actions may communicate. The left
merge (‖) behaves exactly as the parallel operator, except that its first step must originate
from its left argument only. The communication merge (|) also behaves as the parallel op-
erator, but now the first action must be a communication between both components. The
left merge and the communication merge are added to allow proof theoretic reasoning. It is
not expected that they will be used in specifications. In the sequel the syntactical category
parallel-expression also refers to merge-parallel-expression and comm-parallel-expression .

The conditional construct dot-expression � data-term � dot-expression is an alternative way
to write an if - then - else-expression and is introduced by Hoare cs. [13] (see also [1]).
The data-term is supposed to be of the standard sort of the Booleans (Bool). The �-part is
executed if the data-term evaluates to true (T) and the �-part is executed if the data-term
evaluates to false (F).

The sequential composition operator ‘·’ says that first its left hand side can perform actions,
and if it terminates then the second argument continues.

The constant δ describes the process that cannot do anything, especially, it cannot termi-
nate. For instance, the process δ · p can never perform an action of p. We also expect that
δ is not used in specifications, but in reasoning δ is very handy to indicate that at a certain
place a deadlock occurs.

The constant τ represents some internal activity that cannot be observed by the environ-
ment. It is therefore called the internal action.

The encapsulation operator ∂ is used to prevent actions of which the name is mentioned in
its first argument from happening. This enables one to force actions into a communication.

The hiding operator, also denoted by a τ , is used to rename actions of which the name is
mentioned into an internal action.

The renaming operator ρ is more general. It renames the names of actions according to

6 2 THE SYNTAX OF µCRL

the scheme in its first argument. A renaming-declaration is given by the following syntax:

renaming-declaration ::= name → name .

The first mentioned name is renamed to the second one.
The sum operator is used to declare a variable of a specific sort for use in a process-

expression. A single-variable-declaration is defined by:

single-variable-declaration ::= name : name .

The scope of the variable is exactly the process-expression mentioned in the sum operator.
The behaviour of this construct is a choice between the behaviours of process-expression in
which each value of the sort of the variable has been substituted for the variable.

The constructs name and name(data-term-list) are either process instantiations or actions:
name refers to a declared process (or to an action) and data-term-list contains the arguments
of the process identifier (or the action).

The syntax of process-expressions says that · binds strongest, the conditional construct
binds stronger than the parallel operators which in turn bind stronger than +.

A process-specification is a list of (parameterised) names, which are used as process iden-
tifiers, that are declared together with their bodies.

process-specification ::= proc space-process-declaration-list .
process-declaration ::= name = process-expression

| name(single-variable-declaration-list) = process-expression .

2.7 Action specification

In an action-specification all actions that are used are declared. Actions may be parame-
terised by data, and in that case we must declare on which sorts an action depends. An
action-specification has the following form:

action-specification ::= act space-action-declaration-list .
action-declaration ::= name

| name-list : ×-name-list .

2.8 Communication specification

A communication-specification prescribes how actions may communicate. It only describes
communication on the level of names of actions, e.g. if it is specified that in|out = com
then each action in(t1, ..., tk) can communicate with out(t′1, ..., t′m) to com(t1, ..., tk) provided
k = m and ti and t′i denote the same data-element for i = 1, ..., k.

communication-specification ::= comm space-communication-declaration-list .
communication-declaration ::= name|name = name .

In the last rule the | is a language symbol and should not be confused with the | used in sets
and the BNF-syntax.

2.9 Specifications 7

2.9 Specifications

Specifications are entities in which data, processes, actions etc. can be declared. The syntax
of a specification is:

specification ::= sort-specification
| function-specification
| rewrite-specification
| action-specification
| communication-specification
| process-specification
| specification specification .

2.10 The standard sort Bool

In every specification the following function and sort declarations must be included. The
reason for this special treatment of the sort Bool is that we want to guarantee that true and
false as booleans are different. This can only be achieved if the names for true, false and the
sort of booleans are predetermined.

sort Bool
func T :→ Bool

F :→ Bool

2.11 An example

As an example we give a specification of a data transfer process. Data-elements of sort D
are transferred from in to out.

sort Bool
func T, F :→ Bool
sort D
func d1, d2, d3 :→ D
act in, out : D
proc TR =

∑
(x : D, in(x) · out(x) · TR)

2.12 The from construct

For a process-expression or a data-term t, we write t from E for a specification E where
we mean the process-expression or data-term t as defined in E. Often, it is clear from the
context to which specification E the item t belongs. In this case we generally write t without
explicit reference to E.

3 Static semantics

Not every specification is necessarily correctly defined. It may be that objects are not de-
clared, that they are declared at several places or are not used in a proper way. In this section

8 3 STATIC SEMANTICS

we define under which circumstances a specification does not have these problems and hence
has a correct static semantics. Furthermore, we define some functions that will be used in
the definition of the semantics of µCRL.

3.1 The signature of a specification

The signature of a specification is an important ingredient in defining the static semantics.
It consists of a five-tuple of which each component is a set containing all elements of a main
syntactical category declared in a specification E.

Definition 3.1. Let E be a specification . The signature Sig(E) = (Sort, Fun,Act, Comm,
Proc) of E is defined as follows:

• If E ≡ sort n1 ... nm with m ≥ 1, then Sig(E) def= ({n1, ..., nm}, ∅, ∅, ∅, ∅).

• If E ≡ func fd1 ... fdm with m ≥ 1, then Sig(E) def= (∅, Fun, ∅, ∅, ∅), where

Fun
def= {nij :→ Si | fd i ≡ ni1, ..., nili :→ Si, 1 ≤ i ≤ m, 1 ≤ j ≤ li}
∪ {nij : Si1 × ... × Siki

→ Si |
fd i ≡ ni1, ..., nili : Si1 × ... × Siki

→ Si, 1 ≤ i ≤ m, 1 ≤ j ≤ li}.

• If E is a rewrite-specification , then Sig(E) def= (∅, ∅, ∅, ∅, ∅).

• If E ≡ act ad1 ... adm with m ≥ 1, then Sig(E) def= (∅, ∅, Act, ∅, ∅), where

Act
def= {ni | adi ≡ ni, 1 ≤ i ≤ m}
∪ {nij : Si1 × ... × Siki

|
adi ≡ ni1, ..., nili : Si1 × ... × Siki

, 1 ≤ i ≤ m, 1 ≤ j ≤ li}.

• If E ≡ comm cd1 ... cdm with m ≥ 1, then Sig(E) def= (∅, ∅, ∅, {cdi | 1 ≤ i ≤ m}, ∅).

• If E ≡ proc pd1 ... pdm with m ≥ 1, then Sig(E) def= (∅, ∅, ∅, ∅, {pdi | 1 ≤ i ≤ m}).
• If E ≡ E1 E2 with Sig(Ei) = (Sorti, Funi, Acti, Commi, P roci) for i = 1, 2, then

Sig(E) def= (Sort1∪Sort2, Fun1∪Fun2, Act1∪Act2, Comm1∪Comm2, P roc1∪Proc2).

Definition 3.2. Let Sig = (Sort, Fun,Act, Comm,Proc) be a signature. We write

Sig.Sort for Sort,
Sig.Fun for Fun,
Sig.Act for Act,
Sig.Comm for Comm,
Sig.Proc for Proc.

3.2 Variables 9

3.2 Variables

Variables play an important role in specifications. The next definition says which names
can play the role of a variable without confusion with defined constants. Moreover, variables
must have an unambiguous and declared sort.

Definition 3.3. Let Sig be a signature. A set V containing elements 〈x : S〉 with x and S
names , is called a set of variables over Sig iff for each 〈x : S〉 ∈ V:

• for each name S′ and process-expression p it holds that x :→ S′ /∈ Sig.Fun, x /∈ Sig.Act
and x = p /∈ Sig.Proc,

• S ∈ Sig.Sort,

• for each name S′ such that S′ ≡ S it holds that 〈x : S′〉 ∈ V.

Definition 3.4. Let var-dec be a variable-declaration-section . The function Vars is defined
by:

Vars(var-dec) def=

∅ if var-dec is empty,
{〈xij : Si〉 | 1 ≤ i ≤ m,

1 ≤ j ≤ li} if for some m ≥ 1 var-dec ≡
var x11, ..., x1l1 : S1 ... xm1, ..., xmlm : Sm.

In the following definitions we give functions yielding the sort and the variables in a data-term
t. If for some reason no answer can be obtained, for instance because an undeclared name
appears in t, a ⊥ results. Of course this only works properly if ⊥ does not occur in names .

