

Information Processing Letters 67 (1998) 95-103

Information Processing Letters

Kleene's three-valued logic and process algebra

Jan A. Bergstra^{a,b,1}, Alban Ponse^{a,*}

^a University of Amsterdam, Programming Research Group, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands ^b Utrecht University, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

> Received 23 December 1997 Communicated by H. Ganzinger

Abstract

We propose a combination of Kleene's three-valued logic and ACP process algebra via the *guarded command* construct. We present an operational semantics in SOS-style, and a completeness result. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Process algebra; Three-valued logic; Guarded command; Design of algorithms; Concurrency; Formal languages

1. Introduction

In considering algorithms or programs in an operational manner, there is ample motivation to include a third truth value next to T (true) and F (false). For some illustrative references, see, e.g., [4,13]. Evaluation of the condition in a conditional construct, such as ϕ in

if ϕ then *P* else *P*,

for some program P may turn out divergent, or be distinguished as meaningless (e.g., a type clash, or division by zero). In such a case one certainly does not want to consider P and **if** ϕ **then** P **else** P as equal. Typically, the principle of the excluded middle *tertium non datur*—is not anymore acceptable. Of course, **if** ϕ **then** P **else** P and **if** $\neg \phi$ **then** P **else** P should be considered the same.

In this paper we view process expressions with conditions as a vehicle to describe concurrent algorithms, and consider the question how to deal with a third truth value D, expressing *divergence*. This value is inspired by Kleene [15], in which it is called *undefined*, and is used to reason about partial recursive predicates being either undefined, true, or false. We rather use 'divergence' instead of 'undefined', as for example a type clash in a program is a kind of undefinedness that we want to distinguish from divergence. Naturally, $\neg D = D$, for divergence in the evaluation of a condition also implies divergence of its negation (cf. ϕ in **if** ϕ **then** *P* **else** *P* and **if** $\neg \phi$ **then** *P* **else** *P*).

We shortly recall the combination of process algebra and logic via the *guarded command*, an operation which stems from [11], and was introduced in process algebra with two-valued logic in [2] with the following typical laws where $\phi :\rightarrow _$ is the guarded command resembling **if** ϕ **then** _:

 $T :\to x = x,$ $F :\to x = \delta,$ $\phi :\to x + \psi :\to x = \phi \lor \psi :\to x.$

Here + denotes 'choice', and δ denotes 'inaction/ deadlock'. The constant δ is well known in ACP based

^{*} Corresponding author. Email: alban@wins.uva.nl.

¹ Email: janb@wins.uva.nl.

^{0020-0190/98/\$19.00} \odot 1998 Elsevier Science B.V. All rights reserved. PII: S0020-0190(98)00083-0

approaches [6,7,10], and is axiomatized by

$$x + \delta = x$$
 "inaction is not considered an alternative,
 $\delta \cdot x = \delta$... and is perpetual".

Here \cdot represents "sequential composition". We involve the constant D with the axiom

 $D :\to x = \delta$.

This preserves the three laws mentioned above in the present three-valued setting. Roughly, the idea is that if evaluation of a condition diverges, there is no point in considering it in the presence of an alternative, whereas it implies deadlock in case there are no alternatives. Now consider the derivations

$$x = x + \delta$$

= T :\to x + D :\to x
= T \land D :\to x,
$$\delta = \delta + \delta$$

= F :\to x + D :\to x
= F \land D :\to x.

Clearly, the interpretation $D :\to x = \delta$ leads to the logical consequence

$$\mathsf{T} \lor \mathsf{D} = \mathsf{T},$$

and leaves only two options for the definition of $F \lor D$, namely: $F \lor D \in \{F, D\}$. The only reasonable one seems $F \lor D = D$.² So we end up with \neg , \lor and its dual \land as defined by the following truth tables:

x	$\neg x$	\vee	TFD	\wedge	ΤFD
Т	F	Т	ттт	Т	TFD
F	т	F	TFD	F	FFF
D	D	D	TDD	D	DFD

This precisely entails Kleene's three-valued logic as defined in [15], which we further call \mathbb{K}_3 . (Notice that \mathbb{K}_3 is not functionally complete: one cannot define f with $f(\mathsf{D}) = \mathsf{F}$ and $f(v) = \mathsf{T}$ for $v \in \{\mathsf{T}, \mathsf{F}\}$.)

