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Chapter 1

Analysis of CRL V2.1

1.1 .

1.1.1 Contents

The idea is that in effective yCRL we can specify a process in such a way that the structure
of the originating specification defines a (single) EFSM with the “same” behavior in a
canonical way. As the relevant process-specification is in that case defined by a very strict
syntax, we start from se-pCRL, which constitutes a more basic and interesting fragment
of pCRL.

We mainly describe techniques for extending a se-uCRL specification in such a way
that any process of interest is bisimilar with a process defined in the extension by a
process-specification that is suitable for canonical translation. Though the proof theory
for (effective) uCRL is yet available, we only show such bisimilarity by means of examples
and refrain from formal proofs.

Next we describe a (canonical) translation for a process specified in such a restricted
way to an EFSM and we argue that the EFSM obtained from this translation has the
“same” behavior. Typical for this translation is that the resulting EFSM’s always have
two (control) states: one “busy” state, and one state denoting termination.

We then show two alternative approaches, that may lead to EFSM’s with a larger
number of states.

We conclude with some remarks on ‘many-sorted’ actions in I-CRL and on the two
alternative approaches.

Problems left open. We do not consider the question of the translation of processes
that are defined in (non-sequential) effective uCRL to I-CRL.

1.1.2 The source of the translation

An effective pCRL specification E is a sequential effective—uCRL specification, for short a
se-uCRL specification, iff all process-declarations occurring in E have in their right-hand
sides process-expressions that are sequential:
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Definition 1.1.1 The syntactical category seg-process-expression that constitutes the
class of sequential process-expressions has the following BNF syntax, which also defines
the precedence among operators:

Seq-process-erpression =  seq-cond-erpression
| seq-cond-expression + seq-process-expression

seq-cond-expression = seq-dot-expression
| seg-dot-expression < data-term > seq-dot-expression

seq-dot-expression = seq-basic-expression
| seg-basic-expression - seq-dot-expression
seq-basic-expression = 0
| 7
| name
| name(data-term-list)
| (seg-process-expression)

As we consider in the sequel only sequential process-expressions, we further omit the
adjective ‘sequential’ and just speak of process-expressions.

Example 1.1.2 Consider the following se-uCRL specification E:

FE = sort Bool
func T, F :— Bool

act a,b
c: Bool

proc X(z:Bool) = Y- X(z)+a(c(z)dz> (b+c(z)  X(z)- - X(z)))
Y — b-Y +b

We will use the terms process and action as follows: let £ be a se-uCRL specification and
p a process-expression that is SSC wrt. F and (), then p from E is called a process from
E. Furthermore an action is a process that refers directly to an action-specification in E.
So in the example above ¢(T') +a - X (F') is a process from E, and a, b, ¢(T), c(F') are the
actions from E. If F is fixed, we just speak of “the process p”.

Given an effective pCRL specification E, we associate with each process from E a
(referential) transition system that describes its meaning. The intended semantics of a
process p from an effective uCRL specification E is a transition system A(Ay,,p from E)
where Ay, is the canonical term algebra of F/, and where the labels of transitions may be
parameterized by the elements of Ay, . These transition systems are considered modulo
bisimulation equivalence, notation < Ay, S this is the coarsest congruence that respects
operational behavior.

Now processes from se-pCRL specifications constitute the source language for the
translation described in the sequel.
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Conventions. For readability we adopt the following conventions.

e Instead of repeatedly denoting se-uCRL specifications in a syntactically correct way
(as was done in the example above), we often only write down a process-specification
without the keyword proc, and assume that it is part of some well-defined se-uCRL
specification. In doing so we use a,b,c, ... as syntactic variables for action names
and X,Y, Z, ... as syntactic variables for process names.

e Whenever convenient, we assume that any se-pCRL specification under considera-
tion contains the (standard) functions = and A on the standard sort Bool. Appli-
cations of the function A will always be written in an infix manner. Note that from
the point of view of describing processes this convention causes no loss of generality,
as we can always extend specifications with these functions. O

1.1.3 Single-linear process specifications

In this section we define the syntax of “single-linear” process-specifications that play a
crucial role in our canonical translation.

