
Formal Aspects of Computing (1996) 8:648 678
�9 1996 BCS Formal Aspects

of Computing

Computable Processes and Bisimulation
Equivalence
Alban Ponse
University of Amsterdam, Faculty of Mathematics, Computer Science, Physics and Astronomy,
Amsterdam, The Netherlands

Keywords: Process algebra; Labelled transition system; Bisimulation equivalence;
Regular process; ACP; #CRL; Computability

Abstract. A process is called computable if it can be modelled by a transition
system that has a recursive structure--implying finite branching. The equivalence
relation between transition systems considered is strong bisimulation equivalence.
The transition systems studied in this paper can be associated to processes
specified in common specification languages such as CCS, LOTOS, ACP and
PSF. As a means for defining transition systems up to bisimulation equivalence,
the specification language #CRL is used. Two simple fragments of #CRL are
singled out, yielding universal expressivity with respect to recursive and primitive
recursive transition systems. For both these domains the following properties
are classified in the arithmetical hierarchy: bisimilarity, perpetuity (both H~
regularity (having a bisimilar, finite representation, Z~ acyclic regularity (E~
and deadlock freedom (distinguishing deadlock from successful termination, II~
Finally, it is shown that in the domain of primitive recursive transition systems
over a fixed, finite label set, a genuine hierarchy in bisimilarity can be defined by
the complexity of the witnessing relations, which extends r.e. bisimilarity. Hence,
primitive recursive transition systems already form an interesting class.

1. Introduction

In this paper, rooted labelled transition systems are considered as mathematical
representations of processes. Such a transition system consists of a set of states,

Correspondence and offprint requests to : A. Ponse, University of Amsterdam, Faculty of Mathematics,
Computer Science, Physics and Astronomy, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands.
E-mail: alban@fwi.uva.nl.

Computable Processes and Bisimulation Equivalence 649

a set of labels representing the actions, and a transition relation, presc6bing
for each state the possible 'next steps', i.e., what actions can be performed, and
(per action) what state results. Selecting one state as the root (the initial state)
then yields a formal representation of a process. Furthermore, one can add the
facility to distinguish between successful termination and deadlock in transition
systems. This is modelled by a special label representing successful termination. A
widely studied behavioural equivalence relation on transition systems is (strong)
bisimulation equivalence [Par81, Mi189, GrV92] : the bisimulation equivalence class
of a transition system determines a process.

Two particular types of transition systems are studied in this paper: a tran-
sition system is recursive 1 if its set of states and its set of labels are recursive,
and from each state all next steps can be computed as a finite set. It is primitive
recursive if all these ingredients are so. A process is called computable if it can ef-
fectively be associated with a recursive transition system. In the setting of process
specification formalisms, this seems a natural interpretation of computability.

The processes studied in this paper can be specified in common specification
languages such as CCS [Mi189] and LOTOS [ISO87], or ACP [BeK84, BaW90]
and PSF [MaV90, MaV93]. The ACP-based approaches comprise the CCS-like
ones by employing the two types of termination, a more flexible communication
format, and sequential composition as a primitive operator. Therefore, the set-up
of this paper is ACP-based, though it is taken care that if one does not wish
to distinguish between successful termination and deadlock, all remaining results
refer to the setting of (value-passing) CCS and LOTOS (replacing sequential
composition by action prefixing). The ACP-like approach of specifying processes
solely by actions, a finite number of process operators, and guarded recursion
is extended by including conditionals (if--then----else---fi constructs) and data-
parametric recursion as specification primitives. As an example, consider the
process X(0) recursively defined by the one-liner:

X(n) d&f if [n is a prime number] then a. X(n + 1) else b. X(n + 1) ft.

Then X(0) is a simple specification of the (primitive recursive) transition system

0 b~ 1 b~2 a~ 3 a~4 b~ 5--%

having the naturals as states, and an a-transition between states n and n + 1
whenever n is a prime number, and a b-transition otherwise. By a basic result in
[BBK87], it is possible to specify this transition system up to weak bisimilarity
in ACP with finite recursion and abstraction, but such a specification is not so
simple. (Abstraction, based on Milner's silent steps [Mi189], is not considered in
this paper.)

The purpose of this paper is twofold. First, it is intended to illustrate that
a systematic inclusion of conditionals and data-parametric recursion in process
specification languages provides a simple and powerful means for the specifi-
cation of transition systems up to bisimulation equivalence, and hence for the
study of process theory. Secondly, some properties of transition systems modulo
bisimulation and bisimilarity itself are analyzed in terms of basic recursion theory.
Restricting to computable processes, the first goal is pursued by using the par-
ticular specification language pCRL (micro Common Representation Language,

I Knowledge of basic recursion theory is assumed (although some fundamentals are recalled). Com-
mon references to recursion theory are [Rog67, Dav82].

650 A. Ponse

[GrP91a, GrP95]). For each of the selected domains of transition systems, a
simple fragment of #CRL is defined that is universally expressive: each recursive
transition system can be expressed modulo bisimulation in a canonical way. In
the case of primit ive recursive transition systems without the distinction between
successful termination and deadlock, this can be done in one single, effective
#CRL 'specification'. Otherwise, a recursive transition system induces its own
effective #CRL specification and therewith its own, enumerable process specifica-
tion language. Both these #CRL fragments employ a restrictive, decidable form
of guardedness. (Guardedness is a criterion for defining processes in a recursive
way.)

A property of a transition system modelling some process should be bisimu-
lation invariant, as it is on the level of bisimulation equivalence that transition
systems model processes. For instance, number o f s tates is no such property, as
even very simple transition systems can be bisimilar while having a different num-
ber of states. Employing process algebraic techniques, the following bisimulation
invariant properties of (primitive) recursive transition systems are investigated
and classified:

�9 bisimilari ty - - complete in II~

�9 perpetui ty (no possibility to terminate) - - complete in II~

�9 regulari ty (having a bisimilar f in i te representation) - - complete in 2~

�9 acyclie regulari ty (regularity without cycles) - - complete in y0.

A fifth property distinguishes between successful termination and deadlock, and
therefore applies not (so easily) to CCS (I am not aware of specific properties of
CCS-like transition systems that model deadlock):

�9 deadlock f r e e d o m - - complete in 17[~

These properties are especially relevant when (bisimilarity classes of) transition
systems are defined in a formalism for process specification: for complex spec-
ifications they are not obvious and can be essential for tooling or correctness.
Bisimilarity is of interest by definition since it characterizes all of what is taken
to be important of a transition system. Perpetual processes often occur in process
theory (note that a perpetual process is deadlock free). Regularity refers to the
theory of formal languages [HU79], from which also standard techniques can be
used to prove that a transition system is not regular: the presence of an "irregular
trace" contradicts the Pumping Theorem for regular languages [HU79]. Finite
transition systems are of interest, because they are easy comprehensible (e.g., for
a computer tool). The interest of deadlock freedom can be motivated as follows.
In ACP or #CRL, concurrent processes are often defined using parallel operators
and communication declarations. The remnants of unsuccessful communications
are then encapsulated: the corresponding transitions are removed. If at some
point there is no communication possible, this causes a deadlock. (For details, see
e.g. the text book [BaW90].)

Finally, the nature of bisimilarity itself (i.e., the existence of a relation that
is a bisimulation) is given attention to. It turns out that in the relatively simple
domain of primitive recursive transition systems over a fixed, f in i te label set,
one can distinguish between bisimilarity based on primitive recursive, recursive,
recursively enumerable or more complex witnessing bisimulations.

The paper is organized as follows: in Section 2, transition systems are in-
troduced. In particular, the two forms of termination and recursive transition

Computable Processes and Bisimulation Equivalence 651

systems are defined. In Section 3, the fragments of #CRL are defined. An ef-
fective, operational semantics for these fragments is given in Section 4. Section
5 is on expressivity of the/~CRL fragments. Section 6 contains the arithmetical
classification of the properties of recursive transition systems under considera-
tion, and in Section 7 some weaker forms of bisimilarity over primitive recursive
transition systems are investigated. Finally, Section 8 contains some conclusions,
and a discussion of related work.

2. Computable Processes

In this section transition systems comprising successful termination and deadlock,
and bisimulation equivalence are introduced. Then 'computable' behaviour is
defined by means of transition systems having a recursive structure.

2.1. Transition Systems, Bisimulation and Termination

A (rooted, labelled) transition system is a quadruple (S, L, Tr, so) with

1. S ~ 0 a set of states,
2. L ~ 0 a set of labels or actions,
3. Tr ~_ S • L • S a transition relation, and
4. so c S its root.

In a rooted transition system the root represents the initial state of the process
it models. The transition relation then prescribes for each state what actions may
be performed (if any) and what state results per possible action.

Transition systems Ya = (S1,L1, Trl,Sl) and J 2 = ($2,L2, Tre, s2) are called
isomorphic, notation

Y-1 --~ ~--2,

if there is bijective mapping between St and $2 that preserves the roots and the
respective transition relations.

The states of a transition system only play a role in structuring the actions
a process may perform. The operational behaviour embodied by a transition
system is the real object of interest. This behaviour can be captured by regarding
transition systems modulo (strong) bisimulation equivalence [Par81]:

Definition 2.1.1 (BMmilarity). Given transition systems J-1 = (S1,L1, Trl, Sl) and
~-'-2 = (82, L2, Tr2, S2), a relation R _~ S~ • S 2 is a bisimulation iff for each pair
(tt, t2) c R the transfer property holds:

�9 (tt,l, ul) C T r l :" 3uz,(tz , l, u2) c T r 2 a n d (u l , u 2) E R ,
�9 (t2,l, u2) E Tr2 ~ ~ua .(tl , l, ul) E Trl and (Ul,U2) E R,

The transition systems ~--1 and Y2 are bisimilar, notation

J ' t -~ ~'-2

iff there exists a bisimulation R __~ St • $2 with (sb $2) E R. []

Observe that _~ is an equivalence relation on transition systems and that
isomorphic transition systems are bisimilar.