Structure of the paper. In the next section we shortly discuss \mathbb{K}_3 . In Section 3 we combine this extension with ACP. In the next two sections we define an operational semantics and bisimulation equivalence, and we prove a completeness result.

2. Kleene's three-valued logic with propositions

Consider Kleene's three-valued logic \mathbb{K}_3 as introduced in the previous section (cf. [15,3]). An equational specification of \mathbb{K}_3 follows from [14], and is given in Table 1. As usual, \wedge and \vee are commutative and associative operations. In case we use proposition symbols from set \mathbb{P} , we shall write $\mathbb{K}_3(\mathbb{P})$, and for concise notation we shall identify \mathbb{K}_3 and $\mathbb{K}_3(\emptyset)$.

Let $\mathbb{T}_3^{\mathsf{D}} = \{\mathsf{T}, \mathsf{F}, \mathsf{D}\}$. In the following we describe a prototypical, generic occurrence of D , starting from considerations that also apply to a two-valued setting. Consider the natural numbers

$$\omega = \{0, S(0), S(S(0)), \dots \},\$$

and write $S^0(x) = x$ and $S^{k+1}(x) = S(S^k(x))$. Let $f: \omega \to \mathbb{T}_3^{\mathsf{D}}$ be some arbitrary function. We define *infinitary f*-*disjunction*, notation $\bigvee f$, by

$$\bigvee f = f(0) \lor \bigvee (f \circ S).$$

The recursive definition of $\bigvee f$ implies computation of f(0), f(S(0)), $f(S^2(0))$, ... until f(n) = T for some value *n*. In the particular case that for all $n \in \omega$, f(n) = F, it makes sense to define $\bigvee f = D$. We apply this idea in the following example.

Example 2.1. We define equality $\equiv: \omega \times \omega \to \mathbb{T}_3^{\mathsf{D}}$ as a binary infix function by

$$0 \equiv 0 = \mathsf{T},$$

$$0 \equiv S(x) = \mathsf{F},$$

$$S(x) \equiv 0 = \mathsf{F},$$

$$S(x) \equiv S(y) = x \equiv y$$

Next, we define the *partial predecessor* function $pprd: \omega \to \omega$ using auxiliary function $g: \omega \times \omega \to \omega$

$$pprd(x) = g(x, 0),$$

$$g(x, y) = \begin{cases} y & \text{if } S(y) \equiv x, \\ g(x, S(y)) & \text{otherwise.} \end{cases}$$

² By duality, the other option implies $T \wedge D = T$, which indeed seems a rather implausible interpretation of \wedge .

Table 1 Axiomati	zation of \mathbb{K}_3 with c	onjunction, disjunction, and implication.
(K1)	¬T = F	(K6) $r \land (v \land z) = (r \land v) \land z$

(K5)	$x \to y = \neg x \lor y$	(K10)	$x \land (y \lor z) = (x \land y) \lor (x \land z)$
(K4)	$\neg(x \land y) = \neg x \lor \neg y$	(K9)	$x \wedge y = y \wedge x$
(K3)	$\neg \neg x = x$	(K8)	$x \lor (x \land y) = x$
(K2)	$\neg D = D$	(K7)	$T \wedge x = x$
(K1)	$\neg T = F$	(K6)	$x \wedge (y \wedge z) = (x \wedge y) \wedge z$

One easily sees that

$$pprd(S^{k+1}(x)) \equiv S^k(x).$$

Now consider the case of pprd(0). To model its computation, we define an auxiliary predicate *Aux* as follows:

 $Aux(x, y, z) \Leftrightarrow g(x, y) \equiv z.$

The recursive definition of *Aux* follows easily from that of *g*, and falls within $\mathbb{K}_3(\mathbb{P})$:

$$Aux(x, y, z) = (S(y) \equiv x \land y \equiv z)$$

$$\lor$$

$$(\neg(S(y) \equiv x) \land Aux(x, S(y), z)).$$

In particular, Aux(0, 0, z) models computation of pprd(0). We have

$$Aux(0, 0, z) = (S(0) \equiv 0 \land 0 \equiv z)$$

\$\vee\$
(\$\cap(S(0) \equiv 0) \$\lambda Aux(0, S(0), z)\$).

