
21

Proposition Algebra

JAN A. BERGSTRA and ALBAN PONSE, University of Amsterdam

Sequential propositional logic deviates from conventional propositional logic by taking into account that dur-
ing the sequential evaluation of a propositional statement, atomic propositions may yield different Boolean
values at repeated occurrences. We introduce “free valuations” to capture this dynamics of a propositional
statement’s environment. The resulting logic is phrased as an equationally specified algebra rather than in
the form of proof rules, and is named “proposition algebra.” It is strictly more general than Boolean algebra
to the extent that the classical connectives fail to be expressively complete in the sequential case. The four
axioms for free valuation congruence are then combined with other axioms in order define a few more valu-
ation congruences that gradually identify more propositional statements, up to static valuation congruence
(which is the setting of conventional propositional logic).

Proposition algebra is developed in a fashion similar to the process algebra ACP and the program algebra
PGA, via an algebraic specification which has a meaningful initial algebra for which a range of coarser
congruences are considered important as well. In addition, infinite objects (i.e., propositional statements,
processes and programs respectively) are dealt with by means of an inverse limit construction which allows
the transfer of knowledge concerning finite objects to facts about infinite ones while reducing all facts about
infinite objects to an infinity of facts about finite ones in return.

Categories and Subject Descriptors: F.3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages—Algebraic approaches to semantics

General Terms: Theory; Verification

Additional Key Words and Phrases: Conditional composition, propositional statement, reactive valuation,
satisfiability, sequential connective, short-circuit evaluation, side effect

ACM Reference Format:
Bergstra, J. A. and Ponse, A. 2011. Proposition algebra. ACM Trans. Comput. Logic 12, 3, Article 21 (May
2011), 36 pages.
DOI = 10.1145/1929954.1929958 http://doi.acm.org/10.1145/1929954.1929958

1. INTRODUCTION

A propositional statement is a composition of atomic propositions made by means of
one or more (proposition) composition mechanisms, usually called connectives. Atomic
propositions are considered to represent facts about an environment (execution en-
vironment, execution architecture, operating context) that are used by the logical
mechanism contained in the propositional statement which aggregates these facts for
presentation to the propositional statement’s user. Different occurrences of the same

J. A. Bergstra acknowledges support from NWO (project Thread Algebra for Strategic Interleaving).
Authors’ address: J. A. Bergstra and A. Ponse, Section Theory of Computer Science, Informatics Institute,
University of Amsterdam, Amsterdam, The Netherlands, email: {J.A.Bergstra,A.Ponse}@uva.nl.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1529-3785/2011/05-ART21 $10.00

DOI 10.1145/1929954.1929958 http://doi.acm.org/10.1145/1929954.1929958

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:2 J. A. Bergstra and A. Ponse

atomic propositions represent different queries (measurements, issued information re-
quests) at different moments in time.

A valuation that may return different Boolean values for the same atomic proposition
during the sequential evaluation of a single propositional statement is called free, or in
the case the evaluation result of an atomic proposition can have effect on subsequent
evaluation, it is called reactive. This is in contrast to a “static” valuation, which always
returns the same value for the same atomic proposition. Free valuations are thus
semantically at the opposite end of static valuations, and are observation based in the
sense that they capture the identity of a propositional statement as a pattern of queries
followed by a Boolean value.

Many classes of valuations can be distinguished. Given a class K of valuations, two
propositional statements are K-equivalent if they evaluate to the same Boolean value
for each valuation in K. Given a family of proposition connectives, K-equivalence need
not be a congruence, and K-congruence is the largest congruence that is contained in
K-equivalence. It is obvious that with larger K more propositional statements can be
distinguished and the one we consider most distinguishing is named free valuation con-
gruence. It is this congruence that plays the role of an initial algebra for the proposition
algebras developed in this article. The axioms of proposition algebra specify free valu-
ation congruence in terms of the single ternary connective conditional composition (in
computer science terminology: if-then-else) and constants for truth and falsity, and their
soundness and completeness (for closed equations) is easily shown. Additional axioms
are given for static valuation congruence, and for some reactive valuation congruences
in between.

Sequential versions of the well-known binary connectives of propositional logic and
negation can be expressed in terms of conditional composition. We prove that these
connectives have insufficient expressive power at this level of generality and that a
ternary connective is needed (in fact, this holds for any collection of binary connectives
definable by conditional composition.)

Repeated use of the same atomic proposition is meaningful in free or reactive valu-
ation semantics, and as a consequence infinite propositions are meaningful and may
be more expressive than finite ones. Infinite propositions are defined by means of an
inverse limit construction which allows the transfer of knowledge concerning finite
objects to facts about infinite ones while reducing all facts about infinite objects to an
infinity of facts about finite ones in return. This construction was applied in giving stan-
dard semantics for the process algebra ACP by Bergstra and Klop [1984] (see Baeten
and Weijland [1990] for a more recent overview). In doing so, the design of proposition
algebra is very similar to the thread algebra of Bergstra and Middelburg [2007] which
is based on a similar ternary connective but which features constants for termina-
tion and deadlock rather than for truth and falsity. Whereas thread algebra focuses
on multi-threading and concurrency, proposition algebra has a focus on sequential
mechanisms.

The article is structured as follows: In the next section, we discuss some motivation
for proposition algebra. In Section 3, we define the signature and equations of propo-
sition algebra, and in Section 4, we formally define valuation algebras. In Section 5,
we consider some observation based equivalences and congruences generated by valu-
ations, and in Sections 6-9, we provide complete axiomatizations of these congruences.
Definable (binary) connectives are formally introduced in Section 10. In Section 11,
we briefly consider some complexity issues concerning satisfiability. The expressive-
ness (functional incompleteness) of binary connectives is discussed in Section 12. In
Section 13, we introduce projection and projective limits for defining potentially in-
finite propositions, and in Section 14, we discuss recursive specifications of infinite
propositions. The article is ended with some conclusions in Section 15.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:3

2. MOTIVATION FOR PROPOSITION ALGEBRA

Proposition algebra is proposed as a preferred way of viewing the data type of proposi-
tional statements, at least in a context of sequential systems. Here are some arguments
in favor of that thesis:

In a sequential program a test, which is a conjunction of P and Q will be evaluated
in a sequential fashion, beginning with P and not evaluating Q unless the evaluation
of P led to a positive outcome. The sequential form of evaluation takes precedence over
the axioms or rules of conventional propositional logic or Boolean algebra. For instance,
neither conjunction nor disjunction are commutative when evaluated sequentially in
the presence of side-effects, errors or exceptions. The absence of these latter features is
never claimed for imperative programming and thus some extension or modification of
ordinary two-valued logic is necessary to understand the basics of propositional logic
as it occurs in the context of imperative programs. Three-, four- or more sophisticated
many-valued logics may be used to explain the logic in this case (see, e.g., Bergstra
et al. [1995], Bergstra and Ponse [1998b], and Hähnle [2005]). The noncommutative,
sequential reading of conjunction mentioned above can be traced back to the seminal
work on computation theory by McCarthy [1963], in which a specific value for unde-
finedness (e.g., a divergent computation) is considered that in conjunction with falsity
results in the value that was evaluated first. In many explanations of the seman-
tics of Boolean operators in programming languages, this form of sequential evalua-
tion is called short-circuit evaluation (and in some, minimal evaluation or McCarthy
evaluation).

Importing noncommutative conjunction to two-valued propositional logic means that
the sequential order of events is significant, and that is what proposition algebra is
meant to specify and analyze in the first place. As a simple example, consider the
propositional statement that a pedestrian evaluates just before crossing a road with
two-way traffic driving on the right:

look-left-and-check ∧� look-right-and-check ∧� look-left-and-check. (1)

Here ∧� is left-sequential conjunction, which is similar to conjunction but the left
argument is evaluated first and upon F (“false”), evaluation finishes with result F.
A valuation associated with this example is (should be) a free valuation: also in the
case that the leftmost occurrence of look-left-and-check evaluates to T (“true”), its
second evaluation might very well evaluate to F. However, the order of events (or
their amount) needs not to be significant in all circumstances and one may still wish
or require that in particular cases conjunction is idempotent or even commutative. A
most simple example is perhaps

a ∧� a = a

with a an atomic proposition, which is not valid in free valuation semantics (and
neither is the falsity of a ∧� ¬a). For this reason we distinguish a number of restricted
forms of reactive valuation equivalences and congruences that validate this example or
variations thereof, but still refine static valuation congruence. It is evident that many
more such refinements can be distinguished.

We take the point of departure that the very purpose of any action taken by a program
under execution is to change the state of a system. If no change of state results with
certainty the action can just as well be skipped. This holds for tests as well as for any
action mainly performed because of its intended side-effects. The common intuition
that the state is an external matter not influenced by the evaluation of a test, justifies
ignoring side-effects of tests and for that reason it justifies an exclusive focus on static
valuations to a large extent, thereby rendering the issue of reactivity pointless as well.
But there are some interesting cases where this intuition is not necessarily convincing.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:4 J. A. Bergstra and A. Ponse

We mention three such issues, all of which also support the general idea of considering
propositional statements under sequential evaluation.

(1) It is common to accept that in a mathematical text an expression x/x is admissible
only after a test x �= 0 has been performed. One might conceive this test as an
action changing the state of mind of the reader thus influencing the evaluation of
further assertions such as x/x = 1.

(2) A well-known dogma on computer viruses introduced by Cohen in 1984 (journal
publication in [1987]) states that a computer cannot decide whether or not a pro-
gram that it is running is itself a virus. The proof involves a test that is hypotheti-
cally enabled by a decision mechanism that is supposed to have been implemented
on a modified instance of the machine under consideration. It seems fair to say that
the property of a program being viral is not obviously independent of the state of
the program. So here is a case where performing the test might (in principle at
least) result in a different state from which the same test would lead to a different
outcome.

This matter has been analyzed in detail in Bergstra and Ponse [2005] and
Bergstra et al. [2007] with the conclusion that the reactive nature of valuations
gives room for criticism of Cohen’s original argument. In the didactic literature on
computer security Cohen’s viewpoint is often repeated and it can be found on many
websites and in the introduction of many texts. But there is a remarkable lack of
secondary literature on the matter; an exception is the discussion in Cohen [2001]
and the papers cited therein.

(3) The online halting problem is about execution environments that allow a running
program to acquire information about its future halting or divergence. This infor-
mation is supposed to be provided by means of a forecasting service. In Bergstra
and Ponse [2007], that feature is analyzed in detail in a setting of thread algebra
and the impossibility of sound and complete forecasting of halting is established. In
particular, calling a forecasting service may have side-effects that leads to different
replies in future calls (see, e.g., Ponse and van der Zwaag [2008]).

Our account of proposition algebra is based on the ternary operator conditional com-
position (or if-then-else). This operator has a sequential form of evaluation as its natural
semantics, and thus combines naturally with free and reactive valuation semantics.
Furthermore, proposition algebra constitutes a simple setting for constructing infinite
propositions by means of an inverse limit construction. The resulting projective limit
model can be judged as one that didactically precedes (prepares for) technically more
involved versions for process algebra and thread algebra, and as such provides by itself
a motivation for proposition algebra.

3. PROPOSITION ALGEBRA

In this section, we introduce the signature and equational axioms of proposition alge-
bra. Let A be a countable set of atomic propositions a, b, c, The elements of A serve
as atomic (i.e., nondivisible) queries that will produce a Boolean reply value.

We assume that |A| > 1. The case that |A| = 1 is described in detail in Regenboog
[2010]. We come back to this point in Section 15.

The signature of proposition algebra consists of the constants T and F (representing
true and false), a constant a for each a ∈ A, and, following Hoare [1985b], the ternary
operator conditional composition

� � .

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:5

Table I. The Set CP of Axioms for Proposition Algebra

(CP1) x � T � y = x
(CP2) x � F � y = y
(CP3) T � x � F = x
(CP4) x � (y � z � u) � v = (x � y � v) � z � (x � u � v)

We write �CP(A) for the signature introduced here. Terms are subject to the equational
axioms in Table I. We further write CP for this set of axioms (where CP abbreviates
conditional propositions).

An alternative name for the conditional composition

y � x � z

is if x then y else z: the axioms CP1 and CP2 model that its central condition x is
evaluated first, and depending on the reply either its leftmost or rightmost argument
is evaluated. Axiom CP3 establishes that a term can be extended to a larger conditional
composition by adding T as a leftmost argument and F as a rightmost one, and CP4
models the way a nonatomic central condition distributes over the outer arguments.
We note that the expression

F � x � T

can be seen as defining the negation of x:

CP � z � (F � x � T) � y = (z � F � y) � x � (z � T � y) = y � x � z, (2)

which illustrates that “if ¬x then z else y” and “if x then y else z” are considered equal.
We introduce the abbreviation

x ◦ y for y � x � y,

and we name this expression x and then y. It follows easily that ◦ is associative:

(x ◦ y) ◦ z = z � (y � x � y) � z = (z � y � z) � x � (z � y � z) = x ◦ (y ◦ z).

