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Abstract. Proposition algebra is based on Hoare’s conditional connec-
tive, which is a ternary connective comparable to if-then-else and used
in the setting of propositional logic. Conditional statements are provided
with a simple semantics that is based on evaluation trees and that char-
acterizes so-called free valuation congruence: two conditional statements
are free valuation congruent if, and only if, they have equal evaluation
trees. Free valuation congruence is axiomatized by the four basic equa-
tional axioms of proposition algebra that define the conditional connec-
tive. A valuation congruence that is axiomatized in proposition algebra
and that identifies more conditional statements than free valuation con-
gruence is repetition-proof valuation congruence, which we characterize
by a simple transformation on evaluation trees.

Keywords: Conditional composition · Evaluation tree · Proposition
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1 Introduction

In 1985, Hoare’s paper A couple of novelties in the propositional calculus [12]
was published. In this paper the ternary connective ! " is introduced as the
conditional.1 A more common expression for a conditional statement

P ! Q " R

Dedicated to Ernst-Rüdiger Olderog on the occasion of his sixtieth birthday.
Jan Bergstra recalls many discussions during various meetings as well as joint work
with Ernst-Rüdiger and JanWillem Klop on readies, failures, and chaos back in 1987.
Alban Ponse has pleasant memories of the process of publishing [8], the Selected
Papers from the Workshop on Assertional Methods, of which Ernst-Rüdiger, who
was one of the invited speakers at this workshop (held at CWI in November 1992),
is one of the guest editors. An extended version of this paper appeared as report [6].

1 To be distinguished from Hoare’s conditional introduced in his 1985 book on
CSP [11] and in his well-known 1987 paper Laws of Programming [10] for expressions
P ! b " Q with P and Q denoting programs and b a Boolean expression.
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Table 1. The set CP of equational axioms for free valuation congruence

x ! T " y = x (CP1)
x ! F " y = y (CP2)
T ! x " F = x (CP3)

x ! (y ! z " u) " v = (x ! y " v) ! z " (x ! u " v) (CP4)

is “if Q then P else R”, but in order to reason systematically with condi-
tional statements, a notation such as P ! Q " R is preferable. In a conditional
statement P ! Q " R, first Q is evaluated, and depending on that evaluation
result, then either P or R is evaluated (and the other is not) and determines the
final evaluation result. This evaluation strategy is reminiscent of short-circuit
evaluation.2 In [12], Hoare proves that propositional logic can be characterized
by extending equational logic with eleven axioms on the conditional, some of
which employ constants for the truth values true and false.

In 2011, we introduced Proposition Algebra in [4] as a general approach to
the study of the conditional: we defined several valuation congruences and pro-
vided equational axiomatizations of these congruences. The most basic and least
identifying valuation congruence is free valuation congruence, which is axioma-
tized by the axioms in Table 1, where we use constants T and F for the truth
values true and false. These axioms stem from [12] and define the conditional as
a primitive connective. We use the name CP (for Conditional Propositions) for
this set of axioms. Interpreting a conditional statement as an if-then-else expres-
sion, axioms (CP1)-(CP3) are natural, and axiom (CP4) (distributivity) can be
clarified by case analysis: if z evaluates to true and y as well, then x determines
the result of evaluation; if z evaluates to true and y evaluates to false, then v
determines the result of evaluation, and so on and so forth. A simple example,
taken from [4], is the conditional statement that a pedestrian evaluates before
crossing a road with two-way traffic driving on the right:

(look-left-and-check ! look-right-and-check " F) ! look-left-and-check " F.

This statement requires one, or two, or three atomic evaluations and cannot be
simplified to one that requires less.3

In Section 2 we characterize free valuation congruence with help of eval-
uation trees, which are simple binary trees proposed by Daan Staudt in [13]
(that appeared in 2012). Given a conditional statement, its evaluation tree rep-
resents all possible consecutive atomic evaluations followed by the final eval-
uation result (comparable to a truth table in the case of propositional logic).
2 Short-circuit evaluation denotes the semantics of binary propositional connectives in
which the second argument is evaluated only if the first argument does not suffice
to determine the value of the expression.

3 Note that look-left-and-check ! (look-right-and-check ! look-left-and-check " F) " F
prescribes by axioms (CP4) and (CP2) the same evaluation.
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Two conditional statements are equivalent with respect to free valuation con-
gruence if their evaluation trees are equal. Free valuation congruence identifies
less than the equivalence defined by Hoare’s axioms in [12]. For example, the
atomic proposition a and the conditional statement T ! a " a are not equivalent
with respect to free valuation congruence, although they are equivalent with
respect to static valuation congruence, which is the valuation congruence that
characterizes propositional logic.

A valuation congruence that identifies more than free and less than static val-
uation congruence is repetition-proof valuation congruence, which is axiomatized
by CP extended with two (schematic) axioms, one of which reads

x ! a " (y ! a " z) = x ! a " (z ! a " z),

and thus expresses that if atomic proposition a evaluates to false, a consecu-
tive evaluation of a also evaluates to false, so the conditional statement at the
y-position will not be evaluated and can be replaced by any other. As an exam-
ple, T ! a " a = T ! a " (T ! a " F) = T ! a " (F ! a " F), and the left-hand and
right-hand conditional statements are equivalent with respect to repetition-proof
valuation congruence, but not with respect to free valuation congruence.