By $T \wedge x = x$ and $S(x) \equiv 0 = F$, it follows that

$$Aux(0, 0, z) = (S(0) \equiv 0 \land 0 \equiv z)$$

$$(S^{2}(0) \equiv 0 \land S(0) \equiv z)$$

$$(S^{3}(0) \equiv 0 \land S^{2}(0) \equiv z)$$

$$\lor$$

so, if $f = \lambda x . (S(x) \equiv 0 \land x \equiv z)$, we find

$$Aux(0,0,z) = \bigvee f$$

Furthermore, we have for each *n* that f(n) = F by axiom $S(x) \equiv 0 = F$. Hence

Aux(0, 0, z) = D, and thus $g(0, 0) \equiv z = D$. The assumption that pprd(0) = g(0, 0)

can be computed to some value z leads to value D of the predicate modeling its computation, irrespective of z. This motivates the following definitions:

$$pprd(0) = \mathsf{D},$$
$$\omega_{\mathsf{D}} = \omega \cup \{\mathsf{D}\},$$

so $pprd: \omega \to \omega_D$. In order to integrate this example with process algebra, we extend the domains of all defined functions to ω_D by taking

$$S(D) = D,$$

$$D \equiv x = x \equiv D = D,$$

$$pprd(D) = D.$$

We continue with this example after having combined $\mathbb{K}_3(\mathbb{P})$ with process algebra.

3. Process algebra with $\mathbb{K}_3(\mathbb{P})$

In the left column of Table 2 we present a slight modification of ACP(A, γ), the Algebra of Communicating Processes [6,7,10]. Here A is a set of atomic actions, and γ a communication function that is commutative and associative. We take γ total on $A \times A \rightarrow A_{\delta}$, where $A_{\delta} = A \cup \{\delta\}$, and the communication merge | commutative (CMC) (by which (CM6) and (CM9), the symmetric variants of (CM5) and (CM8) [10], become derivable). In the right column additional axioms on pre-abstraction (t_I , i.e., renaming of all actions in I to action t), and guarded command are listed, where ϕ is taken from $\mathbb{K}_3(\mathbb{P})$. These axioms are parameterized by action set $A_t = A \cup \{t\}$. We mostly suppress the

The axiom system ACP _D (A_t, γ, \mathbb{P}), where $a, b \in A_{t\delta}, H, I \subseteq A_t$.			
(A1)	x + (y + z) = (x + y) + z		
(A2)	x + y = y + x		
(A3)	x + x = x		
(A4)	(x+y)z = xz + yz	(GT)	$T :\to x = x$
(A5)	(xy)z = x(yz)	(GF)	$F: \rightarrow x = \delta$
(A6)	$x + \delta = x$	(GD)	$D:\to x = \delta$
(A7)	$\delta x = \delta$		
(CF1)	$a \mid b = \gamma(a, b) \text{if } a, b \in A_t$	(GC1)	$\phi:\to x+\psi:\to x = \phi \lor \psi:\to x$
(CF2)	$a \mid \delta = \delta$	(GC2)	$\phi :\to x + \phi :\to y = \phi :\to (x + y)$
(CM1)	$x \parallel y = (x \parallel y + y \parallel x) + x \mid y$	(GC3)	$(\phi:\to x)y = \phi:\to xy$
(CM2)	$a \parallel x = ax$	(GC4)	$\phi :\to (\psi :\to x) = \phi \land \psi :\to x$
(CM3)	$ax \parallel y = a(x \parallel y)$	(GC5)	$\phi :\to x \coprod y = \phi :\to (x \coprod y)$
(CM4)	$(x+y) \bigsqcup z = x \bigsqcup z + y \bigsqcup z$	(GCD)	$\phi :\to x \mid \psi :\to y = \phi \land \psi :\to (x \mid y)$
(CMC)	$x \mid y = y \mid x$		
(CM5)	$ax \mid b = (a \mid b)x$	(DGC)	$\partial_H(\phi:\to x) = \phi:\to \partial_H(x)$
(CM7)	$ax \mid by = (a \mid b)(x \parallel y)$	(TGC)	$t_I(\phi:\to x) = \phi:\to t_I(x)$
(CM8)	(x + y) z = x z + y z		
(D1)	$\partial_H(a) = a \text{if } a \notin H$	(T1)	$t_I(a) = a$ if $a \notin I$
(D2)	$\partial_H(a) = \delta \text{if } a \in H$	(T2)	$t_I(a) = t \text{ if } a \in I$
(D3)	$\partial_H(x+y) = \partial_H(x) + \partial_H(y)$	(T3)	$t_I(x+y) = t_I(x) + t_I(y)$
(D4)	$\partial_H(xy) = \partial_H(x)\partial_H(y)$	(T4)	$t_I(xy) = t_I(x)t_I(y)$