We start by introducing the following two archetypes of se-uCRL process-specifications.
In their definition we use the symbol ¥ as a shorthand to denote finite sums (not to be
confused with the sum operator of pCRL): let pq, pa, ... be process-expressions, then the

expression
k

Zpi

i=1

abbreviates ¢ in case k = 0, and p; + ps + ... + pp otherwise.

Definition 1.1.3 A process-specification of the form pd;y ... pd,, with m > 1 from some
se-uCRL specification E is in normal form iff for all 1 < ¢ < m the declaration pd; has a
right-hand side of the form

ki
>_pij
j=1
where each of the process-expressions p;; is of the form

(Z Qijk * Xlljk . Xz2]k + Z bijk . Xlgjk + Z Cijk) < tij >

k=1 k=1 k=1

with the a;ji, bijk, ¢iji (possibly parameterized) process-expressions over the names in the
action-specifications from FE, and the Xz-ljk,X?jk,X?jk (possibly parameterized) process-

expressions over the names in the left-hand sides of the declarations pdy, ..., pd,,.

In the special case that k;; = 0 for all appropriate 7, j we say that the process-specification
pdy ... pd,, is in linear form.

Now we can define what is meant by an “single-linear” process-specification.

Definition 1.1.4 Let E be a se-uCRL specification. A process-specification occurring in
E is single-linear iff it is in linear form and contains exactly one process-declaration.
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Example 1.1.5 Consider the following specification:

E = sort Bool, S
func T, F :— Bool

c:— S
f:Bool —» S
g: S — Bool
var
rew ...
act a,d
b : Bool
c: S x Bool

proc X(z:Booly:S)= (a-X(z, f(z))+0b(z))<z>d
+(c(y,9(y)) - X(9(y), f(z)) +d) ag(y) >0

that has a single-linear process-specification.

1.1.4 From se-uCRL towards single-linear specifications

Given a se-uCRL specification E and a process p from FE, we describe in this section the
construction of an effective uCRL specification E' such that

e F'is a se-pCRL specification, obtained from E by the (possible) addition of sort-,
function-, rewrite- and process-specifications (because E' is a se-uCRL specification,
we have that E' is a conservative extension of E),

e there is a process p’ from E' such that

— p' satisfies p’ from F' & Ay, P from F’, i.e. p and p' behave the same,

— p' is a process that is specified in a single-linear way, i.e. the name of p' is
declared in a single-linear process-specification contained in E’.

We just describe the construction of E' by means of examples, and refrain from formal
descriptions which are required for a correctness proof. We hope that the suggestion of
provability is sufficiently clear.

We distinguish six consecutive steps in this type of construction, each of which should
be applied in case its conditions hold. Application of such a step extends the specification
with at least a process-specification. We assume that these extensions always yield a
se-uCRL specification, so in particular we assume that the newly added sort-, function-
and process-specifications have fresh names.

Step 1. Let p from E be the object for translation. This step applies whenever p is not
of the form n or n(ty,...ty) for some name n. In this case we extend F to F; by adding
a process-specification that specifies a process p; of the form n or n(ty,...ty) that behaves
the same as p from F;.
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Example of step 1. Let p = X () + b(u) where X (z : S) is specified as follows:
X(z:S) = a(z)  X(z)+ a(z)

and the action-specification act b : S’ is also contained in E. We extend E to F; by
adding the process-specification

X'(z:Sy:5) = X(z)+b(y)

Note that
X(t) +b(u) from Ey & 4, X'(t,u) from E;.

(End example.)

Step 2. Let p; from E; satisfy py = n or p; = n(ty, ..., t;). This step applies whenever
the process-specification of p; is not in normal form. In this case we extend E; to E5 by
adding a process-specification in normal form of a process ps that behaves the same as
p1 from F.

Example of step 2. Let p; = X(¢) where X (z : S) is specified as follows:

X(z:S) = a-X(z)-Y(f(z)) - X(z)+b
Y(y:5) = ¢-Y(y)+d

We sketch the technique to obtain a process-specification in normal form that defines the
same process(es) as X (z : S). The main problem here is the summand a- X (z)- Y (f(z)) -
X(z), as it is essentially different from the ‘normal form syntax’. We solve this problem
as follows: Let Z(z : S) be a (new) process-specification, defined by

then X (z : S) could be exchanged by
X(xz:8)=a-Z(z) - X(z)+b

which specifies the same processes. Having done this, we can replace the specification of
the new process Z(z : S) using the new specification of X (z : 5), i.e.