In Section 3 we characterize repetition-proof valuation congruence by defin-
ing a transformation on evaluation trees that yields repetition-proof evaluation
trees: two conditional statements are equivalent with respect to repetition-proof
valuation congruence if, and only if, they have equal repetition-proof evaluation
trees. Although this transformation on evaluation trees is simple and natural,
our proof of the mentioned characterization—which is phrased as a completeness
result—is non-trivial and we could not find a proof that is essentially simpler.

In section 4 we discuss the general structure of the proof of this last result,
which is based on normalization of conditional statements, and we conclude with
a brief digression on short-circuit logic and an example on the use of repetition-
proof valuation congruence.

The approach followed in this paper also works for most other valuation
congruences defined in [4] and the case for repetition-proof valuation congruence
is prototypical, as we show in [6].

2 Evaluation Trees for Free Valuation Congruence

Consider the signature ΣCP(A) = { ! " ,T,F, a | a ∈ A} with constants T
and F for the truth values true and false, respectively, and constants a for atomic
propositions, further called atoms, from some countable set A. We write

CA

for the set of closed terms, or conditional statements, over the signature ΣCP(A).
Given a conditional statement P ! Q " R, we refer to Q as its central condition.

We define the dual P d of P ∈ CA as follows:

Td = F, ad = a (for a ∈ A),

Fd = T, (P ! Q " R)d = Rd ! Qd " P d.
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Observe that CP is a self-dual axiomatization: when defining xd = x for each
variable x, the dual of each axiom is also in CP, and hence

CP " P = Q ⇐⇒ CP " P d = Qd.

A natural view on conditional statements in CA involves short-circuited eval-
uation, similar to how we consider the evaluation of an “if y then x else z”
expression. The following definition is taken from [13].

Definition 2.1. The set TA of evaluation trees over A with leaves in
{T,F} is defined inductively by

T ∈ TA,
F ∈ TA,

(X ! a " Y ) ∈ TA for any X,Y ∈ TA and a ∈ A.

The function ! a " is called post-conditional composition over a. In the
evaluation tree X ! a " Y , the root is represented by a, the left branch by X and
the right branch by Y .

We refer to trees in TA as evaluation trees, or trees for short. Post-conditional
composition and its notation stem from [2]. Evaluation trees play a crucial role
in the main results of [13]. In order to define our “evaluation tree semantics”,
we first define an auxiliary function on trees.

Definition 2.2. Given evaluation trees Y,Z ∈ TA, the leaf replacement func-
tion [T %→ Y,F %→ Z] : TA → TA, for which post-fix notation

X[T %→ Y,F %→ Z]

is adopted, is defined as follows, where a ∈ A:

T[T %→ Y,F %→ Z] = Y,

F[T %→ Y,F %→ Z] = Z,

(X1 ! a " X2)[T %→ Y,F %→ Z] = X1[T %→ Y,F %→ Z] ! a " X2[T %→ Y,F %→ Z].

We note that the order in which the replacements of leaves of X is listed is irrel-
evant and we adopt the convention of not listing identities inside the brackets,
e.g., X[F %→ Z] = X[T %→ T,F %→ Z]. Furthermore, repeated leaf replacements
satisfy the following equation:

(
X[T %→ Y1,F %→ Z1]

)
[T %→ Y2,F %→ Z2]

= X[T %→ Y1[T %→ Y2,F %→ Z2], F %→ Z1[T %→ Y2,F %→ Z2]].

We now have the terminology and notation to define the interpretation of
conditional statements in CA as evaluation trees by a function se (abbreviating
short-circuit evaluation).
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Definition 2.3. The short-circuit evaluation function se : CA → TA is
defined as follows, where a ∈ A:

se(T) = T,

se(F) = F,

se(a) = T ! a " F,

se(P ! Q " R) = se(Q)[T %→ se(P ),F %→ se(R)].

Example 2.4. The conditional statement a ! (F ! a " T) " F yields the follow-
ing evaluation tree:

se(a ! (F ! a " T) " F) = se(F ! a " T)[T %→ se(a),F %→ se(F)]
= (F ! a " T)[T %→ se(a)]
= F ! a " (T ! a " F).

A more pictorial representation of this evaluation tree is the following, where !

yields a left branch and " a right branch:

a

F a

T F

As we can see from the definition on atoms, evaluation continues in the left
branch if an atom evaluates to true and in the right branch if it evaluates to false.
We shall often use the constants T and F to denote the result of an evaluation
(instead of true and false).

Definition 2.5. Let P ∈ CA. An evaluation of P is a pair (σ, B) where σ ∈
(A{T,F})∗ and B ∈ {T,F}, such that if se(P ) ∈ {T,F}, then σ = ε (the empty
string) and B = se(P ), and otherwise,

σ = a1B1a2B2 · · · anBn,

where a1a2 · · · anB is a complete path in se(P ) and

– for i < n, if ai+1 is a left child of ai then Bi = T, and otherwise Bi = F,
– if B is a left child of an then Bn = T, and otherwise Bn = F.

We refer to σ as the evaluation path and to B as the evaluation result.

So, an evaluation of a conditional statement P is a complete path in se(P )
(from root to leaf) and contains evaluation values for all occurring atoms. For
instance, the evaluation tree F ! a " (T ! a " F) from Example 2.4 encodes the
evaluations (aT,F), (aFaT,T), and (aFaF,F). As an aside, we note that this
particular evaluation tree encodes all possible evaluations of ¬a && a, where &&
is the connective that prescribes short-circuited conjunction (we return to this
connective in Section 4).