652 A. Ponse

Let (S,L, Tr, so) be some transition system. Instead of writing (s, l,s') ~ Tr,
the more pictorial notation

S l) st E T r

is further used, in accordance with the way transition systems are visualized:

Example 2.1.2. Consider the following three transition systems, where Nat denotes
the natural numbers:

~--1 de=f (Nat,{a},{n a, n-}- l lnENat},O)

f 2 ({0}, {a}, {0 0}, 0)
J-3 def ({0,1, 2}, {a, b, c}, {0 - % 0,1 a 1,2 b,2},0).

These transition systems are depicted below, where the roots are indicated by a
small downward arrow and ~ abbreviates co successive a-transitions:

0

a a Y2 ~ a

d ~ ~ b

~"1 J-3

It can easily be seen that Nat • {0} is a bisimulation relating Yl and Y2, and
Y-1 and Y--3. The transition systems Y2 and ~-3 are related by {(0, 0)}.
(End example.)

An immediate consequence of regarding transition systems modulo bisimulation
equivalence concerns root connectedness or reachability: only states that can be
reached from the root play a role. Similarly, also the set L of labels can be
restricted to those that occur in root connected transitions. There is a sound
reason for not defining a transition system right away as a connected, directed,
labelled graph. In the spirit of a specification language for (equivalence classes)
of transition systems it is common practice to define a transition relation via a
calculus that operates on language expressions, i.e., on the structure of the states
(as to obtain an operational semantics in the style of Plotkin [Plo81, GrV92]).
Therefore the transitions from any state may not depend on properties of the
transition system, such as for instance root connectedness.

Computable Processes and Bisimulation Equivalence 653

The property root connectedness can be used to define transition systems in
which two types of termination are distinguished:

Definition 2.1.3 (Termination in transition systems). Let g- = (S,L, Tr,so) be a
transition system such that the distinguished symbol x/ ("tick") is in L, and
L \ {x/} 5~ 0. The label x/is used to signal successful termination.

Then 3- is termination consistent, TC for short, if for each s, s' E S satisfying

s , / > s ' E T r

it holds that

�9 for n o s " E S a n d I E L , s ~ s " E T r ,
�9 for n o s " E S a n d l E L , s' l > s , , c T r ,

�9 S@So.

Assume J- is TC. A root connected state s for which s ,/> s I represents successful
termination. A state s that has no outgoing transitions, and that can be reached
from the root by transitions labelled from L \ { ~/} represents deadlock. []

Some examples. The leftmost transition system is TC and has two termination
states: 1 represents successful termination, and 2 represents deadlock (this is still
the case if 1 ~ 2 is replaced by 1 ~L~ 3).

a a

1 _ . . 2

0

4
1

a

2

2 0 e l ~ l a

A TC transition system. Two transition systems that are not TC.

Note that a transition system in which x/ does not occur as a label is by
definition TC.

2.2. R e c u r s i v e Trans i t ion S y s t e m s

Following Bergstra and Klop [BBK87], a computable process is a process of which
in any state all possible next steps are finite in number and can be computed.
Such a process can be modelled by a recursive transition system. In the formal
definition below the following standard primitive recursive (de)coding functions
relating Nat x Nat and Nat [Dav82] are used:

j (x , y) = �89 ((x + y)2 + 3y + x)
j l (x) = ~y <_ x . [3z < x . j (y , z) = x]
j2(x) = uz <_ x . [3y <_ x . j (y , z) = x].

Typically j (j l(x) , jz(x)) = x and ji(j(xl,X2)) = xi. Moreover, a useful property is
x <_ j (x , y) _ y.

654 A. Ponse

Definition 2.2.1. A transition system (S, L, Tr, so) is recursive iff

1. The set S of states is a recursive subset of Nat, the natural numbers.

2. The set L of labels can be coded as a recursive set, i.e., there is an injective
function i : L ~ Nat such that

i(L) &=f {i(1) l l E L}

is recursive.
3. The transition relation Tr can be represented by a (total) recursive function

next such that for all s E S the value of next(s) is the canonical index 2 (CI)
of the finite set coding all next steps from s:

next(s) = CI({j(i(1),s') l s t , s' E Tr})

(so Dnext(s) contains all values j(i(1),s') for which s t , s' E Tr).
4. The root so is 0.

I f appropriate, (S, L, Tr, so) is sometimes denoted as

(S, L, next, i).

A transition system is primitive recursive iff the sets S and i(L), and the function
next are primitive recursive. []

In the case that L is (isomorphic with) Nat, it is assumed that the coding function
i itself is recursive. Note that in a recursive transition system the number of next
steps is always finite: such systems are called finitely branching.

A transition system (S, L, ~ , so) is called finite iff both S and L are finite (so a
finite transition system is always isomorphic with a primitive recursive transition
system).

3. The Language/~CRL, Two Simple Fragments

In this section, two simple fragments of the specification language #CRL (micro
Common Representation Language, [GrP91a, GrP95]) are introduced. These
fragments shall be used to specify recursive or primitive recursive transition
systems modulo bisimulation.

A (well-formed) /~CRL specification consists of a finite number of declara-
tion units: some of these constitute the 'data part ' of the specification, others the
'process part'. These units are introduced below. As there is in this paper only a re-
stricted use of the language (especially concerning concurrency, parameterization
and recursion), the syntax given here is a simplification.

3.1. Data Specification

Only two data types are explicitly used in this paper: the Booleans of which
the constants t (true) and f (false) must be declared in any (well-formed) data
specification, and the natural numbers (Nat) with constant 0 and successor

2 The canonical index of 0 is 0, of { k l , k 2 kt} it is the number 2 kl + 2 k2 + ... + 2 kt, and Dx is the
finite set with canonical index x.

Computable Processes and Bisimulation Equivalence

Table 1. A # C R L specification of some familiar data.

sort Bool
func t, f : ~ 13oo1

sort
rune

var
few

Nat
0 :--* Nat
S, pd : Nat --~ Nat
add,monus, t imes: Nat x Nat --* Nat
x, y : Nat
pd(O) = 0
pd(S(x)) = x
add(x, O) = x
add(x, S(y)) = S(add(x, y))
monus(x, O) = x
monus(x, S(y)) = pd(monus(x, y))
times(x, O) = 0
times(x, S(y)) = add(times(x, y), x)

func e q : Nat x Nat --, Bool
var x, y : Nat
rew eq(x,x) = t

eq(S(x), S(y)) = eq(x, y)
eq(S(x),O) = f
eq(0, S(x)) = f

655

function S. Furthermore, a data specification may contain a finite number of
total recursive functions (declared in an algebraic way). In Table 1 a data
specification of some familiar functions is displayed. The keyword rew ('rewriting
rules') precedes the actual definitions of the functions (using the variables declared
by var).

In the following some conventions for data specification are introduced. The
Boolean standard functions 7, A, V are used in the common way. Letters v, w, x, y,
z, ... are reserved for variables declared over Nat, and the letters k, l, m, n range
over numerals. Finally, Kleene's primitive recursive T-predicate [Kle52, Dav82]
is often used. To recall and fix notation: let a coding of Turing Machines (or any
other equivalent computing device) be fixed and let m > 1 E Nat. Then

T m (x , y l , . . . , y m , z)

holds if z codes the unique computation of the Turing Machine encoded by x
for arguments (yl, ..., ym). For a fixed m, Kleene's T-predicate can be defined in a
data specification by a Boolean valued characteristic function. 3 In the remainder,
the letter T will always be used for this function (omitting the subscript m). The
data part of any specification is interpreted in the canonical term algebra over
the domains D(Nat) = {0, S(0), ...} and D(Bool) = {t, f}. So any function declared
is regarded as yielding the usual normal forms in the appropriate domain.

3 Using sequences of naturals as a sort.

656 A. Ponse

3.2. Process Specification

The most simple processes are (atomic) actions, which must be explicitly declared
in a specification. Actions represent basic activity, and will be associated to the
labels of transition systems. Letters a, b, c are used to represent actions. Further-
more, actions can be data-parametric. For example, given an action declaration
a, b : Nat , actions have the form a(0), ..., b(17) It is further assumed that data
occurring in actions are always in normal form (by which equality over labels in
bisimulations is syntactic equivalence).

More complex processes can be declared by means of (parameterized) process
identifiers, possibly in a recursive way. For example

Counter(x) = p

Buffer = q

In the first line a counter is declared. It is a process with one parameter x of sort
Nat. The parameter x and the identifier Counter may be used in the process term
p and have no wider scope; p specifies the counter's behaviour. The syntax of
process terms is defined below. In the second line of the example a parameterless
process Buffer is declared. Its behaviour is given by the process term q. In this
paper all process declarations are either not parameterized, or parameterized over
Nat (so the sort o f the variables possibly occurring in process identifiers is always
Nat). 4 Apart from some expressivity results, all actions considered in this paper
are not data-parametric.

In the basic #CRL fragments considered in this paper, process terms may be
constructed according to the following syntax:

p ::= (p + p)

I (p p)
[(p<~tt>p)

I 6
I n
] n(tl tin)

Here the + represents choice and the �9 stands for sequential composition. The
conditional construct p < t t> p is an alternative way to write an i f - - then- -e l se - - f i
expression introduced by Hoare et al. [HHJ87] (see also [BaB92]). The data-
term t is supposed to be of the standard sort of the Booleans (Bool). The left
argument is executed if t evaluates to true (t) and the right argument is executed
if t evaluates to false (i0. (Recall that all possible functions occurring in t are
assumed to be total recursive.) Furthermore, 6 is a constant called deadlock or
inaction, and represents the situation in which no steps can be performed. Finally,
n is the name of some declared action or process identifier, and tl tm are data
terms. In process terms, brackets are omitted according to the convention that �9
binds stronger t h a n . ,~ t t>. (regarding. ,1 t t>. as a binary process operator for
any closed data term t over the Booleans), which in turn binds stronger than +,
and that all these operators associate to the right.