Definition 3.5. Let t be a data-term and Sig a signature. Let V be a set of variables over
Sig. We define:

sortSig,V(t) def=

S if t ≡ x and 〈x : S〉 ∈ V,
S if t ≡ n, n :→ S ∈ Sig.Fun and for no S ′ ≡ S n :→ S ′ ∈ Sig.Fun,
S if t ≡ n(t1, ..., tm),

n : sortSig,V(t1) × ... × sortSig,V(tm) → S ∈ Sig.Fun and for no
S′ ≡ S n : sortSig,V(t1) × ... × sortSig,V(tm) → S′ ∈ Sig.Fun,

⊥ otherwise.

Definition 3.6. Let Sig be a signature, V a set of variables over Sig and let t be a data-term .

VarSig,V(t) def=

{〈x : S〉} if t ≡ x and 〈x : S〉 ∈ V,
∅ if t ≡ n and n :→ S ∈ Sig.Fun,⋃

1≤i≤m VarSig,V(ti) if t ≡ n(t1, ..., tm),
{⊥} otherwise.

We call a data-term t closed w.r.t. a signature Sig and a set of variables V iff VarSig,V(t) = ∅.
Note that VarSig,V(t) ⊆ V ∪ {⊥} for any data-term t.

10 3 STATIC SEMANTICS

3.3 Static semantics

A specification must be internally consistent. This means that all objects that are used must
be declared exactly once and are used such that the sorts are correct. It also means that
action, process, constant and variable names cannot be confused. Furthermore, it means
that communications are specified in a functional way and that it is guaranteed that the
rewrite rules satisfy a usual condition that the variables that are used at the right hand
side of a equality sign must also occur at the left hand side. Because all these properties
can be statically decided, a specification that is internally consistent is called SSC (Statically
Semantically Correct). For a better understanding of the next definition, it may be helpful
to read definition 3.8 first.

Definition 3.7. Let Sig be a signature and V be a set of variables over Sig. We define the
predicate ‘is SSC w.r.t. Sig’ inductively over the syntax of a specification .

• A specification sort n1 ... nm with m ≥ 1 is SSC w.r.t. Sig iff all names n1, ..., nm

are pairwise different.

• A specification func n11, ..., n1l1 : S11 × ... × S1k1 → S1
...
nm1, ..., nmlm : Sm1 × ... × Smkm → Sm

with m ≥ 1, li ≥ 1, ki ≥ 0 for 1 ≤ i ≤ m is SSC w.r.t. Sig iff

– for all 1 ≤ i ≤ m the names ni1, ..., nili are pairwise different,

– for all 1 ≤ i < j ≤ m it holds that if nik ≡ njk′ for some 1 ≤ k ≤ li and 1 ≤ k′ ≤ lj ,
then either ki = kj , or Sil ≡ Sjl for some 1 ≤ l ≤ ki,

– for all 1 ≤ i ≤ m and 1 ≤ j ≤ ki it holds that Sij ∈ Sig.Sort and Si ∈ Sig.Sort.

• A specification of the form: var-dec
rew-rul

where var-dec is a variable-declaration-section and rew-rul is a rewrite-rules-section is
SSC w.r.t. Sig iff

– var-dec is SSC w.r.t. Sig,

– rew-rul is SSC w.r.t. Sig and Vars(var-dec).

� The empty variable-declaration-section is SSC w.r.t. Sig.

A variable-declaration-section var n11, ..., n1k1 : S1
...
nm1, ..., nmkm : Sm

with m ≥ 1, ki ≥ 1 for 1 ≤ i ≤ m is SSC w.r.t. Sig iff

– nij ≡ ni′j′ whenever i = i′ or j = j′ for 1 ≤ i ≤ m, 1 ≤ i′ ≤ m, 1 ≤ j ≤ ki and
1 ≤ j′ ≤ ki′ ,

3.3 Static semantics 11

– the set Vars(var n11, ..., n1k1 : S1 ... nm1, ..., nmkm : Sm) is a set of variables over
Sig.

� A rewrite-rules-section rew rw1 ... rwm with m ≥ 1 is SSC w.r.t. Sig and V iff

– if rwi ≡ n = t for some 1 ≤ i ≤ m, then

∗ n :→ sortSig,∅(t) ∈ Sig.Fun,
∗ t is SSC w.r.t. Sig and ∅,

– if rwi ≡ n(t1, ..., tki
) = t for some 1 ≤ i ≤ m and ki ≥ 1, then

∗ n : sortSig,V(t1) × ... × sortSig,V(tki
) → sortSig,V(t) ∈ Sig.Fun,

∗ t, tj (1 ≤ j ≤ ki) are SSC w.r.t. Sig and V,
∗ VarSig,V(t) ⊆ ⋃

1≤j≤ki
VarSig,V(tj).

� A data-term n with n a name is SSC w.r.t. Sig and V iff 〈n : S〉 ∈ V for some S, or
n :→ sortSig,V(n) ∈ Sig.Fun.

A data-term n(t1, ..., tm) (m ≥ 1) is SSC w.r.t. Sig and V iff n : sortSig,V(t1) × ... ×
sortSig,V(tm) → sortSig,V(n(t1, ..., tm)) ∈ Sig.Fun and all ti (1 ≤ i ≤ m) are SSC w.r.t.
Sig and V.

• A specification act ad1 ... adm with m ≥ 1 is SSC w.r.t. Sig iff

– for all 1 ≤ i ≤ m the action-declaration adi is SSC w.r.t. Sig,

– for all 1 ≤ i < j ≤ m it holds that Sig(act adi).Act ∩ Sig(act adj).Act = ∅.
� An action-declaration n is SSC w.r.t. Sig iff for each name S′ it holds that n :→ S′ /∈

Sig.Fun.

An action-declaration n1, ..., nm : S1 × ... × Sk with k,m ≥ 1 is SSC w.r.t. Sig iff

– for all 1 ≤ i < j ≤ m it holds that ni ≡ nj,

– for all 1 ≤ i ≤ k it holds that Si ∈ Sig.Sort,

– for all 1 ≤ i ≤ m and for each name S′ it holds that ni : S1 × ... × Sk → S′ /∈
Sig.Fun.

• A specification comm n11|n12 = n13 ... nm1|nm2 = nm3 with m ≥ 1 is SSC w.r.t.
Sig iff

– for each 1 ≤ i < j ≤ m it is not the case that ni1 ≡ nj1 and ni2 ≡ nj2, or ni1 ≡ nj2

and ni2 ≡ nj1,

– for each 1 ≤ i ≤ m either ni1 ∈ Sig.Act or there is a k ≥ 1 such that ni1 :
S1 × ... × Sk ∈ Sig.Act,

– for each 1 ≤ i ≤ m, k ≥ 1 and names S1, ..., Sk it holds that if ni1 : S1 × ...×Sk ∈
Sig.Act then ni2 : S1 × ... × Sk ∈ Sig.Act and ni3 : S1 × ... × Sk ∈ Sig.Act,

– for each 1 ≤ i ≤ m, k ≥ 1 and names S1, ..., Sk it holds that if ni2 : S1 × ...×Sk ∈
Sig.Act then ni1 : S1 × ... × Sk ∈ Sig.Act and ni3 : S1 × ... × Sk ∈ Sig.Act,

12 3 STATIC SEMANTICS

– for each 1 ≤ i ≤ m it holds that if ni1 ∈ Sig.Act then ni2 ∈ Sig.Act and ni3 ∈
Sig.Act,

– for each 1 ≤ i ≤ m it holds that if ni2 ∈ Sig.Act then ni1 ∈ Sig.Act and ni3 ∈
Sig.Act.

• A specification proc pd1 ... pdm with m ≥ 1 is SSC w.r.t. Sig iff

– for each 1 ≤ i < j ≤ m:

∗ if pdi ≡ ni = pi and pdj ≡ nj = pj then ni ≡ nj,
∗ if for some k ≥ 1 it holds that pdi ≡ ni(x1 : S1, ..., xk : Sk) = pi and pdj ≡

nj(x′
1 : S1, ..., x

′
k : Sk) = pj then ni ≡ nj,

∗ for all names S′ it holds that ni :→ Si /∈ Sig.Fun,

– if pdi ≡ ni = pi (1 ≤ i ≤ m), then ni ∈ Sig.Act and pi is SSC w.r.t. Sig and ∅,
– if pdi ≡ ni(xi1 : Si1, ..., xiki

: Siki
) = pi (1 ≤ i ≤ m), then

∗ ni : Si1 × ... × Siki
∈ Sig.Act,

∗ for all names S′ it holds that ni : Si1 × ... × Siki
→ S′ /∈ Sig.Fun,

∗ the names xi1, ..., xiki
are pairwise different and {〈xij : Sij〉 | 1 ≤ j ≤ ki} is a

set of variables over Sig,
∗ pi is SSC w.r.t. Sig and {〈xij : Sij〉 | 1 ≤ j ≤ ki}.