In turn, each evaluation tree gives rise to a unique conditional statement. For
Example 2.4, this is F ! a " (T ! a " F) (note the syntactical correspondence).
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Definition 2.6. Basic forms over A are defined by the following grammar

t ::= T | F | t ! a " t for a ∈ A.

We write BFA for the set of basic forms over A. The depth d(P ) of P ∈ BFA

is defined by d(T) = d(F) = 0 and d(Q ! a " R) = 1 +max{d(Q), d(R)}.
The following two lemmas exploit the structure of basic forms and are step-

ping stones to our first completeness result (Theorem 2.11).

Lemma 2.7. For each P ∈ CA there exists Q ∈ BFA such that CP " P = Q.

Proof. First we establish an auxiliary result: if P,Q,R are basic forms, then
there is a basic form S such that CP " P ! Q " R = S. This follows by structural
induction on Q.

The lemma’s statement follows by structural induction on P . The base cases
P ∈ {T,F, a | a ∈ A} are trivial, and if P = P1 ! P2 " P3 there exist by induc-
tion basic forms Qi such that CP " Pi = Qi, hence CP " P1 ! P2 " P3 =
Q1 ! Q2 " Q3. Now apply the auxiliary result. '(
Lemma 2.8. For all basic forms P and Q, se(P ) = se(Q) implies P = Q.

Proof. By structural induction on P . The base cases P ∈ {T,F} are trivial.
If P = P1 ! a " P2, then Q )∈ {T,F} and Q )= Q1 ! b " Q2 with b )= a, so
Q = Q1 ! a " Q2 and se(Pi) = se(Qi). By induction we find Pi = Qi, and hence
P = Q. '(
Definition 2.9. Free valuation congruence, notation =se , is defined on CA

as follows:
P =se Q ⇐⇒ se(P ) = se(Q).

Lemma 2.10. Free valuation congruence is a congruence relation.

Proof. Let P,Q,R ∈ CA and assume P =se P ′, thus se(P ) = se(P ′). Then
se(P ! Q " R) = se(Q)[T %→ se(P ),F %→ se(R)] = se(Q)[T %→ se(P ′),F %→
se(R)] = se(P ′ ! Q " R), and thus P ! Q " R =se P ′ ! Q " R. The two remaining
cases can be proved in a similar way. '(
Theorem 2.11 (Completeness of CP). For all P,Q ∈ CA,

CP " P = Q ⇐⇒ P =se Q.

Proof. We first prove ⇒. By Lemma 2.10, =se is a congruence relation and it eas-
ily follows that all CP-axioms are sound. For example, soundness of axiom (CP4)
follows from

se(P ! (Q ! R " S) " U)
= se(Q ! R " S)[T %→ se(P ),F %→ se(U)]
=

(
se(R)[T %→ se(Q),F %→ se(S)]

)
[T %→ se(P ),F %→ se(U)]

= se(R)[T %→ se(Q)[T %→ se(P ),F %→ se(U)],
F %→ se(S)[T %→ se(P ),F %→ se(U)]]

= se(R)[T %→ se(P ! Q " U),F %→ se(P ! S " U)]
= se((P ! Q " U) ! R " (P ! S " U)).
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In order to prove ⇐, let P =se Q. According to Lemma 2.7 there exist basic
forms P ′ and Q′ such that CP " P = P ′ and CP " Q = Q′, so CP " P ′ = Q′.
By soundness (⇒) we find P ′ =se Q′, so by Lemma 2.8, P ′ = Q′. Hence,
CP " P = P ′ = Q′ = Q. '(

A consequence of the above results is that for each P ∈ CA there is a unique
basic form P ′ with CP " P = P ′, and that for each basic form, its se-image has
exactly the same syntactic structure (replacing ! by ! , and " by " ). In the
remainder of this section, we make this precise.

Definition 2.12. The basic form function bf : CA → BFA is defined as
follows, where a ∈ A:

bf (T) = T,

bf (F) = F,

bf (a) = T ! a " F,

bf (P ! Q " R) = bf (Q)[T %→ bf (P ),F %→ bf (R)].

Given Q,R ∈ BFA, the auxiliary function [T %→ Q,F %→ R] : BFA → BFA for
which post-fix notation P [T %→ Q,F %→ R] is adopted, is defined as follows:

T[T %→ Q,F %→ R] = Q,

F[T %→ Q,F %→ R] = R,

(P1 ! a " P2)[T %→ Q,F %→ R] = P1[T %→ Q,F %→ R] ! a " P2[T %→ Q,F %→ R].

(The notational overloading with the leaf replacement function on evaluation
trees is harmless).

So, for given Q,R ∈ BFA, the auxiliary function [T %→ Q,F %→ R] applied
to P ∈ BFA (thus, P [T %→ Q,F %→ R]) replaces all T-occurrences in P by Q,
and all F-occurrences in P by R. The following two lemmas imply that bf is a
normalization function.

Lemma 2.13. For all P ∈ CA, bf (P ) is a basic form.

Proof. By structural induction. The base cases are trivial. For the inductive case
we find bf (P ! Q " R) = bf (Q)[T %→ bf (P ),F %→ bf (R)], so by induction, bf (P ),
bf (Q), and bf (R) are basic forms. Furthermore, replacing all T-occurrences and
F-occurrences in bf (Q) by basic forms bf (P ) and bf (R), respectively, yields a
basic form. '(

Lemma 2.14. For each basic form P , bf (P ) = P .