Z(w:S8)=(a-Z(z) - X(z) +b) - Y(f(2))
Application of a sound proof rule for yCRL leads to the following equivalences:

Z(x) = a-Z(x) X(z) - Y(f(z))+b-Y(f(z))
= a-Z(x)-Z(z)+b-Y(f(x))

CHAPTER 1. ANALYSIS OF CRL V2.1 5
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From this sketch it follows in what way we can extend F; to Es with a process-specification
in normal form that defines a process behaving like X (t):

X'(z:S) = (a-Z'(z) - X'(z) +b)<Tr0o
Y'(y:S") (c-Y'(y)+d)aT>0o
Z'"(x:S) = (a-Z'(x)-Z'(x)+b-Y'(f(x)))<T >0

We claim that
X(t) from Ey & 4, X'(t) from Es.

(End example.)

We remark that a process-specification in normal form has a syntax comparable to the
restricted Greibach Normal Form (rGNF) as defined in [17]. It is likely that the standard
technique for the conversion of a (guarded) process-specification to a bisimilar rGNF
process-specification can be extended to the setting of yCRL. Typical of this extension is
then the conversion to ‘explicit’ guardedness and of conditional constructs to ‘head-level’.

Step 3. Let po from E5 be specified in a process-specification that is in normal form.
This step applies whenever it is the case that the process-specification of py has overloading
of variable names. By definition of Es being Statically Semantically Correct (SSC), this
can only be the case if the process-specification of py contains more than one declaration.
In this case we extend Fs to E3 by adding a process-specification in normal form that has
uniquely typed variable names, and that defines a process p3 that behaves like ps from Es.

Example of step 3. Let po = X (¢) where X (z : S) is specified as follows:

X(z:8) = (a-Y(f(x))+b)<tré
Y(z:5) = (c-X(g9(x))+d(z)) <h(z)>d

We extend E5 to E3 by adding the process-specification

X'(z:S) = (a-Y'(f(x))+b)<t>é
Yi(y:8") = (c-X'(g9(y) +d(y)) <h(y) >0

Note that
X(t) from E3 & 4, X'(t) from Ej.

(End example.)

Step 4. Let p3 from Ej3 be specified in a process-specification that is in normal form
and that has uniquely typed variable names. This step applies whenever it is not the case
that the process-specification of ps has global parameterization:

Definition 1.1.6 A process-specification in normal form with uniquely typed
variable names has global parameterization iff each occurring variable name
is declared in all of its declarations, that is in all occurring process parameter
lists.
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Note that a single-linear process-specification has by definition global parameterization.
If step 4 applies, we extend E3 to E4 by adding a process-specification in normal form
and with uniquely typed variables that has global parameterization, and that defines a
process py that behaves like p; from FE,;. The next step will show the purpose of this
extension.

Example of step 4. Let p3 = X(¢) and let X (x : S) be specified as follows:

X(r:8) = (a-V(f(&)) X(g() +b(x)) 1105
Y(y:S5) = (c-Y(h(y))+d(y)) atard

We extend Ej3 to E4 by adding the process-specification

X'(x:Sy:5) = (a-Y'(z, f(z)) - X'(g9(z),y) +b(z)) <ty >0
Yi(z:Sy:5) = (c-Y'(x,h(y))+d(y))dta>0

Note that = and y being different names is essential for application of this step. This
extension has the following property:

X(t) from Ey & 4, X'(t,u) from E,

for any closed data-term u of sort S’.
(End example.)

Step 5. Let py from F, be specified in a process-specification in normal form that has
uniquely typed variable names and global parameterization. This step applies when-
ever the process-specification of ps contains more than one process-declaration. In this
case we extend Fy to Fs by adding a sort-specification, a function-specification and a
process-specification containing only one declaration that defines a process ps; which be-
haves the same as p, from FEj5. The following example also shows how the data-part of
se-puCRL may be used, and the purpose of global parameterization (step 4).

