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Abstract

We discern three non-classical truth values, and define a five-valued propositional logic. We combine this logic with process
algebra via conditional composition (i.e., if-then-else-). In particular, the choice operation (+) is regarded as a special case of
conditional composition. We present an operational semantics in SOS-style and some completeness results. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

AssumeP represents some program (or algorithm).
Then the initial behavior of theconditional program

if φ then P else P

depends on evaluation of the conditionφ: either it
yields an immediate error, or it starts with performing
P , or it diverges in evaluation ofφ. The following
three non-classical truth values forφ are sufficient to
accommodate these intuitions:

Meaningless, notationM. Typical examples are errors
that are detectable during execution such as a type-
clash or division by zero.

Choice or undetermined, notationC. This value rep-
resents ‘being either true or false’. An example is as
above:if φ then P else P represents the same
behavior asP .

* Corresponding author.
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Divergent or undefined, notationD. Typically, evalu-
ation of a partial predicate can diverge.

We describe a five-valued propositional logic that
incorporates these three non-classical truth values
next to true (notation T) and false (notation F).
Furthermore, we define a generalization of process
algebra that is based on conditional composition over
this logic.

This paper is a successor of [6], in which ACP with
five-valued conditions is introduced. In Section 5 we
discuss the main differences with [6].

2. Five-valued logic

The five truth values discerned above can be ar-
ranged in the partial ordering given in Fig. 1. Let
x � y stand for the least upper bound ofx andy. So,
T�F= F�T= C, andx�y ∈ {x, y} for all other pairs.
Furthermore, each truth value can be described with�
and thedeterministic truth valuesM,T,F andD.
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Fig. 1. Five ordered truth values.

We first consider a single, ternary operation on these
five truth values:conditional composition, notation
x � y 	 z (this notation stems from [10], modeling
if y then x else z). Conditional composition is
defined as follows:

x � M 	 y =M,

x � C 	 y = x � y,

x � T 	 y = x,

x � F 	 y = y,

x � D 	 y = D.

Notice thatx � C 	 y (as a binary operation) is idem-
potent, commutative, and associative. Furthermore, we
have the following convenient distributivity property:

Proposition 1. Conditional composition distributes
over �: let v abbreviate v1 � v2, then

x � y 	 z = (x1 � y 	 z) � (x2 � y 	 z)

= (x � y1 	 z) � (x � y2 	 z)

= (x � y 	 z1) � (x � y 	 z2).

As a consequence, conditional composition is mo-
notonic.

Next to conditional composition, we consider the
following logical operations (cf. [2,6]):negation, left-
sequential conjunction and symmetric (or strict par-
allel) conjunction. Negation on the newly added non-
classical values can be explained from the intuitions
provided earlier:¬M = M because the negation of an
immediate error is one as well. SinceC means “being
either true or false”, so does its negation, thus¬C= C.
Furthermore, asD represents divergence, so does¬D,
hence¬D = D. With ∧� we denote left-sequential

conjunction, i.e., McCarthy’s left to right conjunction
[12], adopting the asymmetric notation from [2]. First
the left argument is evaluated, and depending on the
result of this, possibly the right argument. This yields
x ∧� y = x for x ∈ {M,F,D}, andT ∧� x = x. The val-
ues ofC ∧� x are given below. Finally, symmetric con-
junction on the newly added truth values appears to be
captured by

x ∧ y = (x ∧� y) � (y ∧� x).

Left sequential disjunction, notation∨� , andsymmetric
disjunction (∨) are defined as expected:

x ∨� y =¬(¬x ∧� ¬y),

x ∨ y =¬(¬x ∧¬y).

The complete truth tables for¬, ∧� , and∧ are the
following:

M C T F D

¬ M C F T D

∧� M C T F D

M M M M M M

C M C C F F

T M C T F D

F F F F F F

D D D D D D

∧ M C T F D

M M M M M M

C M C C F F

T M C T F D

F M F F F F

D M F D F D

These truth tables were also presented in [6], and,
when omittingC, coincide with the definitions given
in [2]. Note that∧� and its dual∨� are idempotent and
associative.

