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Abstract. We provide an introduction to Program Algebra (PGA, an
algebraic approach to the modeling of sequential programming) and
to Thread Algebra (TA). PGA is used as a basis for several low- and
higher-level programming languages. As an example we consider a sim-
ple language with goto’s. Threads in TA model the execution of pro-
grams. Threads may be composed with services which model (part of)
the execution environment, such as a stack. Finally, we discuss briefly
the expressiveness of PGA and allude to current work on multithreading
and security hazard risk assessment.
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1 Introduction

In this paper we report on a recent line of programming research conducted
at the University of Amsterdam. This research comprises program algebra and
thread algebra. A first major publication about this project is [7] (2002).

Program algebra (PGA, for ProGram Algebra) provides a rigid framework for
the understanding of imperative sequential programming. Starting point is the
perception of a program object as a possibly infinite sequence of primitive instruc-
tions. PGA programs are composed from primitive instructions and two opera-
tors: sequential composition and iteration. Based on this, a family of programming
languages is built, containing well-known constructs such as labels and goto’s,
conditionals and while-loops, etc. These languages are defined with a projection
to PGA which defines the program object described by a program expression.

Execution of a program object is single-pass: the instructions are visited in or-
der and are dropped after having been executed. Execution of a basic instruction
or test is interpreted as a request to the execution environment: the environment
processes the request and replies with a Boolean value. This has lead to the mod-
eling of the behavior of program objects as threads, i.e., as elements of Thread
Algebra (TA). The primary operation of TA is postconditional composition:

P � a � Q

stands for the execution of action a which is followed by execution of P if true is
returned and by execution of Q if false is returned. Threads can be composed
with services which model (part of) the environment.

A. Beckmann et al. (Eds.): CiE 2006, LNCS 3988, pp. 445–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



446 A. Ponse and M.B. van der Zwaag

In Section 2 we present PGA, and in Section 3 we overview thread algebra
and the interpretation of programs as threads. Then, in Section 4 we go into the
expressiveness of PGA. Finally, in Section 5 we allude briefly to current work on
multithreading and security hazard risk assessment. For further discussion on
the why’s and why not ’s of PGA, see [2], and of TA, see [3].

2 Program Algebra

Program Algebra (PGA) is based on a parameter set A. The primitive instruc-
tions of PGA are the following:

Basic instruction. All elements of A, written, typically, as a, b, . . . are basic
instructions. These are regarded as indivisible units and execute in finite
time. Furthermore, a basic instruction is viewed as a request to the environ-
ment, and it is assumed that upon its execution a boolean value (true or
false) is returned that may be used for subsequent program control. The
associated behavior may modify a state.

Termination instruction. The termination instruction ! yields termination of
the program. It does not modify a state, and it does not return a boolean
value.

Test instruction. For each element a of A there is a positive test instruction
+a and a negative test instruction −a. When a positive test is executed, the
state is affected according to a, and in case true is returned, the remaining
sequence of actions is performed. If there are no remaining instructions,
inaction occurs. In the case that false is returned, the next instruction is
skipped and execution proceeds with the instruction following the skipped
one. If no such instruction exists, inaction occurs. Execution of a negative
test is the same, except that the roles of true and false are interchanged.

Forward jump instruction. For any natural number k, the instruction #k
denotes a jump of length k and k is called the counter of this instruction. If
k = 0, this jump is to the instruction itself and inaction occurs (one can say
that #0 defines divergence, which is a particular form of inaction). If k =
1, the instruction skips itself, and execution proceeds with the subsequent
instruction if available, otherwise inaction occurs. If k > 1, the instruction
#k skips itself and the subsequent k − 1 instructions. If there are not that
many instructions left in the remaining part of the program, inaction occurs.