Example of step 5. Let py = X'(¢t,u) where X'(z : S,y : S’) is specified as in the
example of step 4:
X' Sy:8) = (a-Y'(e, [(2)- X(g(x),9) +b(z)) at1 0
Y'(z:Sy:S) = (c-Y'(x,h(y)) +d(y)) dta>0
We extend F, to E5 by adding a new sort Sort with constants X', Y’, an equality function
on Sort (we use infix notation) and the process-specification
Z(n:Sort,x:Sy:S)=(a-Z(Y' z, f(x))  Z(X',g(z),y) +b(z)) < tiAn=X">¢
+(e- Z(Y' z,h(y)) + d(y)) <« taAn=Y">0o
The summands b(z) and d(y) show the purpose of global parameterization: the process

7 has to be parameterized with both the sorts S and S’ in order to have the specification
E5 SSC. Note that indeed

X'(t,u) from E5 < 1, Z(X',t,u) from Ej.

(End example.)
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Step 6. Let p; from FEj be specified in a process-specification in normal form con-
taining one process-declaration. 'This step applies whenever the process-specification
of ps is not linear. In this case we extend Fy to Eg by adding sort-, function- and
rewrite-specifications, and a single-linear process-specification that defines a process pg
that behaves the same as p; from Fj.

Example of step 6. Let p; = Z(X',¢,u) where Z(n : Sort,x : S,y : S') is specified as
in the example of step 5:

Z(n:Sort,x:S,y:S)=(a-Z(Y' z, f(zx))  Z(X',g9(x),y) +b(z)) <« tsAn=X'>¢
+(c- (Y’xh(y)) d(y)) 4 taAn=Y'>4

We add two sorts to E5. First a sort Unproper over which the data-terms are of the form
X', t' v and Y' ¢ o/, for all data-terms t',u’ over the sorts S and S’, respectively. Note
that this cannot be proper pCRL syntax, as names may not contain commas. However,
for the purpose of readability we do not care for the moment and underline the elements
of the unproper sort.

Next we add a sort Stack defined over Unproper and the constant A for the empty
stack, and the functions pop, push, rest and is-empty with rewrite rules as expected. We
extend Ej5 to Fg by also adding the process-specification

Z'(n:S,x:Sy:S s: Stack) =
(a-Z'(Y' x, f(x),push(X', g(z),y,s)) + b(z)) <ty An=X"Ais-empty(s)>o
(a2 2 f(x), push(X7.g(@).y. 5)) + b(z) - Z'(pop(s), rest(s)))
Aty An=X"A=(is-empty(s)) >0

+(c- Z'"(Y', x,h(y),s) + d(y)) Aty An=Y'N is-empty(s) >4
+(c-Z'(Y' z,h(y),s) +d(y) - Z'(pop(s),rest(s))) <ta An=Y'A=(is-empty(s))>o

Note that

VA

Z(X' t,u) from Fg & Avg, Z'"(X' t,u,\) from Fg.

(End example.)

The general idea behind step 6 is that we can define a sort that has a class of (properly
encoded) process-expressions as its closed data-terms, and a sort Stack of stacks over this
sort. Upon a summand of the form a - X - Y we stack the subprocess Y, and upon a
non-recursive summand of the form a and a non-empty stack, we pop the first subprocess
for execution.

1.1.5 From single-linear specifications to I-CRL

We do not yet need to consider EFSM’s that contain system rules, meant to define Net-
works of EFSM’s. The (simple) EFSM’s without system rules constitute the target
language of our translation.

Given a se-puCRL specification E and a process p from FE defined in a single-linearway,
we can define the EFSM M|[p from E] in a canonical way. We show this by means of an
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example, in which we furthermore define the concept of pseudo bisimilarity. As any EFSM
is also associated with a transition system, we can show that p from F and M|p from E|
are in a sense bisimilar. We conclude that our translation yields pseudo bisimilarity.

