
Information Processing Letters 67 (1998) 95–103

Kleene’s three-valued logic and process algebra

Jan A. Bergstraa,b,1, Alban Ponsea,∗
a University of Amsterdam, Programming Research Group, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

b Utrecht University, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

Received 23 December 1997
Communicated by H. Ganzinger

Abstract

We propose a combination of Kleene’s three-valued logic and ACP process algebra via theguarded commandconstruct. We
present an operational semantics in SOS-style, and a completeness result. 1998 Elsevier Science B.V. All rights reserved.

Keywords:Process algebra; Three-valued logic; Guarded command; Design of algorithms; Concurrency; Formal languages

1. Introduction

In considering algorithms or programs in an oper-
ational manner, there is ample motivation to include
a third truth value next toT (true) andF (false). For
some illustrative references, see, e.g., [4,13]. Evalua-
tion of the condition in a conditional construct, such
asφ in

if φ then P elseP ,

for some programP may turn out divergent, or be
distinguished as meaningless (e.g., a type clash, or
division by zero). In such a case one certainly does not
want to considerP and if φ then P elseP as equal.
Typically, the principle of the excluded middle—
tertium non datur—is not anymore acceptable. Of
course,if φ then P elseP and if ¬φ then P elseP
should be considered the same.

In this paper we view process expressions with con-
ditions as a vehicle to describe concurrent algorithms,
and consider the question how to deal with a third

∗ Corresponding author. Email: alban@wins.uva.nl.
1 Email: janb@wins.uva.nl.

truth valueD, expressingdivergence. This value is in-
spired by Kleene [15], in which it is calledundefined,
and is used to reason about partial recursive predicates
being either undefined, true, or false. We rather use
‘divergence’ instead of ‘undefined’, as for example a
type clash in a program is a kind of undefinedness
that we want to distinguish from divergence. Naturally,
¬D = D, for divergence in the evaluation of a condi-
tion also implies divergence of its negation (cf.φ in if
φ then P elseP andif ¬φ then P elseP).

We shortly recall the combination of process alge-
bra and logic via theguarded command, an operation
which stems from [11], and was introduced in process
algebra with two-valued logic in [2] with the following
typical laws whereφ :→ _ is the guarded command
resemblingif φ then _ :

T :→ x = x,
F :→ x = δ,
φ :→ x +ψ :→ x = φ ∨ψ :→ x.

Here + denotes ‘choice’, andδ denotes ‘inaction/
deadlock’. The constantδ is well known in ACP based

0020-0190/98/$19.00 1998 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(98)00083-0

96 J.A. Bergstra, A. Ponse / Information Processing Letters 67 (1998) 95–103

approaches [6,7,10], and is axiomatized by

x + δ = x “inaction is not considered an alternative,
δ · x = δ . . . and is perpetual”.

Here · represents “sequential composition”. We in-
volve the constantD with the axiom

D :→ x = δ.
This preserves the three laws mentioned above in the
present three-valued setting. Roughly, the idea is that
if evaluation of a condition diverges, there is no point
in considering it in the presence of an alternative,
whereas it implies deadlock in case there are no
alternatives. Now consider the derivations

x = x + δ
= T :→ x +D :→ x

= T∨ D :→ x,

δ = δ+ δ
= F :→ x +D :→ x

= F∨D :→ x.

Clearly, the interpretationD :→ x = δ leads to the
logical consequence

T∨D= T,

and leaves only two options for the definition ofF ∨
D, namely:F ∨ D ∈ {F,D}. The only reasonable one
seemsF ∨ D = D. 2 So we end up with¬, ∨ and its
dual∧ as defined by the following truth tables:

x ¬x
T F

F T

D D

∨ T F D

T T T T

F T F D

D T D D

∧ T F D

T T F D

F F F F

D D F D

This precisely entails Kleene’s three-valued logic as
defined in [15], which we further callK3. (Notice that
K3 is not functionally complete: one cannot definef
with f (D)= F andf (v)= T for v ∈ {T,F}.)

