A Bypass of Cohen’s Impossibility Result

Jan A. Bergstral? and Alban Ponse!

! University of Amsterdam, Programming Research Group, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands
2 Utrecht University, Department of Philosophy, Heidelberglaan 8,
3584 CS Utrecht, The Netherlands

Abstract. Detecting illegal resource access in the setting of grid com-
puting is similar to the problem of virus detection as put forward by
Fred Cohen in 1984. We discuss Cohen’s impossibility result on virus
detection, and introduce “risk assessment of security hazards”, a notion
that is decidable for a large class of program behaviors.

Keywords: Malcode, Program algebra, Thread algebra, Virus, Worm.

1 Introduction

Grid computing poses many challenges which are known from computer science,
though now at an integrated level. For semantic work about the grid it is hard
to reach that level of integration as well. An example of semantic work on grid
computing is in [8], in which the authors Nemeth and Sunderam point out that
convincing definitions of what constitutes a grid are still hard to obtain. They
set out to provide a definition, and in the preparation of the formal work a table
is presented with a comparison of grids and conventional distributed systems. It
is stated in their Table 1 that in a grid, access to a node may not imply access
to all of its resources and that users working from another node may have little
information on accessible resources.

We will study this aspect in particular under the assumption that a node
takes the responsibility to prevent illegal access to resources by tasks it accepts
to execute. We try to find a simplest possible model for this issue and use thread
algebra in combination with program algebra. These techniques were introduced
in [2] and [1], respectively. (The single thread version of thread algebra is named
polarized process algebra, see [1]). This leads to the preliminary conclusion that
a fair amount of phenomena in concurrent processing may be understood and
formalized along those lines, in particular phenomena where non-determinism
is immaterial. It seems to be the case that many characteristic aspects of grid
computing can be analyzed using the paradigm of strategic interleaving as put
forward in [2]. That means that instead of taking a combinatorial explosion of
different runs into account, a limited portfolio of interleaving strategies may
be used to characterize vital phenomena, including issues concerning thread

2 J.A. Bergstra and A. Ponse

mobility and access control. Deterministic strategies inherit from planning theory
as discussed in [6].

It appears that detecting illegal resource access is formally very similar to
the problem of virus detection as put forward by Cohen in 1984. There is a
vast amount of literature on virus detection, and opinions seem to differ wildly.
Many authors agree that malcode contains all others, and that both a virus and
a worm can replicate. Furthermore, a worm is more autonomous than a virus.
Some authors claim that a virus can only replicate as a consequence of actions
of users, and that sound education and awareness can protect users from acting
with such effect. So, a virus uses a user for its replication; that user may or may
not be a victim of the virus’ harmful action at the same time. Unclear is if each
of these users must be a human one or if background processes in a machine can
also be “used” as users.

This paper focuses on virus detection and discusses two fundamental ques-
tions. First, we consider Cohen’s result about the impossibility of a uniform
algorithm (or tool) for detecting (forecasting) viruses in programs [5]. This is
done in the setting of the program algebra PGA [1]. Then, we define a different
notion of testing — security hazard risk assessment — with which the occur-
rence of security hazards is decidable for a large class of program behaviors.
However, if divergence (the absence of halting) is considered also as a security
hazard, decidability is lost.

The paper is organized as follows: in Sections 2 and 3 we introduce some
basics of program algebra and the setting in which we will analyze code se-
curity risks. Then, in Section 4, we consider Cohen’s impossibility result and
some related issues. In Section 5 we introduce our notion of security hazard risk
assessment. The paper is ended with some conclusions.

2 Basics of Program Algebra

Program algebra (PGA, [1]) provides a very simple notation for sequential pro-
grams and a setting in which programs can be systematically analyzed and
mapped onto behaviors. Program behaviors are modeled in thread algebra. Fi-
nally, we consider some other program notations based on program algebra.

The program Algebra PGA. In PGA we consider basic instructions a, b, ... given
by some collection B. Furthermore, for each a € B there is a positive test in-
struction +a and a negative test instruction —a. The control instructions are
termination, notation !, and (relative) jump instructions #k (k € N). Program
expressions in PGA, or shortly PGA-programs, have the following syntax:

— each PGA-instruction is a PGA-program,
— if X and Y are PGA-programs, so is their concatenation X;Y,
— if X is a PGA-program, so is its repetition X*.