PGA program terms are defined inductively as follows:

1. Primitive instructions are program terms.
2. If X and Y are program terms, then X ; Y , called the concatenation of X

and Y , is a program term.
3. If X is a program term, then Xω (the repetition of X) is a program term.
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2.1 Instruction Sequence Congruence and Canonical Forms

On PGA, different types of equality can be discerned, the most simple of which
is instruction sequence congruence, identifying programs that execute identical
sequences of instructions. Such a sequence is further called a program object. For
programs not containing repetition, instruction sequence congruence boils down
to the associativity of concatenation, and is axiomatized by

(X ; Y ); Z = X ; (Y ; Z). (PGA1)

As a consequence, brackets are not meaningful in repeated concatenations and
will be left out.

Now let X1 = X and Xn+1 = X ; Xn for n > 0. Then instruction sequence
congruence for infinite program objects is further axiomatized by the following
axioms (schemes):

(Xn)ω = Xω, (PGA2)
Xω; Y = Xω, (PGA3)

(X ; Y )ω = X ; (Y ; X)ω. (PGA4)

It is straightforward to derive from PGA2–4 the unfolding identity of repetition:

Xω = (X ; X)ω = X ; (X ; X)ω = X ; Xω.

Instruction sequence congruence is decidable [7].
Every PGA program can be rewritten into one of the following forms:

1. X not containing repetition, or
2. X ; Y ω, with X and Y not containing repetition.

Any program in one of the two above forms is said to be in first canonical
form. For each PGA program there is a program in first canonical form that
is instruction sequence congruent [7]. Canonical forms are useful as input for
further transformations.

2.2 Structural Congruence and Second Canonical Forms

PGA programs in first canonical form can be converted into second canonical
form: a first canonical form in which no chained jumps occur, i.e., jumps to
jump instructions (apart from #0), and in which each non-chaining jump into
the repeating part is minimized. The associated congruence is called structural
congruence and is axiomatized by PGA1–4 presented above, plus the following
axiom schemes, where the ui and vi range over primitive instructions:

#n+1; u1; . . . ; un; #0 = #0; u1; . . . ; un; #0, (PGA5)
#n+1; u1; . . . ; un; #m = #n+m+1; u1; . . . ; un; #m, (PGA6)

(#k+n+1; u1; . . . ; un)ω = (#k; u1; . . . ; un)ω, (PGA7)
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and

#n+m+k+2; u1; . . . ; un; (v1; . . . ; vm+1)ω =
#n+k+1; u1; . . . ; un; (v1; . . . ; vm+1)ω . (PGA8)

Two examples, of which the right-hand sides are in second canonical form:

#2; a; (#5; b; +c)ω = #4; a; (#2; b; +c)ω,

+a; #2; (b; #2; −c; #2)ω = +a; #0; (+b; #0; −c; #0)ω.

Second canonical forms are not unique. However, if in X ; Y ω the number of
instructions in X and Y is minimized, they are. In the first example above,
the right-hand side is the unique minimal second canonical form; for the second
example it is +a; (#0; +b; #0; −c)ω.

2.3 PGA-Based Languages

On the basis of PGA, a family of programming languages has been developed [7].
The programming constructs in these languages include backward jumps, ab-
solute jumps, labels and goto’s, conditionals and while loops, etc. All of these
languages are given a projection semantics, that is, they come with a translation
to PGA which determines their semantics (together with the semantics of PGA,
see Section 3.1). Vice versa, PGA can be embedded in each of these languages,
which shows that they share the same expressiveness. As an example we present
the language PGLDg and its projection semantics.1

PGLDg is a program notation with label and goto instructions as primitives
instead of jumps. Repetition is not available, so a PGLDg program is just a
finite sequence of instructions. In PGLDg termination takes place when the last
instruction has been executed, when a goto to a non-existing label is made, or
when a termination instruction ! is executed.

A label in PGLDg is just a natural number. Label and goto-instructions are
defined as follows:

Label instruction. The instruction £k, for k a natural number, represents a
visible label. As an action it is a skip in the sense that it will not have any
effect on a state space.