2 By duality, the other option impliesT ∧ D = T, which indeed
seems a rather implausible interpretation of∧.

Structure of the paper. In the next section we shortly
discussK3. In Section 3 we combine this extension
with ACP. In the next two sections we define an
operational semantics and bisimulation equivalence,
and we prove a completeness result.

2. Kleene’s three-valued logic with propositions

Consider Kleene’s three-valued logicK3 as intro-
duced in the previous section (cf. [15,3]). An equa-
tional specification ofK3 follows from [14], and is
given in Table 1. As usual,∧ and∨ are commutative
and associative operations. In case we use proposition
symbols from setP, we shall writeK3(P), and for con-
cise notation we shall identifyK3 andK3(∅).

Let TD
3 = {T,F,D}. In the following we describe a

prototypical, generic occurrence ofD, starting from
considerations that also apply to a two-valued setting.
Consider the natural numbers

ω= {0, S(0), S(S(0)), . . .},
and write S0(x) = x and Sk+1(x) = S(Sk(x)). Let
f :ω → TD

3 be some arbitrary function. We define
infinitary f -disjunction, notation

∨
f , by∨

f = f (0)∨
∨
(f ◦ S).

The recursive definition of
∨
f implies computation

of f (0), f (S(0)), f (S2(0)), . . . until f (n) = T for
some valuen. In the particular case that for alln ∈ ω,
f (n)= F, it makes sense to define

∨
f = D. We apply

this idea in the following example.

Example 2.1. We define equality≡: ω× ω→ TD
3 as

a binary infix function by

0≡ 0= T,

0≡ S(x)= F,

S(x)≡ 0= F,

S(x)≡ S(y)= x ≡ y.
Next, we define thepartial predecessorfunction
pprd:ω→ ω using auxiliary functiong:ω×ω→ ω

pprd(x)= g(x,0),

g(x, y)=
{
y if S(y)≡ x,

g(x,S(y)) otherwise.

J.A. Bergstra, A. Ponse / Information Processing Letters 67 (1998) 95–103 97

Table 1
Axiomatization ofK3 with conjunction, disjunction, and implication.

(K1) ¬T = F

(K2) ¬D = D

(K3) ¬¬x = x

(K4) ¬(x ∧ y) = ¬x ∨¬y
(K5) x→ y = ¬x ∨ y

(K6) x ∧ (y ∧ z) = (x ∧ y)∧ z
(K7) T∧ x = x

(K8) x ∨ (x ∧ y) = x

(K9) x ∧ y = y ∧ x
(K10) x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z)

One easily sees that

pprd(Sk+1(x))≡ Sk(x).
Now consider the case ofpprd(0). To model its
computation, we define an auxiliary predicateAux as
follows:

Aux(x, y, z)⇔ g(x, y)≡ z.
The recursive definition ofAux follows easily from
that ofg, and falls withinK3(P):

Aux(x, y, z)= (S(y)≡ x ∧ y ≡ z)
∨
(¬(S(y)≡ x)∧Aux(x,S(y), z)).

In particular, Aux(0,0, z) models computation of
pprd(0). We have

Aux(0,0, z)= (S(0)≡ 0∧ 0≡ z)
∨
(¬(S(0)≡ 0)∧Aux(0, S(0), z)).

By T∧ x = x andS(x)≡ 0= F, it follows that

Aux(0,0, z) = (S(0)≡ 0∧ 0≡ z)
∨
(S2(0)≡ 0∧ S(0)≡ z)
∨
(S3(0)≡ 0∧ S2(0)≡ z)
∨
. . .

so, if f = λx.(S(x)≡ 0∧ x ≡ z), we find

Aux(0,0, z)=
∨
f.