We take the and-then operator ◦ to bind stronger than conditional composition. At a
later stage, we will formally add negation, the “and then” connective ◦, and some other
binary connectives to proposition algebra (i.e., add their function symbols to �CP(A)
and their defining equations to CP).

Closed terms over �CP(A) are called propositional statements, with typical elements
P, Q, R,

Definition 3.1. A propositional statement P is a basic form if

P ::= T | F | P1 � a � P2

with a ∈ A, and P1 and P2 basic forms.

So, basic forms can be seen as binary trees of which the leaves are labeled with
either T or F, and the internal nodes with atomic propositions. Following Baeten
and Weijland [1990], we use the name basic form instead of normal form because we
associate the latter with a term rewriting setting.

LEMMA 3.2. Each propositional statement can be proved equal to one in basic form
using the axioms in Table I.

PROOF. We first show that if P, Q, R are basic forms, then P � Q � R can be proved
equal to a basic form by structural induction on Q. If Q = T or Q = F, this follows

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:6 J. A. Bergstra and A. Ponse

immediately, and if Q = Q1 � a � Q2, then

CP � P � Q� R = P � (Q1 � a � Q2) � R
= (P � Q1 � R) � a � (P � Q2 � R)

and by induction there are basic forms Pi for i = 1, 2 such that CP � Pi = P � Qi � R,
hence CP � P � Q� R = P1 � a � P2 and P1 � a � P2 is a basic form.

Next, we prove the lemma’s statement by structural induction on the form that
propositional statement P may take. If P = T or P = F, then P is a basic form, and if
P = a, then CP � P = T � a � F. For the case P = P1 � P2 � P3, it follows by induction
that there are basic forms Q1, Q2, Q3 with CP � Pi = Qi, so CP � P = Q1 � Q2 � Q3.
Now apply the first result.

We write

P ≡ Q

to denote that propositional statements P and Q are syntactically equivalent. In Sec-
tion 6, we prove that basic forms constitute a convenient representation:

PROPOSITION 3.3. If CP � P = Q for basic forms P and Q, then P ≡ Q.

4. VALUATION ALGEBRAS

In this section, we define valuation algebras. Let B be the sort of the Booleans with
constants T and F. The signature �Val(A) of valuation algebras contains the sort B and
a sort Val of valuations. The sort Val has two constants

TVal and FVal ,

which represent the valuations that assign to each atomic proposition the value T
respectively F, and for each a ∈ A a function

ya : Val → B

called the yield of a, and a function

a • : Val → Val

called the a-derivative. Given a valuation H we write a• H (instead of a• (H)) to denote
the transformation of H after a has been evaluated.

Definition 4.1. A �Val(A)-algebra A is a valuation algebra (VA) if for all a ∈ A, it
satisfies the axioms

ya(TVal) = T ,

ya(FVal) = F,

a • TVal = TVal ,

a • FVal = FVal .

Given a valuation algebra A, a valuation H (of sort Val) in A, and a propositional
statement P, we now define both the evaluation of P over H, notation

P/H

and the P-derivative of H, a generalized notion of the a-derivative of H, notation

P • H.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:7

Definition 4.2. Let A be a valuation algebra and H a valuation in A, and let P, Q, R
be propositional statements. Evaluation and (valuation) derivatives are defined by the
following case distinctions:

T/H = T ,

F/H = F,

a/H = ya(H),

(P � Q� R)/H =
{

P/(Q • H) if Q/H = T ,

R/(Q • H) if Q/H = F,

and

T • H = H,

F • H = H,

(P � Q� R) • H =
{

P • (Q • H) if Q/H = T ,

R • (Q • H) if Q/H = F.

Some explanation: whenever in a conditional composition the central condition is an
atomic proposition, say c, then a valuation H distributes over the outer arguments as
c • H, thus

(P � c � Q)/H =
{

P/(c • H) if yc(H) = T ,

Q/(c • H) if yc(H) = F.
(3)

If, in a conditional composition the central condition is not atomic, valuation decom-
poses further in accordance with the previous equations, for example,

(a � (b � c � d) � e)/H =
{

a/((b � c � d) • H) if (b � c � d)/H = T ,

e/((b � c � d) • H) if (b � c � d)/H = F,

=

⎧⎪⎪⎨
⎪⎪⎩

a/(b • (c • H)) if yc(H) = T and yb(c • H) = T ,

a/(d • (c • H)) if yc(H) = F and yd(c • H) = T ,

e/(b • (c • H)) if yc(H) = T and yb(c • H) = F,

e/(d • (c • H)) if yc(H) = F and yd(c • H) = F.

(4)

We compare the last example with

((a � b � e) � c � (a � d � e))/H, (5)

which is a particular instance of (3). For the case yc(H) = T , we find from (3) that

(5) = (a � b � e)/(c • H) =
{

a/(b • (c • H)) if yb(c • H) = T ,

e/(b • (c • H)) if yb(c • H) = F,

and for the case yc(H) = F we find the other two right-hand sides of (4). In a similar
way, it follows that

((a � b � e) � c � (a � d � e)) • H = (a � (b � c � d) � e) • H,

thus providing a prototypical example of the soundness of axiom CP4 of CP.

THEOREM 4.3 (SOUNDNESS). If for propositional statements P and Q, CP � P = Q,
then for each VA A and each valuation H ∈ A,

P/H = Q/H and P • H = Q • H.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:8 J. A. Bergstra and A. Ponse

PROOF. Let A be some VA and H ∈ A. It is an easy exercise to show that an arbitrary
instance P = Q of one of the axioms in CP satisfies P/H = Q/H and P • H = Q • H.

Assume that CP � P = Q follows from the context rule, thus P ≡ P1 � P2 � P3, Q ≡
Q1 � Q2 � Q3, and CP � Pi = Qi. Then, for all H ∈ A, Pi/H = Qi/H and Pi • H = Qi • H,
and we find the desired result by case distinction: let H ∈ A and P2/H = Q2/H = T ,
then

(P1 � P2 � P3)/H = P1/(P2 • H) = Q1/(Q2 • H) = (Q1 � Q2 � Q3)/H,

(P1 � P2 � P3) • H = P1 • (P2 • H) = Q •1 (Q2 • H) = (Q1 � Q2 � Q3) • H.

For the case P2/H = Q2/H = F, a similar argument applies.

5. VALUATION VARIETIES AND VALUATION CONGRUENCES

We introduce some specific equivalences and congruences generated by classes of val-
uations. The class of VAs that satisfy a certain collection of equations over �Val(A) is
called a valuation variety. We distinguish the following varieties, where each next one
is subvariety of the one defined.

(1) The variety of VAs with free valuations is defined by the equations in Definition 4.1.
(2) The variety of VAs with repetition-proof valuations: all VAs that satisfy for all

a ∈ A,

ya(x) = ya(a • x).

So the reply to a series of consecutive atoms a is determined by the first reply.
Typical example: (P � a � Q) � a � (R � a � S) = (a ◦ P) � a � (a ◦ S).

(3) The variety of VAs with contractive valuations: all repetition-proof VAs that satisfy
for all a ∈ A,

a • (a • x) = a • x.

Each successive atom a is contracted by using the same evaluation result.
Typical example: (P � a � Q) � a � (R � a � S) = P � a � S.

(4) The variety of VAs with weakly memorizing valuations consists of all contractive
VAs that satisfy for all a, b ∈ A,

yb(a • x) = ya(x) → (a • (b • (a • x)) = b • (a • x) ∧ ya(b • (a • x)) = ya(x)).
Here the evaluation result of an atom a is memorized in a subsequent evaluation of a
if the evaluation of intermediate atoms yields the same result, and this subsequent
a can be contracted.
Two typical examples are

((P � a � Q) � b � R) � a � S = (P � b � R) � a � S,

P � a � (Q� b � (R � c � (S � a � V))) = P � a � (Q� b � (R � c � V)).
(5) The variety of VAs with memorizing valuations: all contractive VAs that satisfy for

all a, b ∈ A,
a • (b • (a • x)) = b • (a • x) ∧ ya(b • (a • x)) = ya(x).

Here the evaluation result of an atom a is memorized in all subsequent evaluations
of a and all subsequent a’s can be contracted.
Typical axiom (right-oriented version):

x � y � (z � u � (v � y � w)) = x � y � (z � u � w).
Typical counter-example: a � b � F �= b � a � F (thus, b ∧� a �= a ∧� b).

(6) The variety of VAs with static valuations: all VAs that satisfy for all a, b ∈ A,
ya(b • x) = ya(x)

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:9

This is the setting of conventional propositional logic.
Typical identities: a = b ◦ a and a � b � F = b � a � F (thus, b ∧� a = a ∧� b).

Definition 5.1. Let K be a variety of valuation algebras over A. Then, propositional
statements P and Q are K-equivalent, notation

P ≡K Q,

if P/H = Q/H for all A ∈ K and H ∈ A. Let =K be the largest congruence contained in
≡K. Propositional statements P and Q are K-congruent if

P =K Q.

From this definition, it follows that P =K Q if P ≡K Q and for all propositonal
statements R and S, the following three cases are true:

P � R � S ≡K Q� R � S, (6)
R � P � S ≡K R � Q� S, (7)
R � S � P ≡K R � S � Q. (8)

Case (6) follows immediately from P ≡K Q: for all A ∈ K and H ∈ A,

(P � R � S)/H =
{

P/(R • H) = Q/(R • H) = (Q� R � S)/H if R/H = T ,

S/(R • H) = (Q� R � S)/H if R/H = F,

and case (8) follows in a similar way. So in order to prove P =K Q it suffices to prove
that case (7) is true (note that with R = T and S = F, case (7) implies P ≡K Q). We
will often use the contraposition of this conditional property:

P �=K Q =⇒ ∃A ∈ K, H ∈ A, R, S ((R � P � S)/H �= (R � Q� S)/H). (9)

By the varieties defined thus far, we distinguish six types of K-equivalence and K-
congruence: free, repetition-proof, contractive, weakly memorizing, memorizing and
static. We use the following abbreviations for these:

K = fr , rp, cr ,wm,mem, st,

respectively.

PROPOSITION 5.2. The inclusions ≡fr ⊆ ≡rp ⊆ ≡cr ⊆ ≡wm ⊆ ≡mem ⊆ ≡st , and
=K ⊆ ≡K for K ∈ {fr , rp, cr ,wm,mem} are all proper.

PROOF. In this proof, we assume that all VAs we use satisfy T �= F. We first consider
the differences between the mentioned equivalences:

(1) a ≡rp a � a � F, but ≡fr does not hold in this case as is witnessed by a VA with
valuation H that satisfies ya(H) = T and ya(a • H) = F (yielding a/H = T and
(a � a � F)/H = F).

(2) b� a� F ≡cr b� (a� a� F) � F, but ≡rp does not hold in the VA with element H with
ya(H) = yb(a • H) = T and yb(a • (a • H)) = F.

(3) (a � b � F) � a � F ≡wm b � a � F, but ≡cr does not hold in the VA with element H
with ya(H) = yb(a • H) = T and ya(b • (a • H)) = F.

(4) (T � b � (F � a � T)) � a � F ≡mem b � a � F, but ≡wm does not hold in the VA with
element H with ya(H) = T and yb(a • H) = ya(b • (a • H)) = F.

(5) a ≡st a�b�a (distinguish all possible cases), but ≡mem does not hold as is witnessed
by the VA with element H with ya(H) = yb(H) = T and ya(b • H) = F (yielding
a/H = T and (a � b � a)/H = F).

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:10 J. A. Bergstra and A. Ponse

Finally, observe that for K ∈ {fr , rp, cr ,wm,mem} it holds that T ≡K T � a � T ,
but b � T � T �≡K b � (T � a � T) � T as is witnessed by the VA with element H with
ya(H) = yb(H) = T and yb(a • H) = F.

The following proposition stems from Regenboog [2010] and can be used to deal with
the difference between K-congruence and K-equivalence.

PROPOSITION 5.3. If P ≡K Q and for all A ∈ K and H ∈ A, P • H = Q • H, then
P =K Q.

PROOF. Assume P ≡K Q and the further requirement in the proposition is satisfied.
As argued before (see (7)), P =K Q if for all propositional statements R and S,

R � P � S ≡K R � Q� S.

This follows easily: let A ∈ K and H ∈ A and P • H = Q • H, then

(R � P � S)/H =
{

R/(P • H) if P/H = T ,

S/(P • H) if P/H = F,

=
{

R/(Q • H) if Q/H = T ,

S/(Q • H) if Q/H = F,

= (R � Q� S)/H.

As a consequence, the soundness of CP with respect to all valuation varieties K intro-
duced can be phrased as follows: for all propositional statements P and Q,

CP � P = Q =⇒ P =K Q.

