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Abstract. We extend process algebra with guards, comparable to the guards in 
guarded commands or conditions in common programming constructs such as 'if 

then - else - fi' and 'while - do - od'. 
The extended language is provided with an operational semantics based on 

transitions between pairs of a process and a (data-)state. The data-states are given 
by a data environment that also defines in which data-states guards hold and 
how atomic actions (non-deterministically) transform these states. The operational 
semantics is studied modulo strong bisimulation equivalence. For basic process 
algebra (without operators for parallelism) we present a small axiom system 
that is complete with respect to a general class of data environments. Given a 
particular data environment 5 P we add three axioms to this system, which is 
then again complete, provided weakest preconditions are expressible and 5 p is 
sufficiently deterministic. 

Then we study process algebra with parallelism and guards. A two phase- 
calculus is provided that makes it possible to prove identities between parallel 
processes. Also this calculus is complete. In the last section we show that partial 
correctness formulas can easily be expressed in this setting. We use process 
algebra with guards to prove the soundness of a Hoare logic for linear processes 
by translating proofs in Hoare logic into proofs in process algebra. 
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1. Introduction 

Hoare logic has been introduced in 1969 to prove correctness of programs 
[Hoa69]. Since then it has been applied to many problems, and it has been 
thoroughly studied (see [Apt81, Apt84] for an overview). In Hoare logic a program 
is considered to be a state transformer; the initial state is transformed to a final 
state. The correctness of a program is expressed by pre- and post-conditions. 

More recently processes, ,where a process is the behaviour of a system, have 
attracted attention. This has led to several process calculi (CCS [Mil80, Mi189], 
CSP [Hoa85], ACP [BeK84a, BaW90] and Meije [AuB84]). In these calculi 
correctness is often expressed by equations saying that a specification and an 
implementation are equivalent in some sense. These equivalences are mainly 
based on observations: two processes are equivalent if some observer cannot 
distinguish between the two. A classification of process equivalences has been 
described in [Gla90, Gla93]. 

It seems a natural and useful question how Hoare logic and process algebra 
can be integrated. In this paper we provide an answer in two steps. First we 
extend process algebra with guards. Depending on the state, a guard can either 
be transparent such that it can be passed, or it can block and prevent subsequent 
processes from being executed. Typical for our approach is that a guard i t s e l f  
represents a process. With this construct we can easily express the guarded 
commands of Dijkstra [Dij76] and the guards occurring in several languages 
such as LOTOS [ISO87] and CRL [SPE90]. A nice property of the guards in our 
framework is that they constitute a Boolean algebra. 

Using guards a partial correctness formula 

{c~} p (fl} 

with a, fi guards and p representing some process can be expressed by the algebraic 
equation 

c~ p = ct p fl 

saying that if process p starts in a state where the guard ~ holds, then it follows 
that the guard fl holds when p terminates. As far as we know such equations 
modelling partial correctness formulas were first given by Manes and Arbib 
[MaA86]. 

We provide process terms (with guards) with an operational semantics involving 
state transformations. This semantics is based on transitions between configura- 
tions (p, s) where p is a process term and s is the state. To avoid confusion between 
'state' and 'configuration' (also often called state in process algebra) we conse- 
quently use the term data-state  instead of 'state'. We assume that data-states are 
given by some data environment  that also prescribes in which data-states guards 
hold and how atomic actions (non-deterministically) transform data-states. 

We study the operational semantics modulo strong bisimulation equivalence 
[Par81] and we come up with several axiomatisations. In the case of Basic 
Process Algebra (BPA) with the standard operators + (choice)and �9 (sequential 
composition), termination constants (6, e) and guards we present two axiom 
systems, BPA 4 and BPAG(SP). The system BPA4G is complete for finite processes 
with respect to a general class of data environments. It contains three simple and 
one somewhat more involved axiom besides the nine that are standard for BPA 
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with termination constants. The axioms of BPA 4 enable us to derive general facts 
about processes with guards that do not depend on a particular data environment. 

The axiom system BPAG(5 r applies when one wants to prove equivalences 
between processes for a particular data environment 5 P. This axiom system 
is defined only if weakest preconditions are expressible and 5 p is sufficiently 
deterministic. It contains the axioms of  BPA 4 together with three new axiom 
schemes that depend on 5 ~. As an example we use BPAG(5 ~) to prove the 
correctness of a well-known small program in a completely algebraic manner. 

Parallel operators fit easily in the process algebra framework. In Hoare logic, 
however, parallelism turns out to be rather intricate; proof rules for parallel 
operators are often substantial [OwG76, Lam80, Sti88]. tn our setup we cannot 
completely avoid the difficulties caused by parallel operators in Hoare logic, but 
we can deal with them in a simple algebraic way. We introduce a new set of  
axioms, called ACPa that enables us to rewrite every process term to a term 
without parallel operators. Then using BPA 4 or BPAG(5 p) we can verify the 
equivalences we are interested in. We apply these techniques to an example. 

In the last section of  this paper we show that process algebra with guards 
can indeed be used to verify partial correctness formulas, even in a setting with 
parallelism. Furthermore we apply BPAG(5 ~) to show soundness of  a Hoare logic 
for process algebra with linear processes [Pon91]. The proof uses a canonical 
translation of proofs in Hoare logic into proofs in process algebra. 

2. Basic Process Algebra with Guards 

In this section we extend the basic theory BPA (Basic Process Algebra, see e.g. 
[BeK84b, BaW90]) with guards. These guards are comparable to those in the 
guarded commands of Dijkstra [Dij76], or to the conditions in programming 
constructs as if - then - else - fi and while - do - od. We call this extension BPA6 
(BPA with Guards). 

2.1. Signature and Axioms 

The theory of BPAG has two parameters: a set of atomic actions and a set of 
atomic guards. Atomic actions represent the basic activities that processes can 
perform, such as reading input, incrementing counters and so forth. Guards 
represent constructs that (relative to a structure defining their interpretation) are 
either transparent such that they can be passed, or block and prevent subsequent 
processes from being executed. 

Let A be a set of  atomic actions with typical elements a, b,. . .  For each atomic 
action a the signature of BPA~, denoted as Z(BPAG), contains an identically 
named constant a. Let Ga~ be a set of  atomic guards disjoint with A, and also 
disjoint with {6, e}. We extend Gat to the set G of basic guards with typical 
elements ~b, ~p . . . .  where basic guards are defined by the following syntax: 

~b : :=6  l e l ~ ( a b ~ E G a t .  

In particular the process algebra constants 6 and e are considered as basic guards: 
6 is the guard that always blocks, and e is the guard that can always be passed. 
Furthermore -1 is the negation operator on basic guards. For each basic guard 
q~ the signature Z(BPAG) contains a constant q~. We also have the binary infix 
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constants: 

binary operators : 

a for any atomic action a E A 
q~ for any basic guard q~ E G 
+ alternative composition (sum) 

sequential composition (product) 

Fig. 1. The signature 2(BPAG). 

operators + (alternative composition) and �9 (sequential composition) available. 
We summarise the signature IS(BPA~) in Fig. 1. 

Example 2.1. The addition of guards to process algebra brings it far closer to 
existing specification and programming languages. This can be seen by modelling 
an imperative language in process algebra with guards. The actions of process 
algebra represent assignments, which have the form 

[x := t], 

where t is some expression and x is a variable. In order to describe the semantics 
of these assignments we must use some kind of store for the value of x. Generally, 
this is represented by a valuation that maps variables to values. In sequential 
programming languages this valuation is part of the 'state' of  a program. As the 
word 'state' is also commonly used in process algebra with a close but different 
meaning, we systematically use the word 'data-state'. 

The data-state can influence the course of action of a program or process. 
Guards are used to describe this. They block for some, and are transparent for 
other data states. In the setting of this example, guards have the form: 

(t = . )  

with the interpretation that (t = u) holds in some valuation iff t and u represent 
the same value. Now the conditional programming construct 

i f  t = u t h e n  x := t else sk ip  fi 

can be translated into a process term in the language of BPAo by 

(t = u ) -  Ix : =  t] + = u ) . c  

where e is the special guard (process) that always holds. 
In this paper we introduce several axiom systems for reasoning on an algebraic 

level about the behaviour of process terms containing guards. A typical example 
of this type of reasoning is expressed by the law 

X ' ~ X  

(where x ranges over process terms) saying that the always successful guard can 
be omitted in sequential composition. This law implies that the process term 
above equals (t = u) �9 Ix := t] + ~(t  = u). For another example consider the law 

ct.(x + y)=c~,  x + ~ .  y 

where c~ ranges over guards. This second law expresses that the moment of  
evaluation of a guard and the moment of choice are interchangeable. [] 

Remark 2.2. The special constants ~ and e are already well-known in process 
algebra: c5 (inaction or deadlock) represents the process that cannot perform any 
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activity and prevents subsequent processes from being executed; e denotes a 
process that can do nothing but terminate and is called the empty process (see 
e.g. Baeten and Weijland [BaW90]). [] 

Throughout  this text let V = {x , y , z , . . . }  be a set of  variables. Process terms, 
or shortly terms, over Z(BPAG) are constructed from the variables in V and 
the elements of  Z(BPAG). In terms the function symbol - is generally left out, 
and brackets are omitted according to the convention that �9 binds stronger than 
+. The symbol -= is used to denote syntactic equivalence (modulo associativity) 
between terms. Finally, letters t, t: . . . .  range over open terms and p, q, r , . . .  over 
closed terms. 

In the sequel results are often proved by reasoning on the structure of  process 
terms. In order to give some general definitions, let the symbol Z range over all 
signatures we consider in this paper. Any such signature Z always extends the 
signature Z(BPA6) defined above. Terms over % are constructed in the usual way 
and may contain variables from V. We define two elementary notions: 

Definition 2.3. Let F(Z) denote some axiom system defined over a signature E 
and let t, t' be terms over E. 

1. t and t ~ are provably equal in F(Z), notation 

F ( 2 )  ~ t = t '  

iff there exists a proof  of  t = t' using the axioms of F(Z) and the usual 
inference rules for equality (stating that ' = '  is a congruence relation), 

2. t is a (provable) summand of  t' in F(%), notation 

F(Z) ~- t ~ t' 

iff F(Z) ~- t + t' = t'. We write t' _ t for t _ t'. The relation ~ is called 
summand inclusion. [] 

In proofs we adopt  the convention to write t = t: instead of F(Z) ~- t = t' and 
t =fi t: instead of F(Y) V- t = t: and a similar convention with respect to summand 
inclusion. 

The axioms presented in Fig. 2 constitute the axiom system BPA 4. In this 
figure q~ ranges over G and a over A. These axioms describe the basic identities 
between terms over Z(BPA~). The operator § is commutative, associative and 
idempotent (A1 - A3). The operator - right-distributes over + and is associative 
(A4, A5). Note that left distributivity o f .  over § is absent. Furthermore 6 behaves 
as the neutral element for § and e as the neutral element for �9 (A6 - A9). The 
axioms A1 - A9 form the system BPA6c as described in e.g. [BaW90]. 

The axioms G1 - G3 are new in process algebra and describe the expected 
identities between guards. G1 and G2 express that a basic guard always behaves 
dually to its negation: q~ holds in a data-state s iff ~q~ does not and vice versa. 
The axiom G3 states that + does not change the interpretation of a basic guard 
q~. It does not matter  whether the choice is exercised before or after the evaluation 
of 4). Notice the BPA6:derivability for the 6 and e-instances of G3. The last new 
axiom G4 can be explained as follows: the process a(f)x + ~43Y), where a is an 
atomic action, behaves either like ax or ay, depending on the data-state resulting 
from the execution of a. As a consequence its behaviour is a summand of ax § ay. 
The a in this axiom may not be replaced by a larger process term. I f  it is for 
instance replaced by the term a - b  then after a has happened, it is in general 
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(A1) x + y = y + x  (G1) 
(A2) x + ( y + z ) = ( x + y ) + z  (G2) 
(A3) x §  (G3) 
(A4) (x  + y ) z =  x z  + y z  
(A5) (xy)z  = x ( y z )  
(A6) x + ` 5 = x  
(A7) `sx = 5̀ (G4) 
(A8) ex  = x 
(A9) xe  = x 

(o . -~4) = ,5 
q~+-~+=~ 
~b(x + y) = qSx + qSy 

a((gx + -~OY) ~ ax  + ay 

Fig. 2. The axioms of BPA 4 where q5 E G and a E A. 

possible to execute b and either arrive in a data-state where ~b holds, or arrive 
in a data-state where -~b holds (b can affect the data-state in a nondeterministic 
manner). Neither abx nor aby covers this behaviour. Hence ab(4)x + -~OY) need 
not be a summand of a b x + a b y .  The axiom G4 is not derivable from the first three 
'guard'-axioms. The superscript 4 in BPA 4 expresses that there are four axioms 
referring to guards. We do not alwalrs consider all guard axioms. In particular 
the system BPA 3, containing all BPA~-axioms except G4 plays an important role 
in this paper. 

Example 2.4. We illustrate the use of  the BPA3-axioms by showing that if for two 
terms t and t' over Z(BPA6) we have BPA 3 F- t + t' = `5, then also BPA 3 F- t = 5̀ : 

BPA 3 F- t = t + 6 (by A6) 
= t + t + t '  (by assumption) 
= t + t '  (byA3)  
= 6 (by assumption). [] 

We now give a result expressing some useful properties of basic guards, in which 
the axiom G4 is not used. Note clause (v), which expresses that the sequential 
composition is commutative for basic guards. 

Lemma 2.5. L e t  49, ~P c G. The  fo l lowing  ident i t ies  are der ivable  in BPA 3" 

( i) ~ a  = ~, 
(ii) -~e = 6, 
(iii) ~ ( o  = (o, 
( iv)  4 ) ~ 4 )  = ~, 
(v) 4w =w4. 

P r o o f  In the proofs of (i) and (ii) the axiom G3 is also not used. 

(i) - ~  = ( 5 + 7 6  (ii) ~e  = e ' ~ e  

In the proof of (iv) we use t + t' = 6 ==> t = 6 (see Example 2.4). In (v) 
we use -~b~b = `5, which is a direct consequence of (iii) and (iv). 
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(iii) -,--,4) = (4) + ~4))~-~4) (iv) 

= 4 ) - ~ - , 4 ) + ~  
= 4 ) ~ 4 ) + 4 ) - ~ 4 )  
= 4)(~74) + -,4)) 
= 4). 

(v) 4)t; = 4)~(4) + ~4)) 
= 4)~4) + 4 ) ~ 4 )  
= 4)~;4) + -~4)~;4) 
= (4) + -~4))~4) 
= ~4) .  

6 = 4 7 r  
= r  + - , ~ ) - , 4  
= 4 (w~4  + -~w-4) 
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[] 

Up till now we only defined 'atomic' and 'basic' guards. 

Definition 2.6. A guard ~ over Z(BPAG) has the following syntax 

~ : : =  ~ + c ~ l ~ ' ~ l  4) ~ G. [] 

Let the symbols e, fl,. . ,  range over guards. On guards the operators + and �9 
correspond to the Boolean operators V and A, respectively. Let 4), ~p c G, then 
the guard 4) + ~p holds in a data-state s whenever 4) or ~p holds in s. The guard 
4)~p holds in s iff both 4) and ~p hold in s. In order to have the Boolean operator 
--, on guards, we introduce the abbreviat ions 

7(c~fl) for -~e + ~fl, 
-~(a + fl) for -~c~-~fl. 