The behavior associated with the execution of PGA-programs is explained be-
low. Instruction congruence of programs has a simple axiomatization, given in

A Bypass of Cohen’s Impossibility Result 3

Table 1. Axioms for PGA’s instruction sequence congruence.

(X;Y);Z2=X;(Y;2) (PGA1) X? Y =X (PGA3)
(XM =X forn>0 (PGA2) (X;7)Y = X5 (Y; X)” (PGA4)

Table 1. The axioms PGA1-4 imply Unfolding, i.e. the law X“ = X; X¢, and
PGA2-4 may be replaced by Unfolding and the proof rule Y = X; YV = Y =
Xv.

Thread Algebra. Execution of PGA-programs is modeled in thread algebra.
Given B, now considered as a collection of actions, it is assumed that upon
execution each action generates a Boolean reply (true or false). Now, behavior is
specified in thread algebra by means of the following constants and operations:

Termination. The constant S represents (successful) termination.

Inaction. The constant D represents the situation in which no subsequent be-
havior is possible. (Sometimes the special thread D is called deadlock or
divergence.)

Post conditional composition. For each action a € B and threads P and @, the
post conditional composition P < a > @ describes the thread that first exe-
cutes action a, and continues with P if true was generated, and) otherwise.

Action prefir. For a € B and thread P, the action prefix a o P describes the
thread that first executes a and then continues with P, irrespective of the
Boolean reply. Action prefix is a special case of post conditional composition:
aoP=P<al P.

Behavior Extraction: from program algebra to thread algebra. The behavior ex-
traction operator |X| assigns a behavior to program X. Instruction sequence
equivalent programs have of course the same behavior. Behavior extraction is
defined by the thirteen equations in Table 2, where a € B and u is a PGA-
instruction.

Table 2. Equations for behavior extraction on PGA.

I'=25 I X| =5 |#k| = D
la] =aoD la; X| = ao|X]| |#0; X| = D
|+al| =aoD [+a; X| = |X| Dal> |#2; X| |#1; X| = | X]
|—a| =aoD |—a; X| = |#2; X| Ja > |X| |#k+2;ul = D

|#k+2; u; X| = |[#k+1; X|

4 J.A. Bergstra and A. Ponse

Some examples: |(#0)¥| = |#0; (#0)“| = D and, further taking action prefix to
bind stronger than post conditional composition,

|—a;bsc] = [#£2;bic] Da > [bic|
= |#1;¢|<a>bo|c
=lc|]da>bocoD
=coD<dalP>bocoD.

In some cases, these equations can be applied (from left to right) without ever
generating any behavior, e.g.,

[(#1)°| = [#1; (#1)] = [#1)| = ...
((#2;0)%| = [#2; a5 (#2;0)°| = [#1; (#2;0)°| = |(#2;0)*| = ...

In such cases, the extracted behavior is defined as the thread D.
It is also possible that behavioral extraction yields an infinite recursion, e.g.,
UJ‘ —

] = |a;a®| = aola”],

and therefore, || = aola¥| =aoao|a¥| =aocaocaoc]|a®|---. In such cases the
behavior of X is infinite, and can be represented by a finite number of behavioral
equations, e.g., |(a; +b; #3; —b; #4)“| = P and

P=ao(P4b>Q),
Q=PJdb>Q.

The program notations PGLB and PGLC. The program notation PGLB is ob-
tained from PGA by adding backwards jumps \#k and leaving out the repeti-
tion operator. For example, the thread defined by PGLB-program +a; \#1; +b
behaves as (+a; #4; +b; #0; #0)%, i.e., as Pin P=P<a>bo D.

This is defined with help of a projection function pglb2pga that translates
PGLB-programs in a context-dependent fashion. For a PGLB-program X we
write | X |pqin = |pglb2pga(X)| (see further [1]).