Furthermore, we have for eachn that f (n) = F by
axiomS(x)≡ 0= F. Hence

Aux(0,0, z)= D,

and thusg(0,0)≡ z= D. The assumption that

pprd(0)= g(0,0)

can be computed to some valuez leads to valueD
of the predicate modeling its computation, irrespective
of z. This motivates the following definitions:

pprd(0)= D,

ωD = ω ∪ {D},
so pprd:ω→ ωD. In order to integrate this example
with process algebra, we extend the domains of all
defined functions toωD by taking

S(D)= D,

D≡ x = x ≡ D= D,

pprd(D)= D.

We continue with this example after having combined
K3(P) with process algebra.

3. Process algebra withK3(P)

In the left column of Table 2 we present a slight
modification of ACP(A,γ), the Algebra of Communi-
cating Processes [6,7,10]. HereA is a set of atomic ac-
tions, andγ a communication function that is commu-
tative and associative. We takeγ totalonA×A→Aδ,
whereAδ = A ∪ {δ}, and the communication merge|
commutative (CMC) (by which (CM6) and (CM9), the
symmetric variants of (CM5) and (CM8) [10], become
derivable). In the right column additional axioms on
pre-abstraction (tI , i.e., renaming of all actions inI to
action t), and guarded command are listed, whereφ
is taken fromK3(P). These axioms are parameterized
by action setAt = A ∪ {t}. We mostly suppress the·

98 J.A. Bergstra, A. Ponse / Information Processing Letters 67 (1998) 95–103

Table 2
The axiom system ACPD(At , γ,P), wherea,b ∈Atδ ,H,I ⊆At .

(A1) x + (y + z) = (x + y)+ z
(A2) x + y = y + x
(A3) x + x = x

(A4) (x + y)z = xz+ yz
(A5) (xy)z = x(yz)

(A6) x + δ = x

(A7) δx = δ

(CF1) a | b = γ (a, b) if a,b ∈At
(CF2) a | δ = δ

(CM1) x ‖ y = (x ‖ y + y ‖ x)+ x | y
(CM2) a ‖ x = ax

(CM3) ax ‖ y = a(x ‖ y)
(CM4) (x + y)‖ z = x ‖ z+ y ‖ z
(CMC) x | y = y | x
(CM5) ax | b = (a | b)x
(CM7) ax | by = (a | b)(x ‖ y)
(CM8) (x + y) | z = x | z+ y | z

(D1) ∂H (a) = a if a /∈H
(D2) ∂H (a) = δ if a ∈H
(D3) ∂H (x + y) = ∂H (x)+ ∂H (y)
(D4) ∂H (xy) = ∂H (x)∂H (y)

(GT) T :→ x = x

(GF) F :→ x = δ

(GD) D :→ x = δ

(GC1) φ :→ x +ψ :→ x = φ ∨ψ :→ x

(GC2) φ :→ x + φ :→ y = φ :→ (x + y)
(GC3) (φ :→ x)y = φ :→ xy

(GC4) φ :→ (ψ :→ x) = φ ∧ψ :→ x

(GC5) φ :→ x ‖ y = φ :→ (x ‖ y)
(GCD) φ :→ x |ψ :→ y = φ ∧ψ :→ (x | y)

(DGC) ∂H (φ :→ x) = φ :→ ∂H (x)

(TGC) tI (φ :→ x) = φ :→ tI (x)

(T1) tI (a) = a if a /∈ I
(T2) tI (a) = t if a ∈ I
(T3) tI (x + y) = tI (x)+ tI (y)
(T4) tI (xy) = tI (x)tI (y)

in process expressions, and brackets according to the
following rules: · binds strongest,:→ binds stronger
than‖, ‖ , |, all of which in turn bind stronger than+.
We use

ACPD(At , γ,P)
both to refer to this axiom system and the signature
thus defined. We write

ACPD(At , γ,P)+K3(P) ` x = y,
or shortly` x = y, if x = y follows from the axioms
of ACPD(At, γ,P) andK3(P). The following deriv-
abilities turn out to be useful:

Lemma 3.1.
(1) ACPD(At , γ,P)+K3(P) ` φ :→ δ = δ,
(2) ACPD(At , γ,P)+ K3(P) ` φ :→ x = φ ∨ D :→

x.