In the following we establish the relation between
conditional composition and the operations just dis-
cussed.

Proposition 2. The operations ¬, ∧� and ∧ are
definable from conditional composition:

¬x = F � x 	 T,

x ∧� y = y � x 	 F,

x ∧ y = (x ∧� y) � C 	 (y ∧� x).

Furthermore,

x � y 	 z = z � ¬y 	 x,

¬(x � y 	 z) = ¬x � y 	 ¬z.
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Corollary 3. The operations ∨� and ∨ can be defined
by:

x ∨� y = T � x 	 y,

x ∨ y = (x ∨� y) � C 	 (y ∨� x).

Furthermore, ¬, ∧� ,∧, ∨� and ∨ distribute over �,
and all these operations are monotonic.

Conversely,x � C 	 y can be defined by(C∧ x)∨
(C∧ y)∨ (x ∧ y). This leads to the following result:

Proposition 4. Conditional composition x � y 	 z

can be defined from ¬, ∧� and ∧ by

x � y 	 z= E � C 	 F ,

where x � C 	 y is given above, and

E = (y ∨D) ∧� (x ∨� G),

F = (¬y ∨D) ∧� (z ∧� H),

G = (y ∧� x)∨ (¬y ∧� z),

H= (¬y ∨� x)∧ (y ∨� z).

We denote the resulting five-valued logic by

L5(¬, ∧� ,∧) or L5(_� _	 _),

or shortlyL5 whenever we do not care which opera-
tions are considered primitive.

Following McCarthy and Hayes [13], letf,g, . . . be
names forfluents, i.e., objects that in any state (i.e., at
each instance of time) may take a deterministic value,
thus a value in{M,T,F,D}. Let P4 be a set of fluents.
We write L5(P4) for the extension ofL5 with the
fluents inP4. In order to equate propositions inL5(P4)

we use substitution of fluents: forf,g ∈ P4,

[φ/f ]f �= φ, [φ/f ]g �= g,

[φ/f ]c �= c for c ∈ {M,C,T,F,D},
[φ/f ](ψ1 � ψ2 	 ψ3)

�=
[φ/f ]ψ1 � [φ/f ]ψ2 	 [φ/f ]ψ3 ,

and as a proof rule theexcluded fifth rule (cf. [5]):

[c/f ]φ = [c/f ]ψ for c ∈ {M,T,F,D}
φ =ψ

.

By Proposition 2 it follows that substitution distributes
over the other logical operations in the expected way.

Together with the identities generated by the truth
tables this yields a complete evaluation system for
equations overL5(P4). We writeL5(P4) |= φ = ψ or
shortly |= φ = ψ , if φ = ψ follows from the system
defined above and the truth tables forL5(P4).

3. A generalization of BPA with five-valued
conditions

Let A be a set of constantsa, b, c, . . . denoting
atomic actions (atoms), i.e., processes that are not
subject to further division, and that execute in finite
time. We consider a generalized version ofBPAδ,µ(A),
i.e., Basic Process Algebra (see, e.g., [3,1,8]) extended
with δ /∈ A (inaction or deadlock) and with µ /∈ A.
Themeaningless processµ represents the operational
contents ofM, and is introduced in [4,5]. We use
the notationGL5(P4)(BPAδ,µ(A)) for a generalization
of BPAδ,µ(A) in which alternative composition is a
special case of conditional composition overL5(P4)

(various other generalizations are conceivable). The
operations ofGL5(P4)(BPAδ,µ(A)) are:

Sequential composition: X · Y denotes the process
that performsX, and upon completion ofX starts
with Y .

Conditional composition: X +
φ
Y with φ ∈ L5(P4)

denotes the process that either performsX or Y ,
or representsδ or µ, depending on the value
of φ (which may depend on some valuation).
(Conditional compositionX +φ Y is often denoted
X � φ 	 Y , cf. [10].)

We mostly suppress the· in process expressions,
and brackets according to the rule that· binds strongest.
Accommodating to classical process algebra, we shall
often use theabbreviation+ for +C (modeling ‘alter-
native composition’ or ‘choice’), thusX + Y is short
for X+C Y .