In particular, this holds for free valuation congruence, the most distinguishing congru-
ence we consider, thus CP � P = Q =⇒ P =fr Q.

6. COMPLETENESS FOR THE VARIETIES fr, rp AND cr

In this section, we provide complete axiomatizations of free valuation congruence, and
repetition-proof and contractive valuation congruence. We start with a basic result on
free valuation congruence of basic forms.

LEMMA 6.1. For all basic forms P and Q, P =fr Q implies P ≡ Q.

PROOF. The implication of the lemma follows by contraposition and structural induc-
tion on P, where in each case we apply structural induction on Q.

If P ≡ T , then if Q ≡ F, P �=fr Q is witnessed by each VA in which T �= F. If
Q ≡ Q1 � a � Q2, consider a VA with valuation H that satisfies ya(H) = yb(H) = T
and for all propositional statements R, yb(R • (a • H)) = F. Then (P ◦ b)/H = T while
(Q ◦ b)/H = yb(Q1 • (a • H)) = F, so P �=fr Q.

If P ≡ F, a similar argument applies.
If P ≡ P1 � a � P2, then the cases Q ≡ T and Q ≡ F can be dealt with as above.

If Q ≡ Q1 � a � Q2, then assume P �≡ Q because P1 �≡ Q1. By induction, P1 �=fr Q1.
By implication (9) there exists A ∈ fr with valuation H and propositional statements
R and S such that (R � P1 � S)/H �= (R � Q1 � S)/H. But then there is A′ ⊇ A with
valuation H′ such that ya(H′) = T and a • H′ = H by which P �=fr Q because R� P � Q
and R � Q� S yield different results under H′:

(R � P � S)/H′ = (R � P1 � S)/H �= (R � Q1 � S)/H = (R � Q� S)/H′.

If P1 ≡ P2, then P2 �≡ Q2 and a similar argument applies.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:11

Finally, if Q ≡ Q1�b�Q2 with b �= a, then P �=fr Q follows by considering A with T �= F
and with valuation H that satisfies ya(H) = yb(H) = T and for all R, ya(R• (a• H)) = T
and ya(R • (b • H)) = F. Clearly, (P ◦ a)/H �= (Q ◦ a)/H.

As a corollary, we find a proof of Proposition 3.3, that is, for basic forms, provable
equality in CP and syntactic equivalence coincide:

PROOF OF PROPOSITION 3.3. By the soundness of CP , it is sufficient to prove that for
all basic forms P and Q, P =fr Q implies P ≡ Q, and this is proved in Lemma 6.1.

It easily follows that CP axiomatizes free valuation congruence:

THEOREM 6.2 (COMPLETENESS). If P =fr Q for propositional statements P and Q, then
CP � P = Q.

PROOF. Assume P =fr Q. By Lemma 3.2, there are basic forms P ′ and Q′ with
CP � P = P ′ and CP � Q = Q′. By soundness, P ′ =fr Q′ and by Proposition 3.3,
P ′ ≡ Q′. Hence, CP � P = Q.

We proceed by discussing completeness results for the valuation varieties rp and cr
introduced in the previous section.

Write CPrp for the axioms in CP and these axiom schemes (a ∈ A):

(CPrp1) (x � a � y) � a � z = (x � a � x) � a � z,
(CPrp2) x � a � (y � a � z) = x � a � (z � a � z).

THEOREM 6.3. Repetition-proof valuation congruence =rp is axiomatized by CPrp .

PROOF. Let A be a VA in the variety rp of repetition-proof valuation algebras, thus
for all a ∈ A,

ya(x) = ya(a • x).

Concerning soundness, we only check axiom scheme CPrp2 (a proof for CPrp1 is very
similar): let H ∈ A, then

(P � a � (Q� a � R))/H =
{

P/(a • H) if ya(H) = T ,

(Q� a � R)/(a • H) if ya(H) = F,

=
{

P/(a • H) if ya(H) = T ,

R/(a • (a • H)) if ya(H) = F = ya(a • H),

= (P � a � (R � a � R))/H,

and

(P � a � (Q� a � R)) • H =
{

P • (a • H) if ya(H) = T ,

(Q� a � R) • (a • H) if ya(H) = F,

=
{

P • (a • H) if ya(H) = T ,

R • (a • (a • H)) if ya(H) = F = ya(a • H),

= (P � a � (R � a � R)) • H.

In order to prove completeness, we use a variant of basic forms, which we call rp-basic
forms, that “minimizes” on repetition-proof valuation congruence:

—T and F are rp-basic forms, and
—P1 � a � P2 is an rp-basic form if P1 and P2 are rp-basic forms, and if Pi is not equal

to T or F, then either the central condition in Pi is different from a, or Pi is of the
form a ◦ P ′ with P ′ an rp-basic form.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:12 J. A. Bergstra and A. Ponse

Each propositional statement can in CPrp be proved equal to an rp-basic form by
structural induction. For P and Q rp-basic forms, P =rp Q implies P ≡ Q. This follows
in a similar way as in the proof of Lemma 6.1 because all valuations used in that proof
can be seen as elements from VAs in rp.

(1) For the inductive case P ≡ P1�a� P2 and Q ≡ Q1�a�Q2, while P1 �≡ Q1 and for some
valuation H and propositional statements R and S, (R� P1 � S)/H �= (R� Q1 � S)/H,
it is now required that for a• H′ = H and ya(H′) = T , also ya(a• H′) = T . However,
since P and Q are rp-basic forms, a possible initial a-occurrence in P1 implies
P1 ≡ a ◦ P ′

1 and similar for Q1, so this new requirement on H′ is not relevant and
(R � P � S)/H′ �= (R � Q� S)/H′.

(2) For the last case P ≡ P1 � a � P2 and Q ≡ Q1 � b � Q2, a valuation H is used that
satisfies ya(H) = ya(R• (a • H)) for all propositional statements R. VAs with such a
valuation exist in the variety rp.

Assume P =rp Q, so there exist rp-basic forms P ′ and Q′ with CPrp � P = P ′ and
CPrp � Q = Q′. By soundness, P ′ =rp Q′ and as previously argued, P ′ ≡ Q′. Hence,
CPrp � P = Q.

Write CPcr for the axioms in CP and these axiom schemes (a ∈ A):

(CPcr1) (x � a � y) � a � z = x � a � z,
(CPcr2) x � a � (y � a � z) = x � a � z.

These schemes contract for each a ∈ A respectively, the T -case and the F-case, and
immediately imply CPrp1 and CPrp2.

THEOREM 6.4. Contractive valuation congruence =cr is axiomatized by CPcr .

PROOF. Let A be a VA in the variety cr of contractive valuation algebras, thus for all
a ∈ A,

a • (a • x) = a • x and ya(x) = ya(a • x).

Concerning soundness we only check axiom scheme CPcr1: let H ∈ A, then

((P � a � Q) � a � R)/H =
{

(P � a � Q)/(a • H) if ya(H) = T ,

R/(a • H) if ya(H) = F,

=
{

P/(a • H) if ya(H) = T = ya(a • H),
R/(a • H) if ya(H) = F,

= (P � a � R)/H,

and

((P � a � Q) � a � R) • H =
{

(P � a � Q) • (a • H) if ya(H) = T ,

R • (a • H) if ya(H) = F,

=
{

P • (a • (a • H)) if ya(H) = T = ya(a • (a • H)),
R • (a • H) if ya(H) = F,

=
{

P • (a • H) if ya(H) = T = ya(a • H),
R • (a • H) if ya(H) = F,

= (P � a � R) • H.

In order to prove completeness we again use a variant of basic forms, which we call
cr -basic forms, that “minimizes” on contractive valuation congruence:

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:13

—T and F are cr -basic forms, and
—P1 � a � P2 is a cr -basic form if P1 and P2 are cr -basic forms, and if Pi is not equal to

T or F, the central condition in Pi is different from a.

Each propositional statement can in CPcr be proved equal to a cr -basic form by struc-
tural induction. For P and Q cr -basic forms, P =cr Q implies P ≡ Q. Again, this follows
in a similar way as in the proof of Lemma 6.1 because all valuations used in that proof
can be seen as elements from VAs that are in cr .

(1) For the inductive case P ≡ P1�a� P2 and Q ≡ Q1�a�Q2, while P1 �≡ Q1 and for some
valuation H and propositional statements R and S, (R� P1 � S)/H �= (R� Q1 � S)/H,
it is now required that for a• H′ = H and ya(H′) = T , also ya(a• H′) = T . However,
since P and Q are cr -basic forms, P1 and Q1 cannot have a as a central condition,
so this new requirement on H′ is not relevant and (R � P � S)/H′ �= (R � Q� S)/H′.

(2) For the last case P ≡ P1 � a � P2 and Q ≡ Q1 � b � Q2, a valuation H is used that
satisfies ya(H) = ya(R• (a • H)) for all propositional statements R. VAs with such a
valuation exist in the variety cr .

Assume P =cr Q, so there exist cr -basic forms P ′ and Q′ with CPcr � P = P ′ and
CPcr � Q = Q′. By soundness, P ′ =cr Q′ and as argued previously, P ′ ≡ Q′. Hence,
CPcr � P = Q.

7. COMPLETENESS FOR THE VARIETY wm

In this section, we provide a complete axiomatization of weakly memorizing valuation
congruence.

Write CPwm for the axioms in CPcr and these axiom schemes (a, b ∈ A):

(CPwm1) ((x � a � y) � b � z) � a � v = (x � b � z) � a � v,

(CPwm2) x � a � (y � b � (z � a � v)) = x � a � (y � b � v).

THEOREM 7.1. Weakly memorizing valuation congruence =wm is axiomatized by
CPwm .

Before proving this theorem, we define a special type of basic forms and formulate
two auxiliary lemmas.

Let P be a basic form. Define pos(P) as the set of atoms that occur at the central
position or at left-hand (positive) positions in P: pos(T) = pos(F) = ∅ and pos(P � a �
Q) = {a}∪ pos(P), and define neg(P) as the set of atoms that occur at the central position
or at right-hand (negative) positions in P: neg(T) = neg(F) = ∅ and neg(P � a � Q) =
{a} ∪ neg(Q).

Now, wm-basic forms are defined as follows:

—T and F are wm-basic forms, and
—P � a � Q is a wm-basic form if P and Q are wm-basic forms and a �∈ pos(P) ∪ neg(Q).

The idea is that in a wm-basic form, as long as the evaluation of consecutive atoms
keeps yielding the same reply, no atom is evaluated twice. Clearly, each wm-basic form
also is a cr -basic form, but not vice versa, e.g., T � a � (T � b � (T � a � F)) is not a
wm-basic form because a ∈ neg(T � b � (T � a � F)). A more intricate example is one in
which a and b “alternate”:

(T � b � [(F � b � (T � a � F)) � a � T]) � a � F

is a wm-basic form because pos(T � b � [(F � b � (T � a � F)) � a � T]) = {b} �� a and
T �b� [(F �b� (T �a� F))�a�T] is a wm-basic form, where the latter statement follows
because neg((F � b � (T � a � F)) � a � T) = {a} �� b and because F � b � (T � a � F) is a
wm-basic form.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:14 J. A. Bergstra and A. Ponse

LEMMA 7.2. For each propositional statement P, there is a wm-basic form P ′ with
CPwm � P = P ′.

PROOF. By Lemma 3.2, we may assume that P is a basic form and we proceed by
structural induction on P. If P ≡ T or P ≡ F, there is nothing to prove. If P ≡ P1� a� P2,
we may assume that Pi are wm-basic forms (if not, they can proved equal to wm-basic
forms). We first consider the positive side of P. If a �∈ pos(P1) we are done, otherwise,
we saturate P1 by replacing each atom b �= a that occurs in a positive position with
(a�b� F) using axiom CPwm1. In this way, we can retract each a that is in pos(P1) (also
using axiom CPcr1) and end up with P ′

1 that does not contain a on positive positions.
For example,

(((T � a � R) � b � S) � c � V) � a � P2

= (((T � a � R) � (a � b � F) � S) � (a � c � F) � V) � a � P2

= (((((T � a � R) � a � S) � b � S) � a � V) � c � V) � a � P2

= (((T � b � S) � a � V) � c � V) � a � P2

= ((T � b � S) � c � V) � a � P2.

Following the same procedure for the negative side of P (saturation with (T � b � a)
for all b �= a etc.) yields a wm-basic form P ′

1 � a � P ′
2 with CPwm � P = P ′

1 � a � P ′
2.

Recall that A is a VA in the variety wm if for all a, b ∈ A,

a • (a • x) = a • x, ya(x) = ya(a • x),
yb(a • x) = ya(x) → (a • (b • (a • x)) = b • (a • x) ∧ ya(b • (a • x)) = ya(x)).

LEMMA 7.3. For all wm-basic forms P and Q, P =wm Q implies P ≡ Q.