Proof. By structural induction on P . '(

Definition 2.15. The binary relation =bf on CA is defined as follows:

P =bf Q ⇐⇒ bf (P ) = bf (Q).
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Lemma 2.16. The relation =bf is a congruence relation.

Proof. Let P,Q,R ∈ CA and assume P =bf P ′, thus bf (P ) = bf (P ′). Then
bf (P ! Q " R) = bf (Q)[T %→ bf (P ),F %→ bf (R)] = bf (Q)[T %→ bf (P ′),F %→
bf (R)] = bf (P ′ ! Q " R), and thus P ! Q " R =bf P ′ ! Q " R. The two remain-
ing cases can be proved in a similar way. '(

Before proving that CP is an axiomatization of the relation =bf , we show
that each instance of the axiom (CP4) satisfies =bf .

Lemma 2.17. For all P, P1, P2, Q1, Q2 ∈ CA,

bf (Q1 ! (P1 ! P " P2) " Q2) = bf ((Q1 ! P1 " Q2) ! P " (Q1 ! P2 " Q2)).

Proof. By definition, the lemma’s statement is equivalent with
(
bf (P )[T %→ bf (P1),F %→ bf (P2)]

)
[T %→ bf (Q1),F %→ bf (Q2)]

= bf (P )[T %→ bf (Q1 ! P1 " Q2),F %→ bf (Q1 ! P2 " Q2)]. (1)

By Lemma 2.13, bf (P ), bf (Pi), and bf (Qi) are basic forms. We prove (1) by
structural induction on the form that bf (P ) can have. If bf (P ) = T, then

(
T[T %→ bf (P1),F %→ bf (P2)]

)
[T %→ bf (Q1),F %→ bf (Q2)]
= bf (P1)[T %→ bf (Q1),F %→ bf (Q2)]

and

T[T %→ bf (Q1 ! P1 " Q2),F %→bf (Q1 ! P2 " Q2)]
= bf (Q1 ! P1 " Q2)
= bf (P1)[T %→ bf (Q1),F %→ bf (Q2)].

If bf (P ) = F, then equation (1) follows in a similar way.
The inductive case bf (P ) = R1 ! a " R2 is trivial (by definition of the last

defining clause of the auxiliary functions [T %→ Q,F %→ R] in Definition 2.12). '(

Theorem 2.18. For all P,Q ∈ CA, CP " P = Q ⇐⇒ P =bf Q.

Proof. We first prove ⇒. By Lemma 2.16, =bf is a congruence relation and it
easily follows that arbitrary instances of the CP-axioms (CP1)-(CP3) satisfy
=bf . By Lemma 2.17 it follows that arbitrary instances of axiom (CP4) also
satisfy =bf .

In order to prove ⇐, assume P =bf Q. According to Lemma 2.7, there
exist basic forms P ′ and Q′ such that CP " P = P ′ and CP " Q = Q′, so
CP " P ′ = Q′. By ⇒ it follows that P ′ =bf Q′, which implies by Lemma 2.14
that P ′ = Q′. Hence, CP " P = P ′ = Q′ = Q. '(

Corollary 2.19. For all P ∈ CA, P =bf bf (P ) and P =se bf (P ).

Proof. By Lemma 2.13 and Lemma 2.14, bf (P ) = bf (bf (P )), thus P =bf bf (P ).
By Theorem 2.18, CP " P = bf (P ), and by Theorem 2.11, P =se bf (P ). '(
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3 Evaluation Trees for Repetition-proof Valuation
Congruence

In [4] we defined repetition-proof CP as the extension of the axiom set CP with
the following two axiom schemes, where a ranges over A:

(x ! a " y) ! a " z = (x ! a " x) ! a " z, (CPrp1)
x ! a " (y ! a " z) = x ! a " (z ! a " z). (CPrp2)

We write CPrp(A) for this extension. These axiom schemes characterize that for
each atom a, a consecutive evaluation of a yields the same result, so in both
cases the conditional statement at the y-position will not be evaluated and can
be replaced by any other. Note that (CPrp1) and (CPrp2) are each others dual.

We define a proper subset of basic forms with the property that each condi-
tional statement can be proved equal to such a basic form.

Definition 3.1. Rp-basic forms are inductively defined:
• T and F are rp-basic forms, and
• P1 ! a " P2 is an rp-basic form if P1 and P2 are rp-basic forms, and if Pi is

not equal to T or F, then either the central condition in Pi is different from
a, or Pi is of the form Qi ! a " Qi.

It will turn out useful to define a function that transforms conditional state-
ments into rp-basic forms and that is comparable to the function bf .

Definition 3.2. The rp-basic form function rpbf : CA → CA is defined by

rpbf (P ) = rpf (bf (P )).

The auxiliary function rpf : BFA → BFA is defined as follows:

rpf (T) = T,

rpf (F) = F,

rpf (P ! a " Q) = rpf (fa(P )) ! a " rpf (ga(Q)).

For a ∈ A, the auxiliary functions fa : BFA → BFA and ga : BFA → BFA are
defined by

fa(T) = T,

fa(F) = F,

fa(P ! b " Q) =

{
fa(P ) ! a " fa(P ) if b = a,

P ! b " Q otherwise,

and

ga(T) = T,

ga(F) = F,

ga(P ! b " Q) =

{
ga(Q) ! a " ga(Q) if b = a,

P ! b " Q otherwise.
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Thus, rpbf maps a conditional statement P to bf (P ) and then transforms
bf (P ) according to the auxiliary functions rpf , fa, and ga.