Table 2	
The axiom system ACP _D (A_t, γ, \mathbb{P}), where $a, b \in A_{t\delta}, H, I \subseteq A_t$.	

in process expressions, and brackets according to the following rules: \cdot binds strongest, : \rightarrow binds stronger than \parallel , \parallel , \parallel , all of which in turn bind stronger than +. We use

 $\operatorname{ACP}_{\mathsf{D}}(A_t, \gamma, \mathbb{P})$

both to refer to this axiom system and the signature thus defined. We write

$$\operatorname{ACP}_{\mathsf{D}}(A_t, \gamma, \mathbb{P}) + \mathbb{K}_3(\mathbb{P}) \vdash x = y,$$

or shortly $\vdash x = y$, if x = y follows from the axioms of ACP_D(A_t, γ, \mathbb{P}) and $\mathbb{K}_3(\mathbb{P})$. The following derivabilities turn out to be useful:

Lemma 3.1.

- (1) $\operatorname{ACP}_{\mathsf{D}}(A_t, \gamma, \mathbb{P}) + \mathbb{K}_3(\mathbb{P}) \vdash \phi :\to \delta = \delta$,
- (2) $\operatorname{ACP}_{\mathsf{D}}(A_t, \gamma, \mathbb{P}) + \mathbb{K}_3(\mathbb{P}) \vdash \phi :\to x = \phi \lor \mathsf{D} :\to x.$

Proof. As for (1), $\phi :\to \delta = \phi :\to \delta + \mathsf{T} :\to \delta = \phi \lor \mathsf{T} :\to \delta = \mathsf{T} :\to \delta = \delta$. As for (2), $\phi :\to x = \phi :\to x + \delta = \phi :\to x + \mathsf{D} :\to x = \phi \lor \mathsf{D} :\to x$. \Box

We end this section by using the functions defined in Example 2.1 in a process algebraic setting. **Example 3.2.** Recall the data type ω_D , and consider the following counter-like process with parameter in ω_D :

$$C(x) = r(up) \cdot C(S(x)) + r(down) \cdot C(pprd(x))$$

+ r(set_zero) \cdot C(0)
+ x \equiv 0 :\rightarrow r(is_zero) \cdot C(x).

Here, action r(up) models "receive command to increase", action r(down) represents "receive command to decrease", action $r(set_zero)$ can be used to reset the counter to C(0), and action $r(is_zero)$ indicates that the counter value equals 0. We find:

$$C(\mathsf{D}) = r(up) \cdot C(\mathsf{D}) + r(down) \cdot C(\mathsf{D})$$

+ $r(set_zero) \cdot C(0),$
$$C(0) = r(up) \cdot C(S(0)) + r(down) \cdot C(\mathsf{D})$$

+ $r(set_zero) \cdot C(0) + r(is_zero) \cdot C(0),$
$$C(S^{k+1}(0)) = r(up) \cdot C(S^{k+2}(0))$$

+ $r(down) \cdot C(S^{k}(0))$
+ $r(set_zero) \cdot C(0).$

Clearly, this modeling is preferred to the case in which *pprd* is replaced by $prd: \omega \to \omega$ with prd(0) = 0 and prd(S(x)) = x, which mixes up the number of r(down) and r(up) actions in the case of C(0).

4. Operational semantics

In this section we provide $ACP_D(A_t, \gamma, \mathbb{P})$ with an operational semantics. Of course this semantics depends on interpretations of the propositions occurring in a process expression.