It is not hard to prove that all identities on basic guards that are derivable in 
BPA 3 (or BPA4), are derivable in BPA 3 (BPA 4, respectively) for all guards: 

Theorem 2.7. L e t  ~ be  a g u a r d  over  E(BPAG), then  the f o l l o w i n g  iden t i t i es  are 
der ivab le  in BPA 3 (cf. G1 - G 3 ) :  

(i) ~ . ~ = ~ ,  
(ii) o~ + --,c~ = e, 
(iii) ~(x  + y)  = c~ " x + ~ " y. 

T h e  f o l l o w i n g  i d e n t i t y  is  der ivab le  in BPA 4 (cs G 4 ) :  

(iv) a(~ . x + ~c~ . y)  _ ax  + ay 

where  a E A.  [] 

Moreover, restricting the signature Z(BPAG) to terms without atomic actions, 
the axiom system BPA~ constitutes a Boolean algebra. According to [Sio64], 
the following five equations form an equational basis for a Boolean algebra 
(Gat,-t-,',-~): 

(81) ./~ = / ~  
(82) .(/~ + ~,) = ./~ + c~ 
(83) ~ +/~--./~ = 
(84) .(/~ + -./~) = 
(85) ~ + (,8 + ~ )  = / ~  + -4~. 

The only equation here that does not immediately follow from BPA 3 is B5: 
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+ (/~ + ~/~) = ~ - + - e  
= ~ + (~  + - ~ )  
= ( ~ + ~ ) +  ~ 

e 
= /~ + ~/~. 

J. F. Groote and A. Ponse 

2.2. Operational  Semantics  and Soundness  

In process algebra closed process terms are often related to (labelled) transition 
systems, modelling their possible behaviour. 

Definition 2.8. A labelled transition system d is a tuple IS~r ~d, Sd) where 

�9 Sd is a set of  states, 
�9 Ad  is a set of  labels, 

�9 ~d--- S~ x Ad  x S~r is the transition relation, and 
�9 s e c S~r is the initial state. 

Elements (s, a, t) c ~o4 are generally written as s a > t. [] 

Contrary to the traditional approach in process algebra, we provide an operational 
semantics that is based on data-state transformations and the interpretation of 
guards. The operational meaning of a process term is defined by a transition 
system, where the states of  the transition system are configurations, i.e. pairs of  a 
process term and a data-state. 

We adopt an abstract view and assume that data-states are given by a set S. 
Atomic actions are considered as non-deterministic data-state transformers. This 
is modelled by a function effect that, given some atomic action a and a data-state 
s, returns the data-states which may result from the execution of a in s (see also 
[BKT85, BaB88]; in [BaB88] the state operator is introduced which provides an 
alternative way to handle processes operating on data-states). We demand that 
the function effect never returns the empty set, ensuring that an atomic action can 
always be executed. We use guards to prevent actions from happening in certain 
data-states. Finally the interpretation of guards is given by a predicate test that 
determines whether an atomic guard holds in some data-state. 

Definition 2.9. A data environment 5 e over a set A of atomic actions and a set Gat 
of atomic guards is a triple (S, effect, test) where 

�9 S is a non-empty set of  data-states, 
�9 effect : S x A -+ 2 s \ {~} defines the data-state transformations associated with 

atomic actions, 
�9 test ~_ Gat • S defines the interpretation of atomic guards. [] 

Observe that the function effect possibly introduces non-determinism in data-state 
transformations. Whenever test((o,s) holds, this denotes that in data-state s the 
atomic guard q~ may be passed. In this case we say that ~b holds in s. In order to 
interpret basic guards, we extend the predicate test in the obvious way. 

Definition 2.111. Let (S, effect, test) be some data environment. We extend the 
domain of test to G x S as follows: 

�9 For all s c S: test(e,s) holds and test(6,s) does not hold, 



Process AlgebrawithGuards 123 

a E A  (a,s) a> (e,s') i f s '  Eeffect(a,s)  

c~ E G (O,s) "/' (5, s) if test(4),s) 

+ (x, s) - -~  (x', s') (y, s) ~ (y', s I) 
(x + y, s) a, (x', s') (x + y, s) ",  (y', s') 

(X,S) ~ (Xt, S t) (X,S) ' / )  (X',S t) (y,s) a> (yt Stt ) 
(xy, s) ~-> (x'y, s 1) a r ~/ (xy, s) ~ (y', s') 

Fig. 3. Transition rules for E(BPAG) (a E A/,  q~ c G). 

�9 For all s E S and q5 c G: test(~4),s) holds iff test(O,s) does not hold. [] 

Let 5 P = (S, effect, test) be some data environment over A and Gat. We give an 
operational semantics in the style of Plotkin [Plo81]. The behaviour of a process 
p with some initial data-state s c S starts in the configuration (p, s): 

Definition 2.11. Let E be some signature and S a set of data-states. A configuration 
(p, s) over (Z, S) is a pair containing a closed term p over Z and a data-state s ~ S. 
The set of all configurations over (Z, S) is denoted by C(Y~, S). [] 

Let ~/~ A be a special symbol which we use to represent successful termination, 
and 

A / de--=f A U {,~f}. 

The rules in Fig. 3, where the label a ranges over A / a n d  q5 over G, determine 
the transition relation ~(BPA~),S~ that contains exactly all derivable transitions 
between the configurations over (E(BPAG), S). The idea is that for a 6 A, the 
transition (p,s) a~ (p,,s I) expresses that by executing a, the process p in data- 
state s can evolve into p' in data-state s'. In this case we have s' 6 effect(a, s) and 
the configuration (p~, d) represents what remains to be executed. The transition 
(p, s) ~L~ (p~, s') expresses that the process p in data-state s can terminate suc- 
cessfully. A basic guard ~b can terminate successfully in data-state s if test(O,s) 
holds, which is denoted by the transition (qS, s) --~ (6, s) in Fig. 3. The configura- 
tion (6, s) has no outgoing transitions, which expresses that no further activity is 
possible ('inaction' or 'deadlock'). 

In the case of BPAa we define 

d:~(p, S) de f ( C ( Z ( B P A 6 ) ,  S ) ,  A / ,  "''+Y.(BPA6),S~ , (P, S)). 

Example 2.12. Consider the data environment ({so, sa, s2,s3},effect, test) and the 
following partially depicted transition system d((oa+b~p + ~c, so) where the initial 
state is marked with a little arrow: 
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(~,sl) 

(6,sl) 

~ blp + ~c, so) 

~(Ip, S2) (1/), $3) 

(6, S3) 

The (implicit) information about the function effect and the predicate test present 
in this transition system tells us that in this data environment apparently 

effect(a, so) -- {sl} and effect(b, so) = {s2,s3} 
test(O, so), test(-~, So), test(~p, s2) and test(~, $3). [] 

Consider the following (partially depicted) transition systems ~r + ae, s) and 
d ( a ,  s) over some data environment satisfying effect(a, s) = {s'}. 

~ (a + ae, s) (a, s) 

(c, s') (~, s') (~, s') 

/ 4  ,/ 
~i6,s') (6,s') 

Observe that the transition system d ( a  + ae, s) is shaped as two transition 
systems for d ( a ,  s). With respect to operational behaviour it does not matter 
whether the a-summand or the ae-summand is executed. Therefore we would 
like to consider both transition systems as equivalent. This can be achieved by 
identifying bisimilar configurations (see [Par81]), as bisimilarity is the coarsest 
equivalence that respects the operational characteristics of  a transition system 
[Vaa89]. Following the traditional approach in semantics based on data-state 
transformations, processes with different data-states in their configurations are 
not considered as equivalent (see e.g. [Man74]). Therefore we adapt the standard 
notion of  bisimilarity in the following way: 

Definition 2.13. Let 2 be a signature, ~ a data environment with data-state space 
S and >~,s~ a transition relation over C(2, S). 

�9 A binary relation R ___ C(Z, S) x C(Z, S) is an 2P-bisimulation iff R satisfies the 
transfer property, i.e. for all (p, s), (q, s) E C(Z, S) with (p, s)R(q, s): 

1. Whenever (p, s) __% ~,so (p', s') for some a and (p', s'), then, for some q', 
also (q, s) - ~  ~,so (q', s') and (p', s')R(q', s'), 
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2. Conversely, whenever (q, s) a, ~,Y (q,, s') for some a and (q', s'), then, for 
some p', also (p, s) a, ~,~ (p,, s') and (p', s')R(q', s'). 

�9 A configuration (p,s) E C(Z,S) is 5o-bisimilar with a configuration (q,s') E 
C(Y~, S), notation 

(p, s) --'~s~(q, s') 

iff s = s' and there is an 5o-bisimulation containing the pair ((p, s), (q, s')) (note 
the equality of the data-states!). 

�9 A transition system d (p ,  s) = (C(Z, S ) , A / , - - ~ y ,  (p,s)) is 5o-bisimilar with 
a transition system deC(q, s') = (C(Z, S), A/,-- .y~,~,  (q, s')), notation 

d (p ,  s) --~-~d(q, s') 

iff (p, s) _~-~(q, s'). 

�9 Two closed terms p, q over 2; are 5o-bisimilar, notation 

p -~-~ q 

iff d ( p ,  s) _*~s~d(q, s) for all s E S. [] 

We introduced the symbol _~=~s ~ instead of the more consistent symbol ~ y~,~ to 
avoid lengthy notation. We take care that Z is known from the context when we 
use _'~s~. Note that the symbol _+~s~ is also overloaded in another way. It denotes 
either a relation between configurations, between transition systems or between 
closed terms. 

Lemma 2.14. For any data environment 5 ~ the relation ~_s~ between closed terms 
over Z(BPAG) is a congruence with respect to the operators o f  Z(BPA~). 

Proof  Standard. [] 

Moreover, it is not hard to prove that BPAG is a sound axiom system with respect 
to 5o-bisimulation equivalence for any data environment 5 ~ 

Theorem 2.15. Let  p, q be closed terms over 2(BPAG). I f  BPA6 ~ p = q then 
p ~_s~q For any data environment 5 ~ 

Proof  The relation _+~s~ between the closed terms over Z(BPAG) is a congruence 
and hence respects the inference rules for equality. We have to show that all 
axioms are valid. As an example we prove this for G4. 

Assume that 5O = (S, effect, test), a c A, 4) c G and p, q are closed process 
terms over Z(BPA~). We have to show (ap + aq + a((ap + ~(oq), s) ~_s ~ (ap + aq, s) 
for all s E S. We define the relation R as follows: 

R de f Id U {((ap + aq + a((op + =(oq), s), (ap + aq, s)) ] s c S} 
U {((e(qbp+ =~oq),s),(ep, s ) ) l s  E S and test(alp, s)} 
U {((e(qbp + -~d?q), s), (eq, s)) I s E S and test(~c~, s)} 

where Id is the identity relation on C(Z(BPAG), S). In the standard way it follows 
that R is an 5o-bisimulation satisfying 

(ap + aq + a(Op + --,(oq), s)R(ap + aq, s) 

for all s E S. [] 
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2.3. Completeness 

In this section we show that the axiom system BPA 4 is complete in the following 
general sense. Let p, q be closed terms over E(BPAG). If for all data environments 

we have p _ ~  q, then BPA 4 ~- p = q. So completeness says that the axioms 
of BPA~ are sufficiently strong to prove all identities between closed terms over 
E(BPA~) that are valid in all data environments, and that ~-bisimilarity between 
terms that cannot be proved in this way depends on the particular ingredients of 
~ .  If  for example the atomic guard ~b holds in all the data-states of some data 
environment 50, we have ~b _~:'s~e. Of course we cannot derive BPA 4 F- ~b = e, as 
~b is not interpreted as e in all possible data environments. Proving identities that 
are dependent on a particular data environment is the topic of the next section. 
Some of the results proved in this section concern the axiom system BPA~ (the 
system containing all axioms of BPA~, except G4). These can be reused in the 
completeness theorems on parallel processes in section 4. 

All completeness results in this paper are proved according to the following 
strategy: define classes of basic terms such that 

1. Any closed term can be proved equal to a unique basic term, and 
2. If two basic terms are not provably equal (i.e., syntactically different), then 

one can find a data environment in which they are not bisimilar. 

We introduce reference sets in order to define suitable basic terms. 

Definition 2.16. (Reference) 

1. Let p be a closed term over E(BPAG). By Ref(p)  we denote the set of atomic 
guards to which p makes reference : 

Ref(p)  def {~b E Gat [ ~b o c c u r s  (possibly negated) in p}. 

2. Any non-empty, finite subset of Gat is called a reference set. We use symbols 
R, R1, R2 . . . .  to denote reference sets. For technical convenience we assume 
that the elements in reference sets are ordered. 

3. Let R = {~b0,..., ~b~} be some (ordered) reference set. A 'sequential' expression 
~0" " �9 ~Pn is called a complete guard sequence over R iff for i = 0, . . . ,  n we have 
that either ~Pi -- ~bi or ~Pi -= ~bi. Such sequences are abbreviated by symbols 
~, ~ . . . .  and we write R c~ for the set of all complete guard sequences over R. 

[] 

We demonstrate two properties of reference sets by a simple observation and a 
lemma. Let R be some reference set. First observe that if ~, ~5 E R c~ then 

B P a 3 ~ _ ~ . ~ = {  ~ if ~ _---- t), 
otherwise. 

This observation holds because R is ordered: if {4~,~} is an unordered reference 
set, we have by Lemma 2.5. for instance BPA 3 ~- (~b~)(~p~b) -- ~b~. 

In order to denote terms in a convenient way we further use the Z-notation: 
let I be some finite index set, then 

aef{ 6 i f I = 0 ,  
ieI ti = tio + " "  +ti~ if I = {i0,..-,in}. 
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Note that due to the axioms A1 and A2 the actual enumeration of the terms t i j  

does not matter. 
The following lemma establishes a second useful property. 

Lemma 2.17. For  any  t over  Z(BPA6) and reference set  R we have  

BPA~ I - t =  Z ~t. 
r  co 

P r o o f  By induction on the cardinality of  R: 

R : {r In this case t = et = (r + ~r  = 4t  + ~ r  = ~eRCo Ct. 

R = {40 . . . . .  4k+1}. Let R1 de__r R -- {40}. First applying the induction hypothesis 
we derive 

t - -  Z ~  
~)ER~ ~ 

= (40 + 740)" ~ q,t 
~peR~ ~ 

= 4o  ~ ~t+ 74o Z ~t 
fpeR~ ~ q)eR~ ~ 

: Z r + ~ ~4o~,t 
(peR~ ~ gpER~ ~ 

~ t .  
~)ER co 

[] 

Using reference sets, we introduce the following two classes of  basic terms over 
Z(BPAa). 

Definition 2.18. Let R be some reference set. 

1. A closed term p is called G-basic over R iff 

P = Z ~q$ 
r  co 

where for each ~ c R c~ the term q~ is an A-basic term over R. 

2. A closed term q is called A-basic over R iff 

q = Z aiPi [+e] 
i d  

where for each i E I it holds that ai E A and the term Pi is a G-basic term 
over R. The notation [+e] means that the occurrence of the summand e is 
optional. [] 

We show that any closed term over E(BPAG) is provably equal to a G-basic term 
over some reference set. The proof  is split up in two parts. First, any closed term 
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can be proved equal to one that is in 'prefix normal form' (defined below), then 
we show that any term in prefix normal form is provably equal to a G-basic term. 