A specification over the fragment of #CRL used in this paper, is a sequence
of data and process declarations (with certain well-formedness criteria, excluding
ambiguity in overloading).

4 In full pCRL, typing of data parameters in process and action declarations is necessary.

Computable Processes and Bisimulation Equivalence 657

In (effective) #CRL, specifications have to be guarded as to safeguard that
any process term is associated to a (recursive) transition system. Guardedness is
an umbrella term for conditions on the way recursion may be used in process
declarations (in [BaW90] a common definition and some historical references
can be found). Typically, unguarded specifications may either not define any
behaviour at all (e.g., the declaration P = P), or may have different, uncomparable
"solutions". A syntactically guarded specification satisfies a syntactic, decidable
requirement, that implies guardedness:

Def in i t ion 3.2.1 (Syntactic guardedness). Let 5 ~ be a specification.

1. Let p, q be process terms over 5O with p a (parameterized) process identifier.
Then p is (locally) syntactically guarded in q iff one of the following conditions
is satisfied:

�9 q ----- ql d- q2 and p is syntactically guarded in ql and q2,
�9 q = ql ~ t t> q2, P is syntactically guarded in ql and q2 (t a Boolean),
�9 q = ql "q2, and p is syntactically guarded in ql,
�9 q is any action or 3.

2. The specification 50 is (locally) syntactically guarded iff in each of its process
declarations, the left-hand side (the process identifier) is syntactically guarded
in the right-hand side (the 'body').

[]

Due to parametrization, "locality" is an issue in the case of #CRL: a single
equation can define an infinite number of processes. Note that this is relative to
the interpretation of the data involved--in this paper the standard models of the
naturals and the Booleans.

Example 3.2.2. Consider the following process declaration:

Q(x) = a .b~eq(x ,O)~,a .Q(x-:- l).

This declaration can be associated with a specification that is syntactically guarded
by assuming the contents of Table 1 (written with infix notation -:- instead of
monus(,)), and the declaration of a as an atomic action. For each k ~ Nat, the
process Q(k) behaves as a k+l �9 3. (End example.)

Syntactic guardedness is a strong requirement on specifications. It implies that
each recursively defined process has in each of its states a finite upper bound on
the number of actions that can be performed (i.e., on the number of 'outgoing
transitions'; see further the next section on operational semantics). Hence, the
example above cannot be extended to a syntactically guarded specification that
defines a recursive process P(k) behaving like Q(k)+ Q(k -" 1)+ ... + Q(0) for each
k.

As one of the aims of this paper is to present a simple and powerful spec-
ification format, syntactic guardedness is relaxed to lspd-guardedness - - local,
syntactic guardedness modulo primitive recursion, relative to a data interpreta-
tion. The following criterion for lspd-guardedness is sufficient, but somewhat ad
hoc. Its extra primitive recursive ingredients only are eq (x, 0) and x '-- 1.

Defini t ion 3.2.3 (Lspd-guardedness). Let 50 be a specification that contains the
data specified in Table 1 (written with infix notation).

658 A. Ponse

1. Let p, q be process terms over 5 ~ with p a (parameterized) process identifier.
Then p is lspd-guarded in q iff one of the following conditions is satisfied:

�9 q ~ qa "1- q2 and p is lspd-guarded in ql and q2,
�9 q - ql "~ t t> q2, P is lspd-guarded in ql and q2 (t a Boolean),
�9 q - ql "q2, and p is lspd-guarded in qb
�9 q is any action or 6,

�9 p =- n(x, yb. . . ,yk) and q =-- r ,~e q (x ,O)~ ,n (x "- 1,yl...,yk), and p is lspd-
guarded in r.

2. The specification 5 ~ is lspd-guarded iff in each of its process declarations, the
left-hand side is lspd-guarded in the right-hand side.

[]

Lspd-guardedness also is based on the syntax of specifications, and it is a decidable
property. In Section 5.1, it is shown that lspd-guardedness is not a restriction in
terms of expressivity up to bisimulation equivalence, and in Section 8, a more
common definition of guardedness is discussed.

Example 3.2.4. Consider the following process declaration (cf. Example 3.2.2):

P(x) = a . b , ~ e q (x , O) t > a . Q (x "- -1)+
6 ,~ eq(x,O) t> P (x -" 1)

Q(x) = a . 6 <leq(x,O) t> a . Q (x "-1).

This declaration can be associated with a specification that is lspd-guarded by
assuming the contents of Table 1, and the declaration of a as an atomic action.
The process P(k) behaves as a . Q(k "- 1) + a . Q(k - 2) + ... + a . Q(0) + a . 6, i.e.
as Q(k) + ... + Q(O). In the next section, this example is continued.
(End example.)

Now the fragments of effective pCRL that play a role in this paper can be
defined. Given a finite set of actions (labels), these fragments turn out to have
universal expressivity with respect to the class of recursive and primitive recursive
transition systems over that label set.

D e f i n i t i o n 3.2.5. A specification 5 P belongs to #CRLTREC (#CRLpRIM , respectively)
iff

�9 5" contains the data specified in Table 1, and all other functions in 5 ~ are
total recursive (primitive recursive, respectively),

�9 5 p is lspd-guarded.

[]

In the sequel specifications are abbreviated by only describing the occurring
prqcess declarations, and even these in an informal way: the restriction to lspd-
guardedness is relaxed in favour of readability. For example, given total recursive
functions f and g, the specification

A = B(f(3))

B(x) = C(f (x) ,g (x))

C(x , y) = a . B(g(x)) ~eq(f (x) ,y) t> C(x "-- 1,y)

Computable Processes and Bisimulation Equivalence 659

informally introduces process identifiers A and B(x). In this example, the decla-
ration of B(x) serves as an abbreviation for the less readable formal declaration
of C(x,y), which is the following:

C(x,y) = a . C(f(g(x)),g(g(x))) <1 eq(f(x), y) t> C(x '-- 1,y)

obtained by straightforward syntactic substitution. Furthermore, the process iden-
tifier A is used to abbreviate the process term C(f(f(3)),g(f(3))).

4. Operational Semantics for /2CRLTREC and #CRLpRIM

In this section, the interpretation of the process part of a specification is defined.
This is based on the interpretation of data, mentioned in Section 3.1. A so called
Structured Operational Semantics (SOS) is defined. This approach is based on the
work of Plotkin [Plo81], and associates a transition system to each process (closed
term) defined in some specification. The states of such a transition system are
closed process terms or x/(expressing successful termination), and its transitions
are defined by conditional rules, based on structural induction. Some general
references to SOS and bisimulation are [Sim85, GrV92, Vaa93].

4.1. Transition Systems

The operational semantics of #CRLTREC is given by an interpretation function
SOS (Structured Operational Semantics) that, if instantiated with (the signature
of) some #CRLTREC specification 5f, assigns to each closed process term over 5 ~
a transition system. Thus

SOS : flCRLTREC -+ (~(.) ---* TS [IP(.) 1.3 {x/}' A(.) U {%/}1)

where for a specification 50 over #CRLTREO

�9 I?(SO) is the set of closed process terms over S ~,

�9 A(SO) __ I?(5O) is the set of actions declared in 5O,

�9 the expression TS[I?(SO)u {x/}, A(SO)U {x/}] abbreviates the domain of
recursive transition systems over states 17(5O) O {x/} and labels A(SO) u {,,/},
where ~/is used to express successful termination (cf. Definition 2.1.3). Note
that I?(5 0 is denumerably infinite, as 6, 6 + 6,..., 6 �9 6 E 1?(5O).

For each closed process term p E I?(5O), the transition system SOS(SO)(p) is
defined by:

SOS(SO)(p) = (P(SO) U {x/}, A(SO) 0 {x/}, rr(so), p)

with the transition relation Tr (5O) defined by the transition rules below, where

�9 variables x, y, z range over 1P(SO) and primed variables x', y' over lP(SO) U {x/},

�9 in the rule introducing ,q t ~,, t must be a Boolean declared in 5O,

�9 in the rule introducing recursively defined processes, the notation 5O F- P = x
refers to a process declaration: 5O ~- P = x iff P = x is a closed instance of a
process declaration in 5O, in which all data are in normal form.

660 A. Ponse

successful
termination

a C A(5 p)

x - - q ~ x I

x + y a~ x ~

x - - % y

y - ~ y '

x + y a, f

X ' Z a~ y ' z x ' y a) y

<l t [> X a) X t
x < l t t > y a) X I i f t = t y a) yl x <Jt~> y a~ yr i f t = f

5 0 F - P = x x a ~ x '
feCUlSiOl"l p a) xt

Typically, a transition ~ / ~ 6 signals successful termination, and a transition
x a , 6 models deadlock (a ~ A(Se)). Note that neither 6, nor 3 �9 x has outgoing
transitions. The following example illustrates the transition rules:

Example 4.1.1. Recall the specification 50 defined in Example 3.2.4:

P(x) = a .6<~eq(x ,O) l > a . Q (x " - 1) +
6 <1 eq(x,O) t> P (x "-- 1)

Q(x) = a . f <l eq(x, O) ~> a . Q(x "-1).

