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Abstract. A process is called computable if it can be modelled by a transition 
system that has a recursive structure--implying finite branching. The equivalence 
relation between transition systems considered is strong bisimulation equivalence. 
The transition systems studied in this paper can be associated to processes 
specified in common specification languages such as CCS, LOTOS, ACP and 
PSF. As a means for defining transition systems up to bisimulation equivalence, 
the specification language #CRL is used. Two simple fragments of #CRL are 
singled out, yielding universal expressivity with respect to recursive and primitive 
recursive transition systems. For both these domains the following properties 
are classified in the arithmetical hierarchy: bisimilarity, perpetuity (both H~ 
regularity (having a bisimilar, finite representation, Z~ acyclic regularity (E~ 
and deadlock freedom (distinguishing deadlock from successful termination, II~ 
Finally, it is shown that in the domain of primitive recursive transition systems 
over a fixed, finite label set, a genuine hierarchy in bisimilarity can be defined by 
the complexity of the witnessing relations, which extends r.e. bisimilarity. Hence, 
primitive recursive transition systems already form an interesting class. 

1. Introduction 

In this paper, rooted labelled transition systems are considered as mathematical 
representations of processes. Such a transition system consists of a set of states, 
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a set of labels representing the actions, and a transition relation, presc6bing 
for each state the possible 'next steps', i.e., what actions can be performed, and 
(per action) what state results. Selecting one state as the root (the initial state) 
then yields a formal representation of a process. Furthermore, one can add the 
facility to distinguish between successful termination and deadlock in transition 
systems. This is modelled by a special label representing successful termination. A 
widely studied behavioural equivalence relation on transition systems is (strong) 
bisimulation equivalence [Par81, Mi189, GrV92] : the bisimulation equivalence class 
of a transition system determines a process. 

Two particular types of transition systems are studied in this paper: a tran- 
sition system is recursive 1 if its set of states and its set of labels are recursive, 
and from each state all next steps can be computed as a finite set. It is primitive 
recursive if all these ingredients are so. A process is called computable if it can ef- 
fectively be associated with a recursive transition system. In the setting of process 
specification formalisms, this seems a natural interpretation of computability. 

The processes studied in this paper can be specified in common specification 
languages such as CCS [Mi189] and LOTOS [ISO87], or ACP [BeK84, BaW90] 
and PSF [MaV90, MaV93]. The ACP-based approaches comprise the CCS-like 
ones by employing the two types of termination, a more flexible communication 
format, and sequential composition as a primitive operator. Therefore, the set-up 
of this paper is ACP-based, though it is taken care that if one does not wish 
to distinguish between successful termination and deadlock, all remaining results 
refer to the setting of (value-passing) CCS and LOTOS (replacing sequential 
composition by action prefixing). The ACP-like approach of specifying processes 
solely by actions, a finite number of process operators, and guarded recursion 
is extended by including conditionals (if--then----else---fi constructs) and data- 
parametric recursion as specification primitives. As an example, consider the 
process X(0) recursively defined by the one-liner: 

X(n) d&f if [n is a prime number] then a. X(n + 1) else b. X(n + 1) ft. 

Then X(0) is a simple specification of the (primitive recursive) transition system 

0 b~ 1 b~2 a~ 3 a~4 b~ 5--% .... 

having the naturals as states, and an a-transition between states n and n + 1 
whenever n is a prime number, and a b-transition otherwise. By a basic result in 
[BBK87], it is possible to specify this transition system up to weak bisimilarity 
in ACP with finite recursion and abstraction, but such a specification is not so 
simple. (Abstraction, based on Milner's silent steps [Mi189], is not considered in 
this paper.) 

The purpose of this paper is twofold. First, it is intended to illustrate that 
a systematic inclusion of conditionals and data-parametric recursion in process 
specification languages provides a simple and powerful means for the specifi- 
cation of transition systems up to bisimulation equivalence, and hence for the 
study of process theory. Secondly, some properties of transition systems modulo 
bisimulation and bisimilarity itself are analyzed in terms of basic recursion theory. 
Restricting to computable processes, the first goal is pursued by using the par- 
ticular specification language pCRL (micro Common Representation Language, 

I Knowledge of basic recursion theory is assumed (although some fundamentals are recalled). Com- 
mon references to recursion theory are [Rog67, Dav82]. 
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[GrP91a, GrP95]). For each of the selected domains of transition systems, a 
simple fragment of #CRL is defined that is universally expressive: each recursive 
transition system can be expressed modulo bisimulation in a canonical way. In 
the case of primit ive  recursive transition systems without the distinction between 
successful termination and deadlock, this can be done in one single, effective 
#CRL 'specification'. Otherwise, a recursive transition system induces its own 
effective #CRL specification and therewith its own, enumerable process specifica- 
tion language. Both these #CRL fragments employ a restrictive, decidable form 
of guardedness. (Guardedness is a criterion for defining processes in a recursive 
way.) 

A property of a transition system modelling some process should be bisimu- 
lation invariant, as it is on the level of bisimulation equivalence that transition 
systems model processes. For instance, number  o f  s tates  is no such property, as 
even very simple transition systems can be bisimilar while having a different num- 
ber of states. Employing process algebraic techniques, the following bisimulation 
invariant properties of (primitive) recursive transition systems are investigated 
and classified: 

�9 bisimilari ty  - -  complete in II~ 

�9 perpetui ty  (no possibility to terminate) - -  complete in II~ 

�9 regulari ty  (having a bisimilar f in i te  representation) - -  complete in 2~ 

�9 acyclie regulari ty  (regularity without cycles) - -  complete in y0. 

A fifth property distinguishes between successful termination and deadlock, and 
therefore applies not (so easily) to CCS (I am not aware of specific properties of 
CCS-like transition systems that model deadlock): 

�9 deadlock f r e e d o m  - -  complete in 17[ ~ 

These properties are especially relevant when (bisimilarity classes of) transition 
systems are defined in a formalism for process specification: for complex spec- 
ifications they are not obvious and can be essential for tooling or correctness. 
Bisimilarity is of interest by definition since it characterizes all of what is taken 
to be important of a transition system. Perpetual processes often occur in process 
theory (note that a perpetual process is deadlock free). Regularity refers to the 
theory of formal languages [HU79], from which also standard techniques can be 
used to prove that a transition system is not regular: the presence of an "irregular 
trace" contradicts the Pumping Theorem for regular languages [HU79]. Finite 
transition systems are of interest, because they are easy comprehensible (e.g., for 
a computer tool). The interest of deadlock freedom can be motivated as follows. 
In ACP or #CRL, concurrent processes are often defined using parallel operators 
and communication declarations. The remnants of unsuccessful communications 
are then encapsulated: the corresponding transitions are removed. If at some 
point there is no communication possible, this causes a deadlock. (For details, see 
e.g. the text book [BaW90].) 

Finally, the nature of bisimilarity itself (i.e., the existence of a relation that 
is a bisimulation) is given attention to. It turns out that in the relatively simple 
domain of primitive recursive transition systems over a fixed, f in i te  label set, 
one can distinguish between bisimilarity based on primitive recursive, recursive, 
recursively enumerable or more complex witnessing bisimulations. 

The paper is organized as follows: in Section 2, transition systems are in- 
troduced. In particular, the two forms of termination and recursive transition 
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systems are defined. In Section 3, the fragments of #CRL are defined. An ef- 
fective, operational semantics for these fragments is given in Section 4. Section 
5 is on expressivity of the/~CRL fragments. Section 6 contains the arithmetical 
classification of the properties of recursive transition systems under considera- 
tion, and in Section 7 some weaker forms of bisimilarity over primitive recursive 
transition systems are investigated. Finally, Section 8 contains some conclusions, 
and a discussion of related work. 

2. Computable Processes 

In this section transition systems comprising successful termination and deadlock, 
and bisimulation equivalence are introduced. Then 'computable' behaviour is 
defined by means of transition systems having a recursive structure. 

2.1. Transition Systems, Bisimulation and Termination 

A (rooted, labelled) transition system is a quadruple (S, L, Tr, so) with 

1. S ~ 0 a set of states, 
2. L ~ 0 a set of labels or actions, 
3. Tr ~_ S • L • S a transition relation, and 
4. so c S its root. 

In a rooted transition system the root represents the initial state of the process 
it models. The transition relation then prescribes for each state what actions may 
be performed (if any) and what state results per possible action. 

Transition systems Ya = (S1,L1, Trl,Sl) and J 2  = ($2,L2, Tre, s2) are called 
isomorphic, notation 

Y-1 --~ ~--2, 

if there is bijective mapping between St and $2 that preserves the roots and the 
respective transition relations. 