Definition 2.19. A closed term p over Z(BPAG) is in prefix normal form over 
Z(BPA6) iff 

p : : =  6 ] e l q b p l - ~ O p l a p l p + p  

with q5 C Gat and a E A. [] 

The following lemma states that it is sufficient to consider terms that are in prefix 
normal form over Z(BPAG). 

Lemma 2.20. I f  p is a closed term over E(BPAG), then there is a term p~ in prefix 
normal form over Z(BPAc) such that BPA 3 ~- p = p'. 

Proof By induction on the structure of closed terms. [] 

Lemma 2.21. I f  p is a closed term over Z(BPAG) and R some reference set satisfying 
R ~ Ref(p), then there is a G-basic term p' over R such that BPA 3 f- p = p'. 

Proof By Lemma 2.20. we may assume that p is in prefix normal form over 
Z(BPA6). We apply induction on the structure of such normal forms: 

p = 6 or p -= e. By Lemma 2.17. we have 

= E ~6 and e =  E ~e, respectively, 
~)ER co ()ER ~o 

for any reference set R. 
p _= qbq. Let R ~_ Ref(p), then R ~_ Ref(q). By the induction hypothesis we have 

q : E (bq~ 
~ER co 

with all the terms q~ A-basic over R. Let for each ~ E R c~ 

{ qr _ q~ if q~ occurs in ~, 
6 otherwise, 

then 

E 
~cR co 

is a G-basic term over R that is provably equal to p. 
p ~ ~bq. Likewise. 
p = aq. Let R ~ Ref(p), then R ~ Ref(q). By the induction hypothesis we have 

q = E ~q$ 
~)@R co 

with all the terms q~ A-basic over R. By Lemma 2.17 we have a = }--~,cRco ~a 
and we can take 

E ~ a ' E  ~q~ 
~ c R  ~~ ~ c R  ~~ 
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which clearly is a G-basic term over R provably equal to p. 

p -  q + r. Let R ~_ Ref(p) ,  then R ~_ Re f (q)  and R ~_ Ref(r) .  By the induction 
hypothesis we have 

q = Z ~q~ and r =  Z ~q;  
~RCO ~Rco 

r A-basic over R. Hence with all the terms q~, q~ 

q + r  = Z ~(q$ + q;)" 
~cR co 

Observe that the sum of  two A-basic terms over R is provably equal to an 
A-basic term over R: change to one index-set or remove a 6-summand and 
replace double occurrences of e-summands. So for each ~ E R ~~ there is an 

,, ~ r, Hence A-basic term q~ over R such that q~ + q = q~. 

4)% 
~ c R  co 

is a G-basic term over R provably equal to p. [] 

The syntax of an A-basic term is sufficiently strict to derive information about its 
(syntactic) structure from its operational behaviour. This information is formu- 
lated with help of the following syntactic relation on terms: 

Definition 2.22. Let tl, t2 be terms over Z. We call tx a syntactic summand of t2, 
notation t~ r-- t2, iff 

1. tl ~ t + t' for any t, t' over Z, and 
2. t~ ---= t2, or there are t, t' over ~ such that t2 = t § t ~ and tl E t or q _E t'. 

[] 

So e.g. x(y  § y) § z § z has x(y  + y) and z as its only syntactic summands and 
(x + y)z  has no other syntactic summand than itself. 

Lemma 2.23. L e t  5 # = (S, effect, test), and  R be some  reference set. For  any  
A-basic  term q over R the fol lowing propert ies  hoM:  

1. I f 3 s  ~ S such that (q,s) ,./~ (r,s'), then e E_ q, 

2. I f 3 s  ~ S such that (q, s) ~ (r, s') (a c A), then there is a G-basic term p over 
R such that ap r- q and ep =- r. 

Proo f  By using representations of the form 

Z aiPi [+e] 
icI  

and applying induction on the cardinality of I. [] 

We also need the following result, which is in fact a generalisation of the axiom 
G4. 

Lemma 2.24. (Saturation) L e t  R be some  reference set. For  any  a E A, terms 
to . . . . .  t ,  over Z(BPA6) and  funct ion f : R c~ ~ {to,..., tn} we have  
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/I  

BPA; Z a Z S( t 
i=0 ~cRco 

Proof. By induction on the cardinali ty of  R. 

R = {qS}. Then  

a" Z ~p " f (~)  = a(~otj + ~C~tk) 
~)cR co 

for some j ,k  E {0, . . . ,n}.  By the ax iom G4 (atj + ark ~_ a(~)tj + ~4)tk)) we 
derive 

n 

E a t i  ~_ a. E ~" f(~)" 
i=0 ~pcRco 

R = {~bo,..., ~bk+l}. Let  f : R c~ ~ {to . . . . .  t~} be given, and R1 d=ef R -- {qSo}. Take 
gi :R~O ~ {to . . . .  , t~} (i = 1,2) such that  

g1(~5 ) a____ef f(~bo~) and ge(~) d ef f(=~bo~b). 

First applying the induct ion hypothesis  two times and then the ax iom G4  we 
derive 

E ati 
i=0 

~,eR 7 

- -  a( Z ~0~' gl(~) + 
q, en~ ~ 

= a ' Z  
~ER co 

a. ~ ~.  gl(Cp) + a. ~ ~.  g2(Cp) 
~ER~ ~ ~ER~ ~ 

a( o Z + g2I l) 
fpER~ ~ 

F_, -r " g2( Cp ) ) 
~eRCl ~ 

[] 

The two previous results give us the means  to prove a key l emma  stating that  
whenever  two G-basic terms over some reference set R do not obey certain 
provable  characteristics, then we can find a da ta  envi ronment  5t  such that  
p ~b~q. Such a da ta  env i ronment  is then defined in terms of  R. 

Definition 2.25. Let  R be some reference set. We define the da ta  envi ronment  
5P(R) = (R c~ effect, test) by 

a E A ~ effect(a, (o) deZ R c~ 
~b E Gat ~ test((o, ~) iff q~ occurs in ~, or if  4) ~ R. [] 

The idea is that  5P(R) is sufficiently discriminating to distinguish any two G-basic 
terms over R tha t  are not  p rovab ly  equal. We define the depth of  a closed te rm 
over E(BPA6) as the maximal  n u m b e r  of  consecutive a tomic actions that  can be 
performed.  I t  plays a role as a criterion for induct ion in proofs. 

Definition 2.26. The dept h of  a closed te rm p over Z(BPAG), writ ten as [p[, is some 
element o f  N,  defined inductively as follows (q~ E G and a E A): 
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Iq~l ~f o, 
lal %f 1, 

IPql ~f Ipl + Iql, 
Ip -F ql dGf max(lp], Iql). [] 

Lemma 2.27. Le t  Pl, P2 be G-basic terms over some  reference set  R. I f  there is a 
syntactic  s u m m a n d  r  o f  pj such that for  any  A-basic  term q' over R we have  

BPA 4 F - q l = q '  ---> e q ' G P 2 ,  

then (pl, ~) r s~(R)(p2, ~). 
Proof. Apply induction on Ipal + Ip21. The case Ipll + Ip21 = 0 is trivial, so let 

IPal+ IP21 > 0. By definition P2 has a syntactic summand ~q2 and by assumption 
ql @ q2. At least one of the following should hold: 

1. e U _ q l a n d e g q 2 ,  
2. e _ q 2 a n d e ~ q l ,  
3. ar r- ql and ar ~ q2 for some a E A and G-basic term r over R, 
4. ar U_ q2 and a r r  ql for some a E A and G-basic term r over R. 

If not, then ql ~ q2 by 1 and 3, and q2 ~ ql by 2 and 4, so ql = q2, contradicting 
the assumption. 

In cases 1 and 2 we have that for one of (Pl, ~), (p2, (b) there is a derivable 
@transition, whereas by Lemma 2.23. this is not the case for the other (for 

e r q2 ~ e ~= q2)- Hence (pl, ~) @ Y(R)(P2, ~). We only prove case 3 (the last 
case can be dealt with in a similar fashion): 

either q2 has no syntactic summand of the form dr'. Now (Pl, ~) @ Y(R)(P2, ~), 

for (Pl, r has an a-transition, whereas (P2, ~) has no such transition by 
Lemma 2.23; 

or q2 has n + 1 syntactic summands starting with a, say aro, . . . ,arn with ro . . . . .  rn 
G-basic terms over R. Now there is ~St~ C_ r such that for all A-basic terms t t 
over R we have 

t~ = t t ===~ Vi E {0,.. . ,n} ~t '  ~ ri 

If  this were not the case, then there would be a function f : R c~ ~ {r0 . . . . .  rn} 

such that for any syntactic summand ~bt45 of r there is a t~ satisfying t45 = t~ 

and ~bt; r- f((b). Using 'saturation' (see Lemma 2.24.) we derive 

i=o 

a r i  a Z 
~)cR co 

()~R co 

= a z 
~ER co 

= dr. 

~.  ~ = ~) 
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We conclude ar ~_ q2, which is a contradiction in this case. By the in- 
duction hypothesis we have for i = 0 . . . . .  n that ( r ,~)  @ S~(R)(ri,~b). Now 

(Pl, r a~ (er, gp) is a derivable transition that can only be mimicked from 

(P2,r by a transition (P2,~) a, (eri, gp) for some i. As (er, fp) ~_ SO(R)(r, fp) 

and (eri, ~p) ~- S~(R)(ri, (P) it follows that (Pb ~) @ 9*(R)(P2, ~). [] 

With this key lemma on the specific data environment 5P(R), the main result of  
this section follows easily. 

Theorem 2.28. (Completeness) Le t  rb r2 be d o s e d  terms over Z(BPA6). I f  rl ~-~r2 
for all data environments  5f, then BPA 4 F- rl = r2. 

Proof  We prove the theorem by contraposition. Suppose rl ~ r2. We have to find 
a data environment 5 ~ such that rl @~r2. 

According to Lemma 2.21 there are G-basic terms Pl,P2 over some reference 
set R D_ Ref (r l )  U Ref(r2) such that BPA 4 ~- ri = Pi (i = 1,2). By soundness (see 
Theorem 2.15) we have ri ~ -~  Pi for all 5 p. Because BPA 4 ~ pl = p2, either 

pl has a syntactic summand ~q such that for any A-basic term q' over R we 
have BPA 4 F- q = q' ==~ Cq' ~ P2, or vice versa: if this were not the case, then 

Pa = ~eRCO ()q~ = ~$eR~o ()q~ = P2. This means that the previous Lemma 2.27 

can be applied, and hence (Pl, r @ S~(R)(P2, r As -'~s~ is an equivalence relation 

we conclude (rl, r @ S~(R)(r2, r  and therefore rl @ S~(Rir2, which finishes our 
proof. [] 

2.4. Specifying Processes Recursively 

We extend our process language with a mechanism that enables us to specify 
infinite processes by recursive equations. 

Definition 2.29. A recursive specification E = {x = tx Ix c VE} over a signature 
Z is a set of  equations where V~ is a (possibly infinite) set of  (indexed) variables 
and tx a term over Z such that its variables (if any) are in VE. [] 

A solution of a recursive specification E = {x = tx Ix E V~} is an interpretation 
of the variables in VE as processes, such that the equations of E are satisfied. For 
instance the recursive specification {x -- x} has any process as a solution for x 
and {x = ax} has the infinite process "a ~ as a solution for x. We introduce the 
following syntactical restriction on recursive specifications. 

Definition 2.30. Let t be a term over a signature Z. An occurrence of a variable 
x in t is guarded iff t has a subterm of the form a-  M with a c A U {6}, and this 
x occurs in M. Let E = {x = t~ ix EVe} be a recursive specification over Y~. We 
say that E is a guarded specification iff all occurrences of  variables in the terms 
t~ are guarded. [] 

The property "guarded" of a recursive specification has nothing to do with the 
"guards" that form the main subject of  this paper. It  is however established 
terminology, and therefore we respect it. Now the signature ZREC, in which we 
are interested, is defined by: 

Definition 2.31. The signature ZREC is obtained by extending Z in the following 
way: for each guarded specification E = {x = t~ i x  ~ V~} over Z a set of 



Process Algebra with Guards 133 

(REC) < x l E > = < t x ] E >  

E( x) 
(RSP) 

p~ = < x l E >  

if x = tx E E and E guarded 

if x c VE and E guarded 

Fig. 4. Axioms for guarded recursive specifications. 

constants { < x l E > [  x E V~} is added, where the construct < x l E >  denotes the 
x-component of  a solution of E. [] 

We introduce some more notations: let E = {x = tx Ix c VE} be a guarded 
specification over E, and t some term over EREC. Then < t i E >  denotes the term 
in which each occurrence of  a variable x c VE in t is replaced by < x [ E  >, 
e.g. <aax[ {x = ax}> denotes the term a a < x l { x  = ax}>. If  we assume that 
the variables in recursive specifications are chosen uniquely, there is no need to 
repeat E in each occurrence of  <x [E> .  Variables reserved in this way are called 
formal variables and denoted by capital letters. We adopt the convention that 
< x l E >  can be abbreviated by X once E is declared. As an example consider 
the guarded recursive specification {x = ax}: the closed term aaX abbreviates 
aa<x L { x = ax } >. 

For the new E-constants of  the form < x I E  > there are two axioms in 
Fig. 4. In these axioms the letter E ranges over guarded specifications. The 
axiom REC states that the constant < x I E >  (x ~ VE) is a solution for the 
x-component of E, so expresses that each guarded recursive specification has 
at least one solution for each of  its (bounded) variables. The conditional axiom 
RSP (Recursive Specification Principle) expresses that E has at most one solution 
for each of its variables: whenever we can find processes px (x c VE) satisfying 
the equations of E, notation E(i~x), then px = < x l E > .  This axiom was first 
formulated in [BeK86] and the format adopted here stems from [vGV89]. Finally, 
a convention is to denote a particular recursive specification right away by all its 
REC instances (see the following example). 

ExampLe 2.32. Consider the guarded specifications E = {x = ax} and E' = {y = 
ayb} over 2(BPAG). So by the convention just introduced, E can be represented 
by X = aX and E r by Y = aYb. With REC and RSP (and the congruence 
properties of =) we prove BPA 4 + REC + RSP F- X = Y in the following way: 

Xb Rz=c aXb RSP Xb = X ,  (1) 

and secondly 

RSP Xb R~=C aXb (1)= aXbb ~ Xb = Y. 

Hence BPA 4 + REC § RSP F- X = Y. [] 

In order to associate transition systems with closed terms over Gp, EC by guarded 
specifications, we define in the case of  E = {x = tx L x E V~} being a guarded 
recursive specification over some signature G the general transition rule in Fig. 5. 
Observe that this rule immediately implies the soundness of  REC. 

In the case of Z(BPAG)REC we define: 

~ ( p ,  S) def (C(E(BPAG)REC, S) ,  A / ,  ------~Z(BPAG)RI~C,5 o , (p, S)). 
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(<tx I E>,s )  a,  (y,s') 
recursion if x = tx E E 

(<xlE>,s)  a, (y,s') 

Hg. 5. Transition rule for guarded recursive specifications (a E A/).  

We state without proof  that BPA 4 + REC + RSP is sound (the interested reader 
is referred to [BaW90]). 