In Table 1 we give the rule of equivalence (ROE)
and the axioms ofGL5(P4)(BPAδ,µ(A)).

Example 5. In GL5(P4)(BPAδ,µ(A)) one easily de-
rives

X+ δ =X,

X+X =X,

X+µ= µ.



44 J.A. Bergstra, A. Ponse / Information Processing Letters 80 (2001) 41–49

Table 1
Rule of equivalence and axioms ofGL5(P4)

(BPAδ,µ(A))

(ROE) L5(P4) |= φ =ψ ⇒ X+φ Y =X+ψ Y

(CM) X+M Y = µ (GA1) X+φ (Y +φ Z) = (X+φ Y )+φ Z

(CC) (X+
φ
X′)+C (Y +

φ
Y ′)= (GA2) X+

φ
Y = Y +¬φ

X

(X+C Y)+φ (X′ +C Y ′) (GA3) (X+φ Y )+ψ (X+χ Y ) = X+
(φ �ψ 	 χ)

Y

(CT) X+T Y =X (GA4) (X+φ Y )Z = XZ +φ YZ

(CD) X+D Y = δ (GA5) (XY)Z = X(YZ)

(Use axiom GA3 withφ = T, ψ = C, andχ = D,T,M,
respectively).

Furthermore, with|= T � φ 	 φ = φ and GA3 it
follows that

X+φ (X+φ Y )=X+φ Y.

Finally, Proposition 2 implies that

X+
(φ ∧� ψ)

Y = (X+
ψ
Y )+

φ
Y.

With δ, the conditional guard construct from [7]
(calledguarded command in that paper, and roughly
expressing anif_then_construct) can be defined as
a special case of conditional composition:

φ :→X
�=X+φ δ.

Example 6. With the axioms CC, GA2, andX+ δ =
X we find

X+φ Y = (φ :→X)+ (¬φ :→ Y ).

An intricate identity is(φ ∨ ψ) :→ X = φ :→ X +
ψ :→X. First we derive

X+
(φ ∨ψ)

δ = (X+
(φ ∨ψ)

δ)+ (X+F δ)

= X+
((φ ∨ψ) � C 	 F) δ.

In a similar way it follows that

X+
(φ �C 	ψ)

δ =X+
((φ �C 	ψ) �C 	 F) δ.

Because|= (φ ∨ ψ) � C 	 F = (φ � C 	 ψ) � C 	 F,
we can apply the rule of equivalence (ROE).

Closed terms overGL5(P4)(BPAδ,µ(A)) will be fur-
ther calledprocess terms. We provide an operational
semantics for process terms. Given a (non-empty) set
P4 of fluents, letw range overW , the valuations

Table 2
Rules for theµ(w,_) predicate

µ(w,µ) µ(w,X+φ Y ) if w(φ)=M

µ(w,X)


µ(w,X+φ Y ) if w(φ)= C,T,

µ(w,Y +φ X) if w(φ)= C,F,

µ(w,X · Y)




(interpretations) ofP4 in {M,T,F,D}. Valuations are
extended to propositions in the usual way. In Ta-
ble 2 we define for eachw ∈ W a unary predicate
meaningless, notationµ(w,_), over process terms in
GL5(P4)(BPAδ,µ(A)). This predicate defines whether a
process term represents the meaningless processµ un-
der valuationw.

The axioms and rules forµ(w,_) given in Table 2
are extended by those given in Table 3, which define
transitions _ w,a−−−→ _ as a binary relation on process
terms, and unary “tick-predicates” or “termination
transitions” _ w,a−−−→ √

, where w ranges overW
and a over A. Transitions characterize under which
interpretations a process term defines the possibility
to execute an atomic action, and what remains to
be executed (if anything, otherwise

√
symbolizes

successful termination). Note that if a process termP

has a transitionP w,a−−−→ · · ·, then¬µ(w,P ).
The axioms and rules in Tables 2 and 3 yield a

structured operational semantics (SOS) with negative
premises in the style of [9]. Moreover, they satisfy the
so calledpanth-format [15]. Using [9,15], it is easy to
establish that the meaningless instances and transitions
defined by these rules are uniquely determined, and go
with the following notion of bisimulation equivalence:
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Table 3
Transition rules inpanth-format

a ∈A a
w,a−−−→√

+φ

X
w,a−−−→√

, ¬µ(w,Y )