The states of a transition system only play a role in structuring the actions 
a process may perform. The operational behaviour embodied by a transition 
system is the real object of interest. This behaviour can be captured by regarding 
transition systems modulo (strong) bisimulation equivalence [Par81]: 

Definition 2.1.1 (BMmilarity). Given transition systems J-1 = (S1,L1, Trl, Sl) and 
~-'-2 = (82, L2, Tr2, S2), a relation R _~ S~ • S 2 is a bisimulation iff for each pair 
(tt, t2) c R the transfer property holds: 

�9 (tt,l, ul) C T r l  :" 3uz,(tz ,  l, u2) c T r 2 a n d ( u l , u 2 ) E R ,  
�9 (t2,l, u2) E Tr2 ~ ~ua .(tl ,  l, ul) E Trl and (Ul,U2) E R, 

The transition systems ~--1 and Y2 are bisimilar, notation 

J ' t  -~ ~'-2 

iff there exists a bisimulation R __~ St • $2 with (sb $2) E R. [] 

Observe that _~ is an equivalence relation on transition systems and that 
isomorphic transition systems are bisimilar. 
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Let (S,L, Tr, so) be some transition system. Instead of writing (s, l,s') ~ Tr, 
the more pictorial notation 

S l )  st E T r  

is further used, in accordance with the way transition systems are visualized: 

Example 2.1.2. Consider the following three transition systems, where Nat denotes 
the natural numbers: 

~--1 de=f (Nat,{a},{n a, n-}- l lnENat},O) 

f 2  ({0}, {a}, {0 0}, 0) 
J-3 def ({0,1, 2}, {a, b, c}, {0 - %  0,1 a 1,2 b,2},0). 

These transition systems are depicted below, where the roots are indicated by a 
small downward arrow and ~ abbreviates co successive a-transitions: 

0 

a a Y2 ~ a 

d ~ ~ b 

~"1 J-3 

It can easily be seen that Nat • {0} is a bisimulation relating Yl  and Y2, and 
Y-1 and Y--3. The transition systems Y2 and ~-3 are related by {(0, 0)}. 
(End example.) 

An immediate consequence of regarding transition systems modulo bisimulation 
equivalence concerns root connectedness or reachability: only states that can be 
reached from the root play a role. Similarly, also the set L of labels can be 
restricted to those that occur in root connected transitions. There is a sound 
reason for not defining a transition system right away as a connected, directed, 
labelled graph. In the spirit of a specification language for (equivalence classes) 
of transition systems it is common practice to define a transition relation via a 
calculus that operates on language expressions, i.e., on the structure of the states 
(as to obtain an operational semantics in the style of Plotkin [Plo81, GrV92]). 
Therefore the transitions from any state may not depend on properties of the 
transition system, such as for instance root connectedness. 
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The property root connectedness can be used to define transition systems in 
which two types of termination are distinguished: 

Definition 2.1.3 (Termination in transition systems). Let g- = (S,L, Tr,so) be a 
transition system such that the distinguished symbol x/ ("tick") is in L, and 
L \ {x/} 5~ 0. The label x/is used to signal successful termination. 

Then 3- is termination consistent, TC for short, if for each s, s' E S satisfying 

s , / > s ' E T r  

it holds that 

�9 for n o s " E S a n d I E L ,  s ~ s " E T r ,  
�9 for n o s " E S a n d l E L ,  s' l > s , , c T r ,  

�9 S@So. 

Assume J- is TC. A root connected state s for which s ,/> s I represents successful 
termination. A state s that has no outgoing transitions, and that can be reached 
from the root by transitions labelled from L \ { ~/} represents deadlock. [] 

Some examples. The leftmost transition system is TC and has two termination 
states: 1 represents successful termination, and 2 represents deadlock (this is still 
the case if 1 ~ 2 is replaced by 1 ~L~ 3). 

a a 

1 _ . .  2 

0 

4 
1 

a 

2 

2 0 e  l ~ l  a 

A TC transition system. Two transition systems that are not  TC. 

Note that a transition system in which x/ does not occur as a label is by 
definition TC. 

2.2. R e c u r s i v e  Trans i t ion  S y s t e m s  

Following Bergstra and Klop [BBK87], a computable process is a process of which 
in any state all possible next steps are finite in number and can be computed. 
Such a process can be modelled by a recursive transition system. In the formal 
definition below the following standard primitive recursive (de)coding functions 
relating Nat x Nat and Nat [Dav82] are used: 

j ( x , y )  = �89 ((x  + y)2 + 3y + x) 
j l ( x )  = ~y <_ x .  [3z < x .  j ( y , z )  = x] 
j2(x)  = uz  <_ x .  [3y <_ x .  j ( y , z )  = x]. 

Typically j ( j l(x) , jz(x))  = x and ji(j(xl,X2)) = xi. Moreover, a useful property is 
x <_ j ( x ,  y) _ y. 
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Definition 2.2.1. A transition system (S, L, Tr, so) is recursive iff 

1. The set S of  states is a recursive subset of  Nat,  the natural numbers. 

2. The set L of labels can be coded as a recursive set, i.e., there is an injective 
function i : L ~ Nat such that 

i(L) &=f {i(1) l l E L} 

is recursive. 
3. The transition relation Tr can be represented by a (total) recursive function 

next such that for all s E S the value of  next(s) is the canonical index 2 (CI) 
of  the finite set coding all next steps from s: 

next(s) = CI({j(i(1),s') l s t ,  s' E Tr}) 

(so Dnext(s) contains all values j(i(1),s') for which s t ,  s' E Tr). 
4. The root so is 0. 

I f  appropriate, (S, L, Tr, so) is sometimes denoted as 

(S, L, next, i). 

A transition system is primitive recursive iff the sets S and i(L), and the function 
next are primitive recursive. [] 

In the case that L is (isomorphic with) Nat,  it is assumed that the coding function 
i itself is recursive. Note that in a recursive transition system the number  of  next 
steps is always finite: such systems are called finitely branching. 

A transition system (S, L, ~ ,  so) is called finite iff both S and L are finite (so a 
finite transition system is always isomorphic with a primitive recursive transition 
system). 

3. The Language/~CRL, Two Simple Fragments 

In this section, two simple fragments of  the specification language #CRL (micro 
Common Representation Language, [GrP91a, GrP95]) are introduced. These 
fragments shall be used to specify recursive or primitive recursive transition 
systems modulo bisimulation. 

A (well-formed) /~CRL specification consists of  a finite number  of  declara- 
tion units: some of these constitute the 'data  part '  of  the specification, others the 
'process part'. These units are introduced below. As there is in this paper only a re- 
stricted use of  the language (especially concerning concurrency, parameterization 
and recursion), the syntax given here is a simplification. 

3.1. Data Specification 

Only two data types are explicitly used in this paper: the Booleans of  which 
the constants t (true) and f (false) must be declared in any (well-formed) data 
specification, and the natural numbers (Nat) with constant 0 and successor 

2 The canonical index of 0 is 0, of { k l , k 2  ..... kt} it is the number 2 kl + 2 k2 + ... + 2 kt, and Dx is the 
finite set with canonical index x. 
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Table 1. A # C R L  specification of  some familiar data. 

sort Bool 
func t, f : ~  13oo1 

sort 
rune 

var 
few 

Nat 
0 :--* Nat 
S, pd : Nat --~ Nat 
add,monus, t imes:  Nat x Nat --* Nat 
x, y : Nat 
pd(O) = 0 
pd(S(x)) = x 
add(x, O) = x 
add(x, S(y)) = S(add(x,  y)) 
monus(x, O) = x 
monus(x, S(y)) = pd(monus(x, y)) 
times(x, O) = 0 
times(x, S(y)) = add(times(x, y), x) 

func e q  : Nat x Nat --, Bool 
var x, y : Nat 
rew eq(x,x)  = t 

eq(S(x), S(y)) = eq(x, y) 
eq(S(x),O) = f 
eq(0, S(x)) = f 

655 

function S. Furthermore, a data specification may contain a finite number of 
total recursive functions (declared in an algebraic way). In Table 1 a data 
specification of some familiar functions is displayed. The keyword rew ('rewriting 
rules') precedes the actual definitions of the functions (using the variables declared 
by var). 

In the following some conventions for data specification are introduced. The 
Boolean standard functions 7, A, V are used in the common way. Letters v, w, x, y, 
z, ... are reserved for variables declared over Nat, and the letters k, l, m, n .... range 
over numerals. Finally, Kleene's primitive recursive T-predicate [Kle52, Dav82] 
is often used. To recall and fix notation: let a coding of Turing Machines (or any 
other equivalent computing device) be fixed and let m > 1 E Nat. Then 

T m ( x ,  y l , . . . , y m ,  z )  

holds if z codes the unique computation of the Turing Machine encoded by x 
for arguments (yl, ..., ym). For a fixed m, Kleene's T-predicate can be defined in a 
data specification by a Boolean valued characteristic function. 3 In the remainder, 
the letter T will always be used for this function (omitting the subscript m). The 
data part of any specification is interpreted in the canonical term algebra over 
the domains D(Nat) = {0, S(0), ...} and D(Bool)  = {t, f}. So any function declared 
is regarded as yielding the usual normal forms in the appropriate domain. 

3 Using sequences of  naturals as a sort. 
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3.2. Process  Specification 

The most simple processes are (atomic)  actions, which must be explicitly declared 
in a specification. Actions represent basic activity, and will be associated to the 
labels of  transition systems. Letters a, b, c .... are used to represent actions. Further- 
more, actions can be data-parametric. For example, given an action declaration 
a, b : Nat ,  actions have the form a(0), ..., b(17) ..... It is further assumed that data 
occurring in actions are always in normal form (by which equality over labels in 
bisimulations is syntactic equivalence). 