Assume a (non-empty) set \mathbb{P} of proposition symbols, and let *w* range over the *valuations* (interpretations) \mathcal{W} of \mathbb{P} in $\mathbb{T}_3^{\mathsf{D}}$. In the usual way we extend *w* to $\mathbb{K}_3(\mathbb{P})$:

$$w(c) \stackrel{\Delta}{=} c \quad \text{for } c \in \{\mathsf{T}, \mathsf{F}, \mathsf{D}\},$$

$$w(\neg \phi) \stackrel{\Delta}{=} \neg (w(\phi)),$$

$$w(\phi \diamondsuit \psi) \stackrel{\Delta}{=} w(\phi) \diamondsuit w(\psi) \quad \text{for } \diamondsuit \in \{\land, \lor\}.$$

It follows that if

$$\models w(\phi) = w(\psi)$$

for all $w \in \mathcal{W}$, then $\models \phi = \psi$, and thus $\vdash \phi = \psi$.

In Table 3 we give axioms and rules that define transitions

$$\xrightarrow{w,a} \subseteq \operatorname{ACP}_{\mathsf{D}}(A_t, \gamma, \mathbb{P}) \times \operatorname{ACP}_{\mathsf{D}}(A_t, \gamma, \mathbb{P})$$

and unary "tick-predicates" or "termination transitions"

$$\underline{\quad} \xrightarrow{w,a} \sqrt{\subseteq} \operatorname{ACP}_{\mathsf{D}}(A_t, \gamma, \mathbb{P})$$

for all $w \in W$ and $a \in A_t$. Transitions characterize under which interpretations a process expression defines the possibility to execute an atomic action, and what remains to be executed (if anything, otherwise $\sqrt{\text{symbolizes successful termination}}$). So, a process expression either resembles deadlock (δ), or defines outgoing transitions with labels taken from $W \times A_t$.

The axioms and rules in Table 3 yield a structured operational semantics (SOS) based on the work described by Groote and Vaandrager in [12]. In particular, this SOS satisfies the so-called *path-format* (see Baeten and Verhoef [9]), going with the following notion of bisimulation equivalence:

Definition 4.1. Let $B \subseteq ACP_D(A_t, \gamma, \mathbb{P}) \times ACP_D(A_t, \gamma, \mathbb{P})$. Then *B* is a *bisimulation* if for all *P*, *Q* with *PBQ* the following conditions hold for all transitions $_\stackrel{l}{\longrightarrow}_and_\stackrel{l}{\longrightarrow}\checkmark:$ • $\forall P' (P \stackrel{l}{\longrightarrow} P' \implies \exists Q'(Q \stackrel{l}{\longrightarrow} Q' \wedge P'BQ')),$ • $\forall Q' (Q \stackrel{l}{\longrightarrow} Q' \implies \exists P'(P \stackrel{l}{\longrightarrow} P' \wedge P'BQ')),$ • $P \stackrel{l}{\longrightarrow} \checkmark \iff Q \stackrel{l}{\longrightarrow} \checkmark,$ Two processes *P*, *Q* are *bisimilar*, notation

$$P \Leftrightarrow Q$$
,

if there exists a bisimulation B containing the pair (P, Q).

According to [9], bisimilarity is a *congruence* relation. It is not difficult to establish with induction on the size of terms that in the bisimulation model thus obtained all equations of Table 2 are true. Hence we conclude:

Lemma 4.2. The system $ACP_D(A_t, \gamma, \mathbb{P}) + \mathbb{K}_3(\mathbb{P})$ is sound with respect to bisimulation:

for all $P, Q \in ACP_{\mathsf{D}}(A_t, \gamma, \mathbb{P}),$ $ACP_{\mathsf{D}}(A_t, \gamma, \mathbb{P}) + \mathbb{K}_3(\mathbb{P}) \vdash P = Q \implies P \Leftrightarrow Q.$