Goto instruction. For each natural number k the instruction ##£k repre-
sents a jump to the (beginning of) the first (i.e. the left-most) instruction
£k in the program. If no such instruction can be found termination of the
program execution will occur.

An example of a PGLDg program is: £0; −a; ##£1; ##£0;£1. In this pro-
gram a is repeated until it yields reply value false. That is also the functionality
of the simpler program £0; +a; ##£0.

1 The languages presented in [7] are called PGLA, PGLB, PGLC, etc.
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A projection from PGLDg to PGA works as follows:

pgldg2pga(u1; . . . ; uk) = (ψ1(u1); . . . ; ψk(uk); !; !)ω ,

where the ui range over primitive instructions, the two added termination in-
structions serve the case that uk is a test-instruction, and the auxiliary functions
ψj are defined as follows:

ψj(##£n) =

⎧
⎪⎨

⎪⎩

! if target(n) = 0,

#target(n)−j if target(n) ≥ j,

#k+2−j+target(n) otherwise,

ψj(£n) = #1,

ψj(u) = u otherwise.

The auxiliary function target(k) produces for k the smallest number j such
that the j-th instruction of the program is of the form £k, if such a number
exists and 0 otherwise. Projecting the two example programs above yields

pgldg2pga(£0; −a; ##£1; ##£0;£1) = (#1; −a; #2; #4; #1; !; !)ω,

pgldg2pga(£0; +a; ##£0) = (#1; +a; #3; !; !)ω .

The projection pgldg2pga results from the composition of a number of pro-
jections defined in [7] and a tiny bit of smart reasoning.

3 Basic Thread Algebra

Basic Thread Algebra (BTA) is a form of process algebra which is tailored to
the description of sequential program behavior. Based on a set A of actions, it
has the following constants and operators:

– the termination constant S,
– the deadlock or inaction constant D,
– for each a ∈ A, a binary postconditional composition operator � a � .

We use action prefixing a ◦ P as an abbreviation for P � a � P and take ◦ to
bind strongest. Furthermore, for n ≥ 1 we define an ◦ P by a1 ◦ P = a ◦ P and
an+1 ◦ P = a ◦ (an ◦ P ).

The operational intuition is that each action represents a command which is
to be processed by the execution environment of the thread. The processing of a
command may involve a change of state of this environment.2 At completion of
the processing of the command, the environment produces a reply value true or

2 For the definition of threads we completely abstract from the environment. In Sec-
tion 3.2 we define services which model (part of) the environment, and thread-service
composition.
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false. The thread P � a � Q proceeds as P if the processing of a yields true,
and it proceeds as Q if the processing of a yields false.

Every thread in BTA is finite in the sense that there is a finite upper bound to
the number of consecutive actions it can perform. The approximation operator
π : IN× BTA → BTA gives the behavior up to a specified depth. It is defined by

1. π(0, P ) = D,
2. π(n + 1, S) = S, π(n + 1, D) = D,
3. π(n + 1, P � a � Q) = π(n, P ) � a � π(n, Q),

for P, Q ∈ BTA and n ∈ IN. We further write πn(P ) instead of π(n, P ). We find
that for every P ∈ BTA, there exists an n ∈ IN such that

πn(P ) = πn+1(P ) = · · · = P.

Following the metric theory of [1] in the form developed as the basis of the in-
troduction of processes in [6], BTA has a completion BTA∞ which comprises also
the infinite threads. Standard properties of the completion technique yield that
we may take BTA∞ as the cpo consisting of all so-called projective sequences:3

BTA∞ = {(Pn)n∈IN | ∀n ∈ IN (Pn ∈ BTA & πn(Pn+1) = Pn)}.