Lemma 3.3. For all a ∈ A and P ∈ BFA, ga(fa(P )) = fa(fa(P )) = fa(P ) and
fa(ga(P )) = ga(ga(P )) = ga(P ).

Proof. By structural induction on P . The base cases P ∈ {T,F} are trivial. For
the inductive case P = Q ! b " R we have to distinguish the cases b = a and
b )= a. If b = a, then

ga(fa(Q ! a " R)) = ga(fa(Q)) ! a " ga(fa(Q))
= fa(Q) ! a " fa(Q) by IH
= fa(Q ! a " R),

and fa(fa(Q ! a " R)) = fa(Q ! a " R) follows in a similar way. If b )= a, then
fa(P ) = ga(P ) = P , and hence ga(fa(P )) = fa(fa(P )) = fa(P ).

The second pair of equalities can be derived in a similar way. '(

In order to prove that for all P ∈ CA, rpbf (P ) is an rp-basic form, we use the
following auxiliary lemma.

Lemma 3.4. For all a ∈ A and P ∈ BFA, d(P ) ≥ d(fa(P )) and d(P ) ≥
d(ga(P )).

Proof. Fix some a ∈ A. We prove these inequalities by structural induction on
P . The base cases P ∈ {T,F} are trivial. For the inductive case P = Q ! b " R
we have to distinguish the cases b = a and b )= a. If b = a, then

d(Q ! a " R) = 1 +max{d(Q), d(R)}
≥ 1 + d(Q)
≥ 1 + d(fa(Q)) by IH
= d(fa(Q) ! a " fa(Q))
= d(fa(Q ! a " R)),

and d(Q ! a " R) ≥ d(ga(Q ! a " R)) follows in a similar way.
If b )= a, then fa(P ) = ga(P ) = P , and hence d(P ) ≥ d(fa(P )) and d(P ) ≥

d(ga(P )). '(

Lemma 3.5. For all P ∈ CA, rpbf (P ) is an rp-basic form.

Proof. We first prove an auxiliary result:

For all P ∈ BFA, rpf (P ) is an rp-basic form. (2)

This follows by induction on the depth d(P ) of P . If d(P ) = 0, then P ∈ {T,F},
and hence rpf (P ) = P is an rp-basic form. For the inductive case d(P ) = n+ 1
it must be the case that P = Q ! a " R. We find

rpf (Q ! a " R) = rpf (fa(Q)) ! a " rpf (ga(R)),

which is an rp-basic form because
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– by Lemma 3.4, fa(Q) and ga(R) are basic forms with depth smaller than or
equal to n, so by the induction hypothesis, rpf (fa(Q)) and rpf (ga(R)) are
rp-basic forms,

– rpf (fa(Q)) and rpf (ga(R)) both satisfy the following property: if the central
condition (if present) is a, then the outer arguments are equal. We show this
first for rpf (fa(Q)) by a case distinction on the form of Q:
1. If Q ∈ {T,F}, then rpf (fa(Q)) = Q, so there is nothing to prove.
2. If Q = Q1 ! a " Q2, then fa(Q) = fa(Q1) ! a " fa(Q1) and thus by

Lemma 3.3, rpf (fa(Q)) = rpf (fa(Q1)) ! a " rpf (fa(Q1)).
3. If Q = Q1 ! b " Q2 with b )= a, then fa(Q) = Q1 ! b " Q2 and thus

rpf (fa(Q)) = rpf (fb(Q1)) ! b " rpf (gb(Q2)), so there is nothing to prove.
The fact that rpf (ga(R)) satisfies this property follows in a similar way.

This finishes the proof of auxiliary result (2).
The lemma’s statement now follows by structural induction: the base cases

(comprising a single atom a) are again trivial, and for the inductive case,

rpbf (P ! Q " R) = rpf (bf (P ! Q " R)) = rpf (S)

for some basic form S by Lemma 2.13, and by auxiliary result (2), rpf (S) is an
rp-basic form. '(

The following, rather technical result is used in Proposition 3.7 and Lemma 3.8.

Lemma 3.6. If Q ! a " R is an rp-basic form, then Q = rpf (Q) = rpf (fa(Q))
and R = rpf (R) = rpf (ga(R)).

Proof. We first prove an auxiliary result:

If Q ! a " R is an rp-basic form, then fa(Q) = ga(Q) and fa(R) = ga(R). (3)

We prove both equalities by simultaneous induction on the structure of Q and
R. The base case, thus Q,R ∈ {T,F}, is trivial. If Q = Q1 ! a " Q1 and R =
R1 ! a " R1, then Q and R are rp-basic forms with central condition a, so

fa(Q) = fa(Q1) ! a " fa(Q1)
= ga(Q1) ! a " ga(Q1) by IH
= ga(Q),

and the equality for R follows in a similar way. If Q = Q1 ! a " Q1 and R )=
R1 ! a " R1, then fa(R) = ga(R) = R, and the result follows as above. All
remaining cases follow in a similar way, which finishes the proof of (3).