The language PGLC is the variant of PGLB in which termination is modeled
implicitly: a program terminates after its last instruction has been executed and
that instruction was no jump into the program, or it terminates after a jump
outside the program. The termination instruction ! is not present in PGLC. For
example,

|4a; #2; \#2; +blpgic = |+a; #2; \#2; +0; 1 pgis
= [(4a; #2; #6; +b; 1} 1; 40; #0)~ |
P

for P=>bo0S da®> P (see [1] for precise definitions of | X |4 and [Y|pg-)

A Bypass of Cohen’s Impossibility Result 5

3 Detecting Access to a Forbidden Resource

In this section we introduce the setting in which we will analyze code security
risks. We now consider a thread algebra with actions in “focus-method” notation,
i.e., actions of the form f.m where f is the focus and m the method. A forbidden
resource is a resource that may not be accessed by threads of ordinary security
clearance. A focus containing a forbidden resource is called a high risk focus.
The state of affairs in which a thread plans to access a forbidden resource is
called a security hazard.

Let P be some thread that uses communication with the following typical
resources H., Hy and H,:

< (external focus)

fl g (low risk focus, no security hazard)

(high risk focus, security risk)

The reply of a basic instruction e.m will be determined by the resource H,. Like-
wise, instructions with focus f or g communicate with Hy and Hy, respectively.
Now, execution is secure if no f.m is called until termination or first call of
some e.m (to the external focus).
A thread can have low risk actions (secure execution expected) and high risk
actions (insecure execution expected). For example,

S — a low risk behavior (no security hazard),
fmoS — a high risk behavior (security hazard),
fmoS<dgmbgmoS — risk depends on H, (potential security hazard).

Suppose in some network, a site C' receives the description p in some pro-
gramming language PGLX of a thread P = |p|pg, to be run at C. Then

P < sctest.ok> S

formalizes a way for C to run P only if its security has been cleared: the test
action sctest.ok (security clearance test) models this type of testing, yielding
true if P is secure. In terms of the above modeling, such type of testing may be
performed by a secure resource like Hy with focus sctest (thus Hgetest)-

Alternatively, one can consider a test resource H ;g.test (alternative security
clearance test) which produces true in

P < asctest.ok> S

if P has a security hazard. This resource may be implemented by always return-
ing false. Consequently, the better option is to require that if in

P < asctest.ok> @

6 J.A. Bergstra and A. Ponse

the test asctest.ok yields false, the security of thread @ is guaranteed. In the next
section we show that such a seemingly natural test action is self-contradictory; in
Section 5 we propose a variant of sctest.ok that is not manifestly self-contradictory.

4 Security Hazard Forecasting

In this section we consider a security hazard forecasting tool and establish a
formal correspondence between security hazard detection (a thread plans to
access a forbidden resource) and the virus detection problem put forward by
Fred Cohen in 1984.

Let SHFT be a Security Hazard Forecasting Tool with focus shft, thus a
resource that forecasts a security hazard. As assumed earlier, a security hazard
is in our simple setting a call (action) f.m for some m. Furthermore, let shft.test
be the test that uses SHFT in the following way: in

P < shft.test™> Q,

the action shft.test returns true if P has a security hazard, and false if @ has no
security hazard.

Theorem 1. A Security Hazard Forecasting Tool cannot exist.

Proof. Consider S < shft.test™ f.m o S. If the test action shft.test returns false,
then f.m oS will be performed, which is a security hazard; if true is returned,
then S is performed and no security hazard arises. O

The particular thread used in the proof above illustrates the impossibility of
predicting that a thread (or a program) contains a virus, a general phenomenon
that was described in Cohen’s famous 1984-paper [5] and that will be further
referred to as Cohen’s impossibility result. For the sake of completeness, we recall
Cohen’s line of reasoning. In the pseudo-code below (taken from [5]), D is a
decision procedure that determines whether a program is (contains) a virus,
"D stands for its negation, and next labels the remainder of some (innocent)
program:

program contradictory-virus:=
{1234567;

subroutine infect-executable:=

{loop:file = get-random-executable-file;

if first-line-of-file = 1234567 then goto loop;
prepend virus to file;

}

subroutine do-damage:=
{whatever damage is to be done}

A Bypass of Cohen’s Impossibility Result 7

subroutine trigger-pulled:=
{return true if some condition holds}

main-program:=

{if "D(contradictory-virus) then
{infect-executable;
if trigger-pulled then do-damage;
X

goto next;