More complex processes can be declared by means of (parameterized) process 
identifiers, possibly in a recursive way. For example 

Counter(x) = p 

Buffer = q 

In the first line a counter is declared. It  is a process with one parameter  x of  sort 
Nat.  The parameter  x and the identifier Counter may be used in the process term 
p and have no wider scope; p specifies the counter's behaviour. The syntax of 
process terms is defined below. In the second line of  the example a parameterless 
process Buffer is declared. Its behaviour is given by the process term q. In this 
paper all process declarations are either not parameterized, or parameterized over 
Nat (so the sort o f  the variables possibly occurring in process identifiers is always 
Nat).  4 Apart  from some expressivity results, all actions considered in this paper 
are not data-parametric. 

In the basic #CRL fragments considered in this paper, process terms may be 
constructed according to the following syntax: 

p ::= ( p + p )  

I (p  p) 
[ (p<~tt>p) 

I 6 
I n 
] n(tl ..... tin) 

Here the + represents choice and the �9 stands for sequential composition. The 
conditional construct p < t t> p is an alternative way to write an i f - - then- -e l se - - f i  
expression introduced by Hoare et al. [HHJ87] (see also [BaB92]). The data- 
term t is supposed to be of  the standard sort of the Booleans (Bool). The left 
argument is executed if t evaluates to true (t) and the right argument is executed 
if t evaluates to false (i0. (Recall that all possible functions occurring in t are 
assumed to be total recursive.) Furthermore, 6 is a constant called deadlock or 
inaction, and represents the situation in which no steps can be performed. Finally, 
n is the name of some declared action or process identifier, and tl ..... tm are data 
terms. In process terms, brackets are omitted according to the convention that �9 
binds stronger t h a n .  ,~ t t>. (regarding.  ,1 t t>. as a binary process operator for 
any closed data term t over the Booleans), which in turn binds stronger than +, 
and that all these operators associate to the right. 

A specification over the fragment of  #CRL used in this paper, is a sequence 
of data and process declarations (with certain well-formedness criteria, excluding 
ambiguity in overloading). 

4 In full pCRL, typing of data parameters in process and action declarations is necessary. 
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In (effective) #CRL, specifications have to be guarded as to safeguard that 
any process term is associated to a (recursive) transition system. Guardedness is 
an umbrella term for conditions on the way recursion may be used in process 
declarations (in [BaW90] a common definition and some historical references 
can be found). Typically, unguarded specifications may either not define any 
behaviour at all (e.g., the declaration P = P), or may have different, uncomparable 
"solutions". A syntactically guarded specification satisfies a syntactic, decidable 
requirement, that implies guardedness: 

Def in i t ion  3.2.1 (Syntactic guardedness). Let 5 ~ be a specification. 

1. Let p, q be process terms over 5O with p a (parameterized) process identifier. 
Then p is (locally) syntactically guarded in q iff one of the following conditions 
is satisfied: 

�9 q ----- ql d- q2 and p is syntactically guarded in ql and q2, 
�9 q = ql ~ t t> q2, P is syntactically guarded in ql and q2 (t a Boolean), 
�9 q = ql "q2, and p is syntactically guarded in ql, 
�9 q is any action or 3. 

2. The specification 50 is (locally) syntactically guarded iff in each of its process 
declarations, the left-hand side (the process identifier) is syntactically guarded 
in the right-hand side (the 'body'). 

[] 

Due to parametrization, "locality" is an issue in the case of #CRL: a single 
equation can define an infinite number of processes. Note that this is relative to 
the interpretation of the data involved--in this paper the standard models of the 
naturals and the Booleans. 

Example 3.2.2. Consider the following process declaration: 

Q(x) = a .b~eq(x ,O)~,a .Q(x-:-  l). 

This declaration can be associated with a specification that is syntactically guarded 
by assuming the contents of Table 1 (written with infix notation -:- instead of 
monus(,)), and the declaration of a as an atomic action. For each k ~ Nat, the 
process Q(k) behaves as a k+l �9 3. (End example.) 

Syntactic guardedness is a strong requirement on specifications. It implies that 
each recursively defined process has in each of its states a finite upper bound on 
the number of actions that can be performed (i.e., on the number of 'outgoing 
transitions'; see further the next section on operational semantics). Hence, the 
example above cannot be extended to a syntactically guarded specification that 
defines a recursive process P(k) behaving like Q(k)+ Q(k -" 1)+ ... + Q(0) for each 
k. 

As one of the aims of this paper is to present a simple and powerful spec- 
ification format, syntactic guardedness is relaxed to lspd-guardedness - -  local, 
syntactic guardedness modulo primitive recursion, relative to a data interpreta- 
tion. The following criterion for lspd-guardedness is sufficient, but somewhat ad 
hoc. Its extra primitive recursive ingredients only are eq (x, 0) and x '-- 1. 

Defini t ion 3.2.3 (Lspd-guardedness). Let 50 be a specification that contains the 
data specified in Table 1 (written with infix notation). 
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1. Let p, q be process terms over 5 ~ with p a (parameterized) process identifier. 
Then p is lspd-guarded in q iff one of the following conditions is satisfied: 

�9 q ~ qa "1- q2 and p is lspd-guarded in ql and q2, 
�9 q - ql "~ t t> q2, P is lspd-guarded in ql and q2 (t a Boolean), 
�9 q - ql "q2, and p is lspd-guarded in qb 
�9 q is any action or 6, 

�9 p =- n(x, yb. . . ,yk) and q =-- r ,~e q (x ,O)~ ,n ( x  "- 1,yl...,yk), and p is lspd- 
guarded in r. 

2. The specification 5 ~ is lspd-guarded iff in each of its process declarations, the 
left-hand side is lspd-guarded in the right-hand side. 

[] 

Lspd-guardedness also is based on the syntax of specifications, and it is a decidable 
property. In Section 5.1, it is shown that lspd-guardedness is not a restriction in 
terms of expressivity up to bisimulation equivalence, and in Section 8, a more 
common definition of guardedness is discussed. 

Example 3.2.4. Consider the following process declaration (cf. Example 3.2.2): 

P(x )  = a . b , ~ e q ( x , O )  t > a . Q ( x  "- -1)+  
6 ,~ eq(x,O) t> P ( x  -" 1) 

Q(x) = a . 6  <leq(x,O) t> a . Q ( x  "-1).  

This declaration can be associated with a specification that is lspd-guarded by 
assuming the contents of Table 1, and the declaration of a as an atomic action. 
The process P(k)  behaves as a .  Q(k "- 1) + a .  Q(k - 2) + ... + a .  Q(0) + a .  6, i.e. 
as Q(k) + ... + Q(O). In the next section, this example is continued. 
(End example.)  

Now the fragments of effective pCRL that play a role in this paper can be 
defined. Given a finite set of actions (labels), these fragments turn out to have 
universal expressivity with respect to the class of recursive and primitive recursive 
transition systems over that label set. 

D e f i n i t i o n  3.2.5. A specification 5 P belongs to #CRLTREC (#CRLpRIM , respectively) 
iff 

�9 5" contains the data specified in Table 1, and all other functions in 5 ~ are 
total recursive (primitive recursive, respectively), 

�9 5 p is lspd-guarded. 

[] 

In the sequel specifications are abbreviated by only describing the occurring 
prqcess declarations, and even these in an informal way: the restriction to lspd- 
guardedness is relaxed in favour of  readability. For example, given total recursive 
functions f and g, the specification 

A = B(f(3)) 

B(x)  = C( f ( x ) ,g (x ) )  

C(x , y )  = a .  B(g(x))  ~eq(f (x) ,y) t>  C(x "-- 1,y) 
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informally introduces process identifiers A and B(x). In this example, the decla- 
ration of  B(x) serves as an abbreviation for the less readable formal declaration 
of C(x,y), which is the following: 

C(x,y) = a . C(f(g(x)),g(g(x))) <1 eq(f(x), y) t> C(x '-- 1,y) 

obtained by straightforward syntactic substitution. Furthermore, the process iden- 
tifier A is used to abbreviate the process term C(f(f(3)),g(f(3))). 

4. Operational Semantics for /2CRLTREC and #CRLpRIM 

In this section, the interpretation of  the process part of a specification is defined. 
This is based on the interpretation of data, mentioned in Section 3.1. A so called 
Structured Operational Semantics (SOS) is defined. This approach is based on the 
work of Plotkin [Plo81], and associates a transition system to each process (closed 
term) defined in some specification. The states of such a transition system are 
closed process terms or x/(expressing successful termination), and its transitions 
are defined by conditional rules, based on structural induction. Some general 
references to SOS and bisimulation are [Sim85, GrV92, Vaa93]. 

4.1. Transition Systems 

The operational semantics of  #CRLTREC is given by an interpretation function 
SOS (Structured Operational Semantics) that, if instantiated with (the signature 
of) some #CRLTREC specification 5f, assigns to each closed process term over 5 ~ 
a transition system. Thus 

SOS : flCRLTREC -+ (~(.) ---* TS [IP(.) 1.3 {x/}' A(.) U {%/}1) 

where for a specification 50 over #CRLTREO 

�9 I?(SO) is the set of  closed process terms over S ~, 

�9 A(SO) __ I?(5O) is the set of actions declared in 5O, 

�9 the expression TS[I?(SO)u {x/},  A(SO)U {x/}] abbreviates the domain of 
recursive transition systems over states 17(5O) O {x/} and labels A(SO) u {,,/}, 
where ~/is used to express successful termination (cf. Definition 2.1.3). Note 
that I?(5 0 is denumerably infinite, as 6, 6 + 6,..., 6 �9 6 .... E 1?(5O). 