Theorem 2.33. Let  p, q be closed terms over Z(BPA6)REC. I f  B P A e + R E C + R S P  t- 
p = q, then p ~_s~q for any data environment 5P. [] 

Note that RSP is not valid in the case of  unguarded recursion: the unguarded 
recursive specification {x = x} would otherwise lead to provable equality between 
all terms over Z(BPAG)REC. 

Example 2.34. We conclude this section by an example in the style of  the in- 
troductory one on the if - then - else - fi construct with which we started out: 
given an atomic action [x := x + t] and an atomic g u a r d / x  = t) (where t ranges 
over integer expressions possibly containing program variable x), consider the 
program 

while x ~ t do [x := x + t] od. 

This program can be recursively specified over Z(BPAa)REC by 

X where X = ~(x  = t ) .  [x := x + t ] . X  + (x = t) 

or equivalently by 

Y . ( x = t )  w h e r e Y = ~ ( x = t ) . [ x : = x + t ] . Y + e  

(as BPA6 + REC + RSP t- X = Y �9 (x = t)). The idea is that data-states are 
integer valuations in this case, and indeed X terminates in a data-state where 
(x = t) holds, and performs [x := x + t] otherwise. [] 

3. B P A  with Guards  in a Specific D a t a  Environment  

Up until now we have studied basic process algebra with guards with respect 
to the general class of  data environments. But often one wants to consider 
a data environment that is already determined, for instance in the case where 
atomic actions are assignments and guards are Boolean expressions. Therefore we 
now investigate bisimulation semantics for basic process algebra with guards in a 
specific data environment. For any data environment satisfying some expressibility 
constraints we present a complete axiomatisation by adding some new axioms to 

4 the system BPA G. Finally, we show by an example how we can prove the (partial) 
correctness of  a small imperative program in process algebra. 

3.1. Axioms and Weakest Preconditions 

Let A be a set of  atomic actions and Gat a set of  atomic guards. In this section 
we fix a data environment 5~ = (S, effect, test I over A and Gat. Now the axiom 
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(A1) x + y = y §  (G1) 
(A2) x + ( y + z ) = ( x + y ) + z  (G2) 
(A3) x + x = x  (G3) 
(A4) (x + y)z  = xz  + yz  (G4) 
(A5) (xy)z  = x (y z )  
(A6) x + 6 = x  (SI) 
(A7) 6x  = 6 
(AS) ex = x (WPC1) 
(A9) xe  = x (WPC2) 

4). 9(o = 6  
4 ) + 7 0  = ~ 
r + y) = 4)x + 4)y 
a(4)x + -~4)y) ~_ ax  + ay 

4 ) 0 ' "  4)n = 
i fgs  E S 3i < n . test(-~4)i,s) 
wp(a, 4))a4) = wp(a, 4))a 
~ w  p( a, 4) )a~4) = -~w p( a, 4) )a 

Fig. 6. The axioms of BPA6(Se) where qS, ~bi E G and a E A. 

system BPA 4 need not be complete. Assume for instance that two basic guards 
4) and lp both satisfy test(4), s) .*=* testOp, s) for all s E S, i.e. 4) and ~p behave 
the same in all data-states. Obviously we have that 4) _~s~p, but this cannot be 
shown using BPA 4 because in general 4) @s~p. For another example, assume that 
the process a, starting in a data-state where 4) holds, always ends in a data-state 
where ~ holds. In this case 4)a _~s~ 4)a~p. Again this cannot be proved in BPA 4. 

In Fig. 6 we present the axiom system BPAG(SP) by which we can prove these 
identities. It contains the axioms of  BPA 4 and three new axioms depending on 
5p (this explains the 5~ in BPA~(5~)). 

The axiom SI (Sequence is Inaction) expresses that if a sequence of basic 
guards fails in each data-state, then it equals 6. Note that SI implies G1. The 
equivalence 4) ~ ~p mentioned above implies that 4)~p = 6 and ~4)q~ = 6 are 
in this case instances of SI. We can prove BPA6(5 P) F- 4) = ~p as follows: 

4) = 4 ) (~+- -~ )  
= 4)~ + 4 ) ~  
= 4)~o 
= 4)~ + -~4)~ 

= (4) + ~4 ) )~  
1~. 

In the axioms WPC1 and WPC2 (Weakest Preconditions under some Constraints) 
the expression wp(a, 4)) represents the basic guard that is the weakes t  precondi- 
tion of  an atomic action a and an atomic guard 4). Weakest preconditions are 
semantically defined as follows: 

Definition 3.1. Let A be a set of atomic actions, Gat a set of  atomic guards and 
5 ~ = (S, effect, test) be a data environment over A and Go~. A weakes t  precondition 
of an atomic action a E A and an atomic guard 4) E Got is a basic guard ~p E G 
satisfying for all s c S" 

testOp, s) iff Vs' E S (s' E effect(a,s)  ~ test ( 4), s') ). 

If  ~ is a weakest precondition of a and 4), it is denoted by wp(a, 4)). Weakest 
preconditions are expressible with respect to A, Got and 5 P iff there is a weakest 
precondition in G of  any a c A and 4) E Gat. [] 

In the remainder of this section we assume that weakest preconditions are 
expressible with respect to 5 ~. The axioms WPC1 and SI can be used to prove that 
4)a -- 4)a~o (see above). In this case, in all data-states where wp(a, ~ )  holds, 4) holds 
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as well. So we have the axioms O.-~wp(a, tp) = ~ (SI) and wp(a,~p)a = wp(a,~)atp 
(WPC1). We derive: 

Oa = (~(wp(a,~p) + -~wp(a,~p))a 
= dpwp(a, ~p)a 
= dpwp(a,~)a~ 
= (awp(a, ~p)atp + O-~wp(a, ~p)mp 

= Oalp. 

The expressibility of  weakest preconditions is not yet sufficient to give an ax- 
iomatic characterisation of their properties. For this we also need a constraint on 
the non-determinism possibly caused by the function effect that we call sufficient 
determinism. 

Definition 3.2. Let A be a set of  atomic actions and Gat a set of  atomic guards 
and let 5 p = (S, effect, test) be a data environment over A and Gat. We say that 
5 p is sufficiently deterministic iff for all a E A and q5 c Gat: 

Vs, s',s" E S (s',s" E effect(a,s) ~ (test(dp, s') ~=~ test(O,s"))). [] 

Remark  that a data environment with a deterministic function effect is sufficiently 
deterministic. Now if 5 ~ is also sufficiently deterministic, then the axioms WPC1 
and WPC2 characterise (the properties of) weakest conditions in an algebraic 
way: WPC1 expresses that wp(a, O) is a precondition of a and ~b, and WPC2 states 
that wp(a, O) is the weakest precondition of a and qS. The following lemma states 
that the soundness of  BPA6(5 p) implies sufficient determinism. 

Lemma 3.3. Let 5 P be some data environment over a set A o f  atomic actions and 
a set Gat o f  atomic guards. I f  weakest preconditions are expressible and BPAG(Se) 
is sound, then 50 is sufticiently deterministic. 

Proof Suppose 5 e is not sufficiently deterministic. So there are a E A, q5 E Gat 
and s E S such that we can find s', s 'r ~ S with 

1. {sr, s "} c_ effect(a,s), and 

2. test(4,s') holds and test(O,s") does not hold. 

We derive 

a = wp(a, O)a + ~wp(a, (a)a 
= wp(a, d?)agp + ~wp(a, O)a-~49 

but obviously (a,s) ~s~ (wp(a, O)aq~ + ~wp(a, c~)a-~O,s), which contradicts the 
supposition. [] 

Remark 3.4. Weakest preconditions can be extended to guards as follows (adopt- 
ing the use of  ~ on guards as defined in 3.1): 

wp(a, ~ )  abbreviates ~wp(a, ~) 
wp(a, ~ + ~) abbreviates wp(a, ~) + wp(a, ~) 
wp(a ,~)  abbreviates wp(a,~) . wp(a, fl). 

Weakest preconditions of  guards behave as expected: they satisfy the axiom 
schemes w P C 1  and WPC2 of  BPAa(5~ i.e. we have: 

BPAa(5 ~) ~- wp(a, ~)a~ = wp(a, ~)a 

for any a ~ A and guard ~ over G. We show this in case ~ ~_ ~/~ : 
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WPC1 " ~wp(a, fl)a~fl = ~wp(a, fi)a (from WPC2) 
WPC2 �9 -~-~wp(a, f l ) a ~ f i  = ~ w p ( a ,  fl)a (from WPC1). [] 

We conclude the introduction of BPA6(5 ~) with some small observations. First 
observe that BPAG(5 ~) is not meaningful if weakest preconditions cannot be 
expressed in 5 ~ (we cannot even read its axioms). Furthermore note that the 
axiom SI cannot be replaced by the simpler axiom 

q5 = ~v if Vs E S (test(r .: :. testOp, s)). 

If  e.g. q5 holds in data-states so, sl and ~p only holds in so, then ~b~v _~s~ ~p, but 
qS~p = ~p cannot be derived with the scheme above. Finally, note that the axiom 
G4 (i.e., a(4)x + ~OY) c_ ax + ay) is derivable: 

BPAG(5 ~ t- ax + ay = (wp(a, (a) § -~wp(a, ~)))(ax + ay) 
~_ wp(a, 4))ax + ~wp(a, 4))ay 
= wp(a, (~)ac~x + ~wp(a, (o)a-~c~y 
= wp(a, (~)a4(Ox + ~OY) + =wp(a, 4))a~4)(Ox + ~4)Y) 
= wp(a, (a)a(4)x + ~c~y) + wp(a, ~Oia((ox + --'OY) 
= (wp(a, O) + -~wp(a, c~))a(4)x + --,c~y) 
= a(~bx + -~c~y). 

3.2. Soundness and Completeness 

In the following let 5 ~ be a data environment over A and Gat such that weakest 
preconditions are expressible and 5f is sufficiently deterministic. As stated in 
Lemma 2.14., the relation _~ j  is a congruence. We state without proof  that 
BPAG(5 P) + REC § RSP is sound with respect to 5 ~ (see Theorem 2.33., and it is 
easy to check that the 'new' axioms are sound). 

Theorem 3.5. (Soundness) Let  5e be a data environment such that weakest 
preconditions are expressible and that is sufficiently deterministic. Let  p, q be 
closed terms over E(BPAG)R~C. I f  BPAG(5 p) + REC + RSP ~ p = q, then p ~_~q. 

[] 

We show that the axiom system BPA6(5 P) completely axiomatises bisimulation 
equivalence in 5p, i.e. the relation _~s~, between the closed terms over E(BPA6). 
In order to do so we use some results of section 2, though we do not need the 
concepts of A-basic and G-basic terms over 2(BPAG). The reason for this is that 
weakest preconditions allow us to manipulate closed terms over E(BPAG) in such 
a way that any basic guard different from 6, e can occur only at 'head level'. 
This makes it possible to use a much simpler type of  basic terms in proving 
completeness. We first illustrate what kind of manipulation we mean. As an 
example consider the term a-~Oc(b + e). We derive 

a-~c~e(b + e) = wp(a, (~)a--,4)e(b + e) + -~wp(a, 4))a-~(oc(b + e) 

= wp(a, O)a(o~4)c(b + e) + ~wp(a, (a)ac(b + e) 
= wp(a, (~)a6 + -,wp(a, (o)ac(b + e) 

with all basic guards different from 6, e at head level. Using the possibility to push 
basic guards to head level as illustrated above, it suffices to define the following 
simpler syntactic class of basic terms. 
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Definition 3.6. A term p over E(BPAc) is called basic over some reference set R 
iff the following conditions hold: 

1. A1,A2 }- p = E r 
CER co 

2. For all r E R c~ the term q~ is a term in atomic prefix normal form over 
E(BPAG): 

p : : =  c ~ ] e l a p ] p + p  

where a E A. [] 

In the following two lemmas we show that for any closed term p over Z(BPAG) 
there exists a basic term pr (over some reference set) satisfying 

BPAG(Se) ~- p = p'. 

Hence we may restrict our attention to basic terms in proving completeness, 
and exploit their syntactic structure. Particularly, if two basic terms p, q are not 
provably equal, then there is a data-state s such that (p, s) ~b~(q, s). 

Lemma 3.7. L e t  a C A and  R be some  reference set. For  any  term t over Z(BPAG) 
i t  holds that 

BPAa(5 e) t- t =  E wp(a ,~ ) ,  t. 

~cR  co 

Proo f  By induction on the cardinality of R. [] 

Lemma 3.8. (Basic f o r m )  I f  p is a closed term over Z(BPA6), then there is a basic 
term p' over some  reference set R such that BPAo(~) ~- p = p'. 

Proo f  By Lemma 2.20. we may assume that p is a term in prefix normal form 
over Z(BPAG) and we apply induction on the structure of p: 

p -= 6 or p -= e. By Lemma 2.17. we have 

f i =  E ~ and e =  E ~e, respectively, 
~R~o ~Rco 

for any reference set R. 
p = q~q. By the induction hypothesis there is a reference set R such that 

q = E ~q~ 
~cR co 

with all the terms q~ in atomic prefix normal form over E(BPAG). Let R1 d ef 
{r U R. By Lemma 2.17. we have 

~bq = E ~3r E Cq,~ 
q2ERel ~ ~cRco 

E = ffP'qcp 

where for all ~ E R~ ~ 
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' { q~ q~ -- 

Furthermore 

~eR~ ~ 

is clearly a basic term over R1. 
p -- ~q~q. Likewise. 

if q5 occurs in ~b and ~ occurs in ~3, 
otherwise. 
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p -- aq. By the induction hypothesis there is a reference set R such that 

q : Z 
~)cR co 

with all the terms q~ in atomic prefix normal form over t2(BPAG). We derive 

aq = a" ~-~ ~qc; 
~ c R  co 

= ~_~ wp(a,~)'a" ~ ~qq, (by Lemma 3.7.) 
~)eRco gpeR c~ 

= ~ wp(a,~)).a.~)q~ ( ~ 3 ~  ~ ~ . ~ b = ~ )  
~)ER co 

= ~ wp(a,~))'a q$ 
~)cR co 

Let wp(a, R) de=f {Ref(wp(a, q~)) ~b E R}. Note that wp(a, R) may be empty (for 
instance in case R = {~b} and wp(a, ~b) = e). Let 

R1 d__ef {~b} U wp(a, R) 

for some arbitrary q5 c Gat. Obviously R1 is a reference set, and we derive 

aq = ~_, wp(a,~))'a'q?~ 
~CR co 

= S f p "  ~ a'q?o 
~PeR~ ~ {~ERCOl&wp(a,~))=~V~@wp(a,())=fp} 

with the latter term basic over R1. 
p - q + r. By the induction hypothesis there are reference sets R1, R2 such that 

q = ~ t)qf and r =  ~ 0r 0 
~R~ ~ O~R~O 

with all the terms qcp, r 0 in atomic prefix normal form over Z(BPAa). Let 

R de=f R1 U 112. By Lemma 2.17. we have 

q = ~ ~q;  and r =  ~ ~r; .  
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r r l  where for all ~ E R c~ the terms q~, & are defined as follows: 

! q& - q~, provided ~ occurs in ~, 
l r& -- r0, provided 0 occurs in ~. 