For a detailed account of this construction see [4] or [19].
Overloading notation, we now define the constants and operators of BTA on

BTA∞:

1. D = (D, D, . . .) and S = (D, S, S, . . .);
2. (Pn)n∈IN � a � (Qn)n∈IN = (Rn)n∈IN with R0 = D and Rn+1 = Pn � a � Qn;
3. πn((Pm)m∈IN) = (P0, . . . , Pn−1, Pn, Pn, Pn . . .).

The elements of BTA are included in BTA∞ by a mapping following this defi-
nition. It is not difficult to show that the projective sequence of P ∈ BTA thus
defined equals (πn(P ))n∈IN. We further use this inclusion of finite threads in
BTA∞ implicitly and write P, Q, . . . to denote elements of BTA∞.

We define the set Res(P ) of residual threads of P inductively as follows:

1. P ∈ Res(P ),
2. Q � a � R ∈ Res(P ) implies Q ∈ Res(P ) and R ∈ Res(P ).

A residual thread may be reached (depending on the execution environment) by
performing zero or more actions. A thread P is regular if Res(P ) is finite.

A finite linear recursive specification over BTA∞ is a set of equations

xi = ti

for i ∈ I with I some finite index set, variables xi, and all ti terms of the
form S, D, or xj � a � xk with j, k ∈ I. Finite linear recursive specifications

3 The cpo is based on the partial ordering � defined by D � P , and P � P ′, Q � Q′

implies P � a � Q � P ′ � a � Q′.
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represent continuous operators having unique fixed points [19]. In reasoning with
finite linear specifications, we shall identify variables and their fixed points. For
example, we say that P is the thread defined by P = a ◦ P instead of stating
that P equals the fixed point for x in the finite linear specification x = a ◦ x.

Theorem 1. For all P ∈ BTA∞, P is regular iff P is the solution of a finite
linear recursive specification.

The proof is easy:

Proof. ⇒: Suppose P is regular. Then Res(P ) is finite, so P has residual threads
P1, . . . , Pn with P = P1. We construct a linear specification with variables
x1, . . . , xn as follows:

xi =

⎧
⎪⎨

⎪⎩

D if Pi = D,

S if Pi = S,

xj � a � xk if Pi = Pj � a � Pk.

⇐: Assume that P is the solution of a finite linear recursive specification.
Because the variables in a finite linear specification have unique fixed points,
we know that there are threads P1, . . . , Pn ∈ BTA∞ with P = P1, and for
every i ∈ {1, . . . , n}, either Pi = D, Pi = S, or Pi = Pj � a � Pk for some
j, k ∈ {1, . . . , n}. We find that Q ∈ Res(P ) iff Q = Pi for some i ∈ {1, . . . , n}.
So Res(P ) is finite, and P is regular. 	


Example 1. The regular threads an ◦ D, an ◦ S, and a∞ = a ◦ a ◦ · · · are the
respective fixed points for x1 in the specifications

1. x1 = a ◦ x2, . . . , xn = a ◦ xn+1, xn+1 = D,
2. x1 = a ◦ x2, . . . , xn = a ◦ xn+1, xn+1 = S,
3. x1 = a ◦ x1.

3.1 Extraction of Threads from Programs

The thread extraction operator | | assigns a thread to a program. This thread
models the behavior of the program. Note that the resulting behavioral equiva-
lence is not a congruence: from |X | equals |Y |, one cannot infer that, e.g., |X ; Z|
equals |Y ; Z|.

Thread extraction on PGA, notation |X | with X a PGA program, is defined
by the following thirteen equations (where a ranges over the basic instructions,
and u over the primitive instructions):4

|a| = a ◦ D |!| = S

|+a| = a ◦ D |!; X | = S

|−a| = a ◦ D |#k| = D

|a; X | = a ◦ |X | |#0; X | = D

4 We generally consider PGA programs modulo instruction sequence congruence, i.e.,
as program objects, so |Xω | = |X; Xω|.
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|+a; X | = |X | � a � |#2; X | |#1; X | = |X |
|−a; X | = |#2; X | � a � |X | |#k + 2; u| = D

|#k + 2; u; X | = |#k + 1; X |

Observe that we interpret basic instructions as actions.
For PGA programs in second canonical form, these equations yield either finite

threads, or regular threads (in the case that a non-empty loop occurs, which can
be captured by a system of recursive equations).