For each closed process term p E I?(5O), the transition system SOS(SO)(p) is 
defined by: 

SOS(SO)(p) = (P(SO) U {x/}, A(SO) 0 {x/}, rr(so), p) 

with the transition relation Tr (5O) defined by the transition rules below, where 

�9 variables x, y, z range over 1P(SO) and primed variables x', y' over lP(SO) U {x/}, 

�9 in the rule introducing ,q t ~,, t must be a Boolean declared in 5O, 

�9 in the rule introducing recursively defined processes, the notation 5O F- P = x 
refers to a process declaration: 5O ~- P = x iff P = x is a closed instance of  a 
process declaration in 5O, in which all data are in normal form. 
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successful 
termination 

a C A(5 p) 

x - - q ~  x I 

x + y  a~ x ~ 

x - - %  y 

y - ~ y '  

x + y  a, f 

X ' Z  a~ y ' z  x ' y  a)  y 

<l t [> X a)  X t 
x < l t t > y  a) X I i f t = t  y a) yl x <Jt~> y a~ yr i f t = f  

5 0 F - P = x  x a ~ x '  
feCUlSiOl"l p a)  xt 

Typically, a transition ~ / ~  6 signals successful termination, and a transition 
x a , 6 models deadlock (a ~ A(Se)). Note that neither 6, nor 3 �9 x has outgoing 
transitions. The following example illustrates the transition rules: 

Example 4.1.1. Recall the specification 50 defined in Example 3.2.4: 

P(x)  = a .6<~eq(x ,O)  l > a . Q ( x  " - 1 ) +  
6 <1 eq(x,O) t> P ( x  "-- 1) 

Q(x) = a . f <l eq(x, O) ~> a . Q(x "-1).  

So, a c A(50) is a P(50) term. With a ---% ~/and  the rules for + and �9 it follows 
that a + 6 --% ~/ and a �9 6 a ~ 6. The root connected parts of  the transition 
systems associated to a, a + 6, a .  6 and a + a .  6 can be visualized as follows 
(observe that only the two leftmost transition systems are deadlock free): 

,/ 
,/ 

a + 3  

,/ 

a 

4 

a . 3  6 I a 

a + a . 3 / / ~  

The root connected transitions of P(n) can be derived in the following way. 
With the rules for ~ t t> it follows that a- 6 ,~ eq(0,0) t> a .  Q(0) - -~  6. With the 
rule for + it follows that 

a.  6 <1 eq(O,O) t> a.  Q(O) + 6 <1 eq(O,O) t> P(O) a, 3. 

Because 5 ~ ~- P(0) = a .  6 ,~ eq(0,0) t> a .  Q(O) + ,:5 ~ eq(O,O) t> P(0), the recursion 
rule yields P(0) .a, 6. The process P(1) has by its last summand all transitions 
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of P(0). By its first summand there is an a-transition to Q(O), which has an 
a-transition to 6. In this way one can derive: 

P(0) - %  6, 
P(1) _5~ 6, P(1) -2-, Q(0) a> 6, 
P(2) - ~  6, P(2) --~ Q(0) a 6, P(2) ---% Q(1) a Q(0) " ,  6. 

Clearly, SOS(5~ consists of n + 1 paths a k+l to 6 for all k _< n, and its root 
connected part can be depicted as follows (for n > 3): 

(End example.) 

6 Q(0) Q(1) 0(n = 1) 

4.2. SOS and Computability 

For any/tCRLTREC specification 5 e it is the case that SOS (St) yields (isomorphic 
images of) recursive transition systems. (In fact this is the case for the standard 
operational semantics of effective #CRL [GrP91a, GrP95], of which SOS is the 
restriction to #CRLTREC specifications): 

Theorem 4.2.1. Let p be some process specified over a specification 5* in 
#CRLTREO then SOS (SP)(p) is recursively isomorphic with a recursive transition 
system. Moreover, this transition system is termination consistent (see Definition 
2.1.3). 

Proof. First note that SOS(re)(p) is finitely branching: by lspd-guardedness any 
closed process term q can be equated to a term (using the process declarations in 
50) for which the next steps do not depend on terms headed by process identifiers. 
It follows from the calculus for Tr(5 ~ that only finitely many next steps from q 
can be derived. 

Secondly, both the set of (syntactic well-formed) closed data terms and the 
set I?(5 a) U {~j} can be recursively encoded as recursive sets (even as primitive 
recursive sets), where the latter coding has the property that the code of a term 
is larger than those of its proper subterms, and that 0 is not in its range. Write 

r .~:  ]?(5p) U {~/} ~ Nat \ {0} 

for this coding. Using the calculus for Tr(SP), define a total recursive function 
next'(.) that computes the next steps of any code of a closed term in the style of 
Definition 2.2.1 (yielding some CI). The function next'(.) is total recursive as it 
must be able to compute the total recursive functions defined in 6C Given p as 
in the theorem, define a coding 

: u { , / }  - - ,  Nat 
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by Lp~ = 0 (the root) and LqJ = rq7 for q ~ p. Adjusting next'(.) to next(.) by 
taking the difference between r.7 and LJ into account, it then follows that 

SOS (~9~ -~ (LI?(5 ~) U {X/}~, A(5:)O {x/}, next, i) 

with i defined as L.J on the appropriate subdomain A(5:) u {x/}" 
Finally, it follows immediately from the rules of Tr(5:) that both these 

transition systems are termination consistent. [] 

Corollary 4.2.2. Let p be some process specified over a specification 5: in 
#CRLpRIM, then SOS(6e)(p) is primitive recursively isomorphic with a primi- 
tive recursive transition system. 

Another important (algebraic) property of SOS (50) is that the bisimilarity induced 
by it is a congruence with respect to the process operators of pCRLTgEc [GrP91a, 
GrP95]. 

A relevant question is whether SOS (5 a) itself is 'nice enough' as an opera- 
tional semantics. Are there no effective semantics for 5: that respect SOS (50) up 
to bisimulation equivalence, and that yield smaller transition systems (in terms of 
number of states and transitions), in particular 'minimal' transition systems? Gen- 
erally this is not the case, not even for the restriction to #CRLpRIM specifications, 
as this problem easily reduces to the Halting Problem. 

Theorem 4.2.3. There exists a /.tCRLpRIM specification 5: for which no effective 
operational semantics yields minimal transition systems. 

Proof. Consider the pCRLpRIM specification 5: defined by 

K(x,y,z) = b" K(x,y,z  + 1) < T(x,y,z) E> a. K(x,y,z  + 1). 

Let k, l be fixed. 
In the case that ~3z.  T(k,l,z), the finite transition system Y2 defined in 

Example 2.1.2 is bisimilar with SOS(5:)(K(k,I,O)), while SOS(5:)(K(k,I,O)) is 
isomorphic with 5-i in that example. 

Assume T(k, l, m) for some (unique) m. In this case consider the finite transition 
system 

Y0 d~f ({0, 1,...,m + 1},{a,b},Tr,O) 

with the transition relation 

T r d e f { x - - - % x + l l x < m }  U {m b , m + l }  U { m + l  a , m + l } .  

The root connected part of SOS (5:)(K(k, l, 0)) and -Y-0 can be depicted as follows: 
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K(k,l,O) 

K(k , l ,m)  

K (k , l ,m  + 1) 

K ( k , l , m +  2) 

a m 

a co 

m 

a m 

b 

) 
Y-o 

Obviously, Y'0 -~ SOS (5~)(K(k, 1, 0)), and Y-0 is smallest. 
Hence for each pair k,1 it follows that SOS(5r is regular. This 

example shows that an operational semantics for 5 t yielding transition systems 
with minimal sets of states (and labels) must be able to decide for each k, l 
whether 3z. T(k, l, z)--i.e., the Halting Problem--, so cannot be effective. [] 

5. Expressivity of #CRLTREC and  p C R L p R I M  

In this section a relation between recursive transition systems and/2CRLTREC as a 
language for specifying these up to bisimulation equivalence is established. First, it 
is shown that the selected fragments of pCRL have universal expressivity over the 
two selected domains of transition systems--recursive and primitive recursive-- 
if one restricts to actions as labels (and possibly the successful termination label 
~/, see Definition 2.1.3). To provide an immediate correspondence with CCS and 
LOTOS, a distinction is made between CCS-like transition systems not containing 
~/, and ACP-like ones in which both successful termination and deadlock can 
be modelled. Then it is shown that also modulo bisimulation, the two selected 
domains are different. 

5.1. Universal Expressivity 

It is first shown that each (primitive) recursive transition system over a recur- 
sive set of actions as labels can be represented by a pCRLTp.E c process term 
(respectively a process specified over pCRLpR~M ). The resulting specification is 
CCS-like--based on the correspondence of a .  3 with a.O in CCS. 