� A process-expression p1+p2, parallel-expressions p1 ‖ p2, p1 ‖ p2, p1 | p2, a dot-expression
p1 · p2 are SSC w.r.t. Sig and V iff

– p1 is SSC w.r.t. Sig and V,

– p2 is SSC w.r.t. Sig and V.

A cond-expression p1 � t � p2 is SSC w.r.t. Sig and V iff

– p1 is SSC w.r.t. Sig and V,

– p2 is SSC w.r.t. Sig and V,

– t is SSC w.r.t. Sig and V and sortSig,V(t) = Bool.

The basic-expressions δ and τ are SSC w.r.t. Sig and V.

The basic-expressions ∂({n1, ..., nm}, p) and τ({n1, ..., nm}, p) with m ≥ 1 are SSC w.r.t.
Sig and V iff

– for all 1 ≤ i < j ≤ m ni ≡ nj,

– for 1 ≤ i ≤ m either ni ∈ Sig.Act or ni : S1 × ... × Sk ∈ Sig.Act for some k ≥ 1
and names S1, ..., Sk,

– p is SSC w.r.t. Sig and V.

The basic-expression ρ({n1 → n′
1, ..., nm → n′

m}, p) is SSC w.r.t. Sig and V iff

– for 1 ≤ i ≤ m either ni ∈ Sig.Act or ni : S1 × ... × Sk ∈ Sig.Act for some k ≥ 1
and names S1, ..., Sk,

3.3 Static semantics 13

– for each 1 ≤ i < j ≤ m it holds that ni ≡ nj,

– for 1 ≤ i ≤ m, k ≥ 1 and names S1, .., Sk it holds that if ni : S1×...×Sk ∈ Sig.Act,
then also n′

i : S1 × ... × Sk ∈ Sig.Act,

– for 1 ≤ i ≤ m it holds that if ni ∈ Sig.Act, then also n′
i ∈ Sig.Act,

– p is SSC w.r.t. Sig and V.

A basic-expression Σ(x : S, p) is SSC w.r.t. Sig and V iff

– V\{〈x : S′〉 | S′ a name} ∪ {〈x : S〉} is a set of variables over Sig,

– p is SSC w.r.t. Sig and V\{〈x : S′〉 | S′ a name} ∪ {〈x : S〉}.
A basic-expression n is SSC w.r.t. Sig and V iff n = p ∈ Sig.Proc for some process-
expression p or n ∈ Sig.Act.

A basic-expression n(t1, ..., tm) with m ≥ 1 is SSC w.r.t. Sig and V iff

– n(x1 : sortSig,V(t1), ..., xm : sortSig,V(tm)) = p ∈ Sig.Proc for some names
x1, ..., xm and process-expression p, or
n : sortSig,V(t1) × ... × sortSig,V(tm) ∈ Sig.Act,

– for 1 ≤ i ≤ m the data-term ti is SSC w.r.t. Sig and V.

A basic-expression (p) is SSC w.r.t. Sig and V iff p is SSC w.r.t. Sig and V.

• A specification E1 E2 is SSC w.r.t. Sig iff

– E1 and E2 are SSC w.r.t. Sig,

– Sig(E1).Sort ∩ Sig(E2).Sort = ∅,
– if n : S1 × ... × Sm → S ∈ Sig(E1).Fun for some m ≥ 0 then n : S1 × ... × Sm →

S′ /∈ Sig(E2).Fun for any name S′,

– Sig(E1).Act ∩ Sig(E2).Act = ∅,
– if n1|n2 = n3 ∈ Sig(E1).Comm then for any names n′

3 and n′′
3 n1|n2 = n′

3 /∈
Sig(E2).Comm and n2|n1 = n′′

3 /∈ Sig(E2).Comm,

– if pd1 ∈ Sig(E1).P roc and pd2 ∈ Sig(E2).P roc, then

∗ if pd1 ≡ n1 = p1 and pd2 ≡ n2 = p2, then n1 ≡ n2,
∗ if for some m ≥ 1 pd1 ≡ n1(x1 : S1, ..., xm : Sm) = p1 and pd2 ≡ n2(x′

1 :
S1, ..., x

′
m : Sm) = p2, then n1 ≡ n2.

Definition 3.8. Let E be a specification . We say that E is SSC iff E is SSC w.r.t. Sig(E).

The following lemma is helpful in checking that the predicate ‘is SSC’ is correctly defined.

Lemma 3.9. Let Sig be a signature and V be a set of variables over Sig. Let t be a
data-term that is SSC w.r.t. Sig and V. Then sortSig,V(t) =⊥ and ⊥/∈ VarSig,V(t).

14 5 ALGEBRAIC SEMANTICS

3.4 The communication function

The following definition helps us in guaranteeing that the communication function is commu-
tative and associative. This implies that the merge is also commutative and associative which
allows us to write parallel processes without brackets as is done in the syntax (cf. LOTOS
[15] where this is not the case).

Definition 3.10. Let Sig be a signature. The set Sig.Comm∗ is defined by:

Sig.Comm∗ def= {n1|n2 = n3, n2|n1 = n3 | n1|n2 = n3 ∈ Sig.Comm}.
So, in Sig.Comm∗ communication is always commutative. We say that a specification E is
communication-associative iff

n1|n2 = n, n|n3 = n′ ∈ Sig(E).Comm∗ ⇒
∃n′′ : n2|n3 = n′′, n1|n′′ = n′ ∈ Sig(E).Comm∗.

With the condition that E is SSC this exactly implies that communication is associative.

4 Well-formed µCRL specifications

We define what well-formed specifications are. We only provide well-formed specifications
with a semantics. Well-formedness is a decidable property.

Definition 4.1. Let E be a specification that is SSC. We say that E has no empty sorts
iff for all S ∈ Sig(E).Sort there is a data-term t that is SSC w.r.t. Sig(E) and ∅ such that
sortSig(E),∅(t) ≡ S.

Definition 4.2. Let E be a specification . E is called well-formed iff

• E is SSC,

• E is communication-associative,

• E has no empty sorts,

• Bool ∈ Sig(E).Sort,

• T :→ Bool ∈ Sig(E).Fun and

• F :→ Bool ∈ Sig(E).Fun.

5 Algebraic semantics

In this section we present the semantics of well-formed µCRL specifications. Given a signature
Sig we introduce the class of Sig-algebras. Then for a well-formed specification E with
Sig(E) = Sig, we define the subclass of Sig-algebras that form a model for the data part of
E and in which the terms T and F of sort Bool are interpreted different. Then given such
a model, we give an operational semantics for process-expressions in E.

5.1 Algebras 15

5.1 Algebras

First we adapt the standard definitions of algebras etc. to µCRL (see e.g. [8] for these defi-
nitions).

Definition 5.1. Let E be a well-formed specification . A Sig(E)-algebra AA is a structure
containing

• for each S ∈ Sig(E).Sort a non-empty domain D(AA,S),

• for each n :→ S ∈ Sig(E).Fun a constant C(AA,n) ∈ D(AA,S),

• for each n : S1 × ... × Sm → S ∈ Sig(E).Fun a function F (AA,n : S1 × ... × Sm) from
D(AA,S1) × ... × D(AA,Sm) to D(AA,S).

For two elements a1 ∈ D(AA,S1) and a2 ∈ D(AA,S2), we write a1 = a2 iff S1 ≡ S2 and a1 and
a2 represent exactly the same element.

Definition 5.2. Let E be a well-formed specification and let AA be a Sig(E)-algebra. We
define the interpretation [[·]]AA from data-terms that are SSC w.r.t. Sig(E) and ∅ into the
domains of AA as follows:

• if t ≡ n, then [[t]]AA
def= C(AA,n),

• if t ≡ n(t1, ..., tm) for some m ≥ 1, then [[t]]AA
def= F (AA,n : sortSig(E),∅(t1) × ... ×

sortSig(E),∅(tm))([[t1]]AA, ..., [[tm]]AA).

We say that a Sig(E)-algebra AA is minimal iff for each a ∈ D(AA,S) and S ∈ Sig(E).Sort,
there is some data-term t that is SSC w.r.t. Sig(E) and ∅ such that [[t]]AA = a. For data-terms
t1, t2 that are SSC w.r.t. Sig(E) and ∅ we write AA |= t1 = t2 iff [[t1]]AA = [[t2]]AA.