So, a c A(50) is a P(50) term. With a ---% ~/and the rules for + and �9 it follows
that a + 6 --% ~/ and a �9 6 a ~ 6. The root connected parts of the transition
systems associated to a, a + 6, a . 6 and a + a . 6 can be visualized as follows
(observe that only the two leftmost transition systems are deadlock free):

,/
,/

a + 3

,/

a

4

a . 3 6 I a

a + a . 3 / / ~

The root connected transitions of P(n) can be derived in the following way.
With the rules for ~ t t> it follows that a- 6 ,~ eq(0,0) t> a . Q(0) - -~ 6. With the
rule for + it follows that

a. 6 <1 eq(O,O) t> a. Q(O) + 6 <1 eq(O,O) t> P(O) a, 3.

Because 5 ~ ~- P(0) = a . 6 ,~ eq(0,0) t> a . Q(O) + ,:5 ~ eq(O,O) t> P(0), the recursion
rule yields P(0) .a, 6. The process P(1) has by its last summand all transitions

Computable Processes and Bisimulation Equivalence 661

of P(0). By its first summand there is an a-transition to Q(O), which has an
a-transition to 6. In this way one can derive:

P(0) - % 6,
P(1) _5~ 6, P(1) -2-, Q(0) a> 6,
P(2) - ~ 6, P(2) --~ Q(0) a 6, P(2) ---% Q(1) a Q(0) " , 6.

Clearly, SOS(5~ consists of n + 1 paths a k+l to 6 for all k _< n, and its root
connected part can be depicted as follows (for n > 3):

(End example.)

6 Q(0) Q(1) 0(n = 1)

4.2. SOS and Computability

For any/tCRLTREC specification 5 e it is the case that SOS (St) yields (isomorphic
images of) recursive transition systems. (In fact this is the case for the standard
operational semantics of effective #CRL [GrP91a, GrP95], of which SOS is the
restriction to #CRLTREC specifications):

Theorem 4.2.1. Let p be some process specified over a specification 5* in
#CRLTREO then SOS (SP)(p) is recursively isomorphic with a recursive transition
system. Moreover, this transition system is termination consistent (see Definition
2.1.3).

Proof. First note that SOS(re)(p) is finitely branching: by lspd-guardedness any
closed process term q can be equated to a term (using the process declarations in
50) for which the next steps do not depend on terms headed by process identifiers.
It follows from the calculus for Tr(5 ~ that only finitely many next steps from q
can be derived.

Secondly, both the set of (syntactic well-formed) closed data terms and the
set I?(5 a) U {~j} can be recursively encoded as recursive sets (even as primitive
recursive sets), where the latter coding has the property that the code of a term
is larger than those of its proper subterms, and that 0 is not in its range. Write

r .~:]?(5p) U {~/} ~ Nat \ {0}

for this coding. Using the calculus for Tr(SP), define a total recursive function
next'(.) that computes the next steps of any code of a closed term in the style of
Definition 2.2.1 (yielding some CI). The function next'(.) is total recursive as it
must be able to compute the total recursive functions defined in 6C Given p as
in the theorem, define a coding

: u { , / } - - , Nat

662 A. Ponse

by Lp~ = 0 (the root) and LqJ = rq7 for q ~ p. Adjusting next'(.) to next(.) by
taking the difference between r.7 and LJ into account, it then follows that

SOS (~9~ -~ (LI?(5 ~) U {X/}~, A(5:)O {x/}, next, i)

with i defined as L.J on the appropriate subdomain A(5:) u {x/}"
Finally, it follows immediately from the rules of Tr(5:) that both these

transition systems are termination consistent. []

Corollary 4.2.2. Let p be some process specified over a specification 5: in
#CRLpRIM, then SOS(6e)(p) is primitive recursively isomorphic with a primi-
tive recursive transition system.

Another important (algebraic) property of SOS (50) is that the bisimilarity induced
by it is a congruence with respect to the process operators of pCRLTgEc [GrP91a,
GrP95].

A relevant question is whether SOS (5 a) itself is 'nice enough' as an opera-
tional semantics. Are there no effective semantics for 5: that respect SOS (50) up
to bisimulation equivalence, and that yield smaller transition systems (in terms of
number of states and transitions), in particular 'minimal' transition systems? Gen-
erally this is not the case, not even for the restriction to #CRLpRIM specifications,
as this problem easily reduces to the Halting Problem.

Theorem 4.2.3. There exists a /.tCRLpRIM specification 5: for which no effective
operational semantics yields minimal transition systems.

Proof. Consider the pCRLpRIM specification 5: defined by

K(x,y,z) = b" K(x,y,z + 1) < T(x,y,z) E> a. K(x,y,z + 1).

Let k, l be fixed.
In the case that ~3z. T(k,l,z), the finite transition system Y2 defined in

Example 2.1.2 is bisimilar with SOS(5:)(K(k,I,O)), while SOS(5:)(K(k,I,O)) is
isomorphic with 5-i in that example.

Assume T(k, l, m) for some (unique) m. In this case consider the finite transition
system

Y0 d~f ({0, 1,...,m + 1},{a,b},Tr,O)

with the transition relation

T r d e f { x - - - % x + l l x < m } U {m b , m + l } U { m + l a , m + l } .

The root connected part of SOS (5:)(K(k, l, 0)) and -Y-0 can be depicted as follows:

Computable Processes and Bisimulation Equivalence 663

K(k,l,O)

K(k , l ,m)

K (k , l ,m + 1)

K (k , l , m + 2)

a m

a co

m

a m

b

)
Y-o

Obviously, Y'0 -~ SOS (5~)(K(k, 1, 0)), and Y-0 is smallest.
Hence for each pair k,1 it follows that SOS(5r is regular. This

example shows that an operational semantics for 5 t yielding transition systems
with minimal sets of states (and labels) must be able to decide for each k, l
whether 3z. T(k, l, z)--i.e., the Halting Problem--, so cannot be effective. []

5. Expressivity of #CRLTREC and p C R L p R I M

In this section a relation between recursive transition systems and/2CRLTREC as a
language for specifying these up to bisimulation equivalence is established. First, it
is shown that the selected fragments of pCRL have universal expressivity over the
two selected domains of transition systems--recursive and primitive recursive--
if one restricts to actions as labels (and possibly the successful termination label
~/, see Definition 2.1.3). To provide an immediate correspondence with CCS and
LOTOS, a distinction is made between CCS-like transition systems not containing
~/, and ACP-like ones in which both successful termination and deadlock can
be modelled. Then it is shown that also modulo bisimulation, the two selected
domains are different.

5.1. Universal Expressivity

It is first shown that each (primitive) recursive transition system over a recur-
sive set of actions as labels can be represented by a pCRLTp.E c process term
(respectively a process specified over pCRLpR~M). The resulting specification is
CCS-like--based on the correspondence of a . 3 with a.O in CCS.

Theorem 5.1.1. Let L be a recursive set of actions. Each recursive transition
system over L can be specified up to bisimulation equivalence in a pCRLTR~C
specification. If L is primitive recursive, this can be done in #CRLpp.I M

664 A. Ponse

Proof. Let 5- = (S, L, next, i) and let Action(x) be a process term that decodes the
actions encoded by i. For example, if L contains action names ao am of which
some are parameterized over Nat, and i is defined by

then

i(ak(X)) clef j (k ,x + l)

i(ak) def j(k,O)
(in case a k is data-parametric)

(in case ak is not data-parametric),

Action(x) ao(j2(x) ' - 1) <1 eq(jl(x), O) /~ ~eq(j2(x), O) t> 6 +
ao "~ eq(jl(x), O) A eq(j2(x), O) t> 6 +

am(j2(x) ' - 1) <1 eq(jl(x),m) A ~eq(j2(x),O) t> 6 +
am "~ eq(jl(x),m) /X eq(j2(x), O) ~> 6.

So for any k E Nat, Action(k) is a process term of 2m summands, of which at
most one is an action from L and all others equal 6.

Consider the process P specified in the following specification 5: (recall that
in a recursive transition system the initial state is 0):

e = Q(0)

Q(x) = R(next(x),next(x))

R(x,y) = Action(jl(x)) ~ x E Oy t> 6 +
6 ~ eq(x,O) ~ R(x "-- 1,y).

By definition of the function next, the property n ~ Dm ~ n < m, and by
unraveling the specification of P it follows that SOS (5:)(P) _~ J . Note that:

1. The function next(.) can be specified in /~CRLTREC as it is a total recursive
function, or in #CRLpRrM if 5- is primitive recursive.

2. Both decoding functions jl and j2 are primitive recursive,

3. All conditions are primitive recursive (membership of finite sets encoded by a
CI; equality).

[]

This result can be generalized to termination consistent transition systems (in
which successful termination and deadlock are distinguished, Definition 2.1.3):

Theorem 5.1.2. Let L be a recursive set of actions. Each termination consistent
recursive transition system over L U {,]} can be specified up to bisimulation
equivalence in a #CRLTREC specification. If L is primitive recursive, this can be
done in/~CRLpp.I M.

Proof. Let Y--= (S ,L U {,]},next, i) and let Action(x) be defined as in the proof
above. Now successful termination states have to be distinguished from the others.

Consider the process P specified in the following specification 5~

Computable Processes and Bisimulation Equivalence 665

P = Q(0)

Q(x) = R(next (x) ,next (x))

R(x , y) = Act ion(jr(x)) . Q(j2(x)) <1 x E Dy A NoTick(next(j2(x))) t> 6 +
6 <leq(x,O)t>R(x-:- 1,y) +
Action(j f fx)) ,~ x E Dy A Tick(next(j2(x))) t> 6

where the primitive recursive predicates NoTick (modelling the absence of suc-
cessful termination) and Tick (modelling successful termination) are defined by

NoTick(x) = Vz <_ x . ~(z E Dx A eq(jt(z),i(~j)))

Tick(x) = 3z <_ x . z E Dx Aeq(j f fz) , i (x /)) .