We derive 

q + r  = E ~(q; + r;) 
~CR co 

and clearly the right hand side term is basic over R. [] 

The syntax of a basic term is sufficiently strict to derive information about its 
(syntactic) structure from its operational behaviour. As announced before, we 
show that if two basic terms over some reference set R do not obey certain 
provable characteristics, then we can find a data-state s E S such that the 
associated transition systems with initial data-state s are not 5&bisimilar. The 
proof of this fact is quite easy compared to the proof of the related Lemma 2.27. 

Lemma 3.9. Le t  Pl, P2 be basic terms over some reference set R. It" there is ~ ~ R ~~ 
such that 

1. BPAG(5 ~) ~c ~ = r 

2. ~qi& E_ Pi (i = 1,2), 

1 2 3. BPA 3 ~- q& = qa' 

then 3s c S ((pl,s) @s~(p2, s)). 

Proof  Assume that ~ satisfies the conditions of the lemma. So by 1 we can find 
some s ~ S such that (~,s) 4/, (6,s). 

Now suppose (Pl, s) _'~s ~ (P2, s) by some 5e-bisimulation B. Adding the tuple 
((q;, s), (q~, s)) to B would by condition 2 result in an 5&bisimulation establishing 

(q~, s) _~s~ (q~, s). We show that for all terms ql, q2 in atomic prefix normal form 

that 

3s E S ((qbs) -*~(q2, s)) ~ BPA 3 ~- ql = q2 

contradicting condition 3 of the lemma, and therefore the supposition. 
Assume (ql, s) _'~s~ (q2, s), we show that BPA 3 ~- ql = q2 by proving that any 

syntactic summand (see Definition 2.22.) of ql is provably equal to a syntactic 
summand of q2 and vice versa. We apply induction on Iqll + Iq2l (see Definition 
2.26.). The case [qll + Iq21 = 0 is trivial, so assume Iqxl + Iq21 > 0. By symmetry it 
suffices to show that if t E_ ql for some term t, then we can find a term t' such 
that BPA 3 F- t = t' and t' U q2. 

Suppose ar E_ ql. For any s' c effect(a,s) we have (ql,s) a, (er, s!). By 
assumption (q2,s) a~ (r',s') for some term r', satisfying (er, s') ~-s~ (r',s'). By 
a simple argument (cf. Lemma 2.23.) there exists a term r" in atomic prefix 
normal form such that er" =- r' and ar" E p'. So (er, s') ~_s ~ (er",s'), and thus 
(r, s') +-+_:e(r", s'). By the induction hypothesis r = r", and hence ar = ar". 

In case e _ ql, we can show in the same way that e E_ q2. [] 

Connecting all the results proved so far, we can prove the completeness of 
BPAG(5 P) in a simple way. 
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Theorem 3.10. (Completeness) Le t  ~ be a data environment such that weakest 
preconditions are expressible and that is sufficiently deterministic. Le t  rbr2 be 
closed terms over E(BPA6). I f  q ~_s~ r2, then BPAc(5 P) F rl = r2. 

Proof  We prove the theorem by contraposition. Suppose rl @ r2. We have to show 
rl @~ r2. According to Lemma 3.8 there are basic terms ' ' Pl, P2 over reference sets 
R1,R2, respectively, such that ri = Pl (i = 1,2). By Lemma 2.17. we can find basic 
terms pl,P2 over R = R1 u R2 such that Pi = P'i, and hence ri = Pi (i = 1, 2). 
By soundness (see Theorem 3.5.) we have that ri _~->s~ Pi. Because Pa :/: P2, there 
must be ~ 6 R c~ satisfying the conditions of  the previous Lemma 3.9., i.e., there 
is some s E S such that (Pl, s) @3, (p2, s). As _'~:~ is an equivalence relation, we 
conclude (rl, s) @y(r2, s), which finishes our proof. [] 

3.3. An E x a m p l e :  T h e  P r o c e s s  S W A P  

Process algebra with guards can be used to express and prove partial correctness 
formulas in Hoare logic. In section 5 we elaborate on this idea. Here a simple 
example that is often used as an illustration of Hoare logic is presented and its 
correctness is shown. 

First we transform BPAo(5 P) into a small programming language with Boolean 
guards and assignments (cf. the setting of the examples on if - then - else - fi 
and while - do - od in the previous section). Our language has the signature of 
E(BPAG) and we have some set ~ = {x, y . . . .  } of data variables. Atomic actions 
have the form: 

[X : =  t] 

with x E Y- a variable ranging over the set E of integers and t an integer expres- 
sion. We assume that some interpretation [[.] from closed integer expressions to 
integers is given. Atomic guards have the form 

(t = u)  

where t and u are both integer expressions. 
The components of the data environment 5e = (S, effect, test) are straightfor- 

ward to define: 

S = ;g~ 

i.e. the set of  mappings from :U to the integers. We write p, ~ for data-states in 
S, and we assume that the domain "U of these mappings is extended to integer 
expressions in the standard way. The function effect is defined by: 

effect([x := t],p) = {p[[[p(t)]]/x]} 

where p[n/x] is as the mapping p, except that x is mapped to n. We define the 
predicate test by: 

test( (t = u), p) .*==> (~_p(t)]] = [[p(u)~). 

Note that the effect function is deterministic, so 5" is certainly sufficiently deter- 
ministic. Weakest preconditions can easily be expressed: 

wp([x : =  t], (u = v)  ) = ( u [ t / x ]  = v [ t / x ] ) .  
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The axiom SI cannot be formulated so easily, partly because we have not yet 
defined integer expressions very precisely. For this example we only need' 

(t = u ) ' - ~ ( t '  = u') = 6 and -lit = u).  (t' = u') = 

if Vp 6 S [[p(t)~ = [[p(t')~ and [[p(u)ll = [[p(u')l]. 
In this language we can express the following tiny program S W A P  that 

exchanges the initial values of x and y without using any other variables. 

S W A P  = [ x : = x + y ] . L v  : = x - y ] [ x : = x - y ] .  

The correctness of this program can be expressed by the following equation: 

( x  = n) . (y  = m) . S W A P  = (x  = n) . (y  = m) " S W A P .  (x  = m) . (y  = n). 

This equation says that if S W A P  is executed in an initial data-state where x = n 
and y = m, then after termination of  S W A P  it must hold, i.e. it can be derived, 
that x = m and y = n. So S W A P  indeed exchanges the values of x and y. 

The correctness of S W A P  can be proved as follows" 

i x  =- h i .  (y  = m) . S W A P  

sd ((x + y) - y = n ) .  ((x + y) - ((x + y) - y) = rn). S W A P  

WPC1,SI 
= ( x  = n)  - <y = m )  - {x : =  x + y ]  . ( x  - -  y = n )  . ( x  - -  ( x  - -  y )  -= m ) .  

[y :=  x - y ] - I x  :=  x - y ]  
WPC1 

= (x = ~>.  (7 = m>.  [x :=  x + 7 1  (x  = ~>- <7 = m>. 
Lv :=  x -  7]" (7 = ~>'  ( x -  y = m) .  [x :=  x -  7] 

WPC1 
= (x  = n ) .  (y  = rn) .  S W A P .  ( x  = m ) .  (y  = n). 

Note that we have used the identities 

<x = n> --  <(x + 7) - y = ~) 

and 

( x = m )  = ( ( x + y ) - ( ( x + y ) - y ) = m ) .  

We show below how the first one is derived: 

X ~ n)  = < x = n > . c  
= (x = n>.  ( ( (x  + y )  - y = n> + 9 ( ( x  + y)  - y = ~)) 
= (x = ~>.  ( (x  + y)  - y = ~> + <x = n>.  ~ < ( x  + y)  - y = ~> 
= <x = . > .  <(x + y)  - y = ~> + a 
= <x = n>.  ( (x  + y)  - y = .> + -~<x = . > .  <(x + y)  - y = n> 
= ( ( x  = ~> + -~(x = n>)-  ( (x  + y)  - y = n> 
= e ' ( ( x + y ) - - y = n )  
= <(x + y )  - y = ,,> 

4. Parallel Processes with Guards 

In this section Basic Process Algebra with guards is extended with operators for 
parallelism. We give Plotkin-style rules to express the operational behaviour of  
these operators and show that 5<bisimilarity is not a congruence any longer. We 
deal with this problem by introducing another bisimulation equivalence, called 
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constants: 

unary operators: 
binary operators: 

a for any atomic action a E A 
4) for any basic guard ~b E G 

~n encapsulation, for any H ~ A 
+ alternative composition (sum) 

sequential composition (product) 
I[ parallel composition (merge) 
II left-merge 
I communication-merge 

Fig. 7. The signature Z(ACPG). 

global 5:-bisimulation equivalence which is finer than 5:-bisimilarity. Global 50- 
bisimulation equivalence is a congruence, but it is not so natural. Moreover, the 
axioms WPC1, WPC2 and G4 are not valid anymore in global 5:-bisimulation. 

We present the axiom system ACPG which is based on ACP (the Algebra of 
Communicating Processes [BeK84a]). ACPG is sound for global 5:-bisimilarity, 
and for finite processes also complete. This axiom system enables us to prove 
Y-bisimulation equivalence between processes: using ACPG every closed process 
term can be proved equivalent to one without parallel operators, and then BPA 4 
or BPAG(5 e) can be used to prove 5:-bisimilarity. This section is concluded with 
an example in which the correctness of a parallel process is proved in this way. 

4.1. Axioms and a Two-Phase Calculus 

We extend the language of 2(BPAG) to a concurrent one, suitable to describe the 
behaviour of parallel, communicating processes. Communication is modelled by 
a communication function 7 : A x A ~ A6 that is commutative and associative. 
If  7(a, b) is 3, then a and b cannot communicate, and if 7(a, b) = c, then c is the 
atomic action resulting from the communication between a and b. 

Concurrency is described by three operators, the merge II, the left-merge I[_ 
and the communication-merge I. 

p 11 q represents the parallel execution of p and q. It starts when one of its 
components starts, and terminates if both of them do. 

p ]]__q is as p II q, but under the assumption that the first action that is performed 
comes from p (it may be the case that the behaviour of p starts with the 
evaluation of a guard). 

p [ q is as p 11 q, but the first action is a communication between p and q. 

We present encapsulation operators 0~ (for any H _c A) that block atomic actions 
in H by renaming them into 3. Encapsulation is used to enforce communication 
between processes. The signature 2(ACPG) is summarised in Fig. 7. 
For the terms over Z(ACPG) we have the axioms given in Fig. 8, where a, b E A, 
H ~ A and q5 c G (note that the axiom a((ox + -~dpy) ~_ ax + ay (G4) is absent). 
Most of these axioms are standard for ACP (see [BeK84a]), and, apart from G1, 
G2 and G3, only the axioms EM10, E M l l  and DO are new. The axiom EM10 
(EMll )  expresses that a basic guard q5 in qSx [Jy (~bx [ y, respectively) also may 
prevent that y happens. 
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(A1) x + y = y + x 
(A2) x + ( y + z ) = ( x + y ) + z  
(A3) x + x = x  
(A4) (x + y)z = xz  + yz  
(A5) (xy)z = x(yz)  
(A6) x + a = x  
(A7) fix = 8 
(A8) ex = x 
(A9) xe = x 

(CF) a l b = ? ( a , b )  

(G1) qS. --,q5 = 6 
(G2) q ~ + ~ q S = e  
(G3) ~b(x + y) = qSx + ~by 

(EM1) x l l y = x [ [ _ y + y l l x + x l y  (EM10) ~bxHy=~b(x[l_y) 
(EM2) ell_x = 6 (EMIl )  ~bx I Y = 4 ( x l y )  
(EM3) a x U y = a ( x  ll y) 
(EM4) (x + y) ILz = x ILz + y ILz 
(EM5) x l y = y l x  (DO) 0H(~b)=~b 
(EM6) e [ e = e  (D1) a H ( a ) = a i f a q ~ H  
(EM7) e t a x = 6  (D2) 0 F / ( a ) = 6 i f a E H  
(EM8) ax I by = (a I b)(x tl Y) (D3) On(x + y) = OR(x) + O~I(y) 
(EM9) ( x + y )  l z = x l z + y L z  (D4) OH(Xy)=OH(X)aH(y) 

Fig. 8. The axioms of ACPG where q5 E G, a, b E A and H _c A. 

Using ACPG any closed term over E(ACP6) can be proved equal to one 
without merge operators, i.e. a closed term over E(BPAG). 

Theorem 4.1. (Elimination) Le t  p be a dosed  term over E(ACP6). There is a 
dosed  term q over Z(BPAG) such that ACP6 ~- p = q. 

Proof  By induction on the structure of terms. [] 

The axiom systems ACPG and BPA 4 or BPA3(5 P) cannot be combined in bisim- 
ulation semantics; if G4 is added to ACP6 we can derive the following: 

ACPG + 6 4  ~- a(b II d) + a(c II d) + d(ab + ac) (1) 

= (ab + ac) II d 
G4 
= (ab + ac + a((ob + -~(oc)) II d 

~- a(4abd + ~(ocd + d(4b + -~q~e)). (2) 

So, in (2) it can be the case that after an a step 4~ holds, and we arrive in a state 
where we can do a b or a d step. Performing the d step can bring us in a state 
were -~q5 holds, so the only possible step left is a c step. This situation cannot be 
mimicked in (1). Therefore, every term with (2) as a summand is not bisimilar to 
(1) for any reasonable form of bisimulation. So ACP~ + G4 is not sound in any 
bisimulation semantics. (Note that the data environment in this example can be 
sufficiently deterministic.) 

Because we still want to derive 5P-bisimilarity between closed terms containing 
merge operators, we introduce a two-phase calculus that does not have these 
problems. Derivability in this calculus is denoted by b2. 



Process Algebra with Guards 145 

Definition 4.2 (A two-phase calculus [-2). Let Pl, P2 be closed terms over 
E(ACPa)P, EC. We write 

ACP 4 ~-2 Pl = p2 

iff there are closed terms ql, q2 over Z(BPAG)REC such that 

ACPG b- Pi = qi (i = 1, 2) and BPA 4 t- ql = q2. 

Furthermore, we write 

ACP~(5~) F-a Pl = P2 

iff there are closed terms ql, q2 over E(BPAa)REC such that 

ACPG ~- Pi = qi (i = 1, 2) and BPAG(5 p) F- ql = q2. 

We sometimes put REC + RSP in front of F-2 which means that we may use 
REC and RSP in proving Pi = qi (i = 1, 2) and ql  ----= q2. [ ]  

4.2. Operational Semantics and Soundness 

Let ~ = (S, effect, test) be some data environment over a set A of atomic actions 
and a set Gat of atomic guards. The transition rules in Fig. 9 and the transition 
rule for guarded recursive specifications (see Fig. 5) determine the transition 
relation >Z(ACP~/REC,~ over E(ACPG)REC. Remark that these rules formalise the 
informal description of the new operators given earlier, and that all rules given 
for Z(BPA6) in Fig. 3 are included. Let p be a closed term over Z(ACPG)REC. For 
any s C S the transition system ~r s) is defined as 

~ ' ( p ,  S) d ef (C(E(ACPG)REc, S) ,  A / ,  -------*Z(ACPG)r~EC,5~ , (p, S)). 

We first show by an example that the notion of  'J-bisimilarity'  as defined in 2.13 
for the configurations over Y~(ACPG)REC gives in general no congruence relation 
between the closed terms over 2(ACP~)REc. 

Example 4.3. Consider the data environment ({so, sl }, effect, test) in which 

�9 Vs E S (effect(a,s) = {so}) for some a ~ A; 
�9 Vs ~ S (effect(b,s) = {Sl}) for some b 6 A; 

�9 test(c~,so) and not test(f) ,sl)  for some ~b E G. 