X+φ Y
w,a−−−→√

if w(φ)= C,

Y +φ X
w,a−−−→√

if w(φ)= C




X
w,a−−−→X′, ¬µ(w,Y )


X+φ Y

w,a−−−→X′ if w(φ)= C,

Y +φ X
w,a−−−→X′ if w(φ)= C




·, +φ

X
w,a−−−→√




X · Y w,a−−−→ Y,

X+φ Y
w,a−−−→√

if w(φ)= T,

Y +φ X
w,a−−−→√

if w(φ)= F




X
w,a−−−→X′



X · Y w,a−−−→X′ · Y,
X+φ Y

w,a−−−→X′ if w(φ)= T,

Y +φ X
w,a−−−→X′ if w(φ)= F




Definition 7. A binary relationB over process terms
is a bisimulation if for all P, Q with PBQ the
following conditions hold for allw ∈W anda ∈A:
• µ(w,P ) ⇔ µ(w,Q),
• P

w,a−−−→√ ⇔ Q
w,a−−−→√

,
• ∀P ′ (P w,a−−−→ P ′ ⇒ ∃Q′(Q w,a−−−→Q′ ∧P ′BQ′)),
• ∀Q′ (Q w,a−−−→Q′ ⇒ ∃P ′(P w,a−−−→ P ′ ∧P ′BQ′)).
Two processesP, Q arebisimilar, notationP ↔Q, if
there exists a bisimulation containing the pair(P,Q).

By the main result in [15] it follows that bisimilar-
ity is acongruence relation for all operations involved.
Note that conditional composition constructs are con-
sidered binary operations: for eachφ ∈ L5(P4) there
is an operation+φ .

We write G/↔ |= P = Q wheneverP ↔ Q ac-
cording to the notions just defined, and for�X =
X1, . . . ,Xn, G/↔ |= t ( �X) = t ′( �X) if for all �P =
P1, . . . ,Pn it holds thatG/↔|= t ( �P )= t ′( �P ). It is not
difficult to show that in the bisimulation model thus
obtained all equations of Table 1 are true. Hence we
conclude:

Lemma 8 (Soundness).If GL5(P4)(BPAδ,µ(A)) �
t ( �X)= t ′( �X), then G/↔|= t ( �X)= t ′( �X).

Finally, we provide a completeness result for
GL5(P4)(BPAδ,µ(A)). Our proof refers to the com-
pleteness result in [5], which is based on a represen-

tation of process terms for which bisimilarity implies
derivability in a straightforward way.

Definition 9. A process termP over
GL5(P4)(BPAδ,µ(A)) is ageneralized basic term if it is
of the form

P ::= δ | µ | a | aP | P +φ P,

wherea ∈A andφ ∈ L5(P4).

Lemma 10. Each process term over
GL5(P4)(BPAδ,µ(A)) is provably equal to a general-
ized basic term.

In the following we relate process terms over
GL5(P4)(BPAδ,µ(A)) with terms overBPAδ,µ(A) ex-
tended with conditional guard constructs, of which the
conditions are in

L4(P4)
�= L{M,T,F,D}(P4,¬, ∧� ,∧),

thus L5(P4) without C. The only operations of
BPAδ,µ(A) are sequential composition and the choice
operation+, i.e., the operation+C . In the follow-
ing, finite sumsP1 + P2 + · · · + Pn are abbreviated
by

∑n
i=1Pi .

Let the symbol≡ denote syntactic equivalence, and
let L⊆ L5(P4).

Definition 11. A process termP over
GL5(P4)(BPAδ,µ(A)) is called anL-basic term if P ≡



46 J.A. Bergstra, A. Ponse / Information Processing Letters 80 (2001) 41–49

∑
i∈I φi :→Qi, whereI is a finite, non-empty index

set,φi ∈ L, andQi ∈ {δ, a, aR | a ∈ A, R anL-basic
term}.