Definition 5.3. Let E be a well-formed specification and let AA be a minimal Sig(E)-
algebra. A function r mapping pairs of a sort S and an element from D(AA,S) to data-
terms that are SSC w.r.t. to Sig(E) and ∅ is called a representation function of E and AA iff
AA |= t = r(sortSig(E),∅(t), [[t]]AA) for each data-term t that is SSC w.r.t. Sig(E) and ∅.

5.2 Substitutions

We define substitutions on data-terms . These substitutions are immediately extended to
process-expressions because this is required for the definition of the operational semantics.

Definition 5.4. Let E be a well-formed specification and V a set of variables over Sig(E).
Let Term be the set of data-terms that are SSC w.r.t. Sig(E) and V. A substitution σ over
Sig(E) and V is a mapping

σ : V → Term

such that for each 〈x : S〉 ∈ V it holds that sortSig(E),V(σ(〈x : S〉)) = S. Substitutions are
extended to data-terms by:

σ(x) def= σ(〈x : S〉) if 〈x : S〉 ∈ V for some name S,

σ(n) def= n if n :→ S ∈ Sig(E).Fun,

σ(n(t1, ..., tm)) def= n(σ(t1), ..., σ(tm)).

16 5 ALGEBRAIC SEMANTICS

Definition 5.5. Let E be a well-formed specification and V a set of variables over Sig(E).
Let σ be a substitution over Sig(E) and V. We extend σ to process-expressions that are SSC
w.r.t. Sig(E) and V as follows:

• If p1�p2 is a process-expression , a parallel-expression or a dot-expression
(� ∈ {+, ‖, ‖ , |, ·}), then σ(p1�p2)

def= σ(p1)�σ(p2),

• σ(p1 � t � p2)
def= σ(p1) � σ(t) � σ(p2) for a cond-expression p1 � t � p2,

• σ(δ) def= δ and σ(τ) def= τ for basic-expressions δ and τ ,

• if �(gl, p) is a basic-expression (� ∈ {∂, τ, ρ}), then σ(�(gl, p)) def= �(gl, σ(p)),

• σ(Σ(x : S, p)) def= Σ(x : S, σ′(p)) where σ′ is defined by

σ′(〈x′ : S′〉) def=

{
〈x : S〉 if x′ ≡ x
σ(〈x′ : S′〉) otherwise,

for a basic-expression Σ(x : S, p),

• σ(n(t1, ..., tm)) def= n(σ(t1), ..., σ(tm)) for a basic-expression n(t1, ..., tm),

• σ(n) def= n for a basic-expression n,

• σ((p)) def= (σ(p)) for a basic-expression (p).

The validity of the following lemma gives us confidence that substitutions are indeed correctly
defined.

Lemma 5.6. Let E be a well-formed specification and V a set of variables over Sig(E). Let
σ be a substitution over Sig(E) and V.

• For any data-term t that is SSC w.r.t. Sig(E) and V, σ(t) is also a data-term that is
SSC w.r.t. Sig(E) and V. Moreover, sortSig(E),V(t) ≡ sortSig(E),V(σ(t)).

• For any process-expression p that is SSC w.r.t. Sig(E) and V, σ(p) is a process-expression
that is SSC w.r.t. Sig(E) and V.

5.3 Boolean preserving models

A Sig(E)-algebra AA is a model of a well-formed specification E iff the equations defining the
data in E hold in AA. Moreover, we say that AA is boolean preserving iff T and F of sort Bool
represent exactly the two different elements of D(AA,Bool). Note that there are specifications
which have no boolean preserving models of E, for instance a specification containing the

5.3 Boolean preserving models 17

equation T = F . For µCRL we are only interested in the minimal Sig(E)-algebras that are
boolean preserving.

First we define the function rewrites that extracts the rewrite clauses together with declared
variables from a specification .

Definition 5.7. We define the function rewrites on a specification E inductively as follows:

• If E ≡ sort-spec with sort-spec a sort-specification , then rewrites(E) def= ∅.

• If E ≡ func-spec with func-spec a function-specification ,
then rewrites(E) def= ∅.

• If E ≡ V R with V a variable-declaration-section and R a rewrite-rules-section with
R ≡ rew rd1 ... rdm for some m ≥ 1, then

rewrites(E) def= {〈{rdi | 1 ≤ i ≤ m},Vars(V)〉}.

• If E ≡ act-spec with act-spec an action-specification , then rewrites(E) def= ∅.

• If E ≡ comm-spec with comm-spec a communication-specification , then rewrites(E) def=
∅.

• If E ≡ proc-spec with proc-spec a process-specification , then rewrites(E) def= ∅.

• If E ≡ E1 E2 where E1 and E2 are specifications , then rewrites(E) def= rewrites(E1) ∪
rewrites(E2).

Definition 5.8. Let E be a well-formed specification . A Sig(E)-algebra AA is a model of
E, notation AA |=D E, iff whenever t = t′ ∈ R with 〈R,V〉 ∈ rewrites(E), then for any
substitution σ over Sig(E) and V such that VarSig(E),V(σ(t)) = VarSig(E),V(σ(t′)) = ∅ it
holds that AA |= σ(t) = σ(t′).

We write AA |=D E with a subscript D because the model only concerns the data in E.

Definition 5.9. Let E be a well-formed specification . A Sig(E)-algebra AA is called boolean
preserving w.r.t. E iff

• it is not the case that AA |= T = F ,

• |D(AA,Bool)| = 2, i.e. T and F are exactly the two elements of sort Bool.

18 5 ALGEBRAIC SEMANTICS

5.4 The process part

In this section we define for each process-expression p that is SSC w.r.t. Sig(E) and ∅,
and each minimal model AA of E that preserves the booleans and where E is some well-
formed specification , a meaning in terms of a referential transition system (cf. the operational
semantics in [2, 21, 22]).

Definition 5.10. A transition system A is a quadruple (S,L,−→, s) where

– S is a set of states,

– L is a set of labels,

– −→⊆ S × L × S is a transition relation,

– s ∈ S is the initial state.

Elements (s′, l, s′′) ∈−→ are generally written as s′
l−→ s′′.

Definition 5.11. Let E be a well-formed specification , AA be a minimal model of E
that is boolean preserving and r be a representation function of E and AA. Let p be a
process-expression that is SSC w.r.t. Sig(E) and ∅. The meaning of p from E in AA with
representation function r is the referential transition system A(AA, r, p from E) defined by

(S,L,−→, s)

where

– S
def= {q | where q is a process-expression that is SSC w.r.t. Sig(E) and ∅} ∪ {√},

– L
def= {n(t1, ..., tm) | m ≥ 0, n ∈ Sig(E).Act and for 1 ≤ i ≤ m it holds that

ti ≡ r(Si, a) for some a ∈ D(AA,Si) where Si ≡ sortSig(E),∅(ti)} ∪ {τ,√},

– s
def= p,

– −→ is the transition relation that contains exactly all transitions provable using the
rules below (see for provability e.g. [9]). Let p, p′, q, q′ range over the set S \ {√}, P is
a process-expression that is SSC w.r.t. Sig(E) and some set of variables over Sig(E), l
ranges over the set L of labels, n, n1, n2 are names , m ≥ 0 and t1, ..., tm, u1, ..., um are
data-terms (note that there is no rule for δ):

• √ √
−→ δ.

• τ
τ−→ √

.

• n
n()−→ √

if n ∈ Sig(E).Act,

- n(u1, ..., um)
n(t1,...,tm)

−→ √
with m ≥ 1 if

∗ n : sortSig(E),∅(u1) × ... × sortSig(E),∅(um) ∈ Sig(E).Act,

5.4 The process part 19

∗ ti ≡ r(sortSig(E),∅(ui), [[ui]]AA).

• p
l−→ p′

n
l−→ p′

if n = p ∈ Sig(E).P roc,

-
p

l−→ √

n
l−→ √ if n = p ∈ Sig(E).P roc,

-
σ(P)

l−→ p′

n(u1, ..., um)
l−→ p′

with m ≥ 1 if

∗ n(x1 : sortSig(E),∅(u1), ..., xm : sortSig(E),∅(um)) = P ∈ Sig(E).P roc,
∗ there is a substitution σ over Sig(E) and {〈x1 : sortSig(E),∅(u1)〉, ...,

〈xm : sortSig(E),∅(um)〉} such that σ(〈xi : sortSig(E),∅(ui)〉) ≡ ui for 1 ≤ i ≤ m,

-
σ(P)

l−→ √

n(u1, ..., um)
l−→ √ with m ≥ 1 if

∗ n(x1 : sortSig(E),∅(u1), ..., xm : sortSig(E),∅(um)) = P ∈ Sig(E).P roc,
∗ there is a substitution σ over Sig(E) and {〈x1 : sortSig(E),∅(u1)〉, ...,

〈xm : sortSig(E),∅(um)〉} such that σ(〈xi : sortSig(E),∅(ui)〉) ≡ ui for 1 ≤ i ≤ m.