Then SOS (Se)(p) _~ Y. This can be argued in the same way as in the proof of
Theorem 5.1.1 because all conditions are still total recursive (primitive recursive,
respectively). Another difference with the specification in that proof is the last
summand of R(x, y), which possibly generates successful termination states. []

For primitive recursive transition systems over a label set not including ~/
there is the following corollary:

Corollary 5.1.3. (Cf. [Gla95].) Let L be a primitive recursive set of actions. Each
primitive recursive transition system over L can be specified up to bisimulation
equivalence in one single/tCRLTP.E c specification.

Proof. Let a primitive recursive label coding i of L be fixed and Action(x) be
defined as in the preceding proofs. Code all unary primitive recursive functions,
and define a total recursive function Eval that satisfies

Eval(k, x) = f (x)

if k is the code of f , and 0 if k does not code any primitive recursive function. 5
Now consider the following specification (cf. the one in the proof of Theorem
5.1.1):

Pprim(Z) = Qprim(O,z)

Qprim(X,Z) = Rprim(Eval(z,x),Eval(z,x),z)

Rprim(X,y,z) = Action(j t (x)) " Qprim(jz(x),z) <lx E Dy ~" 6 +
6 <1 eq(x,O) ~> Rprim(X -:- 1, y,z) .

Then, as follows from the proof of Theorem 5.1.1, Pprim(k) specifies the primitive
recursive transition system for which k encodes the next function. Furthermore,
as k varies, each primitive recursive transition system over L is specified up to
bisimilarity. []

There is no generalization of this corollary to primitive recursive ACP-like tran-
sition systems (involving ,e/) because termination consistency is not decidable
(otherwise, for each 1 E L, the set {(s,s') I s t_~ s'} is decidable, which is a
contradiction, cf. the proof of Theorem 4.2.3).

5 Recall that Eval itself cannot be primitive recursive (otherwise g(x) = Eval(x, x) + 1 would be as
well, say with code l, and Eval(l, l) = g(l) = Eval(l, l)+ 1, contradiction).

666 A. Ponse

So each (primitive) recursive transition system 3- = (S, L, next, i) with L finite
and 3- termination consistent, gives rise to a specification 5e over #CRLwREC
(or #CRLpRrM). Such a specification thus defines a canonical process term P for
which SOS (SP)(P) _~ 9"-. In Section 8 more on canonicity.

5.2. Difference between #CRLTREC and #CRLpRIM

As can be expected, the restriction to primitive recursive functions in the data
part of specifications does not make all recursive transition systems over a finite
label set specifiable. The idea is that a non primitive recursive function (but total
recursive) can be used to define a process that has a 'branching degree' growing
faster than any pCRLpRIM specification can handle:

Theorem 5.2.1. There is a recursive transition system over a finite set of labels
that cannot be specified modulo bisimulation in #CRLpRIM.

Proof. Consider the following function Ack, (a version of) the Ackermann gen-
eralized exponential [Kle52, Rog67], which is total recursive but not primitive
recursive:

Ack(O,y) = y + l
Ack(x + 1,0) = Ack(x, 1)

Ack(x + 1,y + 1) = Ack(x, Ack(x + 1,y)).

Let the specification 5 ~ over #CRLa-RE c be defined by

P(x) = a . P (x + 1) + b . Q(Ack(x,x)))
Q(x) = c . R (x) + f ~eq(x,O)t>Q(x "--1)
R(x) = 6 < e q (x , O) ~ ' c ' R (x =- 1)

Now assume Y- = (S, {a,b, c}, next, i) is a primitive recursive transition system
that satisfies ~- _+~ SOS(5r Let f :Nat ~ Nat be such that j~(F(k)) is the
code of the state characterized by the trace a k and j2(F(k)) is the code of the
state characterized by the trace a k �9 b. To make this precise, let G 1 be a function
that satisfies

s' i f s l> s'
Gl(next(s)) = 0 otherwise,

i.e., Gl(x) = j2 (#Y < x.[y E Dx A jl(Y) = i(1)]). Then F can be defined by primitive
recursion:

F(O) = j(O, (Gb(next(O))))
F(x + 1) = j (H (F (x)) , Gb(next(H(F(x)))))

H(x) = Ga(next(jl(x))).

So F is primitive recursive if next is. Now for any k E Nat it holds that

next(jz(F(k))) > Ack(k, k).

This follows from the fact that this particular value of next codes a state that
must have Ack (k, k) + 1 different outgoing c-transitions (each of these entails its
own number of successive c-transitions). Hence, the CI of the set coding all these
labels and resulting states is certainly larger than Ack(k, k) by which next cannot
be a primitive recursive function, contradicting the assumption. So SOS (SP)(P(0))

Computable Processes and Bisimulation Equivalence 667

is a recursive transition system over a finite label set that is not bisimilar with
any primitive recursive transition system. []

6. Arithmetical Classification of Properties

In this section, the properties of (pairs of) recursive transition systems that were
introduced in Section 1 are defined and classified in the arithmetical hierarchy
[Rog67]. The arithmetical characterization takes place on the level of #CRLTREc
and #CRLpRIM specifications. By the Expressivity Theorems 5.1.1 and 5.1.2 this
is sufficient. Moreover, these properties are more apparent in a process term than
in a representation of the form Y- = (S, L, next, i). This is useful for completeness
results.

6.1. Characterizing Properties with Process Algebra

Properties of recursive transition systems have to be invariant under bisimula-
tion equivalence, as it are such equivalence classes that represent 'operational
behaviour'. Typically, neither number o f states, nor being a tree is a bisimulation
invariant property (even not for the restriction to root connected transition sys-
tems), as was illustrated in Example 2.1.2. Obviously, all properties considered
refer to the root connected part of transition systems.

A first property is bisimilarity itself (because ~ is an equivalence relation,
it is a property over two transition systems that is bisimulation invariant). A
transition system is perpetual if each root-connected state has at least one outgoing
transition. A transition system is regular if it is bisimilar with some finite transition
system. A transition system is acyclic regular if it is bisimilar with a finite acyclic
transition system. A transition system is deadlock free if it is has no deadlock
states, i.e., states that are root connected by transitions not having the label x/,
and that have no outgoing transitions (see Definition 2.1.3).

These properties can easily be characterized by means of basic process algebra
and projections. Given a #CRLTREC specification 5 ~ the set of BPA~(Sa)-terms
over ~ consists of the process terms that can be constructed out of 6, the
actions declared in 6e (a recursive set), and the operators + and .. So BPA~(5 ~
characterizes the class of acyclic regular transition systems over A(6 e) tA {x/} up
to bisimulation equivalence.

The coming proofs employ some standard ACP-results, all of which can be
found in for instance [BaW90, BaV95]. The basic axiom system BPAa (Basic
Process Algebra with 6) consists of the axioms in Table 2.

The following completeness result is standard: for any two BPA~(6e)-terms

Table 2. The axioms of BPA,~.

(A1) x+(y+z) = (x+y)+z (A6) x+6
(A2) x + y = y + x (A7) 6.x
(A3) x + x = x
(A4) (x+y).z = x . z + y - z
(AS) (x.y).z = x.(y.z)

= X

=

668 A. Ponse

p, q it holds that

BPA~(~) ~- p = q < :- SOS(SO)(p) ~_ SOS(~)(q) .

In this section we further assume that F.n is a primitive reeursive coding of I?(5O)
such that

�9 the set of codes, say rp(so)n, is primitive recursive and 0 ~ riP(SO)7,

�9 the code of a term is larger than those of its proper subterms,

�9 if V-pin < r-qin , then rpl + p27 < vql + q2 n and rpl �9 p2 n < Vql �9 q2 n.

(For a syntactic coding, these requirements are easy to meat.)
The relation Eq ~_ Nat x Nat defined by

Eq dg {(rpn, rqn)[p ,q E BPA~(5 ~ and BPA~(SO) t--p = q}

is primitive recursive: BPA~ (5 ~ terms can effectively be reduced to normal forms
modulo commutativity and associativity of the + (see e.g., [BaW90, BaV95]).
Furthermore, the relation Df ~ Nat (Deadlock-free) over codes of BPA~(5 ~)
terms defined by

Df de=_f {x l 3y <-- X. E q (x , y) A 6-free(y)}

is a primitive recursive relation (where 6-free(y) holds iff & does not occur in the
term coded by y).

Because the booleans occurring in I?(5 ~) can be computed effectively to either
t or f, terms p <~ t t> q can be reduced (in terms of obtaining a smaller code) to
either p or q with the axioms

x < l t ~ > y = x and x < l f t > y = y

(this reduction need not be primitive recursive, as it may involve evaluation of
total recursive functions).

Furthermore, projections of the processes definable over 5O shall be used:
rc,(p) is the process that can perform the first n steps of p, and the re, operators
are axiomatized in Table 3. By the lspd-guardedness of 5O, each 7r,(p) can be
reduced effectively to a BPA6(5 o) process: the total recursive functions in Y used
in data-parametric recursion and conditionals must be computed. For example,
given 50 as in Examples 3.2.4 and 4.1.1, i.e.,

P(x) = a .&.~eq(x ,O)~>a.Q(x~- l) +
b <~ eq(x,O) t> P(x ~- 1)

Q(x) = a.~5 <leq(x,O) t> a .Q(x-: - l),

one can derive

Table 3. Projection axioms, where a is an action or 6 and n > 0.

(PR1) ~zn(a) = a (PR3) ~n+l(a" x) = a.n~(x)
(PR2) nl(a'x) = a (PR4) nn(x+y) = nn(X)+nn(y)

Computable Processes and Bisimulation Equivalence 669

~2(P(2)) ~z2(a �9 ~ <~ eq(2,0) t> a ' Q(2 -" 1) + 3 <1 eq(2,0) ~> P(2 -- 1))
~2(a" Q(I)) "4- 7z2(P(1))
a ' tel(Q(1)) + 7z2(a �9 Q(0)) + ~z2(P(0))

a . a + a . a + a . 6 .