PROOF. The implication of the lemma follows by contraposition and nested induction
on the complexity of wm-basic forms.

If P ≡ T , then if Q ≡ F, P �=wm Q is witnessed by each VA in which T �= F. If
Q ≡ Q1 � a � Q2, then consider A ∈ wm with T �= F and with a valuation H that
satisfies ya(H) = yb(H) = T and yb(R • (a • H)) = F for all propositional statements R.
Then, (P ◦ b)/H = T while (Q◦ b)/H = F, so P �=wm Q.

If P ≡ F, a similar argument applies.
If P ≡ P1 � a � P2, then the cases Q ≡ T and Q ≡ F can be dealt with as previously

shown. If Q ≡ Q1 � a � Q2, then assume P �≡ Q because P1 �≡ Q1. By induction,
P1 �=wm Q1. By implication (9), there exists A ∈ wm with valuation H and propositional
statements R and S such that (R� P1 � S)/H �= (R� Q1 � S)/H. Observe that a does not
occur in pos(P1) and pos(Q1), and that we may assume that if a occurs in R and/or S,
its substitution by T preserves this inequality (otherwise, replace a by F � a � T). Now
extend A to A′ with a valuation H′ with ya(H′) = T and a • H′ = H, then R� P � S and
R� Q� S yield different results under H′, hence P �=wm Q. It is clear that also A′ ∈ wm.
If P1 ≡ Q1, then P2 �≡ Q2 and a similar argument applies.

Finally, if Q ≡ Q1 � b � Q2 with b �= a, then P �=wm Q follows by considering A with
T �= F and with valuation H that satisfies for all R, ya(H) = ya(R • (a • H)) = T and
yb(H) = ya(R• (b• H)) = F, so (P ◦ a)/H = T while (Q◦ a)/H = F. Clearly, A ∈ wm.

PROOF OF THEOREM 7.1. Let A be a VA in the variety wm. The soundness of axiom
CPwm1 and CPwm2 follows immediately and we only show this for the latter one: let

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:15

H ∈ A, then

(P � a � (Q� b � (Z � a � V)))/H

=
⎧⎨
⎩

P/(a • H) if ya(H) = T ,

Q/(b • (a • H)) if ya(H) = F and yb(a • H) = T ,

(Z � a � V)/(b • (a • H)) if ya(H) = F and yb(a • H) = F,

=
⎧⎨
⎩

P/(a • H) if ya(H) = T ,

Q/(b • (a • H)) if ya(H) = F and yb(a • H) = T ,

V/(b • (a • H)) if ya(H) = F and yb(a • H) = F,

= (P � a � (Q� b � V))/H,

and

(P � a � (Q� b � (Z � a � V))) • H

=
⎧⎨
⎩

P • (a • H) if ya(H) = T ,

Q • (b • (a • H)) if ya(H) = F and yb(a • H) = T ,

(Z � a � V) • (b • (a • H)) if ya(H) = F and yb(a • H) = F,

=
⎧⎨
⎩

P • (a • H) if ya(H) = T ,

Q • (b • (a • H)) if ya(H) = F and yb(a • H) = T ,

V • (b • (a • H)) if ya(H) = F and yb(a • H) = F,

= (P � a � (Q� b � V)) • H.

In order to prove completeness, assume P =wm Q. By Lemma 7.2, there are wm-basic
forms P ′ and Q′ with CPwm � P = P ′ and CPwm � Q = Q′. By soundness P ′ =wm Q′,
thus by Lemma 7.3, P ′ ≡ Q′, and thus CPwm � P = Q.

8. COMPLETENESS FOR THE VARIETY mem

In this section, we provide a complete axiomatization of memorizing valuation congru-
ence.

Write CPmem for the axioms in CP and this axiom:

(CPmem) x � y � (z � u � (v � y � w)) = x � y � (z � u � w).

THEOREM 8.1. Memorizing valuation congruence =mem is axiomatized by
CPmem .

Before proving this theorem, we discuss some characteristics of CPmem . Axiom
CPmem defines how the central condition y may recur in an expression. This axiom
yields in combination with CP some interesting consequences. First, CPmem has three
symmetric variants, which all follow easily with x� y�z = z� (F � y�T)�x (= z�¬y�x):

x � y � ((z � y � u) � v � w) = x � y � (u � v � w), (10)
(x � y � (z � u � v)) � u � w = (x � y � z) � u � w, (11)
((x � y � z) � u � v) � y � w = (x � u � v) � y � w. (12)

The axioms of CPmem imply various laws for contraction:

x � y � (v � y � w) = x � y � w (take u = F in CPmem), (13)
x � y � (T � u � y) = x � y � u (take z = v = T and w = F in CPmem), (14)
(x � y � z) � y � u = x � y � u, (15)
(x � y � F) � x � z = y � x � z, (16)

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:16 J. A. Bergstra and A. Ponse

and thus (take v = T and w = F in (13), respectively x = T and z = F in (15)),

x � y � y = x � y � F and y � y � u = T � y � u.

The latter two equations immediately imply the following very simple contraction laws:

x � x � x = x � x � F = T � x � x = T � x � F = x.

Let A′ be a subset of A. We employ a special type of basic forms based on A′: mem-basic
forms over A′ are defined by

—T and F are mem-basic forms over A′, and
—P � a� Q is a mem-basic form over A′ if a ∈ A′ and P and Q are mem-basic forms over

A′ \ {a}.
For example, for A′ = {a} the set of all mem-basic forms is {bv, bv � a � bv′ | bv, bv′ ∈
{T , F}}, and for A′ = {a, b} it is

{bv, t1 � a � t2, t3 � b � t4 | bv ∈ {T , F}, t1, t2 mem-basic forms over {b},
t3, t4 mem-basic forms over {a}}.

LEMMA 8.2. For each propositional statement P, there is a mem-basic form P ′ with
CPmem � P = P ′.

PROOF. By Lemma 3.2, we may assume that P is a basic form and we proceed by
structural induction on P. If P ≡ T or P ≡ F, there is nothing to prove.

Assume P ≡ P1 � a � P2. We write [T/a]P1 for the term that results when T is
substituted for a in P1. We first show that

CPmem � P1 � a � P2 = [T/a]P1 � a � P2

by induction on P1: if P1 equals T or F, this is clear. If P1 ≡ Q � a � R, then CP �
[T/a]P1 = [T/a]Q and we derive

P1 � a � P2 = (Q� a � R) � a � P2
IH= ([T/a]Q� a � R) � a � P2

(15)= [T/a]Q� a � P2

= [T/a]P1 � a � P2,

and if P1 ≡ Q�b� R with b �= a, then CP � [T/a]P1 = [T/a]Q�b� [T/a]R and we derive

P1 � a � P2 = (Q� b � R) � a � P2

(11)(12)= ((Q� a � T) � b � (R � a � T)) � a � P2
IH= (([T/a]Q� a � T) � b � ([T/a]R � a � T)) � a � P2

(11)(12)= ([T/a]Q� b � [T/a]R) � a � P2

= [T/a]P1 � a � P2.

In a similar way, but now using (13), axiom CPmem and (10) instead, we find CPmem �
P1 � a � P2 = P1 � a � [F/a]P2, and thus

CPmem � P1 � a � P2 = [T/a]P1 � a � [F/a]P2.

With axioms CP1 and CP2, we find basic forms Qi in which a does not occur with
CPmem � Q1 = [T/a]P1 and CPmem � Q2 = [F/a]P2.

By induction, it follows that there are mem-basic forms R1 and R2 with CPmem �
Ri = Qi, and hence CPmem � P = R1 � a � R2 and R1 � a � R2 is a mem-basic form.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:17

Next we formulate two more auxiliary lemmas. Recall that A is a VA in the variety
mem if for all a, b ∈ A,

a • (a • x) = a • x, ya(x) = ya(a • x),
a • (b • (a • x)) = b • (a • x), ya(b • (a • x)) = ya(x).

LEMMA 8.3. For each valuation algebra A ∈ mem, and for all propositional state-
ments P, Q and valuations H ∈ A,

Q • (P • (Q• H)) = P • (Q • H) and Q/(P • (Q • H)) = Q/H. (17)

PROOF. By structural induction on Q. The cases Q ≡ T and Q ≡ F are trivial. If
Q ≡ a, then apply structural induction on P: the cases P ≡ T and P ≡ F are trivial,
and if P ∈ A, then (17) follows by definition of mem. If P ≡ P1 � P2 � P3, then if
P2/(a • H) = T ,

a • ((P1 � P2 � P3) • (a • H)) = a • (P1 • (P2 • (a • H)))
= a • (P1 • (a • (P2 • (a • H))))
= P1 • (a • (P2 • (a • H)))
= P1 • (P2 • (a • H))
= (P1 � P2 � P3) • (a • H),

and

a/((P1 � P2 � P3) • (a • H)) = a/(P1 • (P2 • (a • H)))
= a/(P1 • (a • (P2 • (a • H))))
= a/(P2 • (a • H))
= a/H,

and if P2/(a • H) = F a similar argument applies.
If Q ≡ Q1 � Q2 � Q3, then first assume Q2/H = T , so Q • H = Q1 • (Q2 • H). Observe

that

(Q1 ◦ P) • (Q2 • H) = P • (Q1 • (Q2 • H)),

so by induction Q2/(P • (Q1 • (Q2 • H))) = Q2/((Q1 ◦ P) • (Q2 • H)) = Q2/H = T . Using
induction we further derive

Q • (P • (Q • H)) = Q1 • ((P ◦ Q2) • (Q1 • (Q2 • H)))
= (P ◦ Q2) • (Q1 • (Q2 • H))
= Q2 • ((Q1 ◦ P) • (Q2 • H))
= P • (Q1 • (Q2 • H))
= P • (Q • H),

and

(Q1 � Q2 � Q3)/(P • (Q • H)) = Q1/((P ◦ Q2) • (Q1 • (Q2 • H))
= Q1/(Q2 • H)
= Q/H.

Finally, if Q2/H = F a similar argument applies.

LEMMA 8.4. For all mem-basic forms P and Q, P =mem Q implies P ≡ Q.

PROOF. The implication of the lemma follows by contraposition and nested induction
on the complexity of mem-basic forms.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:18 J. A. Bergstra and A. Ponse

If P ≡ T , then if Q ≡ F, P �=mem Q is witnessed by each VA in which T �= F. If
Q ≡ Q1 � a � Q2, then consider A ∈ mem with T �= F and with a valuation H that
satisfies ya(H) = yb(H) = T and yb(R • (a • H)) = F for all propositional statements R.
Then, (P ◦ b)/H = T while (Q◦ b)/H = F, so P �=mem Q.

If P ≡ F a similar argument applies.
If P ≡ P1 � a � P2, then the cases Q ≡ T and Q ≡ F can be dealt with as above. If

Q ≡ Q1 � a � Q2, then assume P �≡ Q because P1 �≡ Q1. By induction, P1 �=mem Q1. By
implication (9), there exists A ∈ mem with valuation H and propositional statements
R and S such that (R� P1 � S)/H �= (R� Q1 � S)/H. Observe that a does not occur in P1
and Q1, and that we may assume that if a occurs in R and/or S, its substitution by T
preserves this inequality (otherwise, replace a by F � a � T). Now extend A to A′ with
a valuation H′ with ya(H′) = T and a • H′ = H, then R � P � S and R � Q � S yield
different results under H′; hence, P �=mem Q. Clearly, also A′ ∈ mem. If P1 ≡ Q1, then
P2 �≡ Q2 and a similar argument applies.

Finally, if Q ≡ Q1 � b � Q2 with b �= a, then P �=mem Q follows by considering
A ∈ mem with T �= F and with valuation H that satisfies ya(H) = T , yb(H) = F,
and for all propositional statements R, ya(R • (b • H)) = F. Then, by Lemma 8.3,
ya(P • H) = ya(P1 • (a • H)) = ya(H), so (P ◦ a)/H = T while (Q ◦ a)/H = F.

PROOF OF THEOREM 8.1. Let A be a VA in the variety mem. In order to prove sound-
ness, we have to show that axiom CPmem holds in A. Consider propositional statement

P � Q� (R � S � (V � Q� W)).

By Lemma 8.3, we find

Q/H = F =⇒
{

(V � Q� W)/(S • (Q • H)) = W/(S • (Q • H)),
(V � Q� W) • (S • (Q • H)) = W • (S • (Q• H)).