We now prove the lemma’s statement by simultaneous induction on the
structure of Q and R. The base case, thus Q,R ∈ {T,F}, is again trivial. If
Q = Q1 ! a " Q1 and R = R1 ! a " R1, then by auxiliary result (3),

rpf (Q) = rpf (fa(Q1)) ! a " rpf (fa(Q1)),
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and by induction, Q1 = rpf (Q1) = rpf (fa(Q1)). Hence, rpf (Q) = Q1 ! a " Q1,
and

rpf (fa(Q)) = rpf (fa(fa(Q1))) ! a " rpf (ga(fa(Q1)))
= rpf (fa(Q1)) ! a " rpf (fa(Q1)) by Lemma 3.3
= Q1 ! a " Q1,

and the equalities for R follow in a similar way.
If Q = Q1 ! a " Q1 and R )= R1 ! a " R1, the lemma’s equalities follow in a

similar way, although a bit simpler because ga(R) = fa(R) = R.
For all remaining cases, the lemma’s equalities follow in a similar way. '(

Proposition 3.7 (rpbf is a normalization function). For all P ∈ CA,
rpbf (P ) is an rp-basic form, and for each rp-basic form P , rpbf (P ) = P .

Proof. The first statement is Lemma 3.5. For the second statement, it suffices
by Lemma 2.14 to prove that for each rp-basic form P , rpf (P ) = P . This
follows by case distinction on P . The cases P ∈ {T,F} follow immediately, and
otherwise P = P1 ! a " P2, and thus rpf (P ) = rpf (fa(P1)) ! a " rpf (ga(P2)). By
Lemma 3.6, rpf (fa(P1)) = P1 and rpf (ga(P2)) = P2, hence rpf (P ) = P . '(

Lemma 3.8. For all P ∈ BFA, CPrp(A) " P = rpf (P ).

Proof. We apply structural induction on P . The base cases P ∈ {T,F} are trivial.
Assume P = P1 ! a " P2. By induction CPrp(A) " Pi = rpf (Pi). We proceed by
a case distinction on the form that P1 and P2 can have:

1. If Pi ∈ {T,F, Qi ! bi " Q′
i} with bi )= a, then fa(P1) = P1 and ga(P2) = P2,

and hence rpf (P ) = rpf (P1) ! a " rpf (P2), and thus CPrp(A) " P = rpf (P ).
2. If P1 = R1 ! a " R2 and P2 ∈ {T,F, Q′ ! b " Q′′} with b )= a, then ga(P2) =

P2 and by auxiliary result (2) in the proof of Lemma 3.5, rpf (R1) and rpf (P2)
are rp-basic forms. We derive

CPrp(A) " P = (R1 ! a " R2) ! a " P2

= (R1 ! a " R1) ! a " P2 by (CPrp1)
= (rpf (R1) ! a " rpf (R1)) ! a " rpf (P2) by IH
= (rpf (fa(R1)) ! a " rpf (fa(R1))) ! a " rpf (ga(P2)) by Lemma 3.6
= rpf (fa(R1 ! a " R2)) ! a " rpf (ga(P2))
= rpf ((R1 ! a " R2) ! a " P2)
= rpf (P ).

3. If P1 ∈ {T,F, Q′ ! b " Q′′} with b )= a and P2 = S1 ! a " S2, we can proceed
as in the previous case, but now using axiom scheme (CPrp2) and the identity
fa(P1) = P1, and the fact that rpf (P1) and rpf (S2) are rp-basic forms.

4. If P1 = R1 ! a " R2 and P2 = S1 ! a " S2, we can proceed as in two previous
cases, now using both (CPrp1) and (CPrp2), and the fact that rpf (R1) and
rpf (S2) are rp-basic forms.

'(



56 J.A. Bergstra and A. Ponse

Theorem 3.9. For all P ∈ CA, CPrp(A) " P = rpbf (P ).

Proof. By Theorem 2.18 and Corollary 2.19 we find CPrp(A) " P = bf (P ). By
Lemma 3.8, CPrp(A) " bf (P ) = rpf (bf (P )), and rpf (bf (P )) = rpbf (P ). '(

Definition 3.10. The binary relation =rpbf on CA is defined as follows:

P =rpbf Q ⇐⇒ rpbf (P ) = rpbf (Q).

Theorem 3.11. For all P,Q ∈ CA, CPrp(A) " P = Q ⇐⇒ P =rpbf Q.

Proof. Assume CPrp(A) " P = Q. By Theorem 3.9, CPrp(A) " rpbf (P ) =
rpbf (Q). In [4] the following two statements are proved (Theorem 6.3 and an
auxiliary result in its proof), where =rpf is a binary relation on CA:

1. For all P,Q ∈ CA, CPrp(A) " P = Q ⇐⇒ P =rpf Q.
2. For all rp-basic forms P and Q, P =rpf Q ⇒ P = Q.

By Lemma 3.5 these statements imply rpbf (P ) = rpbf (Q), that is, P =rpbf Q.
Assume P =rpbf Q. By Lemma 2.14, bf (rpbf (P )) = bf (rpbf (Q)). By Theo-

rem 2.18, CP " rpbf (P ) = rpbf (Q). By Theorem 3.9, CPrp(A) " P = Q. '(

So, the relation =rpbf is axiomatized by CPrp(A) and is thus a congruence.
With this observation in mind, we define a transformation on evaluation trees
that mimics the function rpbf and prove that equality of two such transformed
trees characterizes the congruence that is axiomatized by CPrp(A).

Definition 3.12. The unary repetition-proof evaluation function

rpse : CA → TA

yields repetition-proof evaluation trees and is defined by

rpse(P ) = rp(se(P )).