As a consequence, the following properties (cf. Section 6.1) can easily be
characterized with projections and equality in BPA~(5 P) (i.e., derivability or bi-
similarity):

�9 SOS(5r ~_ SOS(5r i.e. bisimilarity 6 _ _ ~l~ > O . Xn(p) = 7Zn(q).
�9 SOS (SP)(p) is deadlock free - - Vn > O. Df(Vn,(p)7).
�9 SOS (5~)(p) is perpetual - - Vn > O. [Df(Cn,(p) n) & ndp) = n,(n,(p) , p)].
�9 SOS (SP)(p) is acyclic r e g u l a r - 3n > 0. n,(p) = n,+l(P).

For regularity, the characterization is based on projections and a coding of finite
transition systems (see next section).

In the classification, the following primitive recursive function Pr (projection
on codes of ~(SP)) shall be used.

{ rnx+l(p)7 i f r p ~ = y
Pr (x, y) = 0 otherwise�9

6.2. Classification

For reference to arithmetical completeness consider the following special relations,
referring to the Enumeration Theorem of Kleene [Kle52]. Let n >__ 1, then the
binary relation En is defined as

{(z,x) I ~ylVy2...3y,, Tdz, x, yl,...y,)} in case n is odd,

{(z,x)] 3ytVY2...Vyn.-~Tdz, x, yb...yn)} in case n is even.

Now En is complete in Z ~ and ~En - - the complement of En-- is complete in II ~
Given a certain class cg in the arithmetical hierarchy and one of the properties,

completeness in cg for both #CRLpRIM and #CRLTREC is proved simultaneously
in the following way:

1. Show that for any #CRLTREC specification the property is equivalent to a
relation in cg (based on a primitive recursive relation when restricting to
#CRLpRIM).

2. Show the completeness in ~ by giving a particular #CRLpRIM specification for
which the property is equivalent to a relation that is complete in cg.

In the rest of this section, the five properties mentioned above are characterized
in the arithmetical hierarchy. Given a #CRLTREC specification 5 p, let C.7, Eq, D f
and Pr be defined as in the previous section.

6 In terms of the theory of ACP, this equivalence comprises application of the Approximation
Induction Principle (AIP-) (see e.g. [BBK87, BaW90, BaV95]). This principle implies that two finitely
branching transition systems are bisimilar if all their projections are.

670 A. Ponse

Bisimilarity - - complete in H ~

1. Let 0O in #CRLTp.E c be given and p, q ~ I?(0~ Then SOS (0o)(p) _~ SOS (0o)(q)
iff

(rp-~, rqn) E {(x, y) I Vz. Eq(Pr(z, x), Pr(z, y))}.

Hence, bisimilarity between two processes over 50 is in the class H ~

2. Completeness in H ~ can be proved with the following specification 0op over
#CRLpRIM :

K(x ,y , z) = b. 6 <~ T(x ,y , z) I> a . K (x , y , z + 1)
M = a . M .

Now SOS(0Op)(K(k,I,O)) ~_ M <==~ Vz. ~T(k , l , z)
~=~ (k, I) ~ -~E1.

The latter problem is complete in H ~

Deadlock Freedom - - complete in H ~

1. Let 0O in #CRLTREC be given and p E 17(5~ Then SOS(0O)(p) is deadlock
free iff

rp~ ~ {x IVy. Df(Pr(y,x))}.

Hence, this property is in the class H ~

2. Deadlock freedom is complete in Ha ~ by the bisimilarity example above:

SOS(0Op)(K(k,I,O)) is deadlock free ~ Vz. ~T(k , l , z)
"*==~ (k, l) 6 -~E1.

Perpetuity - - complete in H ~

1. Let 60 in #CRL-rREC be given and p ~ 17(0O). Two cases can be distinguished. In
the degenerated case that 0O contains no actions, perpetuity is not meaningful
(only the bisimilarity class of 6 is definable). Otherwise, let a be an action of
60, and let the function Pr-a (projection followed by a) be defined as follows:

{ rrcx+l(rCx+l(p) " a) -~ if rp7 = y
Pr-a(x, y) = 0 otherwise.

Then SOS (0o)(p) is perpetual iff

rpn E {x l VY. Eq(Pr(y, x),Pr-a(y, x)) A Df (x)}.

Hence this property is in the class H1 ~
2. Perpetuity is complete in H ~ using the bisimilarity example above:

SOS(0Op)(K(k,I,O)) is perpetual *==> Vz. =r (k , l , z)
(k, l) c ~E1.

Acyclic regularity - - complete in E ~

1. Let 0O in #CRL1-REC be given and p ~ 17(0O). Then SOS(0O)(p) is acyclic
regular iff

rp7 C {x I qY. Eq(Pr(y,x) ,Pr(y + 1,x))}.

Hence this property is in the class Z ~

Computable Processes and Bisimulation Equivalence 671

2. This property is complete in E ~ using the example above:

SOS(SPp)(K(k,I,O)) is acyclic regular ~ 3z . r (k , l , z)
--" :- (k, I) 6 El.

Regularity - - complete in Z ~

1. Let 5 p in /~CRLTREC be given and p 6 I?(5~ Assume some coding of the
termination consistent (see Definition 2.1.3), finite transition systems over
A(5 p) or, if one likes, over A(Se) U {~/}, and a (primitive recursive) relation
F/n that characterizes these. For example, n ~ F/n iff j2(n) is the CI of
codes of transitions k a ~ I with a E A(5 ~ and k, l _< Jl(n)- Let the function
Pr' : Nat x Nat -~ Nat be such that Pr'(x,y) =- Pr(x,y) in case y c F/n, and
0 otherwise. Then SOS (SP)(p) is regular iff

rp7 E {x [3yVz. Eq(Pr(z,x) , Pr'(z,y))}.

Hence, regularity over J can be defined as a Z ~ relation.

2. For the completeness in Z2 ~ consider for fixed k, l the trace

a �9 b l + ~ y T (k ' l ' O ' y) " a 2 �9 b I + I ~ y ' T (k ' I ' I ' y) �9 . . . �9 a m + l �9 b l + # y ' T (k ' l ' m ' y) �9 . . .

This trace is regular iff 3xVy. ~T(k , l , x , y) , for the trace then ends in a b-
loop (cf. the Pumping Theorem for regular languages [HU79]). A #CRLpRIM
specification 5Pp for defining this trace is

K(v ,w , x , y , z) = a. L (v ,w ,x , y , z)
eq(z, O) t> a . K(v, w,x, y ,z "- 1)

L(v ,w ,x ,y , z) = b . K (v , w , x + l , O , x + l)
r (v , w , x , y) > b" L(v ,w ,x ,y + 1, z).

Now SOS(Yp)(K(k,I,O,O,O)) is regular ~ ~ x V y . ~ T (k , l , x , y)
~=~ (k, I) c E2.

The latter problem is complete in E ~

This section is concluded with some comments on these properties. In [MaM94],
it is shown that in BPA6(SP) with (syntactically guarded) recursion and without
data, regularity of specifications is a decidable property. More decidability results
on regularity can be found in [BOG96].

Of course, combinations of properties now can also be classified. For instance,
the property acyclic regularity & deadlock free is complete in Z~, as the number
of relevant projections is bounded:

r-p7 E {x] 3y . Eq(Pr(y, x), Pr(y -t- 1, x)) A Vz < y . Df(Pr(z , x))}.

Completeness follows from the/~CRLpRIM specification 5 ~" defined by

K(x , y , z) = (b <~Even(z) l> b. 6)
T (x ,y , z) t> a. K (x , y , z + 1).

Now SOS(5~")(K(k,I,O)) is 'acyclic regular & deadlock free' iff 3z . T (k , l , z) A
Even(z).

672 A. Ponse

7. Restricted Forms of Bisimilarity

In this section different restricted forms of bisimilarity are investigated. The
motivation for this is the observation of Bergstra [Ber91] that not each pair
of bisimilar primitive recursive transition systems over a f ini te label set can be
related by a recursively enumerable bisimulation. So even over a relatively simple
domain, bisimilarity is a complex relation. Finally, two more forms of bisimilarity
are distinguished that are both weaker than bisimilarity defined by the existence
of a r.e. bisimulation.

7.1. Recursively Enumerable Bisimulations

In the following theorem it is shown that recursively enumerable bisimulations do
not identify all bisimilar primitive recursive transition systems (over a fixed, finite
label set). Its proof uses recursively inseparable sets [Rog67] in the specification
of processes that are bisimilar, but for which the existence of a recursively
enumerable bisimulation implies the existence of a recursive separation�9

Theorem 7.1.1 (Bergstra [Ber91]). There are two primitive recursive transition
systems over a finite set of actions as labels that are bisimilar, but cannot be
related by means of a recursively enumerable bisimulation.

Proofi Let VV< and We~ be recursively inseparable sets�9 Consider the following
specification Y over #CRLpRIM:

A (x) = e

P I (x , y) = a
P z (x , y) = a

�9 A(x + 1) + d . Pl(X,0) + d. P2(x,0)
�9 P l (x , y + 1) + b. 5̀ < T (e l , x , y) ~> ̀ 5 --k c . `5 < T (e 2 , x , y) ~> ̀ 5
�9 P2(x ,y + 1) + c . `5 < r (e l , x , y) t> `5 + b . 6 < r (e 2 , x , y) ~> ̀ 5

B (x) = e

Ql(x , y) = a

Q2(x ,y) = a

�9 B(x + 1) + d . Qffx, O) + d . Q2(x, O)
�9 Q l (X , y + 1) + b. 5̀ <1T(el,x,y) t> `5 + b . `5 < T (e 2 , x , y) ~ `5
�9 Q i (x , y + 1) + c . `5 <1 T (e l , x , y) t> `5 + c . `5 <1 T (e 2 , x , y) l> ,5.