¥

X

In PGLC, the program contradictory-virus can be represented by the follow-
ing term CV:

CV = #8;Pre; #3; —shft.test(CV); \#8; Next
where Pre abbreviates the six instructions that model the security hazard:

Pre = file:=get-random-executable-file;
+first-line-of-file=1234567; \#2; prepend;
+trigger-pulled; do—-damage
and Next models the remainder of the program. Applying behavior extraction
on this program yields

|CV|pgic = |Next|
= |Next]|

pgle J shft.test(CV) D> [Pre; #3; —shft.test(CV); \#8; Next|
< shft.test(CV) > |Pre; Next|

pglc

pglc pgle

So, S <Jshft.testt> f.mo S is indeed a faithful characterization of Cohen’s impos-
sibility result.

‘We note that even with the aid of universal computational power, the problem
whether a thread has a security hazard (issues an f.m call) is undecidable. This
problem can be seen as a variant of the unsolvability of the Halting Problem,
i.e., Turing’s impossibility result.

Cohen’s impossibility result needs the notion of a secure run (no security
hazards), as well as a secure program or behavior (a thread that will have secure
runs only). So, Cohen’s impossibility result emerges if:

— secure runs exist,

secure threads exist,

— there is a full match between these two,
— forecasting is possible.

Now there is a difficulty with forecasting: if shft.test returns false one hopes
to proceed in such a way that the security hazard is avoided (why else do the
test?). But that is not sound as was shown above. Thus we conclude: this type of
security hazard forecasting is a problematic idea for the assessment of security
hazards.

8 J.A. Bergstra and A. Ponse

5 Security Hazard Risk Assessment

In this section we introduce a security hazard risk assessment tool, taking into
account the above-mentioned considerations. This tool turns out to be a much
more plausible modeling of testing the occurrence of security hazards. However,
if we add divergence (the absence of halting) as a security risk, the tool can not
exist.

The following security hazard risk assessment tool SHRAT with focus shrat
may be conceived of as assessing a security hazard risk. In

P < shrat.ok> Q

the test action shrat.ok returns true if P is secure, and false if P is insecure (then
P is avoided and @ is done instead). This is a more rational test than shft.test
because it tests only a single thread (its left argument). Using an external focus
e, the test action shrat.ok in

(P Se.m > Py) < shrat.ok ™ Q

yields true because e.m is seen as an action that is beyond control of security
hazard risk assessment.
For testing shrat.ok actions we can employ backtracking: at P < shrat.ok> Q,

1. Temporarily remove thread (or loaded program),

2. Place P instead
Sor D orem = backtrack if possible, otherwise true,

3. Execute® until ¢ f.m = backtrack if possible, otherwise false,
P’ < shrat.ok™ @' = restart 1 with P’ < shrat.ok> @',

The backtracking in this algorithm may require the testing of threads that are
no direct subthreads of the original one, e.g., in

(Py < shrat.ok™ Ps) < shrat.ok > Q

first the leftmost shrat.ok action is evaluated. If this yields false (so P; contains
a security hazard), then Py < shrat.ok > () is evaluated. For finite threads this is
a terminating procedure and not problematic.

Evaluation of shrat.ok actions can be extended to a larger class of threads.
A regular thread P; over B is defined by a finite system of equations over P =
Py, ..., P, (for some n > 1) of the following form:

P, = F(P)

P, =F,(P)
with F;(P) == S| D | P;1 Ja;>P; o for P j € {P,...,P,} and a; € B. Counsider
Py < shrat.ok™ @Q, thus Fy (P) < shrat.ok™ Q. Again we can decide the outcome
of the test action shrat.ok by doing a finite number of substitutions, linear in n.
(Loops and divergence are not considered security hazards.) This leads to the

following result:

3 Here “execute” means that upon a test action a, both branches should be inspected.

A Bypass of Cohen’s Impossibility Result 9

Theorem 2. For regular threads, the tool SHRAT is possible.
We give a simple example: if

P=PR<da>P
P2:P1§lf.mEP1 (:f.moPl),

then shrat.ok in (Py < a > Py) < shrat.ok > @ yields true if it does in both
P, < shrat.ok™> @Q and P, < shrat.ok > Q. Obviously, it does not in the latter
case, so this thread equals Q. A slightly more complex example (including the
evaluation of the various shrat.ok tests):

P, = Py < shrat.ok™> S (true)
P,=P3<dal> Py

P; = Py < shrat.ok™ Pg (true)
Py = P; < shrat.ok™ Py (false)

P5:(ZOP2
P6:f.m0P2
P7=f.mOP2
szaOS.