• p
l−→ p′

p + q
l−→ p′

,

-
p

l−→ √

p + q
l−→ √ ,

-
q

l−→ q′

p + q
l−→ q′

,

-
q

l−→ √

p + q
l−→ √ .

• p
l−→ p′

p · q l−→ p′ · q
,

-
p

l−→ √

p · q l−→ q
.

• p
l−→ p′

p � t � q
l−→ p′

if AA |= t = T ,

-
p

l−→ √

p � t � q
l−→ √ if AA |= t = T ,

20 5 ALGEBRAIC SEMANTICS

-
q

l−→ q′

p � t � q
l−→ q′

if AA |= t = F ,

-
q

l−→ √

p � t � q
l−→ √ if AA |= t = F .

• p
l−→ p′

p ‖ q
l−→ p′ ‖ q

,

-
q

l−→ q′

p ‖ q
l−→ p ‖ q′

,

-
p

l−→ √

p ‖ q
l−→ q

,

-
q

l−→ √

p ‖ q
l−→ p

,

-
p

n1(t1,...,tm)
−→ p′ q

n2(t1,...,tm)
−→ q′

p ‖ q
n(t1,...,tm)

−→ p′ ‖ q′
if n1|n2 = n ∈ Sig(E).Comm∗,

-
p

n1(t1,...,tm)
−→ √

q
n2(t1,...,tm)

−→ q′

p ‖ q
n(t1,...,tm)

−→ q′
if n1|n2 = n ∈ Sig(E).Comm∗,

-
p

n1(t1,...,tm)
−→ p′ q

n2(t1,...,tm)
−→ √

p ‖ q
n(t1,...,tm)−→ p′

if n1|n2 = n ∈ Sig(E).Comm∗,

-
p

n1(t1,...,tm)
−→ √

q
n2(t1,...,tm)

−→ √

p ‖ q
n(t1,...,tm)−→ √ if n1|n2 = n ∈ Sig(E).Comm∗.

• p
l−→ p′

p ‖ q
l−→ p′ ‖ q

,

-
p

l−→ √

p ‖ q
l−→ q

.

• p
n1(t1,...,tm)

−→ p′ q
n2(t1,...,tm)

−→ q′

p|q
n(t1,...,tm)

−→ p′ ‖ q′
if n1|n2 = n ∈ Sig(E).Comm∗,

-
p

n1(t1,...,tm)
−→ √

q
n2(t1,...,tm)

−→ q′

p|q
n(t1,...,tm)

−→ q′
if n1|n2 = n ∈ Sig(E).Comm∗,

5.4 The process part 21

-
p

n1(t1,...,tm)
−→ p′ q

n2(t1,...,tm)
−→ √

p|q
n(t1,...,tm)

−→ p′
if n1|n2 = n ∈ Sig(E).Comm∗,

-
p

n1(t1,...,tm)−→ √
q

n2(t1,...,tm)−→ √

p|q
n(t1,...,tm)

−→ √ if n1|n2 = n ∈ Sig(E).Comm∗.

• p
l−→ p′

τ({n1, ..., nk}, p)
l−→ τ({n1, ..., nk}, p′)

if l ≡ n(t1, ..., tm) and n ≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p

l−→ √

τ({n1, ..., nk}, p)
l−→ √

if l ≡ n(t1, ..., tm) and n ≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p

n(t1,...,tm)
−→ p′

τ({n1, ..., nk}, p)
τ−→ τ({n1, ..., nk}, p′)

if n ≡ ni for some 1 ≤ i ≤ k,

-
p

n(t1,...,tm)
−→ √

τ({n1, ..., nk}, p)
τ−→ √ if n ≡ ni for some 1 ≤ i ≤ k.

• p
l−→ p′

ρ({n1 → n′
1, ..., nk → n′

k}, p)
l−→ ρ({n1 → n′

1, ..., nk → n′
k}, p′)

if l ≡ n(t1, ..., tm) and n ≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p

l−→ √

ρ({n1 → n′
1, ..., nk → n′

k}, p)
l−→ √

if l ≡ n(t1, ..., tm) and n ≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p

n(t1,...,tm)
−→ p′

ρ({n1 → n′
1, ..., nk → n′

k}, p)
n′(t1,...,tm)−→ ρ({n1 → n′

1, ..., nk → n′
k}, p′)

if n ≡ ni and n′ ≡ n′
i for some 1 ≤ i ≤ k,

-
p

n(t1,...,tm)−→ √

ρ({n1 → n′
1, ..., nk → n′

k}, p)
n′(t1,...,tm)

−→ √

if n ≡ ni and n′ ≡ n′
i for some 1 ≤ i ≤ k.

• p
l−→ p′

∂({n1, ..., nk}, p)
l−→ ∂({n1, ..., nk}, p′)

if l ≡ n(t1, ..., tm) and n ≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

22 5 ALGEBRAIC SEMANTICS

-
p

l−→ √

∂({n1, ..., nk}, p)
l−→ √

if l ≡ n(t1, ..., tm) and n ≡ ni for all 1 ≤ i ≤ k, or l ≡ τ .

• σ(P)
l−→ p′

Σ(x : S, P)
l−→ p′

where σ is a substitution over Sig(E) and {〈x : S〉} such that σ(〈x : S〉) = t for
some data-term t that is SSC w.r.t. Sig(E) and ∅,

-
σ(P)

l−→ √

Σ(x : S, P)
l−→ √

where σ is a substitution over Sig(E) and {〈x : S〉} such that σ(〈x : S〉) = t for
some data-term t that is SSC w.r.t. Sig(E) and ∅.

According to the convention in 2.12 we often write A(AA, r, p) instead of A(AA, r, p from E).
Again, the following lemma serves as a justification for our definition.

Lemma 5.12. Let E be a well-formed specification , AA be a minimal model of E that is
boolean preserving and r a representation function of E and AA. Consider a process-expression
p that is SSC w.r.t. Sig(E) and ∅ and let (S,L,−→, s) def= A(AA, r, p). If for some sequence of

labels l1, ..., lm it holds that p
l1−→ ...

lm−→ p′, then either p′ ≡ √
or p′ is SSC w.r.t. Sig(E)

and ∅.
We feel that our operational semantics is somewhat ad hoc; we can easily provide an alter-
native that is also satisfactory in the sense that for each process-expression the generated
transition system is strongly bisimilar with that generated by the rules above. Therefore, we
generally consider transition systems modulo strong bisimulation equivalence. This means
that the operational semantics for µCRL as given in this document has only a referential
meaning, and any generated transition system is therefore called a referential transition
system. A consequence of this view is that for the generation of transition systems for a
µCRL-process-expression an operational semantics generating a smaller number of states can
be used.

Definition 5.13. Let A1 = (S1, L1,−→1, s1) and A2 = (S2, L2,−→2, s2) be two transition
systems. We say that A1 and A2 are bisimilar, notation A1↔––A2, iff there is a relation
R ⊆ S1 × S2 such that

• (s1, s2) ∈ R,

• for each pair (t1, t2) ∈ R:

– t1
a−→1 t′1 ⇒ ∃t′2 t2

a−→2 t′2 and (t′1, t′2) ∈ R,

– t2
a−→2 t′2 ⇒ ∃t′1 t1

a−→1 t′1 and (t′1, t′2) ∈ R.

23

Let E be a well-formed specification , AA a minimal boolean preserving model of E, and r a
representation function of E and AA. For two µCRL-process-expressions p and q that are SSC
w.r.t. Sig(E) and ∅, we write

p from E ↔––AA,r q from E

iff A(AA, r, p from E)↔––A(AA, r, q from E).

The following lemma allows us to write ↔––AA instead of ↔––AA,r. Moreover, it gives us a useful
property of bisimulation, i.e. that it is a congruence for all process operators. Note that
according to our own convention we do not explicitly say where p and q stem from as they
can only come from E.

Lemma 5.14. Let E be a specification , AA a minimal, boolean preserving model of E and
p, q process-expressions that are SSC w.r.t. E and ∅.

• If p↔––AA,rq for some representation function r of E and AA, then p↔––AA,r′q for each repre-
sentation function r′ of E and AA.

• For all representation functions of E and AA, ↔––AA,r is a congruence for all µCRL operators
working on process-expressions .

6 Effective µCRL-specifications

In order to provide a process language with tools, such as for instance a simulator, it is
very important that the language has a computable operational semantics, i.e. it is decidable
what the next (finite number of) steps of a process are. This is not at all the case for µCRL.
Due to the undecidability of data equivalence, the use of possibly unguarded recursion and
infinite sums, the next step relation need not be enumerable. We deal with this situation by
restricting µCRL to effective µCRL. In effective µCRL data equivalence is decidable, only
finite sums are allowed and recursion must be guarded. For effective µCRL the next step
relation is indeed decidable.