Transition rules in path	h-format.	
$a \in A_t$	$a \xrightarrow{w,a} \checkmark$	
-, ∟	$ \begin{array}{c} x \xrightarrow{w,a} \checkmark \\ \overline{x \cdot y \xrightarrow{w,a} y} \\ x & \underbrace{y \xrightarrow{w,a} y} \end{array} $	$ \frac{x \xrightarrow{w,a} x'}{x \cdot y \xrightarrow{w,a} x'y} $ $ x \parallel y \xrightarrow{w,a} x' \parallel y $
+,	$ \begin{array}{c} x \xrightarrow{w,a} \\ \overline{x + y \xrightarrow{w,a}} \\ y + x \xrightarrow{w,a} \\ x \parallel y \xrightarrow{w,a} y \\ y \parallel x \xrightarrow{w,a} y \end{array} $	$x \xrightarrow{w,a} x'$ $x + y \xrightarrow{w,a} x'$ $y + x \xrightarrow{w,a} x'$ $x \parallel y \xrightarrow{w,a} x' \parallel y$ $y \parallel x \xrightarrow{w,a} y \parallel x'$
,	$\frac{x \xrightarrow{w,a} \sqrt{y} \xrightarrow{w,b} \sqrt{x}}{x \mid y \xrightarrow{w,c} \sqrt{x}} a \mid b = c$	$\frac{x \xrightarrow{w,a} \sqrt{y \xrightarrow{w,b} y'}}{x \mid y \xrightarrow{w,c} y'} a \mid b = c$ $x \mid y \xrightarrow{w,c} y'$ $x \mid y \xrightarrow{w,c} y'$
(Communication)	$\frac{x \xrightarrow{w,a} x' y \xrightarrow{w,b} \sqrt{x'}}{x \mid y \xrightarrow{w,c} x'} a \mid b = c$	$\frac{x \xrightarrow{w,a} x' y \xrightarrow{w,b} y'}{x \mid y \xrightarrow{w,c} x' \mid y'} a \mid b = c$ $x \mid y \xrightarrow{w,c} x' \mid y'$
∂_H	$\frac{x \xrightarrow{w,a} }{\partial_H(x) \xrightarrow{w,a} } \text{ if } a \notin H$	$\frac{x \xrightarrow{w,a} x'}{\partial_H(x) \xrightarrow{w,a} \partial_H(x')} \text{ if } a \notin H$
t _I	$\frac{x \xrightarrow{w,a} }{t_I(x) \xrightarrow{w,a} } \text{ if } a \notin I$	$\frac{x \xrightarrow{w,a} x'}{t_I(x) \xrightarrow{w,a} t_I(x')} \text{ if } a \notin I$
	$\frac{x \xrightarrow{w,a} }{t_I(x) \xrightarrow{w,t} } \text{ if } a \in I$	$\frac{x \xrightarrow{w,a} x'}{t_I(x) \xrightarrow{w,t} t_I(x')} \text{ if } a \in I$
:→	$\frac{x \xrightarrow{w,a} }{\phi :\to x \xrightarrow{w,a} } \text{ if } w(\phi) = T$	$\frac{x \xrightarrow{w,a} x'}{\phi :\to x \xrightarrow{w,a} x'} \text{ if } w(\phi) = T$

Table 3Transition rules in *path*-format.

5. Completeness

In this section we prove completeness of $ACP_D(A_t, \gamma, \mathbb{P}) + \mathbb{K}_3(\mathbb{P})$, i.e.,

$$P \Leftrightarrow Q \iff \operatorname{ACP}_{\mathsf{D}}(A_t, \gamma, \mathbb{P}) + \mathbb{K}_3(\mathbb{P}) \vdash P = Q.$$

Our proof is based on a representation of process expressions for which bisimilarity implies derivability in a straightforward way.

Definition 5.1. A process expression $P \in ACP_D(A_t, \gamma, \mathbb{P})$ is a *basic term* if

$$P \equiv \sum_{i \in I} \phi_i :\to Q_i$$

where \equiv is used for syntactic equivalence, *I* is a finite, non-empty index set, $\phi_i \in \mathbb{K}_3(\mathbb{P})$, and $Q_i \in \{\delta, a, aR \mid a \in A_t, R \text{ a basic term}\}$.

Lemma 5.2. All process expressions in $ACP_D(A_t, \gamma, \mathbb{P})$ can be proved equal to a basic term.

Proof. Standard induction on term complexity. \Box

For $a \in A_t$ and $\phi \in \mathbb{K}_3(\mathbb{P})$, the *height* of a basic term is defined by

$$h(\delta) = 0,$$

$$h(a) = 1,$$

$$h(\phi :\to x) = h(x),$$

$$h(x + y) = \max(h(x), h(y)),$$

$$h(a \cdot x) = 1 + h(x).$$

Lemma 5.3. If *P* is a basic term, there is a basic term P' with $\vdash P = P'$, $h(P') \leq h(P)$, and P' has either the form

$$\phi :\to \delta, \tag{1}$$

or the form

$$\sum_{i \in I} \psi_i :\to Q_i \tag{2}$$

with

- (i) for all $i, j \in I$, $Q_i \neq \delta$, and $Q_i, Q_j \in A_t \Rightarrow Q_i \neq Q_j$ if $i \neq j$,
- (ii) for each $i \in I$ there is $w \in W$ such that $w(\psi_i) = T$,
- (iii) for no $i \in I$ and valuation $w, w(\psi_i) = F$.