Theorem 5.1.1. Let L be a recursive set of actions. Each recursive transition 
system over L can be specified up to bisimulation equivalence in a pCRLTR~C 
specification. If L is primitive recursive, this can be done in #CRLpp.I M 
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Proof. Let 5- = (S, L, next, i) and let Action(x) be a process term that decodes the 
actions encoded by i. For example, if L contains action names ao ..... am of which 
some are parameterized over Nat, and i is defined by 

then 

i(ak(X)) clef j (k ,x  + l) 

i(ak) def j(k,O) 
(in case a k is data-parametric) 

(in case ak is not data-parametric), 

Action(x) ao(j2(x) ' -  1) <1 eq(jl(x), O) /~ ~eq(j2(x), O) t> 6 + 
ao "~ eq(jl(x), O) A eq(j2(x), O) t> 6 + 

am(j2(x) ' -  1) <1 eq(jl(x),m) A ~eq(j2(x),O) t> 6 + 
am "~ eq(jl(x),m) /X eq(j2(x), O) ~> 6. 

So for any k E Nat, Action(k) is a process term of 2m summands, of which at 
most one is an action from L and all others equal 6. 

Consider the process P specified in the following specification 5: (recall that 
in a recursive transition system the initial state is 0): 

e = Q(0) 

Q(x) = R(next(x),next(x)) 

R(x,y)  = Action(jl(x)) ~ x  E Oy t> 6 + 
6 ~ eq(x,O) ~ R(x "-- 1,y). 

By definition of the function next, the property n ~ Dm ~ n < m, and by 
unraveling the specification of P it follows that SOS (5:)(P) _~ J .  Note that: 

1. The function next(.) can be specified in /~CRLTREC as it is a total recursive 
function, or in #CRLpRrM if 5- is primitive recursive. 

2. Both decoding functions jl and j2 are primitive recursive, 

3. All conditions are primitive recursive (membership of finite sets encoded by a 
CI; equality). 

[] 

This result can be generalized to termination consistent transition systems (in 
which successful termination and deadlock are distinguished, Definition 2.1.3): 

Theorem 5.1.2. Let L be a recursive set of actions. Each termination consistent 
recursive transition system over L U {,]} can be specified up to bisimulation 
equivalence in a #CRLTREC specification. If L is primitive recursive, this can be 
done in/~CRLpp.I M. 

Proof. Let Y--= (S ,L  U {,]},next, i) and let Action(x) be defined as in the proof 
above. Now successful termination states have to be distinguished from the others. 

Consider the process P specified in the following specification 5~ 
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P = Q(0) 

Q(x) = R(next (x) ,next (x) )  

R(x , y )  = Act ion(jr(x)) .  Q(j2(x)) <1 x E Dy A NoTick(next(j2(x)))  t> 6 + 
6 <leq(x,O)t>R(x-:-  1,y) + 
Action(j f fx))  ,~ x E Dy A Tick(next(j2(x))) t> 6 

where the primitive recursive predicates NoTick (modelling the absence of suc- 
cessful termination) and Tick (modelling successful termination) are defined by 

NoTick(x)  = Vz <_ x .  ~(z E Dx A eq(jt(z),i(~j))) 

Tick(x) = 3z <_ x . z  E Dx Aeq(j f fz) , i (x / ) ) .  

Then SOS (Se)(p) _~ Y.  This can be argued in the same way as in the proof  of 
Theorem 5.1.1 because all conditions are still total recursive (primitive recursive, 
respectively). Another difference with the specification in that proof is the last 
summand of R(x, y), which possibly generates successful termination states. [] 

For primitive recursive transition systems over a label set not including ~/ 
there is the following corollary: 

Corollary 5.1.3. (Cf. [Gla95].) Let L be a primitive recursive set of actions. Each 
primitive recursive transition system over L can be specified up to bisimulation 
equivalence in one single/tCRLTP.E c specification. 

Proof. Let a primitive recursive label coding i of L be fixed and Action(x) be 
defined as in the preceding proofs. Code all unary primitive recursive functions, 
and define a total recursive function Eval that satisfies 

Eval(k, x) = f ( x )  

if k is the code of  f ,  and 0 if k does not code any primitive recursive function. 5 
Now consider the following specification (cf. the one in the proof of  Theorem 
5.1.1): 

Pprim(Z) = Qprim(O,z) 

Qprim(X,Z) = Rprim(Eval(z,x),Eval(z,x),z)  

Rprim(X,y,z) = Action(j t (x))  " Qprim(jz(x),z) <lx E Dy ~" 6 + 
6 <1 eq(x,O) ~> Rprim(X -:- 1, y,z) .  

Then, as follows from the proof of Theorem 5.1.1, Pprim(k) specifies the primitive 
recursive transition system for which k encodes the next function. Furthermore, 
as k varies, each primitive recursive transition system over L is specified up to 
bisimilarity. [] 

There is no generalization of this corollary to primitive recursive ACP-like tran- 
sition systems (involving ,e/) because termination consistency is not decidable 
(otherwise, for each 1 E L, the set {(s,s') I s t_~ s'} is decidable, which is a 
contradiction, cf. the proof of Theorem 4.2.3). 

5 Recall that Eval itself cannot be primitive recursive (otherwise g(x) = Eval(x, x) + 1 would be as 
well, say with code l, and Eval(l, l) = g(l) = Eval(l, l)+ 1, contradiction). 
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So each (primitive) recursive transition system 3- = (S, L, next, i) with L finite 
and 3- termination consistent, gives rise to a specification 5e over #CRLwREC 
(or #CRLpRrM ). Such a specification thus defines a canonical process term P for 
which SOS (SP)(P) _~ 9"-. In Section 8 more on canonicity. 

5.2. Difference between #CRLTREC and #CRLpRIM 

As can be expected, the restriction to primitive recursive functions in the data 
part of  specifications does not make all recursive transition systems over a finite 
label set specifiable. The idea is that a non primitive recursive function (but total 
recursive) can be used to define a process that has a 'branching degree' growing 
faster than any pCRLpRIM specification can handle: 

Theorem 5.2.1. There is a recursive transition system over a finite set of labels 
that cannot be specified modulo bisimulation in #CRLpRIM. 

Proof. Consider the following function Ack, (a version of) the Ackermann gen- 
eralized exponential [Kle52, Rog67], which is total recursive but not primitive 
recursive: 

Ack(O,y) = y + l 
Ack(x + 1,0) = Ack(x, 1) 

Ack(x + 1,y + 1) = Ack(x, Ack(x + 1,y)). 

Let the specification 5 ~ over #CRLa-RE c be defined by 

P(x) = a . P ( x  + 1) + b .  Q(Ack(x,x))) 
Q(x) = c . R ( x ) + f  ~eq(x,O)t>Q(x "--1) 
R(x) = 6 < e q ( x , O ) ~ ' c ' R ( x  =- 1) 

Now assume Y- = (S, {a,b, c}, next, i) is a primitive recursive transition system 
that satisfies ~- _+~ SOS(5r Let f :Nat ~ Nat be such that j~(F(k)) is the 
code of  the state characterized by the trace a k and j2(F(k)) is the code of the 
state characterized by the trace a k �9 b. To make this precise, let G 1 be a function 
that satisfies 

s' i f s  l> s' 
Gl(next(s)) = 0 otherwise, 

i.e., Gl(x) = j2 (#Y < x.[y E Dx A jl(Y) = i(1)]). Then F can be defined by primitive 
recursion: 

F(O) = j( O, (Gb(next(O))) ) 
F(x + 1) = j ( H ( F ( x ) ) ,  Gb(next(H(F(x)))) ) 

H(x) = Ga(next(jl(x))). 

So F is primitive recursive if next is. Now for any k E Nat it holds that 

next(jz(F(k))) > Ack(k, k). 

This follows from the fact that this particular value of next codes a state that 
must have Ack (k, k) + 1 different outgoing c-transitions (each of  these entails its 
own number of successive c-transitions). Hence, the CI of the set coding all these 
labels and resulting states is certainly larger than Ack(k, k) by which next cannot 
be a primitive recursive function, contradicting the assumption. So SOS (SP)(P(0)) 
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is a recursive transition system over a finite label set that is not bisimilar with 
any primitive recursive transition system. [] 

6. Arithmetical Classification of Properties 

In this section, the properties of (pairs of) recursive transition systems that were 
introduced in Section 1 are defined and classified in the arithmetical hierarchy 
[Rog67]. The arithmetical characterization takes place on the level of #CRLTREc 
and #CRLpRIM specifications. By the Expressivity Theorems 5.1.1 and 5.1.2 this 
is sufficient. Moreover, these properties are more apparent in a process term than 
in a representation of the form Y- = (S, L, next, i). This is useful for completeness 
results. 

6.1. Characterizing Properties with Process Algebra 

Properties of recursive transition systems have to be invariant under bisimula- 
tion equivalence, as it are such equivalence classes that represent 'operational 
behaviour'. Typically, neither number o f  states, nor being a tree is a bisimulation 
invariant property (even not for the restriction to root connected transition sys- 
tems), as was illustrated in Example 2.1.2. Obviously, all properties considered 
refer to the root connected part of  transition systems. 