6.1 Semi complete rewriting systems

For the data we require that the rewriting system is semi-complete (= weakly terminating
and confluent) [16]. This implies that data equivalence between closed terms is decidable.
Moreover, this is (in some sense) not too restrictive: every data type for which data equiv-
alence is decidable, can be specified by a complete (= strongly terminating and confluent)
term rewriting system [5]. As a complete term rewriting system is also semi-complete, all
decidable data types can be expressed in effective µCRL.

We first define all required rewrite relations.

24 6 EFFECTIVE µCRL-SPECIFICATIONS

Definition 6.1. Let E be a well-formed specification . We define the elementary rewrite
relation −→e

E by:

−→e
E

def= {σ(u) −→ σ(u′) |
u = u′ ∈ R with 〈R,V〉 ∈ rewrites(E),
σ is a substitution over Sig(E) and V such that VarSig(E),V(σ(u)) = ∅}.

The one-step reduction relation −→E is inductively defined by:

• u −→ u′ ∈−→E if u −→ u′ ∈−→e
E .

• n(t1, ..., tm) −→ n(t′1, ..., t′m) ∈−→E if for some 1 ≤ i ≤ m

– ti −→ t′i ∈−→E ,

– for j = i it holds that tj ≡ t′j and n(t1, ..., tm) is SSC w.r.t. Sig(E) and ∅.
The reduction relation →→E is the reflexive and transitive closure of −→E. We write t −→E u
and t →→E u for t −→ u ∈−→E and t →→ u ∈→→E, respectively.

The following lemma is meant to reassure ourselves that the definitions of the rewrite relations
are correct. Moreover, it gives a basic but useful property.

Lemma 6.2. Let E be a well-formed specification . Let t be a data-term that is SSC w.r.t.
Sig(E) and ∅. If t →→E t′, then t′ is also SSC w.r.t. Sig(E) and ∅.
With these rewrite relations it is easy to define confluence and termination.

Definition 6.3. Let E be a well-formed specification . E is data-confluent iff for data-terms
t, t′ and t′′ that are SSC w.r.t. Sig(E) and ∅ it holds that:

t →→E t′

t →→E t′′

}
implies that there is a data-term t′′′ such that

{
t′ →→E t′′′

t′′ →→E t′′′.

A data-term t that is SSC w.r.t. Sig(E) and ∅ is a normal form if for no data-term u it
holds that t −→E u. E is data-terminating if for each data-term t that is SSC w.r.t. Sig(E)
and ∅ there is some normal form t′′ such that t →→E t′′. E is data-semi-complete if E is
data-confluent and data-terminating.

The following lemma states that in µCRL we can find a unique normal form for each data-term
that can be obtained from a well-formed specification .

Lemma 6.4. Let E be a well-formed specification that is data-semi-complete. For any
data-term t that is SSC with respect to Sig(E) and ∅, there is a unique data-term NE(t)
satisfying

t →→E NE(t) and NE(t) is a normal form.

NE(t) is called the normal form of t and there is an algorithm to find NE(t) for each data-term
t that is SSC w.r.t. Sig(E) and ∅.
Effective µCRL is based on the following algebra of normal forms.

6.2 Finite sums 25

Definition 6.5. Let E be a well-formed specification that is data-semi-complete. The
Sig(E)-algebra AANE

of normal forms is defined by:

• for each name S ∈ Sig(E).Sort there is a domain D(AANE
, S) def= {NE(t) | sortSig(E),∅(t) =

S and t is a data-term that is SSC w.r.t. Sig(E) and ∅},

• C(AANE
, n) def= NE(n) provided n :→ S ∈ Sig(E).Fun,

• F (AANE
, n : S1 × ... × Sm) = f where the function f is defined by:

f(t1, ..., tm) = NE(n(t1, ..., tm))

with ti ∈ D(AANE
, Si) for 1 ≤ i ≤ m provided n : S1 × ... × Sm → S ∈ Sig(E).Fun.

Note that in AANE
it is easy to determine that T = F . It is however undecidable that the sort

Bool has at most two elements. We must use the finite sort tool of section 6.5 to determine
this. Often the algebra AANE

is called the canonical term algebra of E.

6.2 Finite sums

If a µCRL specification contains infinite sums, then the operational behaviour is not finitely
branching anymore. Consider for instance the behaviour of the following process:

X from sort Bool
func T, F :→ Bool
sort Nat
func 0 : Nat

succ : Nat → Nat
act a : Nat
proc X =

∑
(x : Nat , a(x))

The process X can perform an a(m) step for each natural number m. We judge an infinitely
branching operational behaviour undesirable and therefore exclude sums over infinite sorts
from effective µCRL.

Definition 6.6. Let E be a well-formed specification and let AA be a model of E. We say
that E has finite sums w.r.t. AA iff for each occurrence Σ(x : S, p) in E the set D(AA,S) is
finite.

6.3 Guarded recursive specifications

Also unguarded recursion may lead to an infinitely branching operational behaviour. Consider
for instance the following example:

X from sort Bool
func T, F :→ Bool
act a
proc X = X · a + a

26 6 EFFECTIVE µCRL-SPECIFICATIONS

The process-expression X · a can perform an a step to any process-expression am (m ≥ 1)
where am is the sequential composition of m a’s. Therefore, we also exclude unguarded
recursion from effective µCRL.

In the next definition it is said what a guarded µCRL specification is in very general terms.

Definition 6.7. Let E be a well-formed specification and AA be a model of E that is boolean
preserving. Let p be a process-expression of the form n or n(t1, ..., tm) for some name n that
is SSC w.r.t. Sig(E) and ∅. Let q be a process-expression that is SSC w.r.t. Sig(E) and ∅.
We say that p is guarded w.r.t. AA in q iff

• q ≡ q1 + q2, q ≡ q1 ‖ q2 or q ≡ q1 | q2, and p is guarded w.r.t. AA in q1 and q2,

• q ≡ q1 � c � q2 and either AA |= c = T and p is guarded w.r.t. AA in q1, or AA |= c = F and
p is guarded w.r.t. AA in q2,

• q ≡ q1 · q2, q ≡ q1 ‖ q2, q ≡ ∂({n1, ..., nm}, q1), q ≡ τ({n1, ..., nm}, q1), q ≡ ρ({n1 →
n′

1, ..., nm → n′
m}, q1) or q ≡ (q1) and p is guarded w.r.t. AA in q1,

• q ≡ Σ(x : S, q1) and p is guarded w.r.t. AA in σ(q1) for any substitution σ over Sig(E)
and {〈x : S〉},

• q ≡ τ or q ≡ δ,

• q ≡ n′ for a name n′ and p ≡ n′ or

• q ≡ n′(u1, ..., um′) for a basic-expression n′(u1, ..., um′) and n ≡ n′, m = m′ or [[ui]]AA =
[[ti]]AA for some 1 ≤ i ≤ m.

If p is not guarded w.r.t. AA in q we say that p appears unguarded w.r.t. AA in q.

Definition 6.8. Let E be a well-formed specification and AA be a model of E that is boolean
preserving. The Process Name Dependency Graph of E and AA, notation PNDG(E,AA), is
constructed as follows:

• for each n = p ∈ Sig(E).P roc, n is a node of PNDG(E,AA),

• for each n(x1 : S1, ..., xm : Sm) = p ∈ Sig(E).P roc and data-terms t1, ..., tm that are
SSC w.r.t. Sig(E) and ∅ such that sortSig(E),∅(ti) = Si (1 ≤ i ≤ m), n(t1, ..., tm) is a
node of PNDG(E,AA),

• if n is a node of PNDG(E,AA) and n = p ∈ Sig(E).P roc, then there is an edge

n −→ q

for a node q ∈ PNDG(E,AA) iff q is unguarded w.r.t. AA in p,

• if n(x1 : sortSig(E),∅(t1), ..., xm : sortSig(E),∅(tm)) = p ∈ Sig(E).P roc and n(t1, ..., tm)
is a node of PNDG(E,AA), then there is an edge

n(t1, ..., tm) −→ q

6.4 Effective µCRL-specifications 27

for a node q ∈ PNDG(E,AA) iff q is unguarded w.r.t. AA in σ(p) where σ is the substi-
tution over Sig(E) and {〈xi : sortSig(E),∅(ti)〉 | 1 ≤ i ≤ m} defined by

σ(〈xi : sortSig(E),∅(ti)〉) = ti.