Proof. Assume

$$P \equiv \sum_{i=1}^{n} \phi_i :\to Q_i$$

for some $n \ge 1$. By Lemma 3.1(1) we may assume that $Q_i \ne \delta$ for all $i \in \{1, ..., n\}$. With (GC1) we easily obtain that each single action occurs at most once. This proves property (i) of the form (2).

Next we consider all summands from *P* for which no valuation makes the condition true. For each such summand $\phi_i :\rightarrow Q_i$ it holds that $\models \phi_i = \phi_i \land D$, and thus $\vdash \phi_i = \phi_i \land D$, by which

$$\vdash \phi_i :\to Q_i = \phi_i \land \mathsf{D} :\to Q_i$$
$$= \phi_i :\to (\mathsf{D} :\to Q_i)$$
$$= \phi_i :\to \delta$$
$$= \delta.$$

In case all summands can be proved equal to $\phi_j :\rightarrow \delta$ in this way, we are done. In the other case we obtain

$$\vdash P = \sum_{i=1}^k \phi_i :\to Q_i$$

with $k \leq n$ (and possibly some rearrangement of indices), and for each $i \in \{1, ..., k\}$ there is a valuation w with $w(\phi_i) = \mathsf{T}$. This proves property (ii), and preserves property (i) for P. Finally we define

$$\psi_i \equiv \phi_i \lor \mathsf{D}$$

$$P' \equiv \sum_{i=1}^k \psi_i :\to Q_i.$$

By Lemma 3.1(2) we obtain

$$\vdash P = P'$$
.

By definition of ψ_i it follows that $w(\psi_i) \neq \mathsf{F}$ for all w, i, which proves property (iii) for P'. (Properties (i) and (ii) are preserved for P'.) \Box

With these two lemma's we can prove completeness:

Theorem 5.4. *The system* ACP_D(A_t , γ , \mathbb{P}) + $\mathbb{K}_3(\mathbb{P})$ *is complete with respect to bisimulation.*

Proof. Let $P_1 \Leftrightarrow P_2$. By soundness, we may assume that both P_1 and P_2 satisfy the representation format

defined in Lemma 5.3. We proceed by induction on $h = \max(h(P_1), h(P_2))$.

Case h = 0. By Lemma 3.1(1), $\vdash P_n = \delta$ for $n = 1, 2, \text{ so } \vdash P_1 = P_2$.

Case h > 0. Let $P_n \equiv \sum_{i \in I_n} \psi_{n,i} :\rightarrow Q_{n,i}$ for n = 1, 2, so the P_n satisfy form (2) given in Lemma 5.3. Furthermore, we may assume that for all $i \in I_n$, $Q_{n,i} \notin Q_{n,j}$ for $j \in I_n \setminus \{i\}$. For the case $Q_{n,i} \equiv aR_{n,i}$ and $Q_{n,j} \equiv aR_{n,j}$ this follows by induction: $R_{n,i} \Leftrightarrow R_{n,j}$ implies $\vdash R_{n,i} = R_{n,j}$, so $\vdash aR_{n,i} = aR_{n,j}$, and thus (GC1) can be applied.

Now each summand of P_1 can be proved equal to one in P_2 , and by Lemma 5.3, each such summand yields a transition for a certain $w \in W$.

• Assume that $P_1 \xrightarrow{w,a} \sqrt{f}$ for some w, a. Thus $w(\psi_{1,i}) = T$ for some unique $i \in I_1$. By $P_1 \Leftrightarrow P_2$, there is a unique $j \in I_2$ for which $P_2 \xrightarrow{w,a} \sqrt{f}$ and $\models \psi_{1,i} = \psi_{2,j}$ (the latter derivability follows from Lemma 5.3 and the non-bisimilarity of different summands). Thus