A first property is bisimilarity itself (because ~ is an equivalence relation, 
it is a property over two transition systems that is bisimulation invariant). A 
transition system is perpetual if each root-connected state has at least one outgoing 
transition. A transition system is regular if it is bisimilar with some finite transition 
system. A transition system is acyclic regular if it is bisimilar with a finite acyclic 
transition system. A transition system is deadlock free if it is has no deadlock 
states, i.e., states that are root connected by transitions not having the label x/, 
and that have no outgoing transitions (see Definition 2.1.3). 

These properties can easily be characterized by means of basic process algebra 
and projections. Given a #CRLTREC specification 5 ~ the set of BPA~(Sa)-terms 
over ~ consists of the process terms that can be constructed out of 6, the 
actions declared in 6e (a recursive set), and the operators + and .. So BPA~(5 ~ 
characterizes the class of acyclic regular transition systems over A(6 e) tA {x/} up 
to bisimulation equivalence. 

The coming proofs employ some standard ACP-results, all of  which can be 
found in for instance [BaW90, BaV95]. The basic axiom system BPAa (Basic 
Process Algebra with 6) consists of the axioms in Table 2. 

The following completeness result is standard: for any two BPA~(6e)-terms 

Table 2. The axioms of BPA,~. 

(A1) x+(y+z)  = (x+y)+z  (A6) x+6 
(A2) x + y  = y + x  (A7) 6.x 
(A3) x + x = x 
(A4) (x+y).z  = x . z + y - z  
(AS) (x.y).z = x.(y.z) 

= X 

= 
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p, q it holds that 

BPA~(~) ~- p = q < :- SOS(SO)(p) ~_ SOS(~)(q) .  

In this section we further assume that F.n is a primitive reeursive coding of I?(5O) 
such that 

�9 the set of codes, say rp(so)n, is primitive recursive and 0 ~ riP(SO)7, 

�9 the code of a term is larger than those of its proper subterms, 

�9 if V-pin < r-qin , then rpl + p27 < vql + q2 n and rpl �9 p2 n < Vql �9 q2 n. 

(For a syntactic coding, these requirements are easy to meat.) 
The relation Eq ~_ Nat x Nat defined by 

Eq dg {(rpn, rqn)[p ,q  E BPA~(5 ~ and BPA~(SO) t--p = q} 

is primitive recursive: BPA~ (5 ~ terms can effectively be reduced to normal forms 
modulo commutativity and associativity of the + (see e.g., [BaW90, BaV95]). 
Furthermore, the relation Df ~ Nat (Deadlock-free) over codes of BPA~(5 ~) 
terms defined by 

Df  de=_f {x l 3y <-- X.  E q ( x , y ) A  6-free(y)} 

is a primitive recursive relation (where 6-free(y) holds iff & does not occur in the 
term coded by y). 

Because the booleans occurring in I?(5 ~) can be computed effectively to either 
t or f, terms p <~ t t> q can be reduced (in terms of obtaining a smaller code) to 
either p or q with the axioms 

x < l t ~ > y = x  and x < l f t > y = y  

(this reduction need not be primitive recursive, as it may involve evaluation of 
total recursive functions). 

Furthermore, projections of the processes definable over 5O shall be used: 
rc,(p) is the process that can perform the first n steps of  p, and the re, operators 
are axiomatized in Table 3. By the lspd-guardedness of 5O, each 7r,(p) can be 
reduced effectively to a BPA6(5 o) process: the total recursive functions in Y used 
in data-parametric recursion and conditionals must be computed. For example, 
given 50 as in Examples 3.2.4 and 4.1.1, i.e., 

P(x) = a .&.~eq(x ,O)~>a.Q(x~-  l) + 
b <~ eq(x,O) t> P(x  ~- 1) 

Q(x) = a.~5 <leq(x,O) t> a .Q(x-: -  l), 

one can derive 

Table 3. Projection axioms, where a is an action or 6 and n > 0. 

(PR1) ~zn(a) = a (PR3) ~n+l(a" x) = a.n~(x) 
(PR2) nl(a'x) = a (PR4) nn(x+y) = nn(X)+nn(y) 
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~2(P(2)) ~z2(a �9 ~ <~ eq(2,0) t> a '  Q(2 -" 1) + 3 <1 eq(2,0) ~> P(2  -- 1)) 
~2(a" Q(I)) "4- 7z2(P(1)) 
a '  tel(Q(1)) + 7z2(a �9 Q(0)) + ~z2(P(0)) 

a . a + a . a + a . 6 .  

As a consequence, the following properties (cf. Section 6.1) can easily be 
characterized with projections and equality in BPA~(5 P) (i.e., derivability or bi- 
similarity): 

�9 SOS(5r ~_ SOS(5r i.e. bisimilarity 6 _ _  ~l~ > O .  Xn(p) = 7Zn(q). 
�9 SOS (SP)(p) is deadlock free - -  Vn > O. Df(Vn,(p)7). 
�9 SOS (5~)(p) is perpetual - -  Vn > O. [Df(Cn,(p) n) & ndp  ) = n,(n,(p) ,  p)]. 
�9 SOS (SP)(p) is acyclic r e g u l a r -  3n > 0.  n,(p) = n,+l(P). 

For regularity, the characterization is based on projections and a coding of finite 
transition systems (see next section). 

In the classification, the following primitive recursive function Pr (projection 
on codes of ~(SP)) shall be used. 

{ rnx+l(p)7 i f r p ~ = y  
Pr (x, y) = 0 otherwise�9 

6.2. Classification 

For reference to arithmetical completeness consider the following special relations, 
referring to the Enumeration Theorem of Kleene [Kle52]. Let n >__ 1, then the 
binary relation En is defined as 

{(z,x) I ~ylVy2...3y,, Tdz,  x, yl,...y,)} in case n is odd, 

{(z,x) ] 3ytVY2...Vyn.-~Tdz, x, yb...yn)} in case n is even. 

Now En is complete in Z ~ and ~En - - the  complement of En-- is complete in II ~ 
Given a certain class cg in the arithmetical hierarchy and one of the properties, 

completeness in cg for both #CRLpRIM and #CRLTREC is proved simultaneously 
in the following way: 

1. Show that for any #CRLTREC specification the property is equivalent to a 
relation in cg (based on a primitive recursive relation when restricting to 
#CRLpRIM). 

2. Show the completeness in ~ by giving a particular #CRLpRIM specification for 
which the property is equivalent to a relation that is complete in cg. 

In the rest of this section, the five properties mentioned above are characterized 
in the arithmetical hierarchy. Given a #CRLTREC specification 5 p, let C.7, Eq, D f  
and Pr be defined as in the previous section. 

6 In terms of the theory of ACP, this equivalence comprises application of the Approximation 
Induction Principle (AIP-) (see e.g. [BBK87, BaW90, BaV95]). This principle implies that two finitely 
branching transition systems are bisimilar if all their projections are. 
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Bisimilarity - -  complete in H ~ 

1. Let 0O in #CRLTp.E c be given and p, q ~ I?(0~ Then SOS (0o)(p) _~ SOS (0o)(q) 
iff 

(rp-~, rqn) E {(x, y) I Vz. Eq(Pr(z, x), Pr(z, y))}. 

Hence, bisimilarity between two processes over 50 is in the class H ~ 

2. Completeness in H ~ can be proved with the following specification 0op over 
#CRLpRIM : 

K(x ,y , z )  = b. 6 <~ T(x ,y , z )  I> a . K ( x , y , z  + 1) 
M = a . M .  

Now SOS(0Op)(K(k,I,O)) ~_ M <==~ Vz.  ~T(k , l , z )  
~=~ (k, I) ~ -~E1. 

The latter problem is complete in H ~ 

Deadlock Freedom - -  complete in H ~ 

1. Let 0O in #CRLTREC be given and p E 17(5~ Then SOS(0O)(p) is deadlock 
free iff 

rp~ ~ {x IVy. Df(Pr(y,x))}.  

Hence, this property is in the class H ~ 

2. Deadlock freedom is complete in Ha ~ by the bisimilarity example above: 

SOS(0Op)(K(k,I,O)) is deadlock free ~ Vz.  ~T(k , l , z )  
"*==~ (k, l) 6 -~E1. 

Perpetuity - -  complete in H ~ 

1. Let 60 in #CRL-rREC be given and p ~ 17(0O). Two cases can be distinguished. In 
the degenerated case that 0O contains no actions, perpetuity is not meaningful 
(only the bisimilarity class of 6 is definable). Otherwise, let a be an action of  
60, and let the function Pr-a (projection followed by a) be defined as follows: 

{ rrcx+l(rCx+l(p) " a) -~ if rp7 = y 
Pr-a(x, y) = 0 otherwise. 

Then SOS (0o)(p) is perpetual iff 

rpn E {x l VY. Eq(Pr(y, x),Pr-a(y, x)) A Df  (x)}. 

Hence this property is in the class H1 ~ 
2. Perpetuity is complete in H ~ using the bisimilarity example above: 

SOS(0Op)(K(k,I,O)) is perpetual *==> Vz.  =r (k , l , z )  
(k, l) c ~E1. 

Acyclic regularity - -  complete in E ~ 

1. Let 0O in #CRL1-REC be given and p ~ 17(0O). Then SOS(0O)(p) is acyclic 
regular iff 

rp7 C {x I qY. Eq(Pr(y,x) ,Pr(y + 1,x))}. 