Definition 6.9. Let E be a well-formed specification and AA be a model of E that is boolean
preserving. We say that E is guarded w.r.t. AA iff PNDG(E,AA) is well founded, i.e. does not
contain an infinite path.

6.4 Effective µCRL-specifications

Here we define the operational semantics of effective µCRL by combining all definitions given
above.

Definition 6.10. Let E be a specification . We call E an effective µCRL specification or for
short an effective specification iff

• E is well-formed,

• E is data-semi-complete,

• E has finite sums w.r.t. AANE
,

• E is guarded w.r.t. AANE
.

Definition 6.11. Let E be an effective µCRL specification . Let p be a process-expression
that is SSC w.r.t. Sig(E) and ∅. The behaviour of p is the transition system

A(AANE
, r, p from E)

where the representation function r of E and AANE
is the identity.

In effective µCRL data equivalence is indeed decidable and the operational behaviour is
finitely branching and computable:

Theorem 6.12. Let E be an effective µCRL specification and let (S,L,−→, s) = A(AANE
, r, p)

for some data-term p that is SSC w.r.t. Sig(E) and ∅ and let r be the identity. Then

• for each pair of data-terms t1, t2 that are SSC w.r.t. Sig(E) and ∅:
t1 =E t2 is decidable,

• for each process-expression p′ that is SSC w.r.t. Sig(E) and ∅:

{〈a, p′′〉 | p′
a−→ p′′}

is finite and effectively computable. Moreover, its cardinality is also effectively com-
putable from E and p.

28 6 EFFECTIVE µCRL-SPECIFICATIONS

The second point of the previous theorem says that A(AANE
, r, p from E) is a computable

transition system. In a recursion theoretic setting a computable transition system is defined
as follows: let A = (S,L,−→, s0) be a transition system with S and L sets of natural numbers
and s0 ∈ S is represented by 0. We say that A is a computable transition system iff −→ is
represented by a total recursive function φ that maps each number in S to (a coding of) a

finite set of pairs {〈l, s′〉 | s
l−→ s′}.

6.5 Proving µCRL-specifications effective

In general it is not decidable whether a µCRL specification is effective. But there are many
tools available that can prove the effectiveness for quite large classes of specifications . These
tools provide, given a specification, a ‘yes’ or a ‘don’t know’ answer.

Definition 6.13. Let E be the set of all well-formed specifications . A data-semi-completeness
tool, notation DC, a finite-sort tool, notation FS, and a guardedness tool, notation GD, are
all decidable predicates over E , i.e. DC ⊆ E , FS ⊆ N × E , GD ⊆ E .

A tool is called sound if each claim of a certain property it makes about a well-formed
specification is correct. In the definition of a sound finite-sort tool and a sound guardedness
tool we assume that specifications are data-semi-complete because we expect that this is a
minimal requirement for these tools to operate.

Definition 6.14. A data-semi-completeness tool DC is called sound iff for each specification
E that is well-formed:

if DC(E) holds, then E is data-semi-complete.

A finite-sort tool FS is called sound iff for each name n and specification E that is well-formed
and data-semi-complete:

if FS(n,E) holds, then n ∈ Sig(E).Sort and D(AANE
, n) is a finite set.

A guardedness tool GD is called sound iff for each specification E that is well-formed and
data-semi-complete:

if GD(E) holds, then E is guarded w.r.t. AANE
.

Sometimes a tool needs auxiliary information per specification to perform its task. In this
case such a tool may work on a tuple containing a specification and a finite amount of such
information. There is no prescribed format for this information, and it may vary from tool
to tool. If a tool requires auxiliary information, then the soundness of the tool may not
depend on this information. In this case the definition of soundness is modified as follows
(the definition is only given for DC, the other cases can be defined likewise):

Definition 6.15. A data-semi-completeness tool DC requiring auxiliary information, is
called sound iff for each well-formed specification E and each instance of auxiliary information
I:

6.5 Proving µCRL-specifications effective 29

if DC(E, I) holds, then E is data-semi-complete.

This definition guarantees that even with incorrect auxiliary information DC always produces
correct answers. DC has to be robust.

Below we describe some techniques for constructing sound tools, except in those cases
where techniques are provided in the literature. As time proceeds, more and more powerful
techniques will appear. In order to incorporate these technological advancements in µCRL,
the techniques mentioned here are only possible candidates for sound tools. They may be
replaced by others, as long as these also lead to sound tools.

There are many techniques for proving termination and confluence (see Huet and Oppen
[14] and Dershowitz [7] for termination, Newman [20] for confluence if termination has
been shown and Klop [16] for an overview). Therefore we will not go into details here.

The problem whether a sort has a finite number of elements [4] is undecidable and as far
as we know no general techniques have been developed to prove that a sort has only a finite
number of elements in a minimal algebra.

We present a possible approach that can only be applied to a restricted case: let E be
a specification in E such that DC(E) for some sound data-semi-completeness tool DC and
assume that we are interested in the finiteness of sorts S1, ..., Sk occurring in E. Let F be
the set of all functions specified in E that have as target sort one of the sorts Si (1 ≤ i ≤ k).
We assume that their parameter sorts also originate from S1, ..., Sk. As auxiliary information
we use finite sets Ii of (closed) data-terms that ought to represent all elements of sort Si.

We compute for each function f ∈ F (with target sort Sj) and for all arguments in the sets
Ii of appropriate sorts, whether application of f leads to a data-term equivalent to one of
the elements of Ij. This can be done as we assume that DC(E) holds. If this is successful,
then obviously the sorts S1, ..., Sk have a finite number of elements.

Also the question whether a specification is guarded is undecidable. Still very good re-
sults can be obtained when guardedness is checked abstracting from the data parameters of
process names. This is done by the following function HV . Its first argument contains the
process-expression that is being searched for unguarded occurrences of names of processes
and its second argument guarantees that the bodies of process-declarations are not searched
twice.

Definition 6.16. Let E be a well-formed specification and let V be a set of variables over
Sig(E). A process-type is an expression 〈n : S1 × ... × Sm〉 for some m ≥ 0 with n a name
and S1, ..., Sm names . The function HV maps pairs of a process-expression and a set of
process-types to sets of process-types .

• HV (δ, PT) def= ∅.

• HV (p1 + p2, PT) = HV (p1 � c � p2, PT) = HV (p1 ‖ p2, PT) = HV (p1 | p2, PT) def=
HV (p1, PT) ∪ HV (p2, PT).

• HV (p1 · p2, PT) = HV (p1 ‖ p2, PT) = HV (∂({n1, ..., nm}, p1), PT) =
HV (τ({n1, ..., nm}, p1), PT) = HV (ρ({n1 → n′

1, ..., nm → n′
m}, p1), PT) =

HV (Σ(x : S, p1), PT) def= HV (p1, PT).

• HV (n(t1, ..., tm), PT) def=

30 6 EFFECTIVE µCRL-SPECIFICATIONS

– {〈n : sortSig(E),V(t1) × ... × sortSig(E),V(tm)〉}
if 〈n : sortSig(E),V(t1) × ... × sortSig(E),V(tm)〉 ∈ PT .

– HV (p, PT ∪ {〈n : sortSig(E),V(t1) × ... × sortSig(E),V(tm)〉}) ∪
{〈n : sortSig(E),V(t1) × ... × sortSig(E),V(tm)〉}
if 〈n : sortSig(E),V(t1) × ... × sortSig(E),V(tm)〉 ∈ PT and
n(x1 : sortSig(E),V(t1), ..., xm : sortSig(E),V(tm)) = p ∈ Sig(E).P roc for some
names x1, ..., xm.

• HV (n, PT) def=

– {〈n :〉} if 〈n :〉 ∈ PT ,

– HV (p, PT ∪ {〈n :〉}) ∪ {〈n :〉} if 〈n :〉 ∈ PT and n = p ∈ Sig(E).P roc.

• HV ((p), PT) def= HV (p, PT).

Theorem 6.17. Let E be a well-formed specification . If for each process-declaration
n(x1 : S1, ..., xm : Sm) = p ∈ Sig(E).P roc it holds that 〈n : S1 × ... × Sm〉 /∈ HV (p, ∅) and
for each process-declaration n = p ∈ Sig(E).P roc n /∈ HV (p, ∅), then E is guarded.

Appendix An SDF-syntax for µCRL

We present an SDF-syntax for µCRL [10] which serves two purposes. It provides a syntax
that does not employ special characters and, using it as input for the ASF+SDF-system, it
yields an interactive editor for µCRL-specifications (see eg. [11]). The ASF+SDF system is
also used to provide a well-formedness checker [17].