Then SOS (5P)(A(0)) and SOS (5~ are primitive recursive transition systems
(cf. Corollary 4.2.2)�9 Observe that any trace of A(0) or B(0) has at most one of
the b �9 ̀5 or c �9 ̀5 options. It is proved that

s o s (~)(A(o)) _~ s o s (~r

and that each witnessing bisimulation is not recursively enumerable.
To show this, it is first argued that for any k E Na t one has

S O S (~) (d " PI(k,O) + d . P2(k,O)) ~ S O S (~) (d . Ql(k,O) + d . 02(k, 0)).

Distinguishing the three cases k c Wej, k ~ We2 and k ~ We 1 U We2, this can most
easily be shown by pictures suggesting the bisimulations to be used.

Computable Processes and Bisimulation Equivalence 673

1. If k E We1, say T(el, k,/):

d "Pl(k,O)+d-P2(k,0)

Pl(k,0) d d~

a l

Pl(k,l)

d. Ql(k, 0) + d �9 Q2(k,0)

--~ d d

P2(k, 0) Ql(k,O) t ~ Q2(k,0)
I I

o al I I d
P2(k,1) Ql (k, l) / ~ / ~ (k , l)

2. If k e We2, the b and c labels of SOS (6e)(d �9 Pl(k, O)+ d'P2(k, 0)) above should
be reversed, and again bisimulation is obvious;

3. If k f~ We~ U We~"

d. P1 (k, O) + d. P2(k, O) d. Q1 (k, O) + d. Q2(k, O)

P1 (k, O) n2(k, O) Q l(k, O) q Q2(k, O)

a,O a ~ a o) a ~

So for any k c Nat it follows that SOS(Sr)(A(k))~_ SOS(SZ)(B(k)). As bisim-
ilarity is a congruence relation, it follows easily that

SOS (5P)(A(0)) _~ SOS (5P)(B(0)).

It remains to be shown that any bisimulation relating SOS (5Z)(A(0)) and
SOS(5~)(B(O)) cannot be recursively enumerable. Assume the contrary for a
relation S with rS-~ d~f {(rpT, rq,) [(p, q) E S}, then both

$1 def rS 7 A {(rpl(n,O)7, rQl(n,O)7) I n c Nat}

$2 def rS 7 A (Nat2 \{ (rPl (n ,O)7 , rQl(n,O)7) l n E N a t })

674 A. Ponse

are also recursively enumerable, assuming that r.n is a function in the style of the
proof of Theorem 4.2.1, and rpt(k)7 and rQl(k)7 are total recursive functions on
k. Let for i -- 1, 2

Sit def= {n I (rPl(n,O)7, rQi(n,O) 7) E Si}.

Then also S~ and S~ are recursively enumerable. As S~ and S~ are complementary,
both are recursive. But this is a contradiction, as S~ constitutes a recursive
separation of Wel and We2 : first observe that for any n c Nat it must hold that
(A(n),B(n)) C S. Secondly,

n ~ We~ : as A(n)d-~Pl(n,O) and B(n) d, Qi(n,O) (i = 1,2), at least one of
(Pl(n, 0), Qi(n, 0)) should be in S. By bisimilarity and n 6 We~, this must be the
case for i = 1, and not for i = 2. Hence n E S~.

n ~ We2 " in a similar way it follows that n c S~ = -,S~.

[]

Write ~r.e. for bisimilarity induced by a recursively enumerable bisimulation. An
immediate consequence of the theorem above is that both Expressivity Theorems
5.1.1 and 5.1.2 do not hold modulo -~r.e. (as -~r.e. is a transitive relation).

7.2. Weaker Bisimulations

It is shown that in the domain of primitive recursive transition systems over a
fixed, finite label set 'primitive recursive bisimilarity' identifies less than 'recursive
bisimilarity', which in turn identifies less than r.e. bisimilarity. The first result uses
the processes defined in the proof of the preceding theorem.

Theorem 7.2.1. There are two primitive recursive transition systems over a finite
set of actions as labels that are recursively bisimilar, but not primitive recursively
bisimilar.

Proof. Consider the process declarations from the proof of Bergstra's Theorem
7.1.1, but now take We1 a recursive set that is not primitive recursive, and
We2 = Nat \ Wer Proceeding as in the proof of 7.1.1, it follows that the primitive
recursive transition systems SOS(5~)(A(O)) and SOS(Se)(B(O)) are recursively
bisimilar, but not primitive recursively bisimilar. []

The next result again uses recursively inseparable sets. In its proof two r.e. bisim-
ilar processes are defined for which the assumption of a recursive bisimulation
implies a recursive separation.

Theorem 7.2.2. There are two primitive recursive transition systems over a finite
set of actions as labels that are r.e. bisimilar, but not recursively bisimilar.

Proof. Let We1 and We2 be recursively inseparable sets. Consider the following
specification:

A =

B(x,y) =

a . A

a . B (x , y + l) +
b .6 <13y' <_ y . T(e2,x,y')~> 6 +
2x<z<y(a �9 B(z, 0) < K (x , y) ~, ,~)

Computable Processes and Bisimulation Equivalence 675

where K(x, y) abbreviates the primitive recursive predicate

3y' < y . T(eb z, yl) A -~3z' < z, y" < y . x < z' A T(el, z', y")

and a formal, but less readable description of the summand(s)

Ex<z<y(a " B(z, O) <~ K(x, y) ~> 6)

can easily be defined (this expression equals 6 whenever -,(x < z < y)).

Let k def I~X. [X ~ Well. Typically, in SOS(Se)(B(k,O)) the root B(k,O) is
connected to all states B(m, n) with m ~ We1 via a-transitions, so all of these must
be related to A in a bisimulation.

Now SOS (SP)(A) ~-r.e. SOS (Se)(B(k, 0)), for given a suitable coding function
%7 of closed process terms, {(rAT, r B (x , y) 7) [x C We,,y E Nat} is a r.e. bisim-
ulation. Furthermore, B(m, n) with m ~ We2 cannot be related to A because of
the b-transition. The assumption that there is a recursive bisimulation relating
SOS (SP)(A) and SOS (5~)(B(k, 0)) thus assumes a recursive separation of We~ and
We2. []

8. Conclusions and Comparison with Related Work

The transition systems studied in this paper can be associated to processes spec-
ified in common specification languages such as CCS [Mi189], LOTOS [ISO87],
ACP [BeK84, BaW90] and PSF [MaV90, MaV93]. As a means for defining tran-
sition systems up to bisimulation equivalence, the specification language #CRL
(micro Common Representation Language [GrP91a, GrP95]) is used. Two simple
fragments of #CRL are distinguished, involving a decidable form of guardedness.
These fragments--/~CRLTREC and pCRLpRiM--are up to bisimulation equiv-
alence universally expressive with respect to recursive and primitive recursive
transition systems. For both these domains, the following properties are classi-
fied in the arithmetical hierarchy: bisimilarity, perpetuity and deadlock freedom,
(all II~ acyclic regularity (E ~ and regularity (Z~ In expressivity and classi-
fication proofs, all occurrences of sequential composition can be replaced by
action prefixing, by which these results also refer to (value-passing) CCS and
LOTOS. Finally, it is shown that in the domain of primitive recursive transi-
tion systems over a fixed, finite label set, a genuine hierarchy in bisimilarity
can be defined by the complexity of the witnessing relations, which extends r.e.
bisimilarity.

In the formal definition of/~CRL its authors adopted a (common) definition of
guardedness (cf. [BBK87]): a specification 5 p is "guarded" whenever the next steps
of each closed process term in I?(5 e) can be computed and are finite in number (so
each closed process term determines a recursive transition system). Of course, this
is relative to an interpretation of the data declared in a specification. This notion
of guardedness is not decidable; it implies for each recursively defined process
term the existence of a finite upper bound to the number of expansions (replacing
identifiers by their defining right-hand sides) necessary to compute its next steps.
Indeed, even restricting to primitive recursive data types, this general form of
guardedness is complete in II ~ This motivates the restriction to the decidable
property "lspd-guardedness" (Definition 3.2.3) in #CRLTREC and pCRLpR~M.

In terms of expressiveness,/~CRLTREC, #CRLpR~t a and lspd-guardedness form
a reasonable point of departure. In the following some other expressiveness results
are discussed.

676 A. Ponse

Two basic results of De Simone [Sire85] imply that:

1. Languages such as CCS, SCCS [Mi183], and ACP can up to bisimulation
equivalence be defined by transition rules in a particular format, and hence
be expressed in MEIJE [AuB84], and

2. Any recursively enumerable process graph is up to bisimulation equivalence
representable in MEIJE.

In [BBK87], Baeten, Bergstra and Klop show that each recursive transition
system over a finite set of actions is expressible in ACP with finite, guarded
recursion and 'abstraction' (based on Milner's silent steps [Mi189] and weak
bisimulation equivalence, see further [BeK85]), and that the feature abstraction
is necessary for this result. In particular, they provide a counterexample for the
case without abstraction.

In [Vaa93], Vaandrager investigates the expressive power of process algebras
in the setting of structural operational semantics. Based on the above-mentioned
counterexample in [BBK87], it is shown that no effective operational semantics
for an enumerable language can specify all effective transition systems up to trace
equivalence. Further results in this paper are on calculi for transition rules. In
particular, a format is identified that guarantees an effective operational semantics,
and that contains the guarded versions of CCS, SCCS, MEIJE and ACE Hence,
the above-mentioned expressiveness results of De Simone both depend on the
use of unguarded recursion. Furthermore, Vaandrager defines an effective process
language PC in his format, that is more expressive than any effective version of
CCS, SCCS, MEIJE and ACP with finite, guarded recursion (due to a "relational
renaming operator").