In this case we have a6 ~_s~a~(o but not a6 If b ~_s~a~O II b, for the transition 
system d ( a ~ 0  I[ b, s0) has an execution path 

(a~q5 [Ib, so) a, (6~ff) II b~f),so) b, (e--,~b II e, Sl) ,/, (6 I /6 ,s l )  

that is not present in d ( a 6  II b, So). [] 

We define a different bisimulation equivalence, called global 5r that is 
a congruence for the merge operators. The idea behind a global 5~ is 
that a context p [[ (.) around a process q can change the data-state of q at any time 
and global 5P-bisimulation equivalence must be resistant against such changes. 
So, a configuration (Pb s) is related to a configuration (P2, s) if (Pl, s) a ~ (qx, s') 
implies (P2, s) a ~ (q2, d) and, as the environment may change s I, the process ql 
is related to q2 in any data-state: 
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a E A (a,s) a , (e,s') i f  s' E effect(a,s) 

~b E G (q~,s) , / ,  (6,s) if test(~b,s) 

"JC (X, S) "-~ (X', S t) (y, S) a, (fit, St) 
(x + y, s) ~, (x', s') (x + y, s) ~ (y', s') 

(x, s) ~ (x', s') 
(xy, s) --% (x'y, s') if a :/= ~/ 

(X,S) ~ (X',S t ) (y,s) a> (y,,st,) 
(xy, S) --% (y', S") 

(x, s) - -~ (x', s') (y, s) ~ (y', s') 
II (x [I y, s) ~ (x' II y,s') if a @ x/ (x I1 y, s) a, (X N yt, S') if a :~ ~/ 

(X, S) a,  (X', S') (y, S) b> (y,, Sit) if 7(a, b) 5~ 6, a, b :fi , j  

(x [I y,s)  ~ (x' II y ' , s ' )  and s" c effect(7(a, b), s) 

(x,s) 4,  (x',s') (y,s) ./, (y',s') 
(x II y,s) 4,  (x' II y',s') 

(X,S) a, (X',S t ) 
]2 (X LY, S) a ,  (X' I] Y, st) if a @ ~/ 

(X,S) a ,  (X',S t ) (y,s)  b> (y,,s,,) 

(x ty ,  s) ~t.~b~ (x' II Y', s") 
if 7(a,b)7~ ~, a,b@x/,  
and s" E effect(7(a, b), s) 

(x,s) ,/, (x',s') (y,s) -,/, (y',s') 
(x [ y, s) -4-* (x' [I y', s') 

(X,S) a) (X t,S t ) 
0R if a ~ H _~ A 

(~H(X),S) a) (~H(X,),S t ) 

Fig. 9. Transition rules for ACPG (a, b ~ A/,  H _c A). 

Definition 4.4. Let Z be a signature, ~ a data environment with data-state space 
S and ~so a transition relation over C(E, S). 

�9 A binary relation R ~ C(Z, S) x C(E, S) is a global 2f-bisimulation iff R satisfies 
the following (global) version of the transfer property: for all (p,s),(q,s) E 
C(Z, S) with (p, s)R(q, s): 
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1. Whenever (p, s) a > s~ (P', s') for some a and (p', s'), then, for some q', also 
(q, s) a, s~ (q', s') and Vs" E S ((p', s")R(q t, s")), 

2. Conversely, whenever (q,s) ~ so (q', s') for some a and (qt, st), then, for 
some p', also (p, s) so (pt, s t) and Vs tt c S ((pt, stt)R(qt, s")). 

�9 A configuration (p,s) c C(Z,S) is globally S-bisimilar to a configuration 
(q, s') c C(2, S), notat ion 

(p, s) _e~so(q, s t) 

iff s = s t and there is a global 5P-bisimulation containing ((p, s), (q, st)). 
�9 A transition system d ( p ,  s) = (C(Z, S ) ,A / ,  ~so, (p, s)) is globally 5P-bisimilar 

with a transition system d ( q ,  s') = (C(Z, S) ,A / ,  ~s~, (q, st)), notat ion 

d(p,  s) ~_s%4(q, s t) 

iff (p, s) e2~(q, s'). 
�9 Two closed terms p, q over Z are globally 5P-bisimilar, notat ion 

p _ e ~ q  

iff d ( p ,  s) e~sod(q, s) for all s c S. [] 

By definition of  global ~-bisimilar i ty  we have for any two closed terms p, q over 
Z(ACPG)REC 

p e:~_so q ~ p ~s~ q. 

It is not  difficult to see that  for any data  environment 50 the relation _~s~ is an 
equivalence relation over the closed terms over Z(ACP~)REC. 

Our goal, i.e. global 5P-bisimilarity being a congruence relation, has been 
achieved: 

Lemma 4.5. For any data environment 5P the relation ~_so is a congruence with 
respect to the operators os 

Proof We only prove the lemma for the merge operator. Let 5 P = (S, effect, test) 
and assume that  p _'~s~ p/ and q _~so qt. So for all s ~ S we have global 5 P- 
bisimulations R~ and R~ such that  (p,s)Rp(pt, s) and (q,s)RSq(qt, s). We have to 

show (p 11 q,s) ~_s~(p I 11 qt, s) for all s c S. Fix so c S, and let Rp d_ef UscsR~ and 

Rq de=f UsesR~. We define a relation R as follows: 

e a___ef {((r 11 u,s),(r' 11 u',s))[(r,s)Rp(rt, s), (u,s)Rq(ut, s)} 

We have (p l! q, so)R(p' II q', so) and we show that  R is a global 5P-bisimulation. 
Suppose 

(r II u,s)R(r' 11 ut, s) and (r [[ u,s) a ,  (v II w, st). 

We systematically check which application of  the transition rules may  have led 
to this transition: 

(r, s) - ~  (v, s'), u -= w and a :p x/" Because r, s)Rp(r t, s) and Rp is a global 5 #- 
bisimulation, there is a v' such that  (r', s) (0,  (v', s') and 
Vs"((v, st')Rp(v', s")). We derive (r t [I u', s) a ,  (vt [1 d ,  st). As 
Vs"((r', stt)Rp(v t, sit)) and Vs'((u, s't)R~(u t, s')), we have 
Vst'(( v I] u, s')R(v t [1 d ,  s ')) by definition of  R. 
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(u, s) --~ (w, s:), r --= v and a @ x/" Likewise. 
(r,s) b> (v,s"), (u ,s ) - -% (w,s"),  a = y(b,c) and s' E effect(a,s). In a sim- 

ilar way as above we can find v' and w' satisfying ( r ' , s ) b ~  (v',s") and 
(u', s) ---% (w', s ' ) ,  and hence (r' t[ u', s) % (v' H w', s'). As 
Vs"((v, s")Rp(v', s')) and Vs'((w, s")Rq(w', s")), we conclude 
Vs"((v l] w, sr')R(v ' 11 w',s")). 

(r,s) ,/, (v,s'), (u,s) ~ (w,s') and a = x/" Likewise. [] 

Theorem 4.6. (Soundness) Le t  p, q be closed terms over E(ACPa)REc. IfACPG + 
REC + RSP F- p = q, then p ~_s: q for any data environment 5 ~ 

Proof  All the axioms of ACP~, REC and RSP are sound and _e~s: is a 
congruence. As an example we prove the soundness of the axiom EM1. Let 
J = (S, effect, test) be a data environment over A and Gat and let p, q be closed 
over E(ACPG)REC. Consider the relation 

e ~ / d  U { ( ( p l [ q , s ) , ( p [ l q + q l l p + p l q ,  s ) ) l s E S }  

where Id is the identity relation on C(E(ACPc)p.Ec, S).~'~It is not difficult to see 
that R is a global 5o-bisimulation satisfying (p [[ q)R(p ][ q + q [[_p + p t q). [] 

With this result we immediately obtain the soundness of two-phase derivability. 

Corollary 4.7. (Soundness) Le t  p, q be closed terms over Z(ACP6)R~c. 

I. I f A C P  4 + REC + RSP ~2 P = q, then p ~_s: q for any data environment 5 ~ 
2. Le t  50 be a data environment such that weakest preconditions are expressible 

and that is sufficiently deterministic. I f  ACPa(SO) + REC + RSP ~-2 P = q, 
then p ~_~ q. 

4.3. Completeness 

We show that the axiom system ACPG completely axiomatises global 5~ - 
similarity in all data environments for the closed terms over Z(ACPG). From 
Theorem 4.1. and Lemma 2.21., it follows that we can restrict our attention to 
the G-basic and A-basic terms over E(BPAG) defined in section 2. Due to the fact 
that global 5:-bisimilarity is a finer equivalence than ordinary 5o-bisimilarity, we 
are able to prove the related version of Lemma 2.27. in a simple way. 

Note that the results from section 2 that are used here, are all proved using 
BPA~. 

Lemma 4.8. I f  pl,p2 are G-basic terms over some reference set R and ACPG 
Pl = P2, then there is a data-state ~ in 5:(R) such that (Pl, ~1 @ s~ ~). 

Proof  By induction on IPll + ]P2[. The case IPll + IP2[ = 0 is trivial, so assume 
IPll + IP21 > 0. Ifpa @ P2, then Pl 7~ P2 or P2 ~ Pl. Assume pl ~ p2, so there is an 
A-basic term ql over R such that ~ql ~- Pl and ~ql 7~ P2 (otherwise just sum up 
all syntactic summands of pl and conclude Pl ~ p2). 

By definition p2 has a syntactic summand ~q2, but ql ~ q2 (otherwise ~ql _~ 
~q2 -~ p2). One of the following holds: 

1. e___ql a n d e ~ q 2 ,  
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2. ar Z_ ql and ar ~ q2 for some a E A and G-basic term r. 

(If all syntactic summands of  qa would be provable summands of q2, then ql ~ q2.) 
In the first case we have (pbqS) ' / ,  .... whereas by Lemma 2.23. (p2,~) has no 
such transition, so (Pb ~) ~s~(p2, ~). We evaluate case 2: 

either q2 has no syntactic summands starting with a. Now (Pl, ~) ~ y(R)(P2, ~), 

for (Pl, ~) has an a-transition, whereas (p2, ~) has no such transition by 
Lemma 2.23; 

or q2 has n + 1 syntactic summands starting with a, say aro, . . . ,arn.  It holds that 
r i @ r for all i = 0 , . . . ,  n (otherwise ar = ari ~_ q2 for some i). By the induction 
hypothesis (r, gpi) ~ s~(R)(ri,~Pi) for a data-state ~i ~ 5P(R). By Lemma 2.23 

we have for all i , j  = 0 . . . . .  n ( p l , ~ ) - ~  (er,~Si) and (P2,~) a, (erj, gpi). 

Suppose (Pb~) ~ s~(R)(P2,~), then by definition of global 5P-bisimilarity 
(er,~i)  ~ ~(R)(erj,~)i) for all i , j ,  and hence 

But this was contradictory in case i = j. 

The case P2 7~ Pl can be treated likewise. [] 

By this lemma, the previous completeness results and Theorem 4.1. we obtain the 
following results. 

Corollary 4.9. (Completeness)  Le t  rl, r2 be closed terms over E(ACP6). 

i. I f  rl ~_5 ~ r2 for  all data env ironments  50, then ACPG F- rl = r2. 

2. I f  rl ~_s~ r2 for  all data env ironments  5 e, then ACP 4 t-2 ra = r2. 

3. Le t  50 be a data env i ronment  such that weakest  precondi t ions  are expressible 
and  that is sufficiently deterministic. I f  rl ~-5 ~ r2, then ACPG(Y) ['-2 rl = r2. 

4.4. An Example! A Parallel Predicate Checker 

In this section we illustrate the techniques that we introduced up till now by an 
example. Let f _~ 2g be some predicate, e.g. the set of all primes. Now, given some 
number n, we want to calculate the smallest m > n such that f (m) .  Assume we 
have two devices P1 and P2 that can calculate for some given number k whether 
f ( k )  holds. In Fig. 10 we depict a system that enables us to calculate m using both 
Pa and P2. A Generator/Collector G generates numbers n, n + 1, n + 2 ..... sends 
them to P1 or P2, and collects their answers. Furthermore G selects the smallest 
number satisfying f from the answers and presents it to the environment. 

To describe this situation, we extend the example of section 3.3 with the 
atomic actions (i = 1, 2): 
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Generator/Collector G 

Fig. 10. The parallel predicate checker Q. 
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P1 f-checker 

P2 f-checker 

s( !x)  

r (?x3 

Sok(!xi) 

rok(?y) 

Snotok 

rnotok 

Cnotok 

w(!x), w([y) 

send value of x, 

read a value for xi, 

send the value xi for which the evaluation of f (x i )  
was a success, 

read a value for y for which f ( y )  succeeded, 

indicate that an evaluation of f was not successful, 

read that an evaluation of f has failed, 

a communication between rnotok and Snotok, 

write value of x, y to environment. 

These atomic actions communicate according to the following scheme: 

)~(S(!x),r(?xi))  = 7(r(?Xi),  S( !X)) = [X i : =  X], 
y(Sok([Xi), rok(?y)) = ?(rok(?y), Sok(!xi)) = [y := xi], 
7(S.o~ok, r.otok ) = 7(r.o~ok, S.otok ) = C~o~ok. 

All new atomic actions do not change the data-state, i.e. for each new atomic 
action a: 

effect(a, p) = {p}. 

Probably, one would expect that for instance effect(r( ?y), p) = {p[new value~y]} 
as r(?y) reads a new value for y. But this need not be so: the value of y is only 
changed if a communication takes place. 

Add new atomic guards ( f( t))  for any integer expression t to the setting of 
section 3.3. These guards have their obvious interpretation: tes t ( i f ( t ) ) ,p)  holds 
iff f(][p(t)]]) holds. 

The parallel predicate checker Q can now be specified by: 

G = [x := n] s(!x) [x := x + 1] s(!x) G1 
Gl = rnowk[X : = x + l ] s ( ! x ) G l + r o k ( ? y ) G 2  
G2 = -~(x -= y) w(y) + (x = y)(rok(?y) w(y) + rnotok w(x))  

Pi = r(9 .x i )P[-[  - e  

P/ = (f(xi))Sok([Xi) + =(f(xi) )  S~otok Pi + e 

Q = 3H(G I[ (P1 II P2)) 

with H = {r(?xi),rok(?y),rnotok, S(!X),Sog(!xi),Sno~ok l i = 1,2}. 
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The parallel predicate checker Q is correct if directly before the execution of 
an atomic action w(x) or w(y), x respectively y represents the smallest number 
m _> n such that f(m).  We introduce new atomic guards (a(t, u)) for integer 
expressions t, u to express this formally: 

test((a(t,u)),p) ~ [[p(t)]] < [[p(u)]] A ( A -'f(J))" 

n < j < [[p(u)]] 
j 5 A [[p(t)]] 

Now Q is correct if 

ACP6(5 e) + REC + RSP [-2 Q = Qt (3) 

where Q' is defined by: 

Q' = ~H(G' II (P1 II P2)) 

with H, P1 and P2 as above, and G' is defined by (the difference between G and 
G' is underlined): 

G' = [x := n] s( !x) [x := x + l] s( !x) G~ 
G] = rnotok[X := x +  1]s(!x)G' 1 +rok(?y)G' 2 
G i = ~ (x  = y) �9 {e(y,y)){f(y))  " w ( y ) +  

(x = y)(rok( Ty) �9 (c~(y, y)) ( f  (y)) �9 w(y) + 
r•otok " (o~(x, x ) ) ( f (x ) )  " w(x)). 