Lemma 12. Each process term over GL5(BPAδ,µ(A))

is provably equal to an L4(P4)-basic term.

Proof. By Lemma 10 it is sufficient to consider
generalized basic terms. Then, representation easily
follows for L5(P4)-basic terms by induction (where
axiom CC is needed, cf. footnotes 5, 6 in Section 5).
It remains to be shown that eachL5(P4)-basic term is
provably equal to one in whichC does not occur in
any conditional guard construct. AsC :→X =X, this
follows easily by induction on the complexity of the
guardφ in φ :→X. ✷
Theorem 13. The system GL5(P4)(BPAδ,µ(A)) is com-
plete with respect to bisimulation equivalence.

Proof. By Lemmas 12 and 8 it is sufficient to prove
that bisimilarity betweenL4(P4)-basic terms implies
their provable equality. A detailed (inductive) proof is
spelled out in [5], which is also sufficient as all axioms
of Basic Process Algebra with four-valued logic are
derivable fromGL5(P4)(BPAδ,µ(A)) (the less trivial
ones were derived in Examples 5 and 6).✷

4. A generalization of ACP with five-valued
conditions

We extendGL5(P4)(BPAδ,µ(A)) to a generalized
version of ACP(A, |) (Algebra of Communicating
Processes, see, e.g., [3,1,8]) by including encapsula-
tion and parametrized merge operationsφ!ψ . In the
latter, φ covers the choice between interleaving and
synchronization, andψ determines the order of inter-
leaving and synchronization:

Parametrized merge: X φ‖ψ Y denotes the parallel ex-
ecution ofX andY under conditionsφ andψ .

Parametrized left merge, an auxiliary operator:
X

φ
‖

ψ
Y denotesX φ‖ψ Y with the restriction that

the first action stems fromX.

Parametrized communication merge, an auxiliary op-
erator:X

φ
|
ψ

Y denotesX φ‖ψ Y with the restriction

that the first action is a synchronization of bothX

andY .

Parametrized left communication merge, an auxiliary
operator:X

φ
|
ψ
Y is used to defineX

φ
|
ψ

Y .

Encapsulation: ∂H (X) (whereH ⊆A) renames atoms
in H to δ.

In ACP(A, |), the commutative and associative com-
munication function| :A×A→A∪ {δ} is given (and
extended to process terms). The axioms of our general-
ization ofACP(A, |) are those ofGL5(P4)(BPAδ,µ(A))

(including ROE) and those in Table 4. We adopt
the convention that+φ binds weakest and· binds
strongest, and denote the resulting system by
GL5(P4)(ACP(A, |)). We note that the‖ operation
of ACP(A, |) equals C‖C. Furthermore, the opera-
tion T‖C restricts ‖ to interleaving only, while F‖!
for ! ∈ {C,T,F} defines “synchronous ACP” and

T‖T represents sequential composition. Some typical
GL5(P4)(ACP(A, |)) identities are:

X φ‖ψ Y = Y φ‖¬ψ
X,

X
φ
|
ψ

Y = Y
φ
|¬ψ

X,

µ
φ
|
ψ

δ = µ+ψ δ,

µ
φ
|
ψ

a = µ+ψ µ (a ∈A),

δ
φ
|
ψ

a = δ+
ψ
δ (a ∈A).

In Table 5 we give additional rules for the mean-
ingless predicate defined in Table 2 and the transi-
tion rules defined in Table 3. We stick to bisimula-
tion equivalence as defined in Definition 7, and as be-
fore it follows that bisimilarity is a congruence for
all operations involved. It is not difficult (but tedious)
to establish that in the bisimulation model thus ob-
tained all equations of Table 4 are true. Furthermore,
each process term overGL5(P4)(ACP(A, |)) is prov-
ably equal to a generalized basic term (see Defini-
tion 9). Hence:

Theorem 14. The system GL5(P4)(ACP(A, |)) is com-
plete with respect to bisimulation equivalence.