Proof. As for (1), φ :→ δ = φ :→ δ + T :→ δ =
φ ∨ T :→ δ = T :→ δ = δ.

As for (2),φ :→ x = φ :→ x+ δ = φ :→ x+D :→
x = φ ∨D :→ x. 2

We end this section by using the functions defined
in Example 2.1 in a process algebraic setting.

J.A. Bergstra, A. Ponse / Information Processing Letters 67 (1998) 95–103 99

Example 3.2. Recall the data typeωD, and consider
the following counter-like process with parameter in
ωD:

C(x)= r(up) ·C(S(x))+ r(down) ·C(pprd(x))

+ r(set−zero) ·C(0)
+ x ≡ 0 :→ r(is−zero) ·C(x).

Here, actionr(up) models “receive command to in-
crease”, actionr(down) represents “receive command
to decrease”, actionr(set−zero) can be used to reset
the counter toC(0), and actionr(is−zero) indicates
that the counter value equals 0. We find:

C(D)= r(up) ·C(D)+ r(down) ·C(D)
+ r(set−zero) ·C(0),

C(0)= r(up) ·C(S(0))+ r(down) ·C(D)
+ r(set−zero) ·C(0)+ r(is−zero) ·C(0),

C(Sk+1(0))= r(up) ·C(Sk+2(0))

+ r(down) ·C(Sk(0))
+ r(set−zero) ·C(0).

Clearly, this modeling is preferred to the case in which
pprd is replaced byprd :ω → ω with prd(0) = 0
and prd(S(x)) = x, which mixes up the number of
r(down) andr(up) actions in the case ofC(0).

4. Operational semantics

In this section we provide ACPD(At , γ,P) with an
operational semantics. Of course this semantics de-
pends on interpretations of the propositions occurring
in a process expression.

Assume a (non-empty) setP of proposition sym-
bols, and letw range over thevaluations(interpreta-
tions)W of P in TD

3 . In the usual way we extendw to
K3(P):

w(c)
4= c for c ∈ {T,F,D},

w(¬φ) 4=¬(w(φ)),
w(φ ♦ψ) 4=w(φ)♦w(ψ) for ♦ ∈ {∧,∨}.
It follows that if

|=w(φ)=w(ψ)
for all w ∈W , then|= φ =ψ , and thus̀ φ =ψ .

In Table 3 we give axioms and rules that define
transitions

_ w,a−−−→ _⊆ ACPD(At , γ,P)×ACPD(At , γ,P)

and unary “tick-predicates” or “termination transi-
tions”

_ w,a−−−→√⊆ ACPD(At , γ,P)

for all w ∈W anda ∈At . Transitions characterize un-
der which interpretations a process expression defines
the possibility to execute an atomic action, and what
remains to be executed (if anything, otherwise

√
sym-

bolizes successful termination). So, a process expres-
sion either resembles deadlock (δ), or defines outgoing
transitions with labels taken fromW ×At .

The axioms and rules in Table 3 yield a structured
operational semantics (SOS) based on the work de-
scribed by Groote and Vaandrager in [12]. In partic-
ular, this SOS satisfies the so-calledpath-format(see
Baeten and Verhoef [9]), going with the following no-
tion of bisimulation equivalence:

Definition 4.1. LetB ⊆ ACPD(At , γ,P)×ACPD(At ,

γ,P). ThenB is a bisimulationif for all P, Q with
PBQ the following conditions hold for all transitions

_ l−→ _ and _ l−→√:

• ∀P ′ (P l−→ P ′ H⇒ ∃Q′(Q l−→Q′ ∧ P ′BQ′)),
• ∀Q′ (Q l−→Q′ H⇒ ∃P ′(P l−→ P ′ ∧ P ′BQ′)),
• P l−→√ ⇐⇒ Q

l−→√,
Two processesP, Q arebisimilar, notation

P ↔Q,

if there exists a bisimulationB containing the pair
(P,Q).