Example 1.1.7 As an example let p = X(T,C), where E is specified as follows (cf.
example 1.1.5):

E = sort Bool, S
func T, F :— Bool

c:— S
f:Bool — S
g: S — Bool
var
rew ...
act a,d
b : Bool
c¢: S x Bool

proc X(z:Booly:S)= (a-X(z, f(z))+0b(z))<z>d
+(c(y,9(y)) - X(9(y), f(2)) +d) ag(y) >0

The EFSM M|[p from FE] is instantiated with the ‘data-world’ of E, i.e. all the sorts,
functions and rewrite rules that are defined in E are taken to be present. It is further
instantiated with the action names declared in E. By default it contains

e the set of (control) states {T, L},
e the initial state T,
e the final state L.
The process-specification of X (T, C) further determines the definition of M[p from FE] in

the following canonical way: it is defined over the state variables x of sort Bool and y of
sort S, and has

e the rules with many-sorted! actions

<CL, Ta Ta ) Yy = (x)>7

(blx, T, 1, =, nopy,

(cylg(y), T, T, gly), z:=4(y),y:= f(z)),
(d, T, L, g(y), nop),

e the initialization statement z := 1T,y := C.

8 B

We now argue that the transition system A(Ay,, X(T) from F) and the transition system
for M[X(T) from F] are in a sense bisimilar.

Let © be the set of all ground substitutions over the set of variables
{{(z : Bool), (y : S)}, and let the relation

RC(S(E)u{v}) x ({T, 1} x©)

I'We return to this point in section 1.1.8.
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where S(F) is the set of processes from E be defined by

X(0(z),0(y)) R (T,6) foralldec O
vV R (L,0) forallec®

We show by two typical cases that R satisfies a transfer property:

X (0@),00) s X(0'(2),0'(y))
[]® = T and ' = Env(y := f(z),0)
iff
(T,0) = (T,0"

and
X(6(x), 0(y) "L
iff
[2]? =T (and 6 = Env(nop, 0))
iff
(T,0) "% (1 g)

The second case shows that the data in the labels may be (syntactically) different, as these
are always normal forms in effective uCRL (for any closed data-term t, the expression
Ng(t) denotes its normal form). Because the relation R satisfies the transfer property as
illustrated above, we say that X (7T') from E and M[X(T) from E| are pseudo bisimilar,
notation

X(T) from E < 4, M[X(T) from E].

1.1.6 Correctness of the translation

Given a se-uCRL specification E and a process p from FE, the extension of E to Eg as
described in the six steps in section 1.1.4 defines a process pg from FEjg in a single-linear
way that satisfies

p from Fg & An, P from FEj.

The conversion of the process pg from Fg to the EFSM M|pg from Eg| as described in
section 1.1.5 satisfies
pe from Fgs & 4, M|ps from Fj|

because our translation always admits the (canonical) definition of a relation like R in
example 1.1.7 that satisfies a transfer property as illustrated there. By definition of
bisimulation equivalence in gpCRL this leads to

p from Eg & 4y, Mps from Eg].

Though bisimilarity is in gCRL parameterized by one specification, we know here that
Ejg is a conservative extension of E, and therefore we may as well write

p from F < An, Do from Fjy
6
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and therefore also

p from E < 4, Mlps from Eg].

Hence M|ps from Eg] can be qualified as a correct translation of the initial object of
translation p from F.

1.1.7 Two alternative approaches

First alternative. An alternative approach is to define a more liberal format of a
process-specification that allows a canonical translation to an EFSM of which the number
of states depends on the number of declarations:

Definition 1.1.8 Let E be a se-uCRL specification. A process-specification occurring in
E is EFSM-like iff it is in linear form and contains no overloading of variable names.

Example 1.1.9 Consider the following specification E of the process X (T):

E = sort Bool, S
func T, F :— Bool

f:Bool =+ S
g:S — Bool
var
rew ..
act a,d
b: Bool
c:S x Bool
proc X(z:Bool) = (a-Y(f(z))+b(z))<z>d
Y(y:S) = (c(y,9() - X(g9(y)) +d)<g(y)>o

Note that the first three steps in section 1.1.4 may already lead to a defining process-
specification that is EFSM-like, namely in the case that summands of the form a XY are
absent.

We show by means of an example how a process defined by an EFSM-like process-
specification also defines an EFSM in a canonical way. The difference with the translation
described in section 1.1.5 is now that each process name defines a separate state.