5. Conclusions

In this paper we have shown that process alge-
bra can be viewed from a logical perspective that
comprises the truth valueschoice C and divergent
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Table 4
Additional axioms ofGL5(P4)

(ACP(A, |)), a,b, c ∈A andH ⊆A

(C1) a | b = b | a (GD1) ∂H (a) = a if a /∈H

(C2) (a | b) | c = a | (b | c) (GD2) ∂H (a) = δ if a ∈H

(GD3) ∂H (X+φ Y ) = ∂H (X)+φ ∂H (Y )

(GD4) ∂H (XY) = ∂H (X)∂H (Y )

(GCM1) X φ‖ψ Y = (X
φ
‖

ψ
Y +ψ Y

φ
‖ ¬ψ

X)+φ X
φ
|
ψ

Y

(GCM2) a
φ
‖

ψ
X = aX

(GCM3) aX
φ
‖

ψ
Y = a(X φ‖ψ Y)

(GCM4) (X+φ Y )
ψ
‖ χ Z = X

ψ
‖ χ Z +φ Y

ψ
‖ χ Z

(GCMC) X
φ
|
ψ

Y = X
φ
|
ψ
Y +ψ Y

φ
| ¬ψ

X

(GCM5) aX
φ
|
ψ
Y = a

φ
|
ψ
(Y

φ
‖ ¬ψ

X)

(GCM6) a
φ
|
ψ
b = a | b

(GCM7) a
φ
|
ψ
bX = (a | b)X

(GCM8) a
φ
|
ψ
(X+χ Y ) = a

φ
|
ψ
X+χ a

φ
|
ψ
Y

(GCM9) (X+φ Y )
ψ
| χ Z = X

ψ
| χ Z +φ Y

ψ
| χ Z

D, and the basic operationsconditional composition
and sequential composition. For instance, the axiom
X+D Y = δ expresses thatδ is associated with “diver-
gence”. This may seem incompatible with the usual
“deadlock” interpretation (modeled by the standard
axiomsX + δ = X andδX = δ), but can be clarified
as follows: in order to support an axiomatic approach
to the interleaving hypothesis,1 the operation+ mod-
els “optimistic choice” in the sense thatδ-alternatives
are discarded (X+δ =X). E.g., the derivationab‖δ =
a(bδ+ δb)+ δab= abδ shows thatδ has an aspect of
divergence: the deadlock inab‖δ is postponed until all
concurrent behavior has been executed.

In the following we shortly discuss the main differ-
ences between this paper and [6]. Taking four-valued
logic over{M,T,F,D} [2,14] and its combination with
process algebra [5] as a point of departure, the contri-
bution of [6] can be characterized as follows:
• The introduction ofC as a ‘natural’ truth value2 and

the associated logicL5(P4).

1 I.e., concurrency can be analyzed in terms of all possible
interleavings.

2 This establishes a second intuition for Kleene’s third truth value
(D modeling the first). We note that a complete axiomatization of
Kleene’s three-valued logic [11] admits exactlytwo non-classical
truth values, the conjunction of which must equalF.

• The introduction of conditional composition as a
definable operation inL5(P4).

• An axiomatization ofACP(A, |) with conditional
guard construct overL5(P4), 3 going with an oper-
ational semantics and a completeness result.

• A generalization ofACP(A, |): the + and merge
operators can beparameterized with propositions
overL5(P4) (or one of its sublogics containingC,T
andF). 4

The present paper records a non-trivial extension of
our understanding ofL5(P4), and of its combination
with process algebra:
• We show thatL5(P4,¬, ∧� ,∧) andL5(P4,_� _	 _)

are interdefinable (Propositions 2 and 4).
• We provide operational semantics and (ground com-

plete) axiomatizations for ourL5(P4)-generaliza-
tions of BPAδ(A) and ACP(A, |) (Theorems 13
and 14).5

Inspired by one of the referees, we end with some
considerations about a six-valued logic. By symmetry

3 These axioms are derivable inGL5(P4)
(ACP(A, |)).

4 For the case{C,T,F} we give the axioms. For the proposed
generalization toL5(P4) it must be required thata %= δ in axiom
GCM8.

5 In [6] we have a less general version of axiom GA3, which
requires separate axiomsX + δ = X andX