Example 2. Computation of Q = |a; (+b; #2; #3; c; #4; +d; !; a)ω| yields the fol-
lowing regular thread:5

Q = a ◦ R, R = c ◦ R � b � (S � d � Q).

This thread can be depicted as follows:

[ a ]Q:

�
〈 b 〉R:

�
��

�
��
〈 d 〉
�

��
�

�

�

S

[ c ]

���
where

[ a ]

�
P

≈ a ◦ P

and
〈 a 〉
�

��
�

��
Pl Pr

≈ Pl � a � Pr

Example 3. Observe that thread extraction following the equations does not
terminate for the program term

+a; #2; (+b; #2; −c; #2)ω.

However, thread extraction on its second canonical form +a; (#0; +b; #0; −c)ω

yields the thread P defined by

P = D � a � Q, Q = D � b � (Q � c � D).

Any PGA program defines a regular thread, and conversely, every regular thread
can be defined in PGA, see Section 4. Behavioral equivalence is decidable for
PGA programs [7].

5 Note that a linear recursive specification of Q requires (at least) five equations.
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3.2 Services

A service, or a state machine, is a pair 〈Σ, F 〉 consisting of a set Σ of so-called
co-actions and a reply function F . The reply function is a mapping that gives
for each non-empty finite sequence of co-actions from Σ a reply true or false.

Example 4. A stack can be defined as a service with co-actions push:i , topeq:i ,
and pop, for i = 1, . . . , n for some n, where push:i pushes i onto the stack and
yields true, the action topeq:i tests whether i is on top of the stack, and pop
pops the stack with reply true if it is non-empty, and it yields false otherwise.

Services model (part of) the execution environment of threads. In order to
define the interaction between a thread and a service, we let actions be of the
form c.m where c is the so-called channel or focus, and m is the co-action or
method. For example, we write s .pop to denote the action which pops a stack
via channel s . For service H = 〈Σ, F 〉 and thread P , P /c H represents P using
the service H via channel c. The defining rules are:

S /c H = S,

D /c H = D,

(P � c′.m � Q) /c H = (P /c H) � c′.m � (Q /c H) if c′ �= c,

(P � c.m � Q) /c H = P /c H′ if m ∈ Σ and F (m) = true,

(P � c.m � Q) /c H = Q /c H′ if m ∈ Σ and F (m) = false,

(P � c.m � Q) /c H = D if m �∈ Σ,

where H′ = 〈Σ, F ′〉 with F ′(σ) = F (mσ) for all co-action sequences σ ∈ Σ+.
In the next example we show that the use of services may turn regular threads

into non-regular ones.

Example 5. We define a thread using a stack as defined in Example 4. We only
push the value 1 (so the stack behaves as a counter), and write S(n) for a stack
holding n times the value 1. By the defining equations for the use operator it
follows that for any thread P ,

(s .push:1 ◦ P ) /s S(n) = P /s S(n+1),
(P � s .pop � S) /s S(0) = S,

(P � s .pop � S) /s S(n+1) = P /s S(n).

Now consider the regular thread Q defined by

Q = s .push:1 ◦ Q � a � R, R = b ◦ R � s .pop � S,

where actions a and b do not use focus s . Then, for all n ∈ IN,

Q /s S(n) = (s .push:1 ◦ Q � a � R) /s S(n)
= (Q /s S(n+1)) � a � (R /s S(n)).
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It is not hard to see that Q/s S(0) is an infinite thread with the property that for
all n, a trace of n+1 a-actions produced by n positive and one negative reply on
a is followed by bn◦S. This yields an non-regular thread: if Q/sS(0) were regular,
it would be a fixed point of some finite linear recursive specification, say with k
equations. But specifying a trace bk ◦ S already requires k + 1 linear equations
x1 = b ◦ x2, . . . , xk = b ◦ xk+1, xk+1 = S, which contradicts the assumption. So
Q /s S(0) is not regular.