According to [9], bisimilarity is acongruencerela-
tion. It is not difficult to establish with induction on
the size of terms that in the bisimulation model thus
obtained all equations of Table 2 are true. Hence we
conclude:

Lemma 4.2. The systemACPD(At , γ,P)+ K3(P) is
sound with respect to bisimulation:

for all P,Q ∈ACPD(At , γ,P),
ACPD(At , γ,P)+K3(P) ` P =Q H⇒ P ↔Q.

100 J.A. Bergstra, A. Ponse / Information Processing Letters 67 (1998) 95–103

Table 3
Transition rules inpath-format.

a ∈At a
w,a−−−→√

·, ‖
x

w,a−−−→√

x · y w,a−−−→ y

x ‖ y w,a−−−→ y

x
w,a−−−→ x ′

x · y w,a−−−→ x ′y

x ‖ y w,a−−−→ x ′ ‖ y

+,‖
x

w,a−−−→√

x + y w,a−−−→√

y + x w,a−−−→√

x ‖ y w,a−−−→ y

y ‖ x w,a−−−→ y

x
w,a−−−→ x ′

x + y w,a−−−→ x ′

y + x w,a−−−→ x ′

x ‖ y w,a−−−→ x ′ ‖ y
y ‖ x w,a−−−→ y ‖ x ′

|,‖
x

w,a−−−→√ y
w,b−−−→√

x | y w,c−−→√

x ‖ y w,c−−→√
a | b= c

x
w,a−−−→√ y

w,b−−−→ y ′

x | y w,c−−→ y ′

x ‖ y w,c−−→ y ′

a | b= c

(Communication)

x
w,a−−−→ x ′ y w,b−−−→√

x | y w,c−−→ x ′

x ‖ y w,c−−→ x ′

a | b= c
x

w,a−−−→ x ′ y w,b−−−→ y ′

x | y w,c−−→ x ′ ‖ y ′
x ‖ y w,c−−→ x ′ ‖ y ′

a | b= c

∂H

x
w,a−−−→√

∂H (x)
w,a−−−→√

if a /∈H
x

w,a−−−→ x ′

∂H (x)
w,a−−−→ ∂H (x

′)
if a /∈H

tI

x
w,a−−−→√

tI (x)
w,a−−−→√

if a /∈ I
x

w,a−−−→ x ′

tI (x)
w,a−−−→ tI (x

′)
if a /∈ I

x
w,a−−−→√

tI (x)
w,t−−→√

if a ∈ I
x

w,a−−−→ x ′

tI (x)
w,t−−→ tI (x

′)
if a ∈ I

:→
x

w,a−−−→√

φ :→ x
w,a−−−→√

if w(φ)= T
x

w,a−−−→ x ′

φ :→ x
w,a−−−→ x ′

if w(φ)= T

J.A. Bergstra, A. Ponse / Information Processing Letters 67 (1998) 95–103 101

5. Completeness

In this section we prove completeness of ACPD(At ,

γ,P)+K3(P), i.e.,

P ↔Q ⇐⇒ ACPD(At , γ,P)+K3(P) ` P =Q.
Our proof is based on a representation of process
expressions for which bisimilarity implies derivability
in a straightforward way.

Definition 5.1. A process expressionP ∈ ACPD(At ,

γ,P) is abasic termif

P ≡
∑
i∈I

φi :→Qi

where≡ is used for syntactic equivalence,I is a finite,
non-empty index set,φi ∈K3(P), andQi ∈ {δ, a, aR |
a ∈At, R a basic term}.

Lemma 5.2. All process expressions inACPD(At , γ,

P) can be proved equal to a basic term.

Proof. Standard induction on term complexity.2

For a ∈ At and φ ∈ K3(P), the height of a basic
term is defined by

h(δ)= 0,

h(a)= 1,

h(φ :→ x)= h(x),
h(x + y)=max(h(x),h(y)),

h(a · x)= 1+ h(x).