Now the soundness of axiom CPmem follows immediately:

(P � Q� (R � S � (V � Q� W)))/H

=
⎧⎨
⎩

P/(Q • H) if Q/H = T ,

R/(S • (Q • H)) if Q/H = F and S/(Q • H) = T ,

(V � Q� W)/(S • (Q • H)) if Q/H = F and S/(Q • H) = F,

=
⎧⎨
⎩

P/(Q • H) if Q/H = T ,

R/(S • (Q • H)) if Q/H = F and S/(Q • H) = T ,

W/(S • (Q • H)) if Q/H = F and S/(Q • H) = F,

= (P � Q� (R � S � W))/H,

and

(P � Q� (R � S � (V � Q� W))) • H

=
⎧⎨
⎩

P • (Q • H) if Q/H = T ,

R • (S • (Q • H)) if Q/H = F and S/(Q • H) = T ,

(V � Q� W) • (S • (Q • H)) if Q/H = F and S/(Q • H) = F,

=
⎧⎨
⎩

P • (Q • H) if Q/H = T ,

R • (S • (Q • H)) if Q/H = F and S/(Q • H) = T ,

W • (S • (Q • H)) if Q/H = F and S/(Q • H) = F,

= (P � Q� (R � S � W)) • H.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:19

In order to prove completeness, assume P =mem Q. By Lemma 8.2, there are mem-
basic forms P ′ and Q′ with CPmem � P = P ′ and CPmem � Q = Q′. By soundness,
P ′ =mem Q′, thus, by Lemma 8.4, P ′ ≡ Q′, and thus CPmem � P = Q.

9. COMPLETENESS FOR THE VARIETY st

In this section, we provide a complete axiomatization of static valuation congruence.

THEOREM 9.1 ([HOARE 1985B]). Static valuation congruence =st is axiomatized by the
axioms in CP (see Table I) and these axioms:

(CPstat) (x � y � z) � u � v = (x � u � v) � y � (z � u � v),
(CPcontr) (x � y � z) � y � u = x � y � u.

We write CPst for this set of axioms.

Observe that axiom CPcontr equals the derivable identity (15), which holds in CPmem .
Also note that the symmetric variants of the axioms CPstat and CPcontr, say

(CPstat′) x � y � (z � u � v) = (x � y � z) � u � (x � y � v),

(CPcontr′) x � y � (z � y � u) = x � y � u,

easily follow with identity (2), that is, y� x � z = z� (F � x � T)� y, which is even valid in
free valuation congruence, and that CPcontr′ = (13). Thus, the axiomatization of static
valuation congruence is obtained from CP by adding the axiom CPstat that prescribes
for a nested conditional composition how the order of the first and a second central
condition can be changed, and a generalization of the axioms CPcr1 and CPcr2 that
prescribes contraction for terms (instead of atoms). Moreover, in CPst it can be derived
that

x = (x � y � z) � F � x
= (x � F � x) � y � (z � F � x)
= x � y � x
= y ◦ x,

thus any “and-then” prefix can be added to (or left out from) a propositional statement
while preserving static valuation congruence, in particular x � x � x = x ◦ x = x.

PROOF OF THEOREM 9.1. Soundness follows from the definition of static valuations: let
A be a VA that satisfies for all a, b ∈ A,

ya(b • x) = ya(x).

These equations imply that for all P, Q and H ∈ A,

P/H = P/(Q • H).

As a consequence, the validity of axioms CPstat and CPcontr follows from simple case
distinctions. Furthermore, Hoare showed in [1985b] that CPst is complete for static
valuation congruence.

For an idea of a direct proof, assume P =st Q and assume that the atoms occurring
in P and Q are ordered as a1, . . . , an. Then, under static valuation congruence, each
propositional statement containing no other atoms than a1, . . . , an can be rewritten into
the following special type of basic form: consider the full binary tree with at level i only
occurrences of atom ai (there are 2i−1 such occurrences), and at level n + 1 only leaves
that are either T or F (there are 2n such leaves). Then, each series of leaves represents
one of the possible propositional statements in which these atoms may occur, and the
axioms in CPst are sufficient to rewrite both P and Q into exactly one such basic

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:20 J. A. Bergstra and A. Ponse

Table II. Some Immediate Conse-
quences of the Set of Axioms CP
and Eq. (18)

¬T = F (19)
¬F = T (20)

¬¬x = x (21)
¬(x � y � z) = ¬x � y � ¬z (22)

x � ¬y � z = z � y � x (23)

Table III. Defining Equations for Derived
Connectives

x ∧� y = y � x � F x →� y = y � x � T

x ∧� y = x � y � F x→ � y = T � y � ¬x

x ∨� y = T � x � y x ↔� y = y � x � ¬y

x ∨�

y = T � y � x x↔ � y = x � y � ¬x

form. For these basic forms, static valuation congruence implies syntactic equivalence.
Hence, completeness follows.

As an aside, we note that the axioms CPcontr and CPcontr′ immediately imply
CPcr1 and CPcr2, and conversely, that each instance of these axioms is derivable from
CP+CPstat+CPcr1+CPcr2 (by induction on basic forms on y’s position), which proves
completeness of this particular group of axioms.

10. ADDING NEGATION AND DEFINABLE CONNECTIVES

In this section, we formally add negation and various definable connectives to CP. As
stated earlier (see identity (2)), negation ¬x can be defined as follows:

¬x = F � x � T . (18)

The derivable identities in Table II play a role in the derivable connectives that we
discuss shortly. They can be derived as follows:

(19) follows from ¬T = F � T � T = F,
(20) follows in a similar way,
(21) follows from ¬¬x = F � (F � x � T)� T = (F � F � T)� x � (F � T � T) = T � x � F = x,
(22) follows in a similar way,
(23) follows from x � ¬y � z = (z� F � x) � ¬y � (z� T � x) = z� (F � ¬y � T) � x = z� y � x.

A definable (binary) connective already introduced is the and then operator ◦ with
defining equation x ◦ y = y � x � y. Furthermore, following Bergstra et al. [1995], we
write

∧�
for left-sequential conjunction, that is, a conjunction that first evaluates its left argu-
ment and only after that is found T carries on with evaluating its second argument
(the small circle indicates which argument is evaluated first). Similar notations are
used for other sequential connectives. We provide defining equations for a number of
derived connectives in Table III.

The operators ∧� and left-sequential disjunction ∨� are associative and the dual of
each other, and so are their right-sequential counterparts. For ∧� , a proof of this is as
follows:

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:21

(x ∧� y) ∧� z = z � (y � x � F) � F
= (z � y � F) � x � (z � F � F)

= (y ∧� z) � x � F

= x ∧� (y ∧� z),

and (a sequential version of De Morgan’s laws)

¬(x ∧� y) = F � (y � x � F) � T
= (F � y � T) � x � (F � F � T)
= ¬y � x � T
= T � ¬x � ¬y

= ¬x ∨� ¬y.

Furthermore, note that T ∧� x = x and x ∧� T = x, and F ∨� x = x and x ∨� F = x.
Of course, distributivity, as in (x ∧� y)∨� z = (x ∨� z)∧� (y∨� z) is not valid in free valuation

congruence: it changes the order of evaluation and in the right-hand expression z can
be evaluated twice. It is also obvious that both sequential versions of absorption, one
of which reads

x = x ∧� (x ∨�

y),

are not valid. Furthermore, it is not difficult to prove in CP that ↔� and ↔ � (i.e., the
two sequential versions of bi-implication defined in Table III) are also associative, and
that →� and → � are not associative, but satisfy the sequential versions of the common
definition of implication:

x →� y = ¬x ∨� y and x→ �y = ¬x ∨�

y.

From now on, we extend �CP(A) with the “and then” operator ◦, negation and all
derived connectives introduced in this section, and we adopt their defining equations.
Of course, it remains the case that each propositional statement has a unique basic
form (cf. Lemma 3.2).

Concerning the example of the propositional statement sketched in Example (1) in
Section 2:

look-left-and-check ∧� look-right-and-check ∧� look-left-and-check

indeed precisely models part of the processing of a pedestrian planning to cross a road
with two-way traffic driving on the right.

We end this section with a brief comment on these connectives in the setting of other
valuation congruences. In memorizing valuation congruence, the sequential connective
∧� has the following properties:

(1) The associativity of ∧� is valid,
(2) The identity x ∧� y ∧� x = x ∧� y is valid (by Eq. (16)),
(3) The connective ∧� is not commutative.

In static valuation congruence, all of ∧� , ∨� , ∧� and ∨�

are commutative and idempo-
tent. For example, we derive with axiom CPstat that

x ∧� y = y � x � F = (T � y � F) � x � F = (T � x � F) � y � (F � x � F) = x � y � F = y ∧� x,

and with axiom CPcontr and its symmetric counterpart CPcontr′,

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:22 J. A. Bergstra and A. Ponse

x ∧� x = x � x � F = (T � x � F) � x � F = T � x � F = x,

x ∨� x = T � x � x = T � x � (T � x � F) = T � x � F = x.

As a consequence, the sequential notation of these connectives is not meaningful in
this case, and distributivity and absorption hold in static valuation congruence.

11. SATISFIABILITY AND COMPLEXITY

In this section, we briefly consider some complexity issues. Given a variety K of val-
uation algebras, a propositional statement is satisfiable with respect to K if for some
nontrivial A ∈ K (TVal and FVal are different), there exists a valuation H ∈ A such that

P/H = T .

We write

SATK(P)

if P is satisfiable. We say that P is falsifiable with respect to K, notation

FALK(P),

if and only if a valuation H ∈ A ∈ K exists with P/H = F. This is the case if and only
if SATK(F � P � T).

It is a well-known fact that SATst is an NP-complete problem, and it is easily seen
that for all propositional statements P, SATmem (P) = SATst (P). We now argue that
SATfr is in P. This is the case because in the variety fr , both SATfr and FALfr can
be simultaneously defined in an inductive manner: let a ∈ A and write ¬SATfr (P) to
express that SATfr (P) does not hold, and similar for FALfr , then

SATfr (T), ¬FALfr (T),
¬SATfr (F), FALfr (F),
SATfr (a), FALfr (a),

and

SATfr (P � Q� R) if

⎧⎨
⎩

SATfr (Q) and SATfr (P),
or
FALfr (Q) and SATfr (R),

FALfr (P � Q� R) if

⎧⎨
⎩

SATfr (Q) and FALfr (P),
or
FALfr (Q) and FALfr (R).

Hence, with respect to free valuation congruence both SATfr (P) and FALfr (P) are
computable in polynomial time. In a similar way, one can show that both SATrp and
SATcr are in P.

Of course, many more models of CP exist than those discussed in the previous
sections. For example, call a valuation positively memorizing (Pmem) if the reply T to
an atom is preserved after all subsequent replies:

x � a � y = [T/a]x � a � y

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:23

for all atomic propositions a. In a similar way, one can define negatively memorizing
valuations (Nmem):

x � a � y = x � a � [F/a]y.

Contractive or weakly memorizing valuations that satisfy Pmem (Nmem) give rise to
new models in which more propositional statements are identified.

THEOREM 11.1. For

K ∈ {Pmem, cr+Pmem,wm+Pmem,Nmem, cr+Nmem,wm+Nmem,mem}

it holds that SATK is NP-complete.

PROOF. We only consider the case for Pmem. Then

SATst (P) = SATmem (P) = SATPmem (P ∧� · · · ∧� P),

where P is repeated n+ 1 times with n the number of atoms occurring in P. Each time
a P evaluates to T while it would not do so in mem, this is due to some atom that
changes the reply. So, this must be a change from F to T , because T remains T in
Pmem. Per atom this can happen at most once, and if each P yields T , then at least
once without any atom taking different values. But then P is also satisfiable in mem.
Thus, the NP-complete problem SATst (P) can be polynomially reduced to SATPmem (P),
hence SATPmem is NP-complete.

For K ∈ {cr+Pmem,wm+Pmem, cr+Nmem,wm+Nmem}, each closed term can be
written with T , F, ¬, ∧� and ∨� only. For example in cr+Pmem:

x � a � y = (a ∧� x) ∨� (¬a ∧� y)

because after a positive reply to a and whatever happens in x, the next a is again
positive, so y is not evaluated, and after a negative reply to a, the subsequent a gets a
negative reply because of cr , so then y is tested. So here we see models that identify
less than =mem and in which each closed term can be written without conditional
composition. At first sight, this cannot be done in a uniform way (using variables only),
and it also yields a combinatoric explosion because first a rewriting to basic form is
needed. For these models K, SATK is known to be NP-complete.

12. EXPRESSIVENESS

In this section, we first show that the ternary conditional operator cannot be replaced
by ¬ and ∧� and one of T and F (which together define ∨�) modulo free valuation
congruence. Then, we show that this is the case for any collection of unary and binary
operators each of which is definable in �CP(A) with free valuation congruence, and in a
next theorem we lift this result to contractive valuation congruence. Finally, we observe
that the conditional operator is definable with ¬ and ∧� and one of T and F modulo
memorizing valuation congruence. We were unable to decide whether this is also the
case in weakly memorizing valuation congruence.