The auxiliary function rp : TA → TA is defined as follows (a ∈ A):

rp(T) = T,

rp(F) = F,

rp(X ! a " Y ) = rp(Fa(X)) ! a " rp(Ga(Y )).

For a ∈ A, the auxiliary functions Fa : TA → TA and Ga : TA → TA are defined
by

Fa(T) = T,

Fa(F) = F,

Fa(X ! b " Y ) =

{
Fa(X) ! a " Fa(X) if b = a,

X ! b " Y otherwise,
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and

Ga(T) = T,

Ga(F) = F,

Ga(X ! b " Y ) =

{
Ga(Y ) ! a " Ga(Y ) if b = a,

X ! b " Y otherwise.

Example 3.13. Let P = a ! (F ! a " T) " F. We depict se(P ) (as in Exam-
ple 2.4) and the repetition-proof evaluation tree rpse(P ) = F ! a " (F ! a " F):

a

F a

T F

a

F a

F F

The similarities between rpse and the function rpbf can be exploited:

Lemma 3.14. For all a ∈ A and X ∈ TA, Ga(Fa(X)) = Fa(Fa(X)) = Fa(X)
and Fa(Ga(X)) = Ga(Ga(X)) = Ga(X).

Proof. By structural induction on X (cf. the proof of Lemma 3.3). '(

We use the following lemma in the proof of our final completeness result.

Lemma 3.15. For all P ∈ BFA, rp(se(P )) = se(rpf (P )).

Proof. We first prove an auxiliary result:

For all P ∈ BFA and for all a ∈ A, rp(Fa(se(P ))) = se(rpf (fa(P )))
and rp(Ga(se(P ))) = se(rpf (ga(P ))). (4)

We prove the first equality of (4) by structural induction on P . The base cases
P ∈ {T,F} are trivial. For the inductive case P = Q ! a " R, let b ∈ A. We have
to distinguish the cases b = a and b )= a. If b = a, then

rp(Fa(se(Q ! a " R)))
= rp(Fa(se(Q) ! a " se(R)))
= rp(Fa(se(Q)) ! a " Fa(se(Q)))
= rp(Fa(Fa(se(Q)))) ! a " rp(Ga(Fa(se(Q))))
= rp(Fa(se(Q))) ! a " rp(Fa(se(Q))) by Lemma 3.14
= se(rpf (fa(Q))) ! a " se(rpf (fa(Q))) by IH
= se(rpf (fa(Q)) ! a " rpf (fa(Q)))
= se(rpf (fa(fa(Q))) ! a " rpf (ga(fa(Q)))) by Lemma 3.3
= se(rpf (fa(Q ! a " fa(Q))))
= se(rpf (fa(Q ! a " R))).
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If b )= a, then

rp(Fb(se(Q ! a " R))) = rp(Fb(se(Q) ! a " se(R)))
= rp(se(Q) ! a " se(R))
= rp(Fa(se(Q))) ! a " rp(Ga(se(R)))
= se(rpf (fa(Q))) ! a " se(rpf (ga(R))) by IH
= se(rpf (fa(Q)) ! a " rpf (ga(R)))
= se(rpf (Q ! a " R))
= se(rpf (fb(Q ! a " R))).

The second equality can be proved in a similar way, and this finishes the
proof of (4).

The lemma’s statement now follows by a case distinction on P . The cases
P ∈ {T,F} follow immediately, and otherwise P = Q ! a " R, and thus

rp(se(Q ! a " R)) = rp(se(Q) ! a " se(R))
= rp(Fa(se(Q))) ! a " rp(Ga(se(R)))
= se(rpf (fa(Q))) ! a " se(rpf (ga(R))) by (4)
= se(rpf (fa(Q)) ! a " rpf (ga(R)))
= se(rpf (Q ! a " R)).

'(

Finally, we relate conditional statements by means of their repetition-proof
evaluation trees.

Definition 3.16. Repetition-proof valuation congruence, notation =rpse ,
is defined on CA as follows:

P =rpse Q ⇐⇒ rpse(P ) = rpse(Q).

The following characterization result immediately implies that =rpse is a
congruence relation on CA (and hence justifies calling it a congruence).

Proposition 3.17. For all P,Q ∈ CA, P =rpse Q ⇐⇒ P =rpbf Q.

Proof. In order to prove ⇒, assume rpse(P ) = rpse(Q), thus rp(se(P )) =
rp(se(Q)). By Corollary 2.19,

rp(se(bf (P ))) = rp(se(bf (Q))),

so by Lemma 3.15, se(rpf (bf (P ))) = se(rpf (bf (Q))). By Lemma 2.8 and aux-
iliary result (2) (see the proof of Lemma 3.5), it follows that rpf (bf (P )) =
rpf (bf (Q)), that is, P =rpbf Q.

In order to prove ⇐, assume P =rpbf Q, thus rpf (bf (P )) = rpf (bf (Q)). Then
se(rpf (bf (P ))) = se(rpf (bf (Q))) and thus by Lemma 3.15,

rp(se(bf (P ))) = rp(se(bf (Q))).
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By Corollary 2.19, se(bf (P )) = se(P ) and se(bf (Q)) = se(Q), so rp(se(P )) =
rp(se(Q)), that is, P =rpse Q. '(

We end this section with a last completeness result.

Theorem 3.18 (Completeness of CPrp(A)). For all P,Q ∈ CA,

CPrp(A) " P = Q ⇐⇒ P =rpse Q.