Example 1.1.10 Let p = X(7T), where X (z : Bool) is specified as in example 1.1.9. The
EFSM M![p from F] is again instantiated with the ‘data-world’ of E, i.e. all the sorts,
functions and rewrite rules that are defined in E are taken to be present. It is further
instantiated with the action names declared in E. By default it contains

e the final state L.

The process-specification of X (T) further determines the definition of M'[p from F] in
the following canonical way: it is defined over the state variables x of sort Bool and y of
sort S, and has
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e the set of (control) states {X,Y},
e the initial state X,
e the rules
(a, X, Y, =z y=f(a)),
(blx, X, 1, =z, nop),
(clylg(y), Y. X, g(y), z:=g(y)),
(d, Y, L, g(y), nop),
e the initialization statement x := T,y := C', where C'is an arbitrary closed data-term

of sort S (note that by effectiveness of E the sort S is non-empty).
It is not hard to see that p from E « 4, M*'[p from E].
So this alternative approach comes down to
1. applying the first three steps of the construction described in section 1.1.4,

2. in case this yields a bisimilar process specified by an EFSM-like process-specification,
then to apply the canonical translation as sketched above,

3. in case this yields a bisimilar process specified by a process-specification that is not
EFSM-like, then to continue the procedure as described in sections 1.1.4 and 1.1.5.

Second alternative. A second alternative for translation is to encode all finite param-
eters in the ‘control’ of a process-specification before translation, thus obtaining in general
a larger number of control states after translation. We illustrate this technique again by
an example:

Example 1.1.11 Consider the following extension of the specification E from example
1.1.9 that defines the process Xt behaving like X (T"). The finite parameter Bool gives
rise to the new process names Xt and Xp.

proc Xr = (a-Y'(f(T))+b(T))<Tr>0
Xp = (a-Y'(f(F)+bF))<Fré
Y'(y:S) = (c(y,9()  Xr+d)<g(y)>0
Yi(y:8) = (c(y,9(y) - Xr+d)<—(g(y)) >0

Note that this process-specification is EFSM-like and leads to a canonical translation in the
same way as sketched above, but now with four different (control) states: { X7, Xr, Y, L},
the initial state Xt and the initialization statement y := C' for some closed data-term C'
of sort S.

1.1.8 Remarks

8.1 Many-sorted actions. We slightly extended the definition of actions in I-CRL to
many-sorted actions, i.e. expressions like

a?z!f(y) or b
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where a and b are gate names. We feel that such an extension corresponds with the fact
that the states of an EFSM are also subject to many-sorted parameterization.

If, however, one would insist on only allowing ‘single-sorted’ actions, then we can
extend pCRL specifications (or for that matter of course also the data-world of EFSM’s
in our ‘extended’ I-CRL) with new sorts, appropriate function- and rewrite-specifications
such that any parameterization can be mimicked by single-sorted parameterization over
one of the new sorts. This can be obtained by standard embedding techniques, or the
addition of ‘dummy’ sorts.

Example 1.1.12 The action-specification
act a

could give rise to the extension
act a : Dummy

where Dummy is a newly added sort containing one (irrelevant) constant dummy.

Of course the a_()> and a(dﬂly)

notion of ‘bisimilarity’ in this case.

transitions illustrate the necessity of adapting the

8.2 Actions containing input offers. A possible employ for actions containing input
offers in EFSM’s obtained from translation is to admit the sum operator of pCRL in
sequential process-expressions. In that case we can allow in definition 1.1.3 that the
parameterization is organized by this operator. A summand of the form

> (z: S, a(z)...

would then translate to an action
alzr

and the canonical translation thus obtained also yields pseudo bisimilarity. Note however
that in se-pCRL this means that the sort S has to be finite.

8.3 EFSM-like versus single-linear. In case the first three steps of the construc-
tion described in section 1.1.4 yield a process bisimilar with the object for translation,
but defined by a process-specification that is in normal, non-linear form (so that is not
EFSM-like), we cannot (yet) provide a technique for conversion to an EFSM-like, non-
single-linear specification. Reason for this is that in order to keep track of termination
options, we use a single name that organizes control.
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