An occurrence of an atom a in a propositional statement over A, ¬, ∧� and ∨� is
redundant or inaccessible if it is not used along any of the possible arbitrary valuations,
as in for example F ∧� a.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:24 J. A. Bergstra and A. Ponse

The opposite of redundancy is accessibility, which is defined thus (acc(φ) ⊆ A):

acc(a) = {a},
acc(T) = ∅,

acc(¬x) = acc(x),

acc(x ∧� y) =
{

acc(x) if ¬SATfr (x),
acc(x) ∪ acc(y) if SATfr (x),

acc(x ∨� y) =
{

acc(x) if ¬SATfr (¬x),
acc(x) ∪ acc(y) if SATfr (¬x).

PROPOSITION 12.1. Let a ∈ A, then the propositional statement a � a � ¬a cannot be
expressed in �CP(A) with free valuation congruence using ∧� , ∨� , ¬, T and F only.

PROOF. Let ψ be a minimal expression of a � a � ¬a.
Assume ψ ≡ ψ0 ∨� ψ1. We notice:

(1) Both ψ0 and ψ1 must contain a: If ψ0 contains no a, it is either T and then ψ always
yields T which is wrong, or F and then ψ can be simplified; if ψ1 contains no a it
is either T and then ψ always yields T , which is wrong, or F and then ∨� F can be
removed so ψ was not minimal.

(2) ψ0 can yield F otherwise ψ is not minimal. It will do so after using exactly one test
a (yielding F without a use of a simply means that a �∈ acc(ψ0)), yielding F after
two uses of a implies that evaluation of ψ has at least three uses of a (which is
wrong).

(3) If ψ0 yields T , this completes the evaluation of ψ , so then the evaluation of ψ0
involves two uses of a. If ψ0 yields F, it must contain at least one use of a (but no
more because otherwise evaluation of ψ1 yields at least a third use of a).

Thus, ψ0 = F � a � (a ∨� T) or ψ0 = F � ¬a � (a ∨� T), where the a in the right-hand
sides equals either a or ¬a, and these sides take their particular form by minimality
(other forms are T ∨� a = T , etc.). But both are impossible as both imply that after a
first use of a the final value of ψ can be independent of the second value returned for a
which is not true for a � a � ¬a.

For the case ψ ≡ ψ0 ∧� ψ1, a similar type of reasoning applies.

In this section, we will prove two more general results. We first introduce some
auxiliary definitions and notations because we have to be precise about definability by
unary and binary operators. For X, a countable set of variables, we define the following
sets:

TC(X) : the set of terms over X, T , F, � � .
TTND(X) : the set of terms over X, T ,¬, ∨� .
T 1,2

C (X) : the smallest set of terms V such that
⎧⎪⎪⎨
⎪⎪⎩

T , F ∈ V,

if x ∈ X and t ∈ TC({x}) then t ∈ V ,

if x, y ∈ X and t ∈ TC({x, y}) then t ∈ V ,

V is closed under substitution.

Thus, T 1,2
C (X) contains the terms that can be made from unary and binary operators

definable in TC(X). For t ∈ T 1,2
C ({x}), we sometimes write t(x) instead of t, and if

s ∈ T 1,2
C (X), we write t(s) for the term obtained by substituting s for all x in t. Similarly,

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:25

if u ∈ T 1,2
C ({x, y}), we may write u(x, y) for u, and if s, s′ ∈ T 1,2

C (X), we write u(s, s′) for
the term obtained by substituting s for x and s′ for y in u. Finally, we define #2p(t) as
the number of 2-place terms used in the definition of t, that is,

#2p(x) = #2p(T) = #2p(F) = 0,

#2p(t(s)) = #2p(t) + #2p(s),

#2p(u(s, s′)) = #2p(u) + #2p(s) + #2p(s′).

Notice TTND(X) ⊆K T 1,2
C (X) ⊆K TC(X), where M ⊆K N if, for each term t ∈ M, there

is a term r ∈ N with r =K t for K ∈ {fr , rp, cr ,wm,mem, st}. We write ∈K for the
membership relation associated with ⊆K.

The sets TTND(A), T 1,2
C (A) and TC(A) contain the closed substitution instances of the

respective term sets when constants from A are substituted for the variables. The set
T 1,2

C (A, X) contains the terms constructed from T 1,2
C (A) and T 1,2

C (X). For given terms
r(x) ∈ T 1,2

C (A, {x}) and t ∈ T 1,2
C (A) we write r(t) for the term obtained by substituting

t for all x in r (thus r(t) ≡ [t/x]r(x)). We extend the definition of #2p(t) to T 1,2
C (A, X) in

the expected way by defining #2p(a) = 0 for all a ∈ A.
Clearly, for all K,

TTND(A) ⊆K T 1,2
C (A) ⊆K TC(A).

From Proposition 12.1, we find that a � a � ¬a �∈fr TTND(A), thus

TTND(A) �fr T 1,2
C (A).

Theorem 12.2 establishes that T 1,2
C (A) �fr TC(A) as a � b � c �∈fr T 1,2

C (A). This result
transfers to rp-congruence, without modification. However, in wm-congruence, we find

a � b � c =wm (T � b � c) � (a � b � T) � F = (¬b ∨� a) ∧� (b ∨� c),

thus a � b � c ∈wm T 1,2
C (A).

THEOREM 12.2. If |A| > 2, then the conditional operator cannot be expressed modulo
free valuation congruence in T 1,2

C (X).

PROOF. It is sufficient to prove that a � b � c �∈fr T 1,2
C (A).

Towards a contradiction, assume t ∈ T 1,2
C (A) is a term such that t =fr a � b � c and

#2p(t) is minimal (i.e., if u ∈ T 1,2
C (A) and u =fr t then #2p(u) ≥ #2p(t)).

We first argue that t �≡ f (b, t′) for some binary function f and term t′. Suppose
otherwise, then b must be the central condition in f (b, t′), so f (b, t′) =fr g(b, t′)�b�h(b, t′)
for certain binary functions g and h in T 1,2

C (X). Because it is neither the case that b can
occur as a central condition in both g(b, t′) and in h(b, t′), nor that each of these can be
modulo fr in {T , F}, we find

t =fr (P � t′ � Q) � b � (P ′ � t′ � Q′)

for certain P, P ′, Q, Q′. The only possibilities left are that the central atom of t′ is either
a or c, and both choices contradict f (b, t′) =fr a � b � c.

So it must be the case that

t ≡ r(f (b, t′))

for some term r(x) ∈ T 1,2
C ({x}) such that b is central in f (b, t′) and x is central in r(x).

If no such term r(x) exists, then t ≡ f ′(a′) with f ′(x) a unary operator definable in
T 1,2

C ({x}) and a′ ∈ A, which cannot hold because t needs to contain a, b and c.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:26 J. A. Bergstra and A. Ponse

Also there cannot be a unary function f ′ ∈ T 1,2
C ({x}) with r(f ′(b)) =fr r(f (b, t′)),

otherwise r(f ′(b)) ∈ T 1,2
C (A) while

#2p(r) = #2p(r(f ′(b))) < #2p(r(f (b, t′))) = #2p(r) + #2p(t′) + 1,

which contradicts the minimality of #2p(t).
As x is central in f (x, y), we may write

f (x, y) =fr g(x, y) � x � h(x, y)

for certain binary functions g and h in T 1,2
C (X). Because b is central in t, we find

t =fr r(g(b, t′) � b � h(b, t′)).

We proceed with a case distinction on the form that g(b, t′) and h(b, t′) may take. At
least one of these is modulo fr not equal to T or F (otherwise, f (b, t′) could be replaced
by f ′(b) for some unary function f ′ and this was excluded).

(1) Suppose g(b, t′) �∈fr {T , F} and h(b, t′) �∈fr {T , F}. First, notice that b cannot occur
as a central condition in both g(b, t′) and in h(b, t′). So, both g(x, y) and h(x, y) can
be written as a conditional composition with y as the central variable, and we find

t =fr r((P � t′ � Q) � b � (P ′ � t′ � Q′))
for certain closed terms P, Q, P ′, Q′. By supposition t′ �∈fr {T , F}, and the only
possibilities left are that its central atom equals both a and c, which clearly is
impossible.

(2) We are left with four cases: either a is central in g(b, t′) and h(b, t′) ∈fr {T , F}, or c
is central in h(b, t′) and g(b, t′) ∈fr {T , F}. These cases are symmetric and it suffices
to consider only the first one, the others can be dealt with similarly.
So assume a is central in g(b, t′) and h(b, t′) =fr T , hence

g(b, t′) =fr P � a � Q for some P, Q ∈ {T , F}.
We find

t =fr r((P � a � Q) � b � T),

and we distinguish two cases:
(i) P ≡ T or Q ≡ T . Now a central c can be reached after a negative reply to b. But

this central c can also be reached after a positive reply to b and the appropriate
reply to a, which contradicts free congruence with a � b � c.

(ii) P ≡ Q ≡ F. Then, the reply to a in r((F � a � F) � b � T) is not used, which also
contradicts free congruence with a � b � c.

This concludes our proof.

We will now argue that a� b� c �∈cr T 1,2
C (A). We will make use of additional operators

Ta and Fa for each atom a ∈ A, defined for all b ∈ A and terms t, r ∈ T 1,2
C (A) by

Ta(T) = T , Fa(T) = F,

Ta(F) = T , Fa(F) = F,

Ta(t � b � r) = t � b � r if a �= b, Fa(t � b � r) = t � b � r if a �= b,

Ta(t � a � r) = Ta(t), Fa(t � a � r) = Fa(r).

Observe that Ta (Fa) simplifies a term t as if it is a subterm of a ◦ t with the additional
knowledge that the reply on a has been T . We notice that

t � a � r =cr Ta(t) � a � Fa(r).

We define a term P to have the property φa,b,c if

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:27

—the central atom of Tb(P) equals a, Ta(Tb(P)) ∈cr {T , F} and Fa(Tb(P)) ∈cr {T , F},
and Ta(Tb(P)) �=cr Fa(Tb(P)),

—the central atom of Fb(P) equals c, Tc(Tb(P)) ∈cr {T , F} and Fc(Tb(P)) ∈cr {T , F},
and Tc(Tb(P)) �=cr Fc(Tb(P)).

Typically, a � b � c has property φa,b,c.

THEOREM 12.3. If |A| > 2, then the conditional operator cannot be expressed modulo
contractive valuation congruence in T 1,2

C (X).

PROOF. Let a, b, c ∈ A. It is sufficient to show that no term in T 1,2
C (A) has property

φa,b,c. A detailed proof of this fact is included in Appendix A.

Finally, we observe that x � y � z is expressible in CPmem using ∧� and ¬ only: first ∨�
is expressible, and

CPmem � (y ∧� x) ∨� (¬y ∧� z) = T � (x � y � F) � (z � (F � y � T) � F)
= T � (x � y � F) � (F � y � z)
= (T � x � (F � y � z)) � y � (F � y � z)
(11)= (T � x � F) � y � (F � y � z)
(13)= x � y � z.

Thus, for x, y, z ∈ X, it holds that (x�y�z) ∈mem T 1,2
C (X). We leave it as an open question

whether (x � y � z) ∈wm T 1,2
C (X).

13. PROJECTIONS AND THE PROJECTIVE LIMIT MODEL

In this section, we introduce the projective limit model A∞ that contains finite as well
as infinite propositions. A simple, intuitive example of a potentially infinite proposition
is

while ¬a test b,

which as long as a yields F tests b. An infinite proposition such as this one can be
meaningful in free or reactive valuation semantics. In the next section, we return to
this example.

Let P be the domain of the initial algebra of CP. We assume that each element in P
is represented by its (equivalent) basic form, but we shall often write a for T � a � F.
Let N+ denote N \ {0}. We first define a so-called projection operator

π : N+ × P → P,

which will be used to finitely approximate every proposition in P. We further write

πn(P)

instead of π (n, P). The defining equations for the πn-operators are these (n ∈ N+):

πn(T) = T , (24)
πn(F) = F, (25)

π1(x � a � y) = a, (26)
πn+1(x � a � y) = πn(x) � a � πn(y), (27)

for all a ∈ A. We write PR for this set of equations. It follows by structural induction
on representatives that for each proposition P ∈ P, there exists n ∈ N+ such that for

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:28 J. A. Bergstra and A. Ponse

all j ∈ N,

πn+ j(P) = P.

We state without proof that CP + PR is a conservative extension of CP and mention
the following derivable identities in CP + PR for a ∈ A and n ∈ N+:

πn(a) = πn(T � a � F) = a,

πn+1(a ◦ x) = a ◦ πn(x).

The following lemma establishes how the arguments of the projection of a conditional
composition can be restricted to certain projections, in particular

πn(P � Q� R) = πn(πn(P) � πn(Q) � πn(R)), (28)

which is a property that we will use in the definition of our projective limit model.

LEMMA 13.1. For all P, Q, R ∈ P and all n ∈ N+, k, �, m ∈ N,

πn(P � Q� R) = πn(πn+k(P) � πn+�(Q) � πn+m(R)).