Hence this property is in the class Z ~ 
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2. This property is complete in E ~ using the example above: 

SOS(SPp)(K(k,I,O)) is acyclic regular ~ 3z .  r ( k , l , z )  
--" :- (k, I) 6 El. 

Regularity - -  complete in Z ~ 

1. Let 5 p in /~CRLTREC be given and p 6 I?(5~ Assume some coding of the 
termination consistent (see Definition 2.1.3), finite transition systems over 
A(5 p) or, if one likes, over A(Se) U {~/}, and a (primitive recursive) relation 
F/n that characterizes these. For example, n ~ F/n iff j2(n) is the CI of 
codes of transitions k a ~ I with a E A(5 ~ and k, l _< Jl(n)- Let the function 
Pr' : Nat x Nat -~ Nat be such that Pr'(x,y)  =- Pr(x,y)  in case y c F/n, and 
0 otherwise. Then SOS (SP)(p) is regular iff 

rp7 E {x [ 3yVz.  Eq(Pr(z,x) ,  Pr'(z,y))}. 

Hence, regularity over J can be defined as a Z ~ relation. 

2. For the completeness in Z2 ~ consider for fixed k, l the trace 

a �9 b l + ~ y T ( k ' l ' O ' y )  " a 2 �9 b I + I ~ y ' T ( k ' I ' I ' y )  �9 . . .  �9 a m + l  �9 b l + # y ' T ( k ' l ' m ' y )  �9 . . .  

This trace is regular iff 3xVy.  ~T(k , l , x , y ) ,  for the trace then ends in a b- 
loop (cf. the Pumping Theorem for regular languages [HU79]). A #CRLpRIM 
specification 5Pp for defining this trace is 

K(v ,w , x , y , z )  = a. L (v ,w ,x , y , z )  
eq(z, O) t> a . K(v, w,x, y ,z  "- 1) 

L(v ,w ,x ,y , z )  = b . K ( v , w , x + l , O , x + l )  
r ( v , w , x , y )  > b" L(v ,w ,x ,y  + 1, z). 

Now SOS(Yp)(K(k,I,O,O,O)) is regular ~ ~ x V y . ~ T ( k , l , x , y )  
~=~ (k, I) c E2. 

The latter problem is complete in E ~ 

This section is concluded with some comments on these properties. In [MaM94], 
it is shown that in BPA6(SP) with (syntactically guarded) recursion and without 
data, regularity of specifications is a decidable property. More decidability results 
on regularity can be found in [BOG96]. 

Of course, combinations of properties now can also be classified. For instance, 
the property acyclic regularity & deadlock free is complete in Z~, as the number 
of  relevant projections is bounded: 

r-p7 E {x ] 3y .  Eq(Pr(y, x), Pr(y -t- 1, x)) A Vz < y .  Df(Pr(z ,  x))}. 

Completeness follows from the/~CRLpRIM specification 5 ~" defined by 

K(x , y , z )  = (b <~Even(z) l> b. 6) 
T (x ,y , z )  t> a. K ( x , y , z  + 1). 

Now SOS(5~")(K(k,I,O)) is 'acyclic regular & deadlock free' iff 3z .  T ( k , l , z ) A  
Even(z). 
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7. Restricted Forms of Bisimilarity 

In this section different restricted forms of bisimilarity are investigated. The 
motivation for this is the observation of Bergstra [Ber91] that not each pair 
of bisimilar primitive recursive transition systems over a f ini te  label set can be 
related by a recursively enumerable bisimulation. So even over a relatively simple 
domain, bisimilarity is a complex relation. Finally, two more forms of bisimilarity 
are distinguished that are both weaker than bisimilarity defined by the existence 
of a r.e. bisimulation. 

7.1. Recursively Enumerable Bisimulations 

In the following theorem it is shown that recursively enumerable bisimulations do 
not identify all bisimilar primitive recursive transition systems (over a fixed, finite 
label set). Its proof uses recursively inseparable sets [Rog67] in the specification 
of processes that are bisimilar, but for which the existence of a recursively 
enumerable bisimulation implies the existence of a recursive separation�9 

Theorem 7.1.1 (Bergstra [Ber91]). There are two primitive recursive transition 
systems over a finite set of actions as labels that are bisimilar, but cannot be 
related by means of a recursively enumerable bisimulation. 

Proofi Let VV< and We~ be recursively inseparable sets�9 Consider the following 
specification Y over #CRLpRIM: 

A ( x )  = e 

P I ( x , y )  = a 
P z ( x , y )  = a 

�9 A(x + 1) + d .  Pl(X,0) + d. P2(x,0) 
�9 P l ( x , y  + 1) + b. 5̀ < T ( e l , x , y )  ~> ̀ 5 --k c .  `5 < T ( e 2 , x , y )  ~> ̀ 5 
�9 P2(x ,y  + 1) + c .  `5 < r ( e l , x , y )  t> `5 + b .  6 < r ( e 2 , x , y )  ~> ̀ 5 

B ( x )  = e 

Ql(x ,  y)  = a 

Q2(x ,y)  = a 

�9 B(x + 1) + d .  Qffx, O) + d .  Q2(x, O) 
�9 Q l (X , y  + 1) + b. 5̀ <1T(el,x,y) t> `5 + b .  `5 < T ( e 2 , x , y )  ~ `5 
�9 Q i ( x , y  + 1) + c .  `5 <1 T ( e l , x , y )  t> `5 + c .  `5 <1 T ( e 2 , x , y )  l> ,5. 

Then SOS  (5P)(A(0)) and SOS  (5~ are primitive recursive transition systems 
(cf. Corollary 4.2.2)�9 Observe that any trace of A(0) or B(0) has at most one of 
the b �9 ̀5 or c �9 ̀5 options. It is proved that 

s o s  (~)(A(o)) _~ s o s  (~r 

and that each witnessing bisimulation is not recursively enumerable. 
To show this, it is first argued that for any k E Na t  one has 

S O S ( ~ ) ( d "  PI(k,O) + d .  P2(k,O)) ~ S O S ( ~ ) ( d .  Ql(k,O) + d .  02(k, 0)). 

Distinguishing the three cases k c Wej, k ~ We2 and k ~ We 1 U We2, this can most 
easily be shown by pictures suggesting the bisimulations to be used. 
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1. If k E We1, say T(el,  k,/): 

d "Pl(k,O)+d-P2(k,0) 

Pl(k,0) d d~ 

a l 

Pl(k,l) 

d. Ql(k, 0) + d �9 Q2(k,0) 

--~ d d 

P2(k, 0) Ql(k,O) t ~ Q2(k,0) 
I I 

o al I I d 
P2(k,1) Ql (k, l ) / ~  / ~ ( k ,  l) 

2. If k e We2, the b and c labels of SOS (6e)(d �9 Pl(k, O)+ d'P2(k,  0)) above should 
be reversed, and again bisimulation is obvious; 

3. If k f~ We~ U We~" 

d. P1 (k, O) + d. P2(k, O) d. Q1 (k, O) + d. Q2(k, O) 

P1 (k, O) n2(k, O) Q l(k, O) q Q2(k, O) 

a,O a ~ a o) a ~ 

So for any k c Nat it follows that SOS(Sr)(A(k))~_ SOS(SZ)(B(k)). As bisim- 
ilarity is a congruence relation, it follows easily that 

SOS (5P)(A(0)) _~ SOS (5P)(B(0)). 

It remains to be shown that any bisimulation relating SOS (5Z)(A(0)) and 
SOS(5~)(B(O)) cannot be recursively enumerable. Assume the contrary for a 
relation S with rS-~ d~f {(rpT, rq,) [ (p, q) E S}, then both 

$1 def rS 7 A {(rpl(n,O)7, rQl(n,O)7 ) I n c Nat} 

$2 def rS 7 A (Nat2 \{ (rPl (n ,O)7 ,  rQl(n,O)7 ) l n E N a t } )  
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are also recursively enumerable, assuming that r.n is a function in the style of the 
proof of Theorem 4.2.1, and rpt(k)7 and rQl(k)7 are total recursive functions on 
k. Let for i -- 1, 2 

Sit def= {n I (rPl(n,O)7, rQi(n,O) 7) E Si}. 

Then also S~ and S~ are recursively enumerable. As S~ and S~ are complementary, 
both are recursive. But this is a contradiction, as S~ constitutes a recursive 
separation of Wel and We2 : first observe that for any n c Nat it must hold that 
(A(n),B(n)) C S. Secondly, 

n ~  We~ : as A(n)d-~Pl(n,O) and B(n) d, Qi(n,O) (i = 1,2), at least one of 
(Pl(n, 0), Qi(n, 0)) should be in S. By bisimilarity and n 6 We~, this must be the 
case for i = 1, and not for i = 2. Hence n E S~. 

n ~ We2 " in a similar way it follows that n c S~ = -,S~. 

[] 

Write ~r.e. for bisimilarity induced by a recursively enumerable bisimulation. An 
immediate consequence of the theorem above is that both Expressivity Theorems 
5.1.1 and 5.1.2 do not hold modulo -~r.e. (as -~r.e. is a transitive relation). 