3.3 Classes of Threads

We shall see in Section 4 that finite threads (the elements of BTA) correspond
exactly to the threads that can be expressed in PGA without iteration, and that
regular threads (threads definable by finite linear specifications) are exactly those
that can be expressed in PGA. Equality is decidable for regular threads [7]. We
mention two classes of non-regular threads: pushdown threads and computable
threads. In both cases the non-regularity can be obtained by composing regular
threads with certain services.

We call a regular thread that uses a stack as described in Example 4 a push-
down thread. In Example 5 we have seen that a pushdown thread may be non-
regular. Equality is decidable for pushdown threads, but inclusion (the ordering
� defined in Section 3) is not [5].6

Finally, a thread is computable if it can be represented by an identifier P0 and
two computable functions f and g as follows (k ∈ IN):

Pk =

⎧
⎪⎨

⎪⎩

D if g(k) = 0,

S if g(k) = 1,

P〈k+f(k),1〉 � ag(k) � P〈k+f(k),2〉 if g(k) > 1,

where 〈 , 〉 is a bijective, computable pairing function.
Obviously computable threads can, in general, not be expressed by PGA pro-

grams. However, infinite sequences of primitive PGA instructions are universal:
for every computable thread P there is such an infinite sequence with P as its
behavior [12]. Computable threads can be obtained by composition of regular
threads with a Turing machine tape as a service [12].

6 In [5], the undecidability of inclusion for pushdown threads is proved using a re-
duction of the halting problem for Minsky machines. In this construction one of
the counters is “weakly simulated”. This method was found by Jančar and recorded
first in 1994 [15], where it was used to prove various undecidability results for Petri
nets. In 1999, Jančar et al. [16] used the same idea to prove the undecidability of
simulation preorder for processes generated by one-counter machines, and this is
most comparable to the approach in [5]. However, in the case of pushdown threads
the inclusion relation itself is a little more complex than in process simulation or
language theory because D � P for any thread P . Moreover, threads have restricted
branching, and therefore transforming a regular (control) thread into one that sim-
ulates one of the counters of a Minsky machine is more complex than in the related
approaches referred to above. See [5] for a further discussion.
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4 On the Expressiveness of PGA

We present some expressiveness results for PGA.

Proposition 1. PGA without repetition characterizes BTA, that is, each pro-
gram without repetition defines a finite thread, and all finite threads can be ex-
pressed.

Proof. It follows immediately from the equations for thread extraction that PGA
programs without repetition define finite threads. Vice versa, we give a mapping
[ ] from BTA to PGA:

[D] = #0,

[S] = !,
[P � a � Q] = +a; #2; #(n[P ] + 1); [P ]; [Q],

where n[P ] is the number of instructions in [P ]. 	


Proposition 2. PGA characterizes the regular threads.

Proof. It follows immediately from the equations for thread extraction that PGA
programs define regular threads. Vice versa, any regular thread can be given by
a finite linear recursive specification by Theorem 1. Assume a specification with
variables x1, . . . , xn. We obtain the PGLDg program [x1]; [x2]; . . . ; [xn] for x1 by
the mapping [ ] which is defined as follows:

[xi] =

⎧
⎪⎨

⎪⎩

£i; +ai; ##£j; ##£k if xi = xj � a � xk,

£i; ! if xi = S,

£i; ##£i if xi = D.

The resulting PGLDg expression for the thread is mapped to a PGA program
by pgldg2pga (see Section 2.3). 	


Corollary 1. Basic instructions and negative tests instructions do not enhance
the expressive power of PGA.