Van Glabbeek recreates in [Gla95] the expressiveness results of De Simone in
variants of ACP without sequential composition, to which prefixing and renam-
ing operators are added--either functional: aprACPF, or relational: aprACPR,
having the expressive power of PC [Vaa93]. He only uses guarded recursion, and
presents an extended, simultaneous classification of transition systems and process
expressions. In particular, Van Glabbeek defines a primitive effective version of
aprACPF that is universally expressive for primitive recursive transition systems
up to bisimulation equivalence (cf. Corollary 5.1.3). In this case, infinite--but
primitive recursive--guarded recursion is used (cf. lspd-guardedness).

In [BEG94], Bezem and Groote define linear process operators in the setting of
/~CRL with silent steps (>steps). In this paper, a general approach to verification
with invariant techniques is presented. From the proof of Expressivity Theorem
5.1.2, it can be inferred that linear process operators are not a restriction in terms
of expressiveness. First observe that this proof suggests a 'normal form theorem',
the proof of which is based on strong bisimulation semantics, the coding of
processes as a data type, the total recursive function SOS (50, and application of
Theorem 4.2.1. (In fact, this applies to effective #CRL, [GrP91a, GrP95].) Because
the specification given in the proof of Expressivity Theorem 5.1.2 can be written
as a linear process operator (essentially by replacing the R-equation by one
with a sum operation over syntactically guarded subterms), the above-mentioned
expressiveness of linear process operators follows.

As for the complexity of bisimilarity, Darondeau approaches this topic from
a different point of view. In [Dar90] he gives an effective transition system that
is infinitely branching--states and labels are recursive sets, and the transitions
are recursively enumerable as a subset of Nat 3 - , and for which the quotient

Computable Processes and Bisimulation Equivalence 677

of the largest bisimulation is no t effective. In [Dar91], this is sharpened to hold
for a deterministic, primitive recursive transition graph with a finite number of
labels. A consequence of the distinction between the various types of bisimilarity
addresses in the case of ~tCRL a proof theoretic phenomenon. Consider some
axiomatic, finitary proof system for #CRLpRIM , say ~-. Proving for any two closed
process terms p, q over s o m e / ~ C R L p R I M specification 5 ~

5 a t- p = q :- S O S (Sa)(p) ~-r.e. S O S (SP)(q)

shows by the result of Bergstra (Theorem 7.1.1) and the Expressivity Theorem
5.1.2 that ~- cannot be complete with respect to bisimulation equivalence. As the
implication above can be shown for the #CRLpRIM fragment of the proof system
for #CRL defined in [GrP91b, GrP93], it follows that this system is not complete
with respect to this fragment. This applies also to the #CRLTREC fragment. A
conclusion of this may be that other process algebras, for example those defined
by recursively enumerable bisimilarity, have a right to exist.

Acknowledgement

Observations of Jan Bergstra formed a fundamental inspiration for this paper.
I further thank Jos Baeten, Jan Bergstra, Javier Blanco, Doeko Bosscher, Tim
Fernando, Henri Korver, Joachim Parrow, Jan Rutten and Frits Vaandrager for
discussions and critical remarks. Finally, I thank the referees and the editor for
useful comments and suggestions.

References

[AuB84]

[BaB92]

[BBK87]

[Ber91]
[BEG94]

[BOG96]

[BeK84]

[BeK85]

[BaV95]

[BaW90]

[cci87]
[Dar90]

[Dar91]

Austry, D. and Boudol, G.: Alg~bre de processus et synchronisations. Theoretical
Computer Science, 30(1):91-131, 1984.
Baeten, J.C.M. and Bergstra, J.A.: Process algebra with signals and conditions. In
M. Broy, editor, Programming and Mathematical Methods, Proceedings Summer School
Marktoberdorf 1991, pages 273-323. Springer-Verlag, 1992. NATO ASI Series F88.
Baeten, J.C.M., Bergstra, J.A. and Klop, J.W.: On the consistency of Koomen's fair
abstraction rule. Theoretical Computer Science, 51(1/2):129-176, 1987.
Bergstra, J.A.: 1991. Personal Communications.
Bezem, M.A. and Groote, J.E: Invariants in process algebra with data. In [JoP94],
pages 401~416, 1994.
Bosscher, D.J.B. and Griffioen, W.O.D.: Regularity for a class of context-free processes
is decidable. In proceedings of ICALP'96, to appear.
Bergstra, J.A. and Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Computation, 60(1/3):109-137, 1984.
Bergstra, J.A. and Klop, J.W.: Algebra of communicating processes with abstraction.
Theoretical Computer Science, 37(1):77 121, 1985.
Baeten, J.C.M. and Verhoef, C.: Concrete process algebra. In S. Abramsky, D.M.
Gabbay, and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, Volume
IV, Syntactical Methods, pages 149-268. Oxford University Press, 1995.
Baeten, J.C.M. and Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.
CCITT Working Party X/1. Recommendation Z.IO0 (SDL), 1987.
Darondeau, Ph.: Concurrency and computability. In I. Guessarian, editor, Semantics of
Systems of Concurrent Processes, Proceedings LITP Spring School on Theoretical Com-
puter Science, La Roche Posay, France, LNCS 469, pages 223-238. Springer-Verlag,
1990.
Darondeau, Ph.: Recursive graphs are not stable under maximal reduction. Bulletin of
the European Association for Theoretical Computer Science, 44:186-189, 1991.

678 A. Ponse

[Dav82]
[Gla951

[GrPg01

[GrP91a]

[GrP91b]
[GrP931

[GrP95]

[GrV92]

[HHJ871

[HU791

[ISO87]

[JoP94]

[Kle52]
[Mi183]

[Mi189]

[MaM94]

[MaV90]

[MAY93]

[Par81]

[Plo81]

[PVV951

[Rog67]

[Sim85]

[Vaa93]

Davis, M.: Computability and Unsolvability. Dover Publications, Inc., 1982.
van Glabbeek, R.J,: On the expressiveness of ACP (extended abstract). In [PVV95],
pages 188-217, 1995.
Groote, J.E and Ponse, A.: The syntax and semantics of #CRL. Report CS-R9076,
CWI, Amsterdam, 1990.
Groote, J.F. and Ponse, A. : #CRL: A base for analysing processes with data. In E. Best
and G. Rozenberg, editors, Proceedings 3 rd Workshop on Concurrency and Composition-
ality, Goslar, GMD-Studien Nr. 191, pages 125-130. Universit~it Hildesheim, 1991.
Groote, J.F. and Ponse, A.: Proof theory for ~CRL. Report CS-R9138, CWI, 1991.
Groote, J.E and Ponse, A.: Proof theory for pCRL: a language for processes with data.
In D.J. Andrews, J.F. Groote, and C.A. Middelburg, editors, Proceedings of the Interna-
tional Workshop on Semantics of Specification Languages, pages 232-251. Workshops in
Computing, Springer-Verlag, 1994.
Groote, J.E and Ponse, A.: The syntax and semantics of #CRL. In [PVV95], pages
26-62, 1995. (Appeared earlier as [GrP90].)
Groote, J.E and Vaandrager, F.W.: Structured operational semantics and bisimulation
as a congruence. Information and Computation, 100(2):202-260, 1992.
Hoare, C.A.R., Hayes, I.J., Jifeng, He., Morgan, C.C., Roscoe, A.W., Sanders, J.W.,
Sorensen, I.H., Spivey, J.M. and Sufrin, B.A.: Laws of programming. Communications
of the ACM, 30(8):672-686, August 1987.
Hopcroft, J.E. and Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.
ISO. Information processing systems - open systems interconnection - LOTOS - a
formal description technique based on the temporal ordering of observational behaviour
ISO/TC97/SC21/N DIS8807, 1987.
Jonsson, B. and Parrow, J.: editors, Proceedings CONCUR 94, Uppsala, Sweden, LNCS
836. Springer-Verlag, 1994.
Kleene, S.C.: Introduction to Meta Mathematics. North-Holland, 1952.
Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science,
25:267-310, 1983.
Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood
Cliffs, 1989.
Mauw, S. and Mulder, H.: Regularity of BPA-systems is decidable. In [JoP94], pages
34-47, 1994.
Mauw, S. and Veltink, G.J.: A process specification formalism. Fundamenta Informaticae,
XIII:85-139, 1990.
Mauw, S. and Veltink, G.J.: editors, Algebraic Specification of Communication Protocols.
Cambridge Tracts in Theoretical Computer Science 36. Cambridge University Press,
1993.
Park, D.M.R.: Concurrency and automata on infinite sequences. In R Deussen, editor,
5 th GI Conference, LNCS 104, pages 167 183. Springer-Verlag, 1981.
Plotkin, G.D.: A structural approach to operational semantics. Report DAIMI FN-19,
Computer Science Department, Aarhus University, 1981.
Ponse, A., Verhoef, C. and van Vlijmen, S.EM.: editors, Algebra of Communicating

Processes, Utrecht 1994. Workshops in Computing, Springer-Verlag, 1995.
Rogers, H.: Theory of Recursive Functions and Effective Computability. McGraw-Hill
Book Co., 1967.
de Simone, R.: Higher-level synchronising devices in MEIJ~SCCS. Theoretical Computer
Science, 37:245-267, 1985.
Vaandrager, F.W.: Expressiveness results for process algebras. In J.W. de Bakker,
W.E de Roever, and G. Rozenberg, editors, Proceedings REX Workshop on Semantics:
Foundations and Applications, Beekbergen, The Netherlands, June 1992, LNCS 666,
pages 609-638. Springer-Verlag, 1993.

Received August 1992
Accepted in revised form March 1996 by J. Parrow