According to the convention in SDF we write syntactical categories with a capital and
keywords with small letters. The first LAYOUT rule says that spaces (‘ ’), tabs (\t) and
newlines (\n) may be used to generate some attractive layout and are not part of the µCRL
specification itself. The second LAYOUT rule says that lines starting with a %-sign followed
by zero or more non-newline characters (~[\n]*) followed by a newline (\n) must be taken
as comments and are therefore also not a part of the µCRL syntax.

In this syntax names are arbitrary strings over a-z, A-Z and 0-9 except that keywords are
not names . In the context free syntax most items are self-explanatory. The symbol + stands
for one or more and * for zero or more occurrences. For instance { Name ","}+ is a list of
one or more names separated by commas.

The phrase right means that an operator is right-associative and assoc means that an
operator is associative. The phrase bracket says that the defined construct is not an operator,
but just a way to disambiguate the construction of a syntax tree. Instead of δ, ∂, τ and ρ we
write delta, encap, tau, hide and rename. These keywords are taken from PSF [18].

The priorities say that ‘.’ has highest and + has lowest priority on process-expressions .

exports
sorts Name

Name-list

6.5 Proving µCRL-specifications effective 31

X-name-list
Space-name-list
Sort-specification
Function-specification
Function-declaration
Rewrite-specification
Variable-declaration-section
Variable-declaration
Data-term
Rewrite-rules-section
Rewrite-rule
Process-expression
Renaming-declaration
Single-variable-declaration
Process-specification
Process-declaration
Action-specification
Action-declaration
Communication-specification
Communication-declaration
Specification

lexical syntax
[\t\n] -> LAYOUT
"%" ~[\n]* "\n" -> LAYOUT
[a-zA-Z0-9]* -> Name

context-free syntax
{ Name ","}+ -> Name-list
{ Name "#"}+ -> X-name-list

Name+ -> Space-name-list
sort Space-name-list -> Sort-specification
func Function-declaration+ -> Function-specification
Name-list ":" X-name-list "->" Name -> Function-declaration
Name-list ":" "->" Name -> Function-declaration

Variable-declaration-section
Rewrite-rules-section -> Rewrite-specification

var Variable-declaration+ -> Variable-declaration-section
-> Variable-declaration-section

Name-list ":" Name -> Variable-declaration
Name -> Data-term
Name "(" { Data-term "," }+ ")" -> Data-term
rew Rewrite-rule+ -> Rewrite-rules-section
Name "(" { Data-term "," }+ ")" "=" Data-term -> Rewrite-rule
Name "=" Data-term -> Rewrite-rule

Process-expression "+" Process-expression -> Process-expression right
Process-expression "||" Process-expression -> Process-expression right
Process-expression "||_" Process-expression -> Process-expression
Process-expression "|" Process-expression -> Process-expression right
Process-expression "<|" Data-term "|>"

32 6 EFFECTIVE µCRL-SPECIFICATIONS

Process-expression -> Process-expression
Process-expression "." Process-expression -> Process-expression right
delta -> Process-expression
tau -> Process-expression
encap "(" "{" Name-list "}" ","

Process-expression ")" -> Process-expression
hide "(" "{" Name-list "}" ","

Process-expression ")" -> Process-expression
rename "(" "{" { Renaming-declaration "," }+

"}" "," Process-expression ")" -> Process-expression
sum "(" Single-variable-declaration ","

Process-expression ")" -> Process-expression
Name "(" { Data-term "," }+ ")" -> Process-expression
Name -> Process-expression
"(" Process-expression ")" -> Process-expression bracket

Name "->" Name -> Renaming-declaration
Name ":" Name -> Single-variable-declaration
proc Process-declaration+ -> Process-specification
Name "(" { Single-variable-declaration "," }+ ")"

"=" Process-expression -> Process-declaration
Name "=" Process-expression -> Process-declaration

act Action-declaration+ -> Action-specification
Name-list ":" X-name-list -> Action-declaration
Name -> Action-declaration

comm Communication-declaration+ -> Communication-specification
Name "|" Name "=" Name -> Communication-declaration

Sort-specification -> Specification
Function-specification -> Specification
Rewrite-specification -> Specification
Action-specification -> Specification
Communication-specification -> Specification
Process-specification -> Specification
Specification Specification -> Specification assoc

priorities
"+" < { "||", "|", "||_"} < "<|" "|>" < "."

As an example we provide a µCRL-specification of an alternating bit protocol. This is almost
exactly the protocol as described in [2] to which we also refer for an explanation.

sort Bool
func T,F:->Bool

sort D
func d1,d2,d3 : -> D

sort error

REFERENCES 33

func e : -> error

sort bit
func 0,1 : -> bit

invert : bit -> bit

rew invert(1)=0
invert(0)=1

act r1,s4 : D
s2,r2,c2 : D#bit
s3,r3,c3 : D#bit
s3,r3,c3 : error
s5,r5,c5 : bit
s6,r6,c6 : bit
s6,r6,c6 : error

comm r2|s2 = c2
r3|s3 = c3
r5|s5 = c5
r6|s6 = c6

proc S = S(0).S(1).S
S(n:bit) = sum(d:D,r1(d).S(d,n))
S(d:D,n:bit) = s2(d,n).(r6(invert(n))+r6(e)).S(d,n)+r6(n)

R = R(1).R(0).R
R(n:bit) = (sum(d:D,r3(d,n))+r3(e)).s5(n).R(n)+

sum(d:D,r3(d,invert(n)).s4(d).s5(invert(n)))

K = sum(d:D,sum(n:bit,r2(d,n).(tau.s3(d,n)+tau.s3(e)))).K
L = sum(n:bit,r5(n).(tau.s6(n)+tau.s6(e))).L

ABP = hide({c2,c3,c5,c6},encap({r2,r3,r5,r6,s2,s3,s5,s6},S||R||K||L))

References

[1] J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions. Report
P9008, University of Amsterdam, Amsterdam, 1990.

[2] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

[3] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Infor-
mation and Computation, 60(1/3):109–137, 1984.

[4] J.A. Bergstra and J.V. Tucker. A characterisation of computable data types by means
of a finite equational specification method. In J.W. de Bakker and J. van Leeuwen,
editors, Proceedings, 1980, volume 85 of Lecture Notes in Computer Science, pages 76–
90. Springer-Verlag, 1980.

34 REFERENCES

[5] J.A. Bergstra and J.V. Tucker. The completeness of the algebraic specification methods
for computable data types. Information and Control, 12:186–200, 1982.

[6] CCITT Working Party X/1. Recommendation Z.100 (SDL), 1987.

[7] N. Dershowitz. Computing with rewrite systems. Information and Control, 65:122–157,
1985.

[8] H. Ehrig and B. Mahr. Fundamentals of algebraic specifications I, volume 6 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

[9] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimula-
tion as a congruence (extended abstract). In G. Ausiello, M. Dezani-Ciancaglini, and
S. Ronchi Della Rocca, editors, Proceedings 16th ICALP, Stresa, volume 372 of Lecture
Notes in Computer Science, pages 423–438. Springer-Verlag, 1989. Full version to appear
in Information and Computation.

[10] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition formalism
SDF – reference manual –. ACM SIGPLAN Notices, 24(11):43–75, 1989.

[11] P.R.H. Hendriks. Implementation of Modular Algebraic Specifications. PhD thesis, Uni-
versity of Amsterdam, 1991. To appear.

[12] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Engle-
wood Cliffs, 1985.

[13] C.A.R. Hoare, I.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders, I.H.
Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of programming. Communications of the
ACM, 30(8):672–686, August 1987.

[14] G. Huet and D.D. Oppen. Equations and rewrite rules: A survey. In R. Book, editor,
Formal Language Theory: Perspectives and Open Problems, pages 349–405. Academic
Press, 1980.

[15] ISO. Information processing systems – open systems interconnection – LOTOS – a
formal description technique based on the temporal ordering of observational behaviour
ISO/TC97/SC21/N DIS8807, 1987.

[16] J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer Science, vol-
ume 1. Oxford University Press, 1990. To appear.

[17] H. Korver. Private communications, 1991.

[18] S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta Informaticae,
XIII:85–139, 1990.

[19] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1980.

[20] M.H.A. Newman. On theories with a combinatorial definition of equivalence. Annals of
Mathematics, 43(2):223–243, 1942.

REFERENCES 35

[21] G.D. Plotkin. An operational semantics for CSP. In D. Bjørner, editor, Proceedings
IFIP TC2 Working Conference on Formal Description of Programming Concepts – II,
Garmisch, pages 199–225, Amsterdam, 1983. North-Holland.

[22] SPECS-semantics. Definition of MR and CRL Version 2.1, 1990.