Omitting the shrat.ok-tests, thread P; has behavior P as defined in
P=aoP<a>aof.

Thus, evaluation of the reply of shrat.ok is decidable for regular threads. We
conclude that Cohen’s impossibility result does not apply in this case; apparently,
that result is about forecasting. Of course, the decidability of the evaluation of
shrat.ok actions is lost if a Turing Tape is used as a resource.

Divergence Risk Assessment. If we consider divergence as a security hazard, say
by focus drat and resource DRAT (a Divergence Risk Assessment Tool), we have
a totally different situation: in the thread defined by

P = P <drat.ok™> S

we then obviously want that the test action drat.ok returns the answer false. It is
well-known that in general, DRAT cannot exist, as it is equivalent with solving
the Halting Problem.

Now, involving divergence as a security hazard in shrat.ok actions, we also
find that in

P = P <shrat.ok™ f.mo S

the test should yield false (otherwise divergence). However, this yields a problem:
in

P = P < shrat.ok™> S

this goes wrong: the halting problem (Turing’s impossibility result) wins, and
hence the backtracking model is not suitable anymore.

10 J.A. Bergstra and A. Ponse

6 Conclusions

In [3], we provide a formal treatment of the (potential) interaction of a thread
P with resources H., Hy and H,. Notation for that situation is

((P/.H.)/fHyf)/qH4 or equivalently, P/.H./sHy/sHg.

In the present paper we considered all communications of P with a resource Hy,
implicit and wrote P instead. In other words, an expression like P <h.m> Q) as
occurring in this paper is considered to abbreviate

(P2hm®>Q)/nHp,

and this type of interaction is formalized in [3]. In [4] we provide a process
algebraic semantics of threads (P <h.m > Q)/nHp,.

In [7] it is stated that in order to constitute a grid, a network must implement
the Globus GRAM protocol. This is a far more constrained definition than the
concept based definitions that occur in [8]. We do not use that characterization
because it is too complex for a brief theoretical paper.

How do our results relate to GRAM? Secure resource allocation on the grid
requires an underlying theoretical basis. What we put forward is that under a
very simple definition of a resource allocation risk, Cohen’s impossibility result
need not constrain the options for automatic detection as much as one might
think. On the contrary, if security risk avoidance is adapted as a strategy, Cohen’s
impossibility result disappears.

References

1. J.A. Bergstra and M.E. Loots. Program algebra for sequential code. Journal of
Logic and Algebraic Programming, 51(2):125-156, 2002.

2. J.A. Bergstra and C.A. Middelburg. Thread algebra for strategic interleaving.
Computing Science Report 04-35, Eindhoven University of Technology, Depart-
ment of Mathematics and Computing Science, November 2004.

3. J.A. Bergstra and A. Ponse. Combining programs and state machines. Journal of
Logic and Algebraic Programming, 51(2):175-192, 2002.

4. J.A. Bergstra and A. Ponse. Execution architectures for program algebra. Logic
Group Preprint Series 230, Dept. of Philosophy, Utrecht University, 2004.

5. F. Cohen. Computer viruses - theory and experiments, 1984. http://vx.netlux.
org/lib/afc01.html. Version including some corrections and references: Comput-
ers & Security 6(1): 22-35, 1987.

6. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn, A.
Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda. Mapping abstract complex
workflows onto grid environments. Journal of Grid Computing, 1:25-39, 2003.

7. S. Hwang and C. Kesselman. A flexible framework for fault tolerance in the grid.
Journal of Grid Computing, 1(3):251-272, 2003.

8. Zs. Nemeth and V. Sunderam. Characterizing grids: attributes, definitions, and
formalisms. Journal of Grid Computing, 1:9-23, 2003.