Proof. Take any PGA program. By thread extraction and the method sketched
in the proof of Proposition 2 we find an equivalent PGA program without oc-
currences of basic instructions or negative tests. 	


This corollary establishes that PGA’s set of primitive instructions is not min-
imal with respect to its expressiveness. The next proposition shows that that
unbounded jump counters are necessary for the expressiveness of PGA.

Proposition 3. For n ∈ IN, let PGAn denote the set of PGA expressions not
containing jump counters strictly greater than n. For every n ≥ 2, there is a
PGA behavior that cannot be expressed in PGAn.
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Proof. Take n ≥ 2 and a basic instruction a. Consider the PGA program X
defined by

X = Y1; . . . ; Yn+1; !; (Z1; . . . ; Zn+1)ω,

Yi = +a; #ki,

Zi = ai; +a; !; #li,

where ki = 2n + 1 + i(i + 1)/2, and li = (n + 4)(n + 5)/2 − (i + 8).
Note that #ki jumps from Yi to the first instruction of subexpression Zi, and

that #li jumps from Zi also to the first instruction of Zi. For example, if n = 2,
then X equals

+a; #6; +a; #8; +a; #11; !; (a; +a; !; #12; a2; +a; !; #11; a3; +a; !; #10)ω.

We oberve that X has these properties:

1. After the execution of Y1; . . . ; Yn+1; !, any of the Zi can be the first part of
the iteration that is executed.

2. Execution of the iterative part is completely determined by one of the Zi

and distguished from the execution determined by another Zj .

We show that |X | cannot be expressed in PGAn. First, for i ≤ n + 1, define
threads

Qi = ai ◦ (S � a � Qi),
Pi = Qi � a � Pi+1,

Pn+2 = S.

We find that

Pi = |Yi; . . . ; Yn+1; !; (Z1; . . . ; Zn+1)ω|,
Qi = |Zi; . . . ; Zn+1; (Z1; . . . ; Zn+1)ω|,

and in particular that |X | = P1.
Now suppose that |X | can be expressed in PGAn (we shall derive a contra-

diction). Then there must be a first canonical form

u1; . . . ; um; (v1; . . . ; vk)ω

in PGAn with this behavior. We can picture the iteration of v1; . . . ; vk as a circle
of k instructions:

��

��
�

�

�
�

�

��

� vj

vj+1

Note that each of the vj serves at most one Qi.
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By the restriction on the values of jump counters, we know that between
any two subsequent Qi-instructions on the circle, there are at most n − 1 other
instructions. Hence, for any i there are at least �k/n� Qi-instructions on the
circle, so in total the circle contains at least (n + 1) · �k/n� instructions. Since

(n + 1) · �k/n� ≥ (n + 1) · (k/n) > k,

this contradicts the fact that the circle contains k instructions. 	


5 Current Work

Current work includes research on multithreading. In thread algebra, a mul-
tithread consists of a number of basic threads together with an interleaving
operator which executes the threads in parallel based on a certain interleaving
strategy [8, 9]. This theory is applied in the setting of processor architectures, in
particular of so-called micro-grids executing micro-threads [17]. For the math-
ematical modeling of processor architectures, so-called Maurer computers are
used [18, 10, 11].

Another branch of research is about the forecasting of certain actions, given
the program to be executed. The main purpose of this research is a formal
modeling of security hazard risk assessment (or virus detection) [14, 13]. For
pushdown threads this type of forecasting is decidable: rename the action(s) to
be forecasted and decide whether the thread thus obtained equals the original
one. Forecasting becomes much more complicated if a program may contain test
instructions that yield a reply according to the result of this type of forecasting.
For example, assume that the action to be forecasted is named risk and that
there is a test action test that yields true if its true-branch does not execute risk,
and false otherwise. Then a current test action in the code to be inspected may
yield true because a future one will yield false. The reply to these test actions can
be modeled with a use-application. For regular threads, the associated service
has a decidable reply function [13], while for pushdown threads this is still an
open question.
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