This expresses that Q is correct if we can show that directly before a value, say 
x, is output via gate w, then f holds for x, and f does not hold for all values 
from n to up to x (i.e. e(x, x)). Note that c~ is unnecessarily complex to state the 
correctness of Q. But this formulation is useful in the 'second phase' of the proof 
of (3). 

This proof is given by first expanding Q and Q' to merge-free forms (the 'first 
phase' of the proof of (3)). With ACPo we derive: 

Q ~n(G1 ]l (e l  II P2)) 
[x := n]([xl := x] [x := x + 1] [x2 := x ] .  ~H(G1 II (P~ II P~)) + 

[X 2 := X] [X := X q'- 1] [X 1 := X]" ~H(G1 II (P~ II P~)) ) 

OH(G1 

0H(G2 

~H(G2 

(e~ II e;))  
~(f(xl))Cnotok [x := x + 11 [x 1 := x]-~H(G1 11 (P~ 11 P~)) -~- 
~(f(x2))C,~otok [X := X + 1] [X 2 := X]" c~n(G1 [1 (P~ 11 P;)) + 

(f(xl))  [y := xl] OH(G2 l[ P~) + 
(f(x2)) [y := x2] ~H(G2 II P;) 

P9 
~(x = y) w(y) + 

(x = y)(( f(x2))  [y := x21 w(y) + ~(f(x2)) Cnotok W(X)) 

P;) 
- -  - , ( x  = y )  w(y) -t- 

(x = y)( ( f (x l ) )  [y := xl] w(y) + ~(f(xl))  Cnotok w(x)). 
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Now replacing - 8H(G1 II (P1 II P2)) by R, 
- both ~3H(G1 1[ (P~ 1[ P;)) and 8H(G1 11 (P; II P~)) by R1 

(note that #H(G1 [1 (P~ H P~)) EM~,5 8H(GI [1 (P{ 1[ P~))), 
- OH(G2 t] P~) by R2, and 
- Ou(G2 I[ P;) by R3 

yields the recursive specification of a process R over Z(ACPG)REC (and indeed 
over Z(BPAG)REC !) such that 

ACPG + REC + RSP F- Q = R. (4) 

Let the process R' be defined like R, except that w(x)  is replaced by 
(e(x, x)) (f(x)) w(x)  and w(y)  by (e(y, y)) if(y)} w(y). It can be proved in a similar 
way that 

ACPo + REC + RSP I- Q' = R'. (5) 

This concludes the 'first phase' results of our proof. 
In order to show that 

BPAG(SQ + REC + RSP I-- R = R' 

(the 'second phase' result needed) the following instances of SI, WPC1 and WPC2 
are needed in addition to those given in section 3.3. Let F be some function on 
integer expressions. ', 

~o Cnotok ~0 = ~o C,~otok for all qb c G, 
- ,<t  = t> = a ,  
<t = u > - , < u  = t> = a,  
(t = u) (u = v) -~(t = v) = a ,  
(tl -= Ul) " " (tk -= Uk) -~(F(tl . . . . .  tk) = F(ul  . . . . .  uk)) = 6, 
(t + 1 = u) (t = u) = 8, 
-~(f(t)) (c~(t,u)) ~ (e (u ,u  + 1)) = fi, 
~ ( f ( t ) )  (e(u, t))~(e(u, t +  1)) = 6, 
(~( t ,  u -  1 ) ) ( t  = u)  = a.  

Note that these identities are valid. Let 

dem-f ~(XI=X2)((~(X1,X2))(X=X2)-~-(~(X2, X1))(X=X1) ). 

It is easy to show that 

R ,  f i R 1 ,  @ = Xl)<f(x l ) ) f l  R2 , (y = x2)<f(x2))[l R3 

and 

R t, flR~, <y =x1)(f(x1))flRI2, (y = x 2 ) ( f ( x 2 ) ) f l R ;  

are solutions for T, T1, T2 and T3, respectively, in the following specification: 
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T = [x :=  n]([Xl :=  x] Ix :=  x-t-  1] [x2 :=  x]"  T 1 -I- 
[X2 :=  X] [X :=  X + 1] [Xl :-~- X]" T 1 ) 

T~ fl (-'(f(Xl))Cnotok [X := X "1- 1] [Xl := X]" T1 -4- 
-'(f(x2))Cnowk [X := X "b 1] [X2 := X]" T1 + 

(/(Xl)) [y := Xl] T2 + 
(f(x2)) [y := x2] T3 

T2 (y = xl ) ( f (x l ) ) f l ( -~(x  = y) w(y) + 
(x = y)( (f(x2)) [y := x21 w(y) + 

-'{/(x2)) Cnotok w(x) )) 

T3 = (y = x2)(f(x2))fl(-~(x = y )w (y )  -4- 
(x = y)( ( f (x l ) )  [y := Xl] w(y) -]- 

-~(f(x1)) Cnotok W(X) )) 

and thus BPA~(5 p) + REC + RSP ~- R = R'. Using (4) and (5) above it follows 
that 

ACP~(5~) + REC + RSP [--2 Q -~- Q' 

as was to be proved. 

5. Partial Correctness and Hoare Logic 

In this section we show that we can capture Hoare logic for process terms [Pon91] 
in the algebraic framework developed thus far. We consider partial correctness 
formulas of the form {~} p {fl}, where p is a closed term over Z(ACPa)REC and 
c~, fl are guards over Z(ACPG). It turns out that the validity of partial correctness 
formulas can be elegantly expressed with 5P-bisimulation equivalence: {a} p {fi} is 
valid in 5 p iff ep _~-~ c~pfl. We further show a soundness result for a Hoare logic 
for linear processes over 2(BPAG)R~C by translating proofs in Hoare logic into 
process algebra proofs. 

5.1. Hoare Logic for Process Terms 

Hoare logic is meant for proving the correctness of programs that transform some 
input into some output. Proof systems are mostly given in a natural deduction 
format (see e.g. [Da183] for 'natural deduction') and are parameterised with 

1. A class of programs, and 
2. A language of assertions to express correctness properties of programs (usually 

some first-order language with equality). 

In general a partial correctness formula has the syntax 

(pre} P {post} 

where pre, pos t  are assertions and P is a program. The intuitive meaning of 
{pre} P {post} is that whenever the assertion pre holds before the execution of P 
and P terminates, then the assertion pos t  holds after the execution of P. 
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Given a set A of  atomic actions and a set G~t of atomic guards, we here 
consider the guards over 2(ACPG) as a language of assertions, and we take the 
closed terms over Z(ACPG)R~c as the class of programs. 

With respect to data-state transformations there are hardly any constraints 
on the way we provide process terms with an (operational) semantics. Therefore 
this instantiation is on a rather abstract level, and is suitable to express many 
programming primitives and constructs (cf. the examples in sections 2, 3.3. and 
4.4.). We only require that data environments that are sufficiently deterministic 
and that weakest preconditions are expressible. These restrictions often occur in 
some related form in the study of  Hoare logic (cf. [Bak80, Apt81]). 

5.2. Partial Correctness Formulas  and Bisimulation 

We now present formal definitions for the interpretation of partial correctness 
formulas and assertions in any data environment. The main work is already 
done in section 4, where the operational semantics for the closed terms over 
2(ACPa)REC was defined. Let 5p = IS, effect, test) be some data environment. In 
this section we use the transition relation ~(ACPG)~c,S~ as defined in section 4.2. 
which is here simply written as ~. 

The interpretation of basic guards is such that a basic guard q5 holds in s E S 
iff 

(~,s) ,/, (~,s). 

We define the interpretation of our assertions in 5 p using @transitions. 

Definition 5.1. Let c~ be an assertion and 5 ~ = (S, effect, test) some data environ- 
ment. 

1. The assertion e holds in s E S, notation 5 P ~ e[s], iff (e,s) ~ (6,s). 

2. The assertion c~ is valid in 5 P, notation 5 P ~ c~, iff Vs E S (5 ~ ~ c~[s]). [] 

In order to define the interpretation of  partial correctness formulas,  we introduce 
sequences of transitions. Let A* be the set of finite strings over A, with typical 
elements a, o-/,.., and 2 denoting the empty string. We define for all a c A* 
relations % and ~ that describe sequences of transitions: 

�9 (x, s) ~,, (x, s) 
(x, s) % (x', s') (x', s') ~ (x 'I, s") 

�9 (x, S) %, (x", s") (a E Ax/) 

Now the interpretation of a partial correctness formula in 5 ~ is defined as follows: 

Definition 5.2. A partial correctness formula {e} p {/~} is valid in Y ,  notation 
5 ~ ~ {e} p {fl}, iff for all s E S and all a ~ A* : 

5 P ~ c~[s] and (p,s) ~'.(, (p',s') ~ 5 P ~ fl[s']. [] 

We show that for any partial correctness formula {c~}p{/?} it holds that 5 f ~ {a}p{/~} 
iff ap _~s~ ep/?. This alternative characterisation of validity of partial correctness 
formulas gives us the means to use process algebra for proving partial correctness 
formulas. 

Lemma 5.3. (Decomposition) Le t  5P = (S, effect, test) be some data environment.  



Process AlgebrawithGuards 155 

For any closed term p over Z(ACP~)REc, guard ~ over Z(ACP~) and a E (AU{ x/})* 
the following properties hold: 

I. I f (~p,s)  % (p',s') and a ~ 2, then (c~,s) ,/, (6,s) and (p,s) % (p',s'). 
2. I f (p~,s)  ~ (p',s'), then (p,s) ~4~ (p',s') and (~,s') ,/~ (6,s'). 

Proof  By induction on the length of a (first proving some intermediate properties 
of sequences of non-terminating transitions). [] 

Lemma 5.4. Let  p be a dosed  term over Z(ACP6)REc, c~ some guard over Z(ACPG) 
and 5e = (S, effect, test) a data environment. Then the following statements are 
equivalent: 

1. For all s E S and ~ E A* it holds that 

(p,s) ~4, (p', s') ~ (~, s') ,/, (~,s'), 

2. p ~_~pc~. 

Proof  First observe that if (p,s) ,/~ (p~,s'), then p' - ~ and d - s. 

1 ~ 2. Fix some s c S and take 

R a_ef {((~, s,), (6, s,)) I s' e S} 
U {((r,s'),(re, d ) ) t (p , s )  ~ (r,s') for some a C A*}. 

Note that (p, s)R(pcr s). We show that R is an ~-bisimulation. For pairs 
((5, d), (6, s')) it is trivial to check the transfer property. Assume (q, s')R(qe, s'). 

�9 Suppose (q, d) a > (q,, s') with a c A. We derive (qcq s') a > (q,e, s ')  and by 
definition of R also (q', s')R(q'cr s'). 

�9 Suppose (q,s') ,/> (5,s'), so (p,s) ~,L (5,s') for some a. By assumption we 
have (c~, d) ~2~ (5, d) and derive (qcq d) ~ (6, d). By definition 
(&s')R(&s').  

�9 Suppose (q~,s') a> (q' ,s ')  with a E A. By 'decomposition' it follows that 
q' -= q"~ and (q, s') a > (q,, s'). By definition (q', s')R(q', s'). 

�9 Suppose (q~,s') ,/> (6,s'). It follows that (q,s') - ~  (6,s') and 
(~,s') ~/> (&s'). By definition (6,s')R((~,s'). 

2 ~ 1. Suppose (p, s) ~ (p', s') for some a E A*. By assumption then also 
(pcr s) %t> (p', s'), and by decomposition we have (~, s') ~L~ (6, s'). [] 

Now we can easily prove the following characterisation of the 5P-validity of 
partial correctness formulas in terms of 5P-bisimilarity. 

Theorem 5.5. Let  p be a closed term over Z(ACP~)REo ~, fi guards over Z(ACPG) 
and 50 = (S, effect, test) a data environment. Then 

Proof  

Suppose 5~ M {cq p {fi}. By the previous lemma it is sufficient to show 
that if (ap, s) ~ (p',s'), then (fl, s') ,/, (6,s'). So let (ap, s) r (p',s'). By 
'decomposition' we have (e,s) ~ (p',s) and (p,s) %~, (pr, s'). By 5 ~ ~ {a}p{fl} 
this implies (fl, s') -'2-> (p~, s'). 

Suppose 5 P g= {a} p {fi}, so for some s E S and a E A* : 
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(c~,s) ,./, (6, s) and (p,s) ~'g> (p',s') and 5 P ~ B[s']. 

We derive (ep, s) ~4, (p', s') and by th e assumption of 5~ we have 
(epfi, s) ~ (p',d). By decomposition this implies that (fi, J) ,/~ (6,s'), which 
contradicts the supposition. 

5.3. A Proof System for Deriving Partial Correctness Formulas 

In this section we present a proof system H in a natural deduction format for 
deriving partial correctness formulas over Z(BPA6)REC (cf. [Pongl]). The proof 
system H is displayed in Fig. 11. Notice that the rules of H refer to terms over 
Z(BPAo)REC that need not be closed. Let F be a set of  assertions and partial 
correctness formulas. We write F F-~/{~} t {fi} iff we can derive {cq t {fl} in H using 
elements of F as axioms. 

�9 The axiom scheme H1 introduces partial correctness formulas over atomic 
actions. It only makes sense if weakest preconditions are expressible, and it 
is only valid in data environments that are sufficiently deterministic. Weakest 
preconditions are defined in Definition 3.1. and Remark 3.4. 

�9 The axiom scheme H2 introduces partial correctness formulas over basic 
guards. 

�9 Rules H3 and H4 express how the operators + and �9 may be introduced in 
partial correctness formulas. 

�9 Rule H5, consequence, is a standard proof  rule in Hoare logic. The intended 
interpretation of an expression c~ --. fi is as expected: 6,' ~ (c~ ~ fl)[s] iff 

~ ~[s] ~ ~ ~/3  Is]. 
�9 Rule H6, an instance of Scott's induction rule (see e.g. [Bak80, AptS1]), is 

suitable to derive partial correctness formulas with recursive terms over 
Z(BPAG)REc. This rule allows cancellation of hypotheses, indicated by the 
square brackets in its premises: let E = {x = tx Ix  E Ve} be a guarded 
recursive specification and ex, fix (x c Ve) be guards. If  for all y E VE we can 
derive (indicated by the dots in the rule) {ey} ty {fly} from a set of hypotheses 
Fy containing no other partial correctness formulas with free variables in VE 
than those in {{~x}X{/?x} [ x ~ Ve}, then for any z EVE the partial correctness 
formula {ez} < z [ E >  {fiz} can be derived from 

x~V~ 

5.4. Soundness of the Proof System 

In this section we prove a soundness result for H with respect to a data envi- 
ronment 5p = (S, effect, test) over A and G such that weakest preconditions are 
expressible and 5 p is sufficiently deterministic. Let Trs~ be the set of assertions 
that are true (valid) in 5C We prove that 

Tr~F-H{cqp{fi}  ~ 5 P~{e}p{f l}  

provided that recursive specifications have a finite number of equations and are 
linear (cf. linear context free grammars [HoU79]): 



Process Algebra with Guards 157 

(H1) 

(H2) 

(H3) 

(H4) 

(H5) 

(H6) 

{wp(a,e)} a {cq if a E A 

{~}q~{~.~b} i f q S E G  

{~} t {/~} {cq t' {/~} 
{~} t + t' {/~} 

{a) t {c(} {c(} t' {fi) 

{~} t .  t' {fl} 

c~ ---, ~' { r  t {/~'} 3'  - - ' /~  

For E = {x = tx [x E V~} a guarded recursive specification: 

[{{~x} x {~}1  x e v~}] 

{C~y} ty {fly} for all y EVE 
z E V ~  

{~z} <zlE> {fl~} 

Fig. 11. The proof system H (a c A, q~ E G). 