 $\vdash \psi_{1,i} :\to a = \psi_{2,i} :\to a.$

• Assume that $P_1 \xrightarrow{w,a} R_{1,i}$ for some w, a and unique $i \in I_1$. Thus $w(\psi_{1,i}) = \mathsf{T}$. By $P_1 \Leftrightarrow P_2$, there must be some unique $j \in I_2$ for which $P_2 \xrightarrow{w,a} R_{2,j}$ and $R_{1,i} \Leftrightarrow R_{2,j}$, and for which $\models \psi_{1,i} = \psi_{2,j}$ follows from Lemma 5.3. By induction we find $\vdash R_{1,i} = R_{2,j}$, and therefore $\vdash aR_{1,i} = aR_{2,j}$ and hence

 $\vdash \psi_{1,i} :\to a R_{1,i} = \psi_{2,j} :\to a R_{2,j}.$

By the derivabilities above and symmetry, $\vdash P_1 = P_2$ quickly follows. \Box

6. Conclusion

The extension of process algebra with guarded command to a setting with Kleene's three-valued logic seems a modest one, and can be characterized as giving up the principle of the excluded middle, and hence giving up the identity

$$x = \phi :\to x + \neg \phi :\to x,$$

but otherwise no surprising identities arise: D and F often play the same role in guarded commands. This matches with the intuition that a process like

 $(\mathsf{D}:\to a) \parallel bc$

equals $bc\delta$. The deadlock, caused by a divergence, is postponed until all alternative behaviour has been executed.

We have argued that divergence arises from considerations about partial predicates (cf. [15]), and can be involved in process algebra by $D :\rightarrow x = \delta$. Of course, in the case that the *process* of evaluation is prominent in the algorithm represented as a process expression, evaluation rather should be modeled as a process (which possibly diverges) than as a condition.

References

- K.R. Apt, Ten years of Hoare's logic, a survey, Part I, ACM Trans. Programming Languages Systems 3 (4) (1981) 431– 483.
- [2] J.C.M. Baeten, J.A. Bergstra, Process algebra with signals and conditions, in: M. Broy (Ed.), Programming and Mathematical Method, Proceedings Summer School Marktoberdorf, 1990 NATO ASI Series F, Springer, Berlin, 1992, pp. 273–323.
- [3] J.A. Bergstra, I. Bethke, P.H. Rodenburg, A propositional logic with 4 values: true, false, divergent and meaningless, J. Appl. Non-Classical Logics 5 (1995) 199–217.
- [4] H. Barringer, J.H. Cheng, C.B. Jones, A logic covering undefinedness in program proofs, Acta Inform. 21 (1984) 251– 269.
- [5] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of communicating sequential processes, J. ACM 31 (3) (1984) 560–599.
- [6] J.A. Bergstra, J.W. Klop, The algebra of recursively defined processes and the algebra of regular processes, in: A. Ponse, C. Verhoef, S.F.M. van Vlijmen (Eds.), Algebra of Communicating Processes, Utrecht 1994, Workshops in Computing, Springer, Berlin, 1995, pp. 1–25. An extended abstract appeared in: J. Paredaens (Ed.), Proceedings 11th ICALP, Antwerp, Lecture Notes in Computer Science, Vol. 172, Springer, Berlin, 1984, pp. 82–95.
- [7] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Inform. and Comput. 60 (1–3) (1984) 109– 137.
- [8] J.A. Bergstra, M.P.A. Sellink, Sequential data algebra primitives, Technical Report P9602b, Programming Research Group, University of Amsterdam, 1996.
- [9] J.C.M. Baeten, C. Verhoef, A congruence theorem for structured operational semantics with predicates, in: E. Best (Ed.), Proceedings CONCUR 93, Hildesheim, Germany, Lecture Notes in Computer Science, Vol. 715, Springer, Berlin, 1993, pp. 477–492.
- [10] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer Science 18, Cambridge University Press, 1990.
- [11] E.W. Dijkstra, A Discipline of Programming, Prentice Hall International, Englewood Cliffs, NJ, 1976.

- [12] J.F. Groote, F.W. Vaandrager, Structured operational semantics and bisimulation as a congruence, Inform. and Comput. 100 (2) (1992) 202–260.
- [13] C.B. Jones, C.A. Middelburg, A typed logic of partial functions reconstructed classically, Acta Inform. 31 (5) (1994) 399–430.
- [14] J. Kalman, Lattices with involution, Trans. Amer. Math. Soc. 87 (1958) 485–491.
- [15] S.C. Kleene, On a notation for ordinal numbers, J. Symbolic Logic 3 (1938) 150–155.