Proof. Combine Theorem 3.11 and Proposition 3.17. '(

4 Conclusions

In [4] we introduced proposition algebra using Hoare’s conditional x ! y " z and
the constants T and F. We defined a number of varieties of so-called valuation
algebras in order to capture different semantics for the evaluation of conditional
statements, and provided axiomatizations for the resulting valuation congru-
ences. In [3,5] we introduced an alternative valuation semantics for proposition
algebra in the form of Hoare-McCarthy algebras (HMA’s) that is more elegant
than the semantical framework provided in [4]: HMA-based semantics has the
advantage that one can define a valuation congruence without first defining the
valuation equivalence it is contained in.

In this paper, we use Staudt’s evaluation trees [13] to define free valuation
congruence as the relation =se (see Section 2) and this appears to be a relatively
simple and stand-alone exercise, resulting in a semantics that is elegant and much
simpler than HMA-based semantics [3,5] and the semantics defined in [4]. By
Theorem 2.11, =se coincides with “free valuation congruence as defined in [4]”
because both relations are axiomatized by CP (see [4, Thm.4.4andThm.6.2]).
The advantage of “evaluation tree semantics” is that for a given conditional
statement P , the evaluation tree se(P ) determines all relevant atomic evalu-
ations, and P =se Q is determined by evaluation trees that contain no more
atoms than those that occur in P and Q; this is comparable to how truth tables
can be used in the setting of propositional logic.

In Section 3 we define repetition-proof valuation congruence =rpse on CA

by P =rpse Q if, and only if, rpse(P ) = rpse(Q), where rpse(P ) = rp(se(P ))
and rp is a transformation function on evaluation trees. It is obvious that this
transformation is “natural”, given the axiom schemes (CPrp1) and (CPrp2) that
are characteristic for CPrp(A). The equivalence on CA that we want to prove is

CPrp(A) " P = Q ⇐⇒ P =rpse Q, (5)

by which =rpse coincides with “repetition-proof valuation congruence as defined
in [4]” because both are axiomatized by CPrp(A) (see [4, Thm.6.3]). However,
equivalence (5) implies that =rpse is a congruence relation on CA and we could
not find a direct proof of this fact. We chose to simulate the transformation rpse
by the transformation rpbf on conditional statements and to prove that the
resulting equivalence relation =rpbf is a congruence axiomatized by CPrp(A).
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This is Theorem 3.11, the proof of which depends on [4, Thm.6.3]) and on
Theorem 3.9, that is,

For all P ∈ CA, CPrp(A) " P = rpbf (P ).

In order to prove equivalence (5) (which is Theorem 3.18), it is thus sufficient
to prove that =rpbf and =rpse coincide, and this is Proposition 3.17.

In [6] we define evaluation trees for most of the other valuation congruences
defined in [4] by transformations on se-images that are also “natural”, and this
also results in elegant “evaluation tree semantics” for each of these congruences.

We conclude with a brief digression on short-circuit logic, which we defined
in [7] (see [5] for a quick introduction), and an example on the use of CPrp(A).
Familiar binary connectives that occur in the context of imperative program-
ming and that prescribe short-circuit evaluation, such as && (in C called “logical
AND”), are often defined in the following way:

P && Q =def if P then Q else false,

independent of the precise syntax of P and Q, hence, P && Q =def Q ! P " F. It
easily follows that && is associative (cf. Footnote 3). In a similarly way, negation
can be defined by ¬P =def F ! P " T. In [7] we focus on this question:

Question 4.1. Which are the logical laws that characterize short-circuit evalu-
ation of binary propositional connectives?

A first approach to this question is to adopt the conditional as an auxiliary
operator, as is done in [5,7], and to answer Question 4.1 using definitions of the
binary propositional connectives as above and the axiomatization for the val-
uation congruence of interest in proposition algebra (or, if “mixed conditional
statements” are at stake, axiomatizations for the appropriate valuation congru-
ences). An alternative and more direct approach to Question 4.1 is to establish
axiomatizations for short-circuited binary connectives in which the conditional is
not used. For free valuation congruence, an equational axiomatization of short-
circuited binary propositional connectives is provided by Staudt in [13], where
se(P && Q) =def se(P )[T %→ se(Q)] and se(¬P ) =def se(P )[T %→ F,F %→ T]
(and where the function se is also defined for short-circuited disjunction), and
the associated completeness proof is based on decomposition properties of such
evaluation trees. For repetition-proof valuation congruence it is an open question
whether a finite, equational axiomatization of the short-circuited binary propo-
sitional connectives exists, and an investigation of repetition-proof evaluation
trees defined by such connectives might be of interest in this respect. We end
with an example on the use of CPrp(A) that is based on [7, Ex.4].

Example 4.2. Let A be a set of atoms of the form (e==e′) and (n=e) with
n some initialized program variable and e, e′ arithmetical expressions over the
integers that may contain n. Assume that (e==e′) evaluates to true if e and e′

represent the same value, and (n=e) always evaluates to true with the effect that
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e’s value is assigned to n. Then these atoms satisfy the axioms of CPrp(A).4
Notice that if n has initial value 0 or 1, ((n=n+1) && (n=n+1)) && (n==2) and
(n=n+1) && (n==2) evaluate to different results, so the atom (n=n+1) does not
satisfy the law a && a = a, by which this example is typical for the repetition-proof
characteristic of CPrp(A).

We acknowledge the helpful comments of two anonymous reviewers.
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