Definition 5.6. A process term t over E(BPA6) is called linear over V' ~ V iff 

t : : = P l  x [pt[ t p l t + t  

where p is a closed term over Z(BPAc) and x E V'. A recursive specification 
E = {x = tx Ix EVE} is linear iff the terms tx are linear over VE. [] 

In [Pon91] only processes definable by regular recursion were considered in the 
context of H6. This class is strictly contained in the class of processes definable 
by guarded, linear recursion. 

By Lemma 5.4. and the soundness of BPA~(Se) + REC + RSP, the soundness 
of H follows from the statement 

Tr~e ~-H {c~} p {fi} ~ BPAo(5 a) + REC + RSP ~- ~p = ~pfi. 

In the rest of this section we prove this statement by translating/-/-derivations in 
a canonical way to proofs in process algebra. 

We first show tha t / - / i s  sound for the (recursion-free) terms over Z(BPA~). 

Lemma 5.7. (Soundness of H for recursion-free terms) Let p be a dosed term over 
Z(BPAG) and ~, fl guards over Z(BPA~). Then 

Try ~-H {~} P {fl} ~ BPA6(5 ~) t- c~p = c~pfl. 

Proof By induction on the length of derivations. The soundness of H1 - H4 is 
straightforward. We only show that rule H5 (consequence) is sound (we need not 
consider rule H6, as this rule introduces recursively defined processes). Rule H5 
contains expressions of the form c~ ~ fl with the interpretation 5e b (c~ ~ fl)[s] 
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iff 5 ~ ~ ~[s] ==> 5 ~ M f i N .  I t  is easy to show that  such expressions can be 
algebraically character ised as follows: 

~ -+ fl E T r y  .'. ".. BPAG(SQF-c~ - f i=cc  

Assume 

T r y  }-H {0{'} p {fit} and ~ --+ ~', fl' -+ f i e  Try .  

By induction we can prove c~'p = c(pfi', ee '  = c~ and fi'fi = fl' in BPAG(o~). We 
derive 

c~p = ~c~'p 

= c~c(pfl '  

= ~ ' p f l ' f i  
= ~c(pfl 
= o~pfi 

as was to be shown. []  

Using this fact we can prove a general  result concerning linear terms that  connects  
H-der ivabi l i ty  f rom T r y  to provable  equality in BPAG(5 0 .  

L e m m a  5.8. L e t  t ( x b . . . ,  xn) be a term over Z(BPAG) a n d  c~, fl, ~i, fli be guards  
over  E(BPAG) s  = 1 . . . . .  n. I s  Xn) is l inear over  { x l , . . .  , x , } ,  a n d  

T r y ,  {{0~i} xi {fli} ] i = 1 , . . . ,  n} ~-U {~} t(Xl . . . .  , Xn) {fl}, 

then 

I. BPAG(~)  ~- c~" t(CqXl . . . . .  gnXn) = c~" t(x1 . . . . .  Xn), 

2. BPAG(5 ~ F- c~" t(Xlfil . . . . .  xnfi~) = ~ " t ( x l f i b . . . ,  Xnfi~) " fl. 

Proof. By induction on the length of  the derivat ion of  

Trse, {{cq} xi {fli} [ i = 1 , . . . ,  n} ~-H {cq t ( x l , . . . ,  Xn) {fl}. 

The cases in which one of  H1 - H3 is applied last are straightforward.  We give a 
p roo f  for the cases in which H4  or H5 is applied last (note that  by definition of  
linearity rule H6 of  H again need not  be considered):  

As for H4. Because all terms in the p roo f  are linear, we m a y  assume tha t  
t ( x l , . . . ,  Xn) =- p" u ( x l , . . . ,  Xn) or t (xl  . . . . .  Xn) =- u ( x l , . . . ,  Xn)" p, with p a closed 
te rm over 2(BPAo).  Let  t ( x b . . . ,  x , )  -- p . U(Xl , . . . ,  x , )  and 

t r y ,  {{~i} xi {fl~} I i = 1 . . . . .  n} 

{cq p {c~'} {c(} U(Xl . . . .  ,x~) {fl) 

{cq p . U(Xl  . . . . .  x . )  {fl} 

Apparen t ly  T r y  I-H {cqp {c(}, so we have by L e m m a  5.7 that  BPAG(SQ ~- ap = 
c~p~'. We derive 
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1. 0~p �9 u ( 0 q X l , . . . , ~ n X n )  = ~p~t. U(~IX1 . . . . .  ~nXn ) 

IH ~p~,. U(X1,...,Xn) 
= ~p "U(Xb.. . ,X~).  

2. ~p " u (x l f l l  . . . . .  xnf l , )  = ~ p ~ "  u ( x l f l l , . . . , x n f l , )  

1H ~po~t . U(Xl f l l  . . . . .  Xnfln) . fl 

= ~ p ' u ( x l f l l , . . . , X , f l n ) ' f l .  

The case in which t(xl  . . . .  ,x~) - u ( x l , . . . , x ~ ) ' p  with p a closed te rm over 
Z(BPAG) can be proved likewise. 

As for  H5. Assume 

Trs~, {{~i} xi {fli} ] i = 1 . . . .  , n} 

--+ ~' {r t ( x l , . . . , x , )  {fl'} fl' -+ fl 
{~} t(xl  . . . . .  Xn) {fl} 

By induct ion we have BPAo(~) -de r iva t ions  of  ~e' = e and fl'fl = fl'. We 
derive 

1. ~ "  t (OqXl . . . .  ,O~nXn) = o~o(" t (OqXl . . . . .  O~nXn) 
IH  
= ~ r  
= ~ ' t ( X l , . . . , X n ) .  

2. ~ "  t ( X l f l l  . . . .  ,Xnf ln )  = ~C(" t ( X l f l l , . . . , X n f l n )  
IH 
= ~ r  , x . f l n ) . f l ,  
= ~ ' ' t ( X l f l l , . . . , X n f l n ) ' f i t f i  
IH 
= 0{0{ I .  t ( X l f l l ,  . . .  , Xnfln)"  

= ~ " t ( X l f i l  . . . . .  X n f i n ) ' f l .  

[] 

This result can be used to show the soundness  of  the p r o o f  system H for the 
following subset  o f  terms over E(BPAG)e, EC. 

Theorem 5.9. (Soundness o f  H )  Le t  p be a closed term over Z(BPAG)REC in which 
all occurrences o f  the form < x l E >  refer to a (guarded) recursive specitication E 
over Z(BPAG) that is linear and  contains only  l~nitely m a n y  equations. L e t  ~,fl 
be guards  over Z(BPAG). Then 

Trs, kH {Cq p {fi} ~ BPAG(5 e) + R E C  + RSP  F- ~p = ctpfl 
==~ ~p _~s o c~pfl 
r  ~ ~ {~) p {fl}. 

Proo f  By Theorems  3.5. and 5.5. we only have to prove the first implication.  We 
apply  induct ion on the length of  H-der ivat ions .  The p r o o f  of  the soundness  of  
H1 - H5 is s t ra ight forward (cf. the p r o o f  of  L e m m a  5.7.). We only give a p r o o f  
of  the soundness  of  H6. Let  E = {xi = ti(xl . . . .  ,x~) ] i = 1 . . . .  ,n} be a guarded  
linear recursive specification and assume 

Trs% {{0q} xi {fii} t i = 1 . . . . .  n} ]-H {~j} t j (X1 . . . . .  Xn) {flj} 

for j = 1 , . . . ,  n. So we have an H-der iva t ion  of  the premises of  rule H6. We have 
to show 
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BPAG(5:) + REC + RSP F c~jX] = e j X j f l j  

for j = 1 , . . . ,n  (recall that Xj abbreviates < x j [ E > ,  the constant representing 
a solution for the jth equation of E). In order to do so we use the recursive 
specifications 

g '  = {Yi = ~i " t i ( Y l , . . . , y n )  l i  = 1 , . . . , n }  

E"  = {zi -= ~i " t i (Z l f l l  . . . .  , z , f ln)  l i = 1,. . . ,n} 

and show for any j E {1,.. . ,  n} that 

1. , : x :  = Y:, 
2. z j &  = z : .  
3. z : = v j .  

As a consequence we can derive 

BPA~(b ~ + REC + RSP F e]X:  = Y: = Z j  = Z j f l j  = e j X j f l j  

as has to be shown. So we are left to prove 1,2 and 3. Observe that E', E" are 
guarded linear recursive specifications, so we may use both RSP and the previous 
Lemma 5.8. 

As for 1. We first show that e j X j  -- Y: for all j e { 1, . . . ,  n}. We derive 

o; jXj  RE C O;j " t j ( X 1 , . . .  , X n )  5.8__1 o~j " t j ( g l X 1 , . . . ,  o~nXn). 

So 0{1X1,...,0~nX n are solutions of Y l , . . . , Y ~  in E'. With RSP we conclude 
e j X j  = Yj  for j = 1,. . . ,  n. 

As for 2. We show that Zj f l j  = Z j  for all j E {1,.. . ,  n}. We derive 

Z j f l j  REC ~j  " t j ( Z l f l l , ' " ' Z n f l n ) "  flJ 

5.8--2 o:j " t j ( Z l f l l , . . . , Z n f l n )  
= t j ( ( z l f i l ) f l l , . . . , ( z . f l , ) f i . ) .  

So Z l f i l , . . . , Z , f l n  are solutions of  z x , . . . , z ,  in E". With RSP we conclude 
Zj f i j  = Z j  for all j E { 1 . . . . .  n}. 

As for 3. We show (using 2) Z j  = Yj  for all j c {1,.. . ,  n} as follows: 

Z j  RE C o~j " t j ( Z l f l l , . . . , Z n f l n )  2 ogj " t j ( Z l  . . . .  , Z n ) .  

So Z b . . . ,  Z~ are solutions of Yb. . . ,  Y, in E'. With RSP we conclude Z j  = Yj  
for all j E {1 . . . . .  n}. [] 

6. Conclusions 

In this paper we use an operational semantics for process algebra that combines 
behavioural and (data-)state based aspects. Typical is the introduction of guards, 
i.e., predicates over data-states, as a special kind of processes. Thus a one-sorted 
framework is obtained, based on two sets of special constants: atomic actions and 
(the closure under -7 of) atomic guards. This allows for a relatively simple type of 
complete axiomatisations, both with respect to a preferred data-state environment 
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and for a class of such environments. Furthermore this framework is suitable to 
reason about infinite processes defined by (guarded) recursive equations�9 Finally, 
as shown in the previous section, it is possible to deal with the essentials of Hoare 
Logic for partial correctness in our set-up�9 

We only know of one other approach in process or programming formalisms 
that involves guards in a one-sorted way, developed by Manes and Arbib: in 
[MaA86] guards and functions modelling programs are combined in a partially 
additive category. (Here the subset of "guard morphisms" forms a Boolean 
algebra�9 

In the following the present work is related to some well-known other ap- 
proaches, mixing Boolean expressions and behavioural constructs in a two-sorted 
way. 

First we make a short comparison with "Process Algebra with Signals and 
Conditions" of Baeten and Bergstra [BaB90]. Given a Boolean algebra IB, the 
authors discuss three well-known operators that relate IB and the sort of processes 
under consideration, say P. The first operator is the conditional : 

. < .1 :> .  : ~  x ]B x ~ - - ~  

that stems from Hoare et al. [HHJ87], where p <~ b t> q should be read as if b then 
p e l s e  q ft. Next there is the guarded command:  

�9 :---~. : IBx lP - -* IP  

where the expression b : ~  p is to be read as if b then p fi, and which cannot be 
defined (axiomatically) without the 6, for 

f a l s e  : ~  x = 6 .  

Finally guards are introduced as unary operators: 

{ . }  : 

with the same meaning as described in this paper�9 These 'guards' also presuppose 
the existence of the e constant, as 

{ t r u e }  = e. 

From a methodological point of view, of these three operators the conditional is 
regarded as basic in [BaB90] for its (axiomatic) definition does not presuppose 
any of the special process algebra constants 6 or e. This argument is not preserved 
in our set-up, as 6 and e represent in "Process Algebra with Guards" just the 
minimal generators for any Boolean subalgebra  to be included. We finally remark 
that Baeten and Bergstra use 21 axioms to define conditionals and guarded 
commands over the BPA fragment. 

In the paper "Laws of  Programming" of Hoare et al. [HHJ87] 'programs' 
are constructed from assignments with operators for sequential composition, 
conditionals and nondeterminism. The operators are described in an equational 
style, just as in [BaB90] and as in the present paper. There is a unit program 
S K I P  that behaves like our e and a program A B O R T  that is reminiscent to our 
6, but that behaves according to Murphy's Law: " i f  it can go wrong, it will", in 
our notation: 

x + A B O R T  = A B O R T  
x .  A B O R T  = A B O R T .  x : A B O R T .  
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This latter program A B O R T  makes a comparison with our approach more 
difficult. In [HHJ87] there are about 30 laws for a fragment comparable to BPA 
with guards. 

In Dijkstra [Dij76, Apt84] a class of programs is introduced, which contains 
the following " i f -  fi construct": 

i f e l ~ & [ ] e 2 - + S 2 [ ] . . .  []e.--+S~fi 

with el, e2 . . . .  Boolean guards and &, $2 . . . .  programs. The intuitive meaning of 
this construct is to choose nondeterministically a guard ei that holds and to 
execute the program Si. In the case that none of the ei hold, the whole construct 
deadlocks. The translation of this construct into process algebra with guards 
would then be: 

i (rel  "1 �9 rSl ' l  -[- re2"1 �9 rs21 @ . . .  @ re2  �9 r s "  ) 

with i some (internal) action and r.~ denoting the translation. The role of the 
action i is to ensure deadlock if the construct is placed in a '% context" and 
none of the guards holds. It is in this case assumed that i does not transform any 
data-state. A more precise modelling of this language can be given by replacing 
i with the constant z (silent step) from process algebra [BaW90], for example 
relating if false---> S fi to z (5  �9 rS~)(= z '  6). 

In [Hen91] Hennessy presents a language and proof system for communicating 
processes with value-passing. Here also Boolean guards are incorporated in the 
form of conditionals. There is a completeness result based on the rewriting of 
terms to guard-free ones (note that this demands a fixed "Boolean expression" 
semantics). 

A bit of  a drawback in all these related approaches is the number of axioms 
and rules necessary to relate Boolean expressions to behavioural constructs (this 
number may in some cases even increase if completeness results are to be 
proved), whereas we only need a small number. Of course a general advantage 
of the 'conditional' or if - then - else - fi construct is that it is well-known and 
established, and therefore probably intuitively more  appealing than our guards. 
Nevertheless we hope to have argued that for analytical purposes, guards as 
introduced here constitute a simpler and more fundamental approach. 
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