PROOF. We may assume that Q is a basic form and we apply structural induction
on Q.

If Q ≡ T then we have to prove that for all n ∈ N+ and k ∈ N,

πn(P) = πn(πn+k(P)).

We apply structural induction on P. If P ∈ {T , F} we are done. If P ≡ P1 � a � P2 then
we proceed by induction on n. The case n = 1 is trivial, and

πn+1(P) = πn+1(P1 � a � P2)
= πn(P1) � a � πn(P2)
IH= πn(πn+k(P1)) � a � πn(πn+k(P2))
= πn+1(πn+k(P1) � a � πn+k(P2))
= πn+1(πn+k+1(P)).

If Q ≡ F: similar.

If Q ≡ Q1 � a � Q2 then we proceed by induction on n. The case n = 1 is trivial, and

πn+1(P � Q� R) = πn+1(P � (Q1 � a � Q2) � R)
= πn+1((P � Q1 � R) � a � (P � Q2 � R))
= πn(P � Q1 � R) � a � πn(P � Q2 � R)
IH= πn(πn+k+1(P) � πn+�(Q1) � πn+m+1(R)) � a �

πn(πn+k+1(P) � πn+�(Q2) � πn+m+1(R))
= πn+1((πn+k+1(P) � πn+�(Q1) � πn+m+1(R)) � a �

(πn+k+1(P) � πn+�(Q2) � πn+m+1(R)))
= πn+1(πn+k+1(P) � (πn+�(Q1) � a � πn+�(Q2)) � πn+m+1(R))
= πn+1(πn+1+k(P) � πn+1+�(Q) � πn+1+m(R)).

The projective limit model A∞ is defined as follows.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:29

—The domain of A∞ is the set of projective sequences (Pn)n∈N+ : these are all sequences
with the property that all Pn are in P and satisfy

πn(Pn+1) = Pn,

so that they can be seen as successive projections of the same infinite proposition
(observe that πn(Pn) = Pn). We further write (Pn)n instead of (Pn)n∈N+ .

—Equivalence of projective sequences in A∞ is defined component-wise, thus

(Pn)n = (Qn)n if for all n, Pn = Qn.

—The constants T and F are interpreted in A∞ as the projective sequences that consist
solely of these respective constants.

—An atomic proposition a is interpreted in A∞ as the projective sequence

(a, a, a, . . .).

—Projection in A∞ is defined component-wise, thus πk((Pn)n) = (πk(Pn))n.
—Conditional composition in A∞ is defined using projections:

(Pn)n � (Qn)n � (Rn)n = (πn(Pn � Qn � Rn))n.

The projections are needed if the depth of a component Pn � Qn � Rn exceeds n.
Equation (28) implies that this definition indeed yields a projective sequence:

πn(πn+1(Pn+1 � Qn+1 � Rn+1)) = πn(Pn+1 � Qn+1 � Rn+1)
= πn(πn(Pn+1) � πn(Qn+1) � πn(Rn+1))
= πn(Pn � Qn � Rn).

The following result can be proved straightforwardly.

THEOREM 13.2. A∞ |= CP + PR.

The projective limit model A∞ contains elements that are not the interpretation of
finite propositions in P (in other words, elements of infinite depth). In the next section,
we discuss some examples.

14. RECURSIVE SPECIFICATIONS

In this section, we discuss recursive specifications over �CP(A), which provide an al-
ternative and simple way to define propositions in A∞. We first restrict ourselves to a
simple class of recursive specifications: Given � > 0, a set

E = {Xi = ti | i = 1, . . . , �}
of equations is a linear specification over �CP(A) if

ti ::= T | F | Xj � ai � Xk

for i, j, k ∈ {1, . . . , �} and ai ∈ A. A solution for E in A∞ is a series of propositions

(P1,n)n, . . . , (P�,n)n

such that (Pi,n)n solves the equation for Xi. In A∞, solutions for linear specifications
exist. This follows from the property that for each m ∈ N+, πm(Xi) can be computed as
a proposition in P by replacing variables Xj by tj sufficiently often. For example, if

E = {X1 = X3 � a � X2, X2 = b ◦ X1, X3 = T }

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:30 J. A. Bergstra and A. Ponse

we find πm(X3) = πm(T) = T for all m ∈ N+, and

π1(X2) = π1(b ◦ X1) πm+1(X2) = πm+1(b ◦ X1)
= b, = b ◦ πm(X1),

π1(X1) = π1(X3 � a � X2) πm+1(X1) = πm+1(X3 � a � X2)
= a, = T � a � πm(X2),

and we can in this way construct a projective sequence per variable. We state without
proof that for a linear specification E = {Xi = ti | i = 1, . . . , �} such sequences model
unique solutions in A∞,1 and we write

〈Xi|E〉
for the solution of Xi as defined in E. In order to reason about linearly specified propo-
sitions, we add these constants to the signature �CP. These constants satisfy the equa-
tions

〈Xi|E〉 = 〈ti|E〉
where 〈ti|E〉 is defined by replacing each Xj in ti by 〈Xj |E〉. The proof principle introduc-
ing these identities is called the Recursive Definition Principle (RDP), and for linear
specifications RDP is valid in the projective limit model A∞.2 As illustrated above, all
solutions satisfy

〈Xi|E〉 = (πn(〈Xi|E〉))n.

Some examples of propositions defined by recursive specifications are these:

(1) For E = {X1 = X2 � a � X3, X2 = T , X3 = F}, we find

〈X1|E〉 = (a, a, a, . . .)

which in the projective limit model represents the atomic proposition a. Indeed, by
RDP we find 〈X1|E〉 = 〈X2|E〉 � a � 〈X3|E〉 = T � a � F = a.

(2) For E = {X1 = X2 � a � X3, X2 = T , X3 = T }, we find

〈X1|E〉 = (a, a ◦ T , a ◦ T , a ◦ T , . . .)

which in the projective limit model represents a◦T . By RDP, we find 〈X1|E〉 = a◦T .
(3) For E = {X1 = X3 � a � X2, X2 = b ◦ X1, X3 = T } as discussed above, we find

〈X1|E〉 = (a, T � a � b, T � a � b ◦ a, T � a � b ◦ (T � a � b), . . .)

which in the projective limit model represents an infinite propositional statement,
that is, one that satisfies

πi(〈X1|E〉) = π j(〈X1|E〉) ⇒ i = j,

and thus has infinite depth. By RDP, we find 〈X1|E〉 = T � a � b ◦ 〈X1|E〉. We note
that the infinite propositional statement 〈X1|E〉 can be characterized as

while ¬a test b.

1The domain of A
∞ can be turned into a metric space by defining d((Pn)n, (Qn)n) = 2−n for n the least value

with Pn �= Qn. The existence of unique solutions for linear specifications then follows from Banach’s fixed
point theorem; a comparable and detailed account of this fact can be found in Vu [2008].
2A nice and comparable account of the validity of RDP in the projective limit model for ACP is given in Baeten
and Weijland [1990]. In that text book, a sharp distinction is made between RDP—stating that certain
recursive specifications have at least a solution per variable—and the Recursive Specification Principle
(RSP), stating that they have at most one solution per variable. The uniqueness of solutions per variable
then follows by establishing the validity of both RDP and RSP.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:31

An example of a projective sequence that cannot be defined by a linear specification,
but that can be defined by the infinite linear specification I = {Xi = ti | i ∈ N+} with

ti =
{

a ◦ Xi+1 if i is prime,

b ◦ Xi+1 otherwise,

is 〈X1|I〉, satisfying

〈X1|I〉 = (b, b ◦ a, b ◦ a ◦ a, b ◦ a ◦ a ◦ b, b ◦ a ◦ a ◦ b ◦ a, . . .).

Other examples of projective sequences that cannot be defined by a finite linear speci-
fication are 〈Xj |I〉 for any j > 1.

Returning to Example (1) of a propositional statement sketched in Section 2, we can
be more explicit now: the recursively defined proposition 〈X1|E〉 with E containing

X1 = X2 � green-light � X1,

X2 = X3 � (look-left-and-check ∧� look-right-and-check ∧� look-left-and-check) � X1,

X3 = · · ·
models in a straightforward way a slightly larger part of the processing of a pedestrian
planning to cross a road with two-way traffic driving on the right.

15. CONCLUSIONS

Proposition algebra in the form of CP for propositional statements with conditional
composition and either enriched or not with negation and sequential connectives, is
proposed as an abstract data type. Free valuations provide the natural semantics for
CP and these are semantically at the opposite end of static valuations. It is shown that
taking conditional composition and free valuations as a point of departure implies that
a ternary connective is needed for functional completeness; binary connectives are not
sufficient. Furthermore, CP admits a meaningful and non-trivial extension to projective
limits, and this constitutes the most simple case of an inverse limit construction that
we can think of.

The potential role of proposition algebra is only touched upon by some examples. It
remains a challenge to find convincing examples that require reactive valuations, and
to find earlier accounts of this type of semantics for propositional logic. The basic idea
of proposition algebra with free and reactive valuations can be seen as a combination
of the following two ideas.

—Consider atomic propositions as events (queries) that can have a side effect in a
sequential system, and take McCarthy’s sequential evaluation [1963] to two-valued
propositional logic; this motivates reactive valuations as those that define evaluation
or computation as a sequential phenomenon.

—In the resulting setting, Hoare’s conditional composition [1985b] is more natural
than the sequential, noncommutative versions of conjunction and disjunction, and
(as it appears) more expressive: a ternary connective is needed anyhow.

For conditional composition, we have chosen for the notation

� �
from Hoare [1985b] in spite of the fact that our theme is technically closer to thread
algebra [Bergstra and Middelburg 2007] where a different notation is used. We chose
for the notation � � because its most well-known semantics is static valuation
semantics (which is simply conventional propositional logic) for which this notation was

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:32 J. A. Bergstra and A. Ponse

introduced in Hoare [1985b].3 To some extent, thread algebra and propositional logic
in the style of Hoare [1985b] are models of the same signature. A much more involved
use of conditional composition can be found in Ponse and van der Zwaag [2007], where
the propositional fragment of Belnap’s four-valued logic [1977] is characterized using
only conditional composition and his four constants representing these truth values.

Apart from the valuation congruences introduced in Section 5 and variations thereof
such as Pmem which was briefly discussed in Section 11, many more valuation con-
gruences can be distinguished. As an example we mention here memk with k ∈ N:
valuations that remember the result of each atomic evaluation during k subsequent
atomic evaluations. The valuation congruence defined by memk can be seen as a nat-
ural generalization of repetition-proof valuation congruence (=rp): mem1-congruence
coincides with =rp and mem0-congruence coincides with free valuation congruence.

In this article we assumed that |A| > 1. The case that |A| = 1 is in detail described
in Regenboog [2010]. In particular, =rp and =st and thus all valuation congruences in
between coincide in this case.

Related work. We end with a few notes on related matters.

(1) In quite a few papers the “lazy evaluation” semantics proposed in McCarthy’s work
on conditional expressions in [1963] is discussed, or taken as a point of departure.
We mention a few of these works in reverse chronological order:
(a) Hähnle states in his paper Many-valued logic, partiality, and abstraction in

formal specification languages [2005] that
“sequential conjunction [...] represents the idea that if the truth value
can be determined after evaluation of the first argument, then the
result is computed without looking at the second argument. Many
programming languages contain operators that exhibit this kind of
behavior”.

(b) Konikowska [1996] describes a model of so-called McCarthy algebras in terms
of three-valued logic, while restricting to the well-known symmetric binary
connectives, and provides sound axiomatizations and representation results.
This is achieved by admitting only T and F as constants in a McCarthy algebra,
and distinguishing an element a as in one of four possible classes (“positive” if
a∨x = a, “negative” if a∧x = a, “defined” if a∧¬a = F, and “strictly undefined”
if a = ¬a).

(c) Finally, Bloom and Tindell discuss in their paper Varieties of “if-then-else” [1983]
various modelings of conditional composition, both with and without a truth
value undefined, while restricting to the “redundancy law”

(x � y � z) � y � u = x � y � u,

a law that we called CPcontr in Section 9 and that generalizes the axiomatiza-
tion of contractive valuation congruence defined in that section to an extent in
which only the difference between T , F and undefined plays a significant role.

As far as we can see, none of the papers mentioned here even suggests the idea of
free or reactive valuation semantics. Another example where sequential operators
play a role is Quantum logic as formulated by Rehder [1980] and Mittelstaedt
[2004], where next to normal conjunction a notion of sequential conjunction � is
exploited that is very similar to ∧� (and that despite its notation is certainly not
symmetric).

3This notation was used by Hoare in his 1985 book on CSP [1985a] and in his well-known 1987 paper Laws of
Programming [Hayes et al. 1987] for expressions P �b� Q with P and Q programs and b a Boolean expression
without mention of Hoare [1985b].