Lemma 5.3. If P is a basic term, there is a basic term
P ′ with ` P = P ′, h(P ′) 6 h(P), andP ′ has either
the form

φ :→ δ, (1)

or the form∑
i∈I

ψi :→Qi (2)

with
(i) for all i, j ∈ I, Qi 6≡ δ, and Qi,Qj ∈ At ⇒

Qi 6≡Qj if i 6= j ,
(ii) for eachi ∈ I there isw ∈W such thatw(ψi)=

T,
(iii) for no i ∈ I and valuationw,w(ψi)= F.

Proof. Assume

P ≡
n∑
i=1

φi :→Qi

for somen> 1. By Lemma 3.1(1) we may assume that
Qi 6≡ δ for all i ∈ {1, . . . , n}. With (GC1) we easily
obtain that each single action occurs at most once. This
proves property (i) of the form (2).

Next we consider all summands fromP for which
no valuation makes the condition true. For each such
summandφi :→Qi it holds that|= φi = φi ∧ D, and
thus` φi = φi ∧D, by which

` φi :→Qi = φi ∧D :→Qi

= φi :→ (D :→Qi)

= φi :→ δ

= δ.
In case all summands can be proved equal toφj :→ δ

in this way, we are done. In the other case we obtain

` P =
k∑
i=1

φi :→Qi

with k 6 n (and possibly some rearrangement of
indices), and for eachi ∈ {1, . . . , k} there is a valuation
w with w(φi) = T. This proves property (ii), and
preserves property (i) forP . Finally we define

ψi ≡ φi ∨D

P ′ ≡
k∑
i=1

ψi :→Qi.

By Lemma 3.1(2) we obtain

` P = P ′.
By definition ofψi it follows thatw(ψi) 6= F for all
w, i, which proves property (iii) forP ′. (Properties (i)
and (ii) are preserved forP ′.) 2

With these two lemma’s we can prove complete-
ness:

Theorem 5.4. The systemACPD(At , γ,P)+K3(P) is
complete with respect to bisimulation.

Proof. Let P1↔ P2. By soundness, we may assume
that bothP1 andP2 satisfy the representation format

102 J.A. Bergstra, A. Ponse / Information Processing Letters 67 (1998) 95–103

defined in Lemma 5.3. We proceed by induction on
h=max(h(P1), h(P2)).

Caseh = 0. By Lemma 3.1(1),̀ Pn = δ for n =
1,2, so` P1= P2.

Caseh > 0. LetPn ≡∑i∈In ψn,i :→Qn,i for n =
1,2, so thePn satisfy form (2) given in Lemma 5.3.
Furthermore, we may assume that for alli ∈ In,
Qn,i ��↔ Qn,j for j ∈ In \ {i}. For the caseQn,i ≡
aRn,i andQn,j ≡ aRn,j this follows by induction:
Rn,i ↔ Rn,j implies ` Rn,i = Rn,j , so ` aRn,i =
aRn,j , and thus (GC1) can be applied.

Now each summand ofP1 can be proved equal to
one inP2, and by Lemma 5.3, each such summand
yields a transition for a certainw ∈W .
• Assume thatP1

w,a−−−→ √ for some w,a. Thus
w(ψ1,i) = T for some uniquei ∈ I1. By P1↔ P2,
there is a uniquej ∈ I2 for which P2

w,a−−−→√ and
|= ψ1,i = ψ2,j (the latter derivability follows from
Lemma 5.3 and the non-bisimilarity of different
summands). Thus

`ψ1,i :→ a =ψ2,j :→ a.

• Assume thatP1
w,a−−−→ R1,i for some w,a and

unique i ∈ I1. Thus w(ψ1,i) = T. By P1 ↔ P2,
there must be some uniquej ∈ I2 for which
P2

w,a−−−→ R2,j andR1,i ↔ R2,j , and for which|=
ψ1,i =ψ2,j follows from Lemma 5.3. By induction
we find ` R1,i = R2,j , and thereforè aR1,i =
aR2,j and hence

`ψ1,i :→ aR1,i =ψ2,j :→ aR2,j .