7.2. Weaker Bisimulations 

It is shown that in the domain of primitive recursive transition systems over a 
fixed, finite label set 'primitive recursive bisimilarity' identifies less than 'recursive 
bisimilarity', which in turn identifies less than r.e. bisimilarity. The first result uses 
the processes defined in the proof of the preceding theorem. 

Theorem 7.2.1. There are two primitive recursive transition systems over a finite 
set of actions as labels that are recursively bisimilar, but not primitive recursively 
bisimilar. 

Proof. Consider the process declarations from the proof of Bergstra's Theorem 
7.1.1, but now take We1 a recursive set that is not primitive recursive, and 
We2 = Nat \ Wer Proceeding as in the proof of 7.1.1, it follows that the primitive 
recursive transition systems SOS(5~)(A(O)) and SOS(Se)(B(O)) are recursively 
bisimilar, but not primitive recursively bisimilar. [] 

The next result again uses recursively inseparable sets. In its proof two r.e. bisim- 
ilar processes are defined for which the assumption of a recursive bisimulation 
implies a recursive separation. 

Theorem 7.2.2. There are two primitive recursive transition systems over a finite 
set of actions as labels that are r.e. bisimilar, but not recursively bisimilar. 

Proof. Let We1 and We2 be recursively inseparable sets. Consider the following 
specification: 

A = 

B(x,y) = 

a . A  

a . B ( x , y + l )  + 
b .6  <13y' <_ y .  T(e2,x,y')~> 6 + 
2x<z<y(a �9 B(z, 0) < K ( x , y )  ~, ,~) 



Computable Processes and Bisimulation Equivalence 675 

where K(x, y) abbreviates the primitive recursive predicate 

3y' < y .  T(eb z, yl) A -~3z' < z, y" < y .  x < z' A T(el, z', y") 

and a formal, but less readable description of the summand(s) 

Ex<z<y(a " B(z, O) <~ K(x,  y) ~> 6) 

can easily be defined (this expression equals 6 whenever -,(x < z < y)). 

Let k def I~X. [X ~ Well. Typically, in SOS(Se)(B(k,O)) the root B(k,O) is 
connected to all states B(m, n) with m ~ We1 via a-transitions, so all of these must 
be related to A in a bisimulation. 

Now SOS (SP)(A) ~-r.e. SOS (Se)(B(k, 0)), for given a suitable coding function 
%7 of closed process terms, {(rAT, r B ( x , y ) 7 ) [ x  C We,,y E Nat} is a r.e. bisim- 
ulation. Furthermore, B(m, n) with m ~ We2 cannot be related to A because of 
the b-transition. The assumption that there is a recursive bisimulation relating 
SOS (SP)(A) and SOS (5~)(B(k, 0)) thus assumes a recursive separation of We~ and 
We2. [] 

8. Conclusions and Comparison with Related Work 

The transition systems studied in this paper can be associated to processes spec- 
ified in common specification languages such as CCS [Mi189], LOTOS [ISO87], 
ACP [BeK84, BaW90] and PSF [MaV90, MaV93]. As a means for defining tran- 
sition systems up to bisimulation equivalence, the specification language #CRL 
(micro Common Representation Language [GrP91a, GrP95]) is used. Two simple 
fragments of #CRL are distinguished, involving a decidable form of guardedness. 
These fragments--/~CRLTREC and pCRLpRiM--are up to bisimulation equiv- 
alence universally expressive with respect to recursive and primitive recursive 
transition systems. For both these domains, the following properties are classi- 
fied in the arithmetical hierarchy: bisimilarity, perpetuity and deadlock freedom, 
(all II~ acyclic regularity (E ~ and regularity (Z~ In expressivity and classi- 
fication proofs, all occurrences of sequential composition can be replaced by 
action prefixing, by which these results also refer to (value-passing) CCS and 
LOTOS. Finally, it is shown that in the domain of primitive recursive transi- 
tion systems over a fixed, finite label set, a genuine hierarchy in bisimilarity 
can be defined by the complexity of the witnessing relations, which extends r.e. 
bisimilarity. 

In the formal definition of/~CRL its authors adopted a (common) definition of 
guardedness (cf. [BBK87]): a specification 5 p is "guarded" whenever the next steps 
of each closed process term in I?(5 e) can be computed and are finite in number (so 
each closed process term determines a recursive transition system). Of course, this 
is relative to an interpretation of the data declared in a specification. This notion 
of guardedness is not decidable; it implies for each recursively defined process 
term the existence of a finite upper bound to the number of expansions (replacing 
identifiers by their defining right-hand sides) necessary to compute its next steps. 
Indeed, even restricting to primitive recursive data types, this general form of 
guardedness is complete in II ~ This motivates the restriction to the decidable 
property "lspd-guardedness" (Definition 3.2.3) in #CRLTREC and pCRLpR~M. 

In terms of expressiveness,/~CRLTREC, #CRLpR~t a and lspd-guardedness form 
a reasonable point of departure. In the following some other expressiveness results 
are discussed. 
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Two basic results of De Simone [Sire85] imply that: 

1. Languages such as CCS, SCCS [Mi183], and ACP can up to bisimulation 
equivalence be defined by transition rules in a particular format, and hence 
be expressed in MEIJE [AuB84], and 

2. Any recursively enumerable process graph is up to bisimulation equivalence 
representable in MEIJE. 

In [BBK87], Baeten, Bergstra and Klop show that each recursive transition 
system over a finite set of actions is expressible in ACP with finite, guarded 
recursion and 'abstraction' (based on Milner's silent steps [Mi189] and weak 
bisimulation equivalence, see further [BeK85]), and that the feature abstraction 
is necessary for this result. In particular, they provide a counterexample for the 
case without abstraction. 

In [Vaa93], Vaandrager investigates the expressive power of process algebras 
in the setting of structural operational semantics. Based on the above-mentioned 
counterexample in [BBK87], it is shown that no effective operational semantics 
for an enumerable language can specify all effective transition systems up to trace 
equivalence. Further results in this paper are on calculi for transition rules. In 
particular, a format is identified that guarantees an effective operational semantics, 
and that contains the guarded versions of CCS, SCCS, MEIJE and ACE Hence, 
the above-mentioned expressiveness results of De Simone both depend on the 
use of unguarded recursion. Furthermore, Vaandrager defines an effective process 
language PC in his format, that is more expressive than any effective version of 
CCS, SCCS, MEIJE and ACP with finite, guarded recursion (due to a "relational 
renaming operator"). 

Van Glabbeek recreates in [Gla95] the expressiveness results of De Simone in 
variants of ACP without sequential composition, to which prefixing and renam- 
ing operators are added--either functional: aprACPF, or relational: aprACPR, 
having the expressive power of PC [Vaa93]. He only uses guarded recursion, and 
presents an extended, simultaneous classification of transition systems and process 
expressions. In particular, Van Glabbeek defines a primitive effective version of 
aprACPF that is universally expressive for primitive recursive transition systems 
up to bisimulation equivalence (cf. Corollary 5.1.3). In this case, infinite--but 
primitive recursive--guarded recursion is used (cf. lspd-guardedness). 

In [BEG94], Bezem and Groote define linear process operators in the setting of 
/~CRL with silent steps (>steps). In this paper, a general approach to verification 
with invariant techniques is presented. From the proof of Expressivity Theorem 
5.1.2, it can be inferred that linear process operators are not a restriction in terms 
of expressiveness. First observe that this proof suggests a 'normal form theorem', 
the proof of which is based on strong bisimulation semantics, the coding of 
processes as a data type, the total recursive function SOS (50, and application of 
Theorem 4.2.1. (In fact, this applies to effective #CRL, [GrP91a, GrP95].) Because 
the specification given in the proof of Expressivity Theorem 5.1.2 can be written 
as a linear process operator (essentially by replacing the R-equation by one 
with a sum operation over syntactically guarded subterms), the above-mentioned 
expressiveness of linear process operators follows. 

As for the complexity of bisimilarity, Darondeau approaches this topic from 
a different point of view. In [Dar90] he gives an effective transition system that 
is infinitely branching--states and labels are recursive sets, and the transitions 
are recursively enumerable as a subset of Nat 3 - ,  and for which the quotient 
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of the largest bisimulation is no t  effective. In [Dar91], this is sharpened to hold 
for a deterministic, primitive recursive transition graph with a finite number of 
labels. A consequence of the distinction between the various types of bisimilarity 
addresses in the case of ~tCRL a proof theoretic phenomenon. Consider some 
axiomatic, finitary proof system for #CRLpRIM , say ~-. Proving for any two closed 
process terms p, q over s o m e / ~ C R L p R I M  specification 5 ~ 

5 a t- p = q :- S O S  (Sa)(p) ~-r.e. S O S  (SP)(q) 

shows by the result of Bergstra (Theorem 7.1.1) and the Expressivity Theorem 
5.1.2 that ~- cannot be complete with respect to bisimulation equivalence. As the 
implication above can be shown for the #CRLpRIM fragment of the proof system 
for #CRL defined in [GrP91b, GrP93], it follows that this system is not complete 
with respect to this fragment. This applies also to the #CRLTREC fragment. A 
conclusion of this may be that other process algebras, for example those defined 
by recursively enumerable bisimilarity, have a right to exist. 
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