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:33

(2) Concerning projections and the projective limit model A∞ we mention that in much
current research and exposition, projections are defined also for depth 0 (see,
e.g., Bergstra and Middelburg [2007] and Vu [2008] for the case of thread alge-
bra, and Fokkink [2000] for process algebra). However, CP does not have a natural
candidate for π0(P) and therefore we stick to the original approach as described
in Bergstra and Klop [1984] (and overviewed in Baeten and Weijland [1990]) that
starts from projections with depth 1.

(3) Free valuation semantics was in a different form employed in accounts of pro-
cess algebra with propositional statements: in terms of operational semantics, this
involves transitions

P
a,w→ Q

for process expressions P and Q with a an action and w ranging over a class of
valuations. In particular, this approach deals with process expressions that contain
propositional statements in the form of guarded commands, such as φ :→ P that
has a transition

(φ :→ P)
a,w→ Q

if P
a,w→ Qand w(φ) = T . For more information about this approach, see, for example,

Bergstra and Ponse [1998b, 1998a].

APPENDIX A

In this appendix, we provide a detailed proof of Theorem 12.3.

PROOF OF THEOREM 12.3. This proof has the same structure as the proof of Theo-
rem 12.2, but a few cases require more elaboration.

Towards a contradiction, assume that t ∈ T 1,2
C (A) is a term with property φa,b,c and

#2p(t) is minimal.
We first argue that t �≡ f (b, t′) for some binary function f and term t′. Suppose

otherwise, then b must be the central condition in f (b, t′), so f (b, t′) =cr g(b, t′) � b �
h(b, t′) for certain binary functions g and h in T 1,2

C (X). Notice that because b is not
central in Tb(g(b, t′)), a different atom must be central in this term, and this atom must
be a. For this to hold, a must be central in Tb(t′) and no atom different from a can be
tested by the first requirement of φa,b,c. So, after contraction of all further a’s we find

Tb(t′) =cr P � a � Q

with P, Q ∈ {T , F}, and similarly

Fb(t′) =cr P ′ � c � Q′

with P ′, Q′ ∈ {T , F}. If P �≡ Q and P ′ �≡ Q′, then t′ is a term that satisfies φa,b,c, but t′ is
a term with lower #2p-value than g(b, t′) � b � h(b, t′), which is a contradiction. If either
P ≡ Q or P ′ ≡ Q′, then

t =cr (P � a � Q) � b � (P ′ � c � Q′),

which contradicts φa,b,c.
So it must be the case that

t ≡ r(f (b, t′))

for some term r(x) ∈ T 1,2
C ({x}) such that b is central in f (b, t′) and x is central in r(x). If

no such such term r(x) exists, then t ≡ f ′(a′) with f ′(x) a unary operator definable in
T 1,2

C ({x}) and a′ ∈ A, which cannot hold because t needs to contain a, b and c.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:34 J. A. Bergstra and A. Ponse

Also there cannot be a unary function f ′ ∈ T 1,2
C ({x}) with r(f ′(b)) =cr r(f (b, t′)), oth-

erwise r(f ′(b)) ∈ T 1,2
C (A) while #2p(r(f ′(b))) < #2p(r(f (b, t′))), which is a contradiction.

As x is central in f (x, y), we may write

f (x, y) =cr g(x, y) � x � h(x, y)

for binary operators g and h. Because b is central in t, we find

t =cr r
(
Tb(g(b, t′)) � b � Fb(h(b, t′))

)
.

We proceed with a case distinction on the form that Tb(g(b, t′)) and Fb(h(b, t′)) may
take. At least one of these is modulo cr not equal to T or F (otherwise, f (b, t′) could be
replaced by f ′(b) for some unary function f ′ and this was excluded above).

(1) Suppose Tb(g(b, t′)) �∈cr {T , F} and Fb(h(b, t′)) �∈cr {T , F}. We show that this is not
possible: first notice that because b is not central in Tb(g(b, t′)), a different atom
must be central in this term, and this atom must be a. For this to hold, a must be
central in Tb(t′) and no atom different from a can be tested by the first requirement
of φa,b,c. So, after contraction of all further a’s we find

Tb(t′) =cr P � a � Q
with P, Q ∈ {T , F}, and similarly Fb(t′) =cr P ′ � c � Q′ with P ′, Q′ ∈ {T , F}.
If P �≡ Q and P ′ �≡ Q′, then t′ is a term that satisfies φa,b,c, but t′ is a term with
lower #2p-value than r(g(b, t′) � b � h(b, t′)), which is a contradiction.
Assume P ≡ Q (the case P ′ ≡ Q′ is symmetric).

Now t =cr r
(
Tb(g(b, t′)) � b � Fb(h(b, t′))

)
, and no b’s can occur in Tb(g(b, t′)), so

Tb(g(b, t′)) ∈cr {P � a � Q, F � (P � a � Q) � T , (P � a � Q) ◦ T , (P � a � Q) ◦ F}.
For Fb(h(b, t′)), a similar argument applies, which implies that (recall P ≡ Q)

Tb(g(b, t′)) =cr a ◦ P and Fb(h(b, t′)) =cr P ′ � c � Q′ with P, P ′, Q′ ∈ {T , F}.
Assume P ≡ T (the case P ≡ F is symmetric). So in this case

t =cr r((a ◦ T) � b � (P ′ � c � Q′)),
and we distinguish two cases:
(i) P ′ ≡ T or Q′ ≡ T . Now the reply to a in a ◦ T following a positive reply to the
initial b has no effect, so this a must be followed by another central a. But this last
a can also be reached after a b and a c, which contradicts φa,b,c.
(ii) P ′ ≡ Q′ ≡ F. Since property φa,b,c holds it must be the case that a is a central
condition in r(T) with the property that Ta(r(T)) �=cr Fa(r(T)), otherwise the initial
b that stems from the substitution x �→ (a ◦ T) � b � (c ◦ F) in r(x) is upon reply T
immediately followed by a◦ T and each occurrence of this a is not able to yield both
T and F, contradicting φa,b,c. (And also because this substitution yields no further
occurrences of b upon reply T .)

Similarly, c is a central condition in r(F) with the property that Tc(r(F)) �=cr

Fc(r(F)). We find that r(b) also satisfies φa,b,c. Now observe that r(b) is a term with
lower #2p-value than r(f (b, t′)), which is a contradiction.

(2) We are left with four cases: either a is central in Tb(g(b, t′)) and Fb(h(b, t′)) ∈cr {T , F},
or c is central in Fb(h(b, t′)) and Tb(g(b, t′)) ∈cr {T , F}. These cases are symmetric
and it suffices to consider only the first one, the others can be dealt with similarly.

So assume a is central in Tb(g(b, t′)) and Fb(h(b, t′)) =cr T . This implies
Tb(g(b, t′)) =cr P � a � Q for some P, Q, and after contraction of all a’s in P and
Q,

Tb(g(b, t′)) =cr P ′ � a � Q′ for some P ′, Q′ ∈ {T , F}.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

Proposition Algebra 21:35

We find

t =cr r((P ′ � a � Q′) � b � T),

and we distinguish two cases:
(i) P ′ ≡ T or Q′ ≡ T . Now c can be reached after a negative reply to b according to
φa,b,c, but this c can also be reached after a positive reply to b and the appropriate
reply to a, which contradicts φa,b,c.
(ii) P ′ ≡ Q′ ≡ F. Since property φa,b,c holds it must be the case that a is a central
condition in r(F) with the property that Ta(r(F)) �=cr Fa(r(F)), otherwise the initial
b that stems from the substitution x �→ (a ◦ F) � b � T in r(x) is upon reply T
immediately followed by a◦ F and each occurrence of this a is not able to yield both
T and F, contradicting φa,b,c. (And also because this substitution yields no further
occurrences of b upon reply T .)

Also, c is a central condition in r(T) with the property that Tc(r(T)) �=cr Fc(r(T)).
We find that r(b) also satisfies φa,b,c. Now observe that r(b) is a term with lower
#2p-value than r(f (b, t′)), which is a contradiction.

This concludes our proof.

ACKNOWLEDGMENTS

We thank Chris Regenboog for discussions about completeness results. We thank three referees for their
careful reviews of a prior version, which we think improved the presentation considerably.

REFERENCES

BAETEN, J. C. M. AND WEIJLAND, W. P. 1990. Process Algebra. Cambridge Tracts in Theoretical Computer
Science, vol. 18. Cambridge University Press, Cambridge.

BELNAP, N. D. 1977. A useful four-valued logic. In Modern Uses of Multiple-Valued Logic, J. Dunn and
G. Epstein, Eds. D. Reidel, Dordrecht, 8–37.

BERGSTRA, J. A., BETHKE, I., AND PONSE, A. 2007. Thread algebra and risk assessment services. In Proceedings
of the Logic Colloquium. C. Dimitracopoulos, L. Newelski, and D. Normann, Eds. Cambridge Lecture
Notes in Logic, vol. 28. 1–17.

BERGSTRA, J. A., BETHKE, I., AND RODENBURG, P. H. 1995. A propositional logic with 4 values: true, false,
divergent and meaningless. J. Appl. Non-Classi. Logics 5, 2, 199–218.

BERGSTRA, J. A. AND KLOP, J. W. 1984. Process algebra for synchronous communication. Inf. Cont. 60, 1–3,
109–137.

BERGSTRA, J. A. AND MIDDELBURG, C. A. 2007. Thread algebra for strategic interleaving. Form. Asp. Comput.
19, 4, 445–474.

BERGSTRA, J. A. AND PONSE, A. 1998a. Bochvar-McCarthy logic and process algebra. Notre Dame J. Form.
Logic 39, 4, 464–484.

BERGSTRA, J. A. AND PONSE, A. 1998b. Kleene’s three-valued logic and process algebra. Inf. Proc. Lett. 67, 2,
95–103.

BERGSTRA, J. A. AND PONSE, A. 2005. A bypass of Cohen’s impossibility result. In Proceedings of the European
Grid Conference (EGC). Lecture Notes in Computer Science, vol. 3470. Springer-Verlag, Berlin, 1097–
1106.

BERGSTRA, J. A. AND PONSE, A. 2007. Execution architectures for program algebra. J. Appl. Logic 5, 1, 170–192.
BLOOM, S. L. AND TINDELL, R. 1983. Varieties of “if-then-else”. SIAM J. Comput. 12, 4, 677–707.
COHEN, F. 1987. Computer viruses – theory and experiments. Comput. Sec. 6, 22–35.
COHEN, F. 2001. Reply to ‘Comment on “A Framework for Modelling Trojans and Computer Virus Infection.”’

Comput. J. 44, 4, 326–327.
FOKKINK, W. J. 2000. Introduction to Process Algebra. Texts in Theoretical Computer Science, An EATCS

Series. Springer-Verlag, Berlin.
HÄHNLE, R. 2005. Many-valued logic, partiality, and abstraction in formal specification languages. Logic J.

IGPL 13, 4, 415–433.
HAYES, I. J., JIFENG, H., HOARE, C. A. R., MORGAN, C. C., ROSCOE, A. W., SANDERS, J. W., SORENSEN, I. H., SPIVEY,

J. M., AND SUFRIN, B. A. 1987. Laws of programming. Comm. ACM 3, 8, 672–686.

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

21:36 J. A. Bergstra and A. Ponse

HOARE, C. A. R. 1985a. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs.
HOARE, C. A. R. 1985b. A couple of novelties in the propositional calculus. Zeitschrift für Mathematische Logik

und Grundlagen der Mathematik 31, 2, 173–178.
KONIKOWSKA, B. 1996. Recursive functions of symbolic expressions and their computation by machine. Fund.

Inf. 26, 2, 167–203.
MCCARTHY, J. 1963. A basis for a mathematical theory of computation. In Computer Programming and Formal

Systems, P. Braffort and D. Hirshberg, Eds. North-Holland, Amsterdam, 33–70.
MITTELSTAEDT, P. 2004. Quantum logic and decoherence. Int. J. Theoret. Phys. 43, 6, 1343–1354.
PONSE, A. AND VAN DER ZWAAG, M. B. 2007. Belnap’s logic and conditional composition. Theoret. Comput.

Sci. 388, 1–3, 319–336.
PONSE, A. AND VAN DER ZWAAG, M. B. 2008. Risk assessment for one-counter threads. Theory Computi. Syst. 43,

563–582.
REGENBOOG, B. C. 2010. Reactive valuations. MS thesis, University of Amsterdam (arXiv:1101.3132vl[cs.LO].)
REHDER, W. 1980. Quantum logic of sequential events and their objectivistic probabilities. Int. J. Theoret.

Physics 19, 3, 221–237.
VU, T. D. 2008. Denotational semantics for thread algebra. J. Logic Alg. Prog. 74, 94–111.

Received February 2009; revised April 2010; accepted July 2010

ACM Transactions on Computational Logic, Vol. 12, No. 3, Article 21, Publication date: May 2011.