By the derivabilities above and symmetry,` P1 = P2
quickly follows. 2

6. Conclusion

The extension of process algebra with guarded
command to a setting with Kleene’s three-valued logic
seems a modest one, and can be characterized as
giving up the principle of the excluded middle, and
hence giving up the identity

x = φ :→ x +¬φ :→ x,

but otherwise no surprising identities arise:D and F
often play the same role in guarded commands. This
matches with the intuition that a process like

(D :→ a) ‖ bc

equalsbcδ. The deadlock, caused by a divergence,
is postponed until all alternative behaviour has been
executed.

We have argued that divergence arises from consid-
erations about partial predicates (cf. [15]), and can be
involved in process algebra byD :→ x = δ. Of course,
in the case that theprocessof evaluation is promi-
nent in the algorithm represented as a process expres-
sion, evaluation rather should be modeled as a process
(which possibly diverges) than as a condition.

References

[1] K.R. Apt, Ten years of Hoare’s logic, a survey, Part I, ACM
Trans. Programming Languages Systems 3 (4) (1981) 431–
483.

[2] J.C.M. Baeten, J.A. Bergstra, Process algebra with signals and
conditions, in: M. Broy (Ed.), Programming and Mathematical
Method, Proceedings Summer School Marktoberdorf, 1990
NATO ASI Series F, Springer, Berlin, 1992, pp. 273–323.

[3] J.A. Bergstra, I. Bethke, P.H. Rodenburg, A propositional logic
with 4 values: true, false, divergent and meaningless, J. Appl.
Non-Classical Logics 5 (1995) 199–217.

[4] H. Barringer, J.H. Cheng, C.B. Jones, A logic covering
undefinedness in program proofs, Acta Inform. 21 (1984) 251–
269.

[5] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe, A theory of
communicating sequential processes, J. ACM 31 (3) (1984)
560–599.

[6] J.A. Bergstra, J.W. Klop, The algebra of recursively defined
processes and the algebra of regular processes, in: A. Ponse,
C. Verhoef, S.F.M. van Vlijmen (Eds.), Algebra of Com-
municating Processes, Utrecht 1994, Workshops in Comput-
ing, Springer, Berlin, 1995, pp. 1–25. An extended abstract
appeared in: J. Paredaens (Ed.), Proceedings 11th ICALP,
Antwerp, Lecture Notes in Computer Science, Vol. 172,
Springer, Berlin, 1984, pp. 82–95.

[7] J.A. Bergstra, J.W. Klop, Process algebra for synchronous
communication, Inform. and Comput. 60 (1–3) (1984) 109–
137.

[8] J.A. Bergstra, M.P.A. Sellink, Sequential data algebra prim-
itives, Technical Report P9602b, Programming Research
Group, University of Amsterdam, 1996.

[9] J.C.M. Baeten, C. Verhoef, A congruence theorem for struc-
tured operational semantics with predicates, in: E. Best (Ed.),
Proceedings CONCUR 93, Hildesheim, Germany, Lecture
Notes in Computer Science, Vol. 715, Springer, Berlin, 1993,
pp. 477–492.

[10] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge
Tracts in Theoretical Computer Science 18, Cambridge Uni-
versity Press, 1990.

[11] E.W. Dijkstra, A Discipline of Programming, Prentice Hall
International, Englewood Cliffs, NJ, 1976.

J.A. Bergstra, A. Ponse / Information Processing Letters 67 (1998) 95–103 103

[12] J.F. Groote, F.W. Vaandrager, Structured operational semantics
and bisimulation as a congruence, Inform. and Comput. 100
(2) (1992) 202–260.

[13] C.B. Jones, C.A. Middelburg, A typed logic of partial functions
reconstructed classically, Acta Inform. 31 (5) (1994) 399–430.

[14] J. Kalman, Lattices with involution, Trans. Amer. Math. Soc.
87 (1958) 485–491.

[15] S.C. Kleene, On a notation for ordinal numbers, J. Symbolic
Logic 3 (1938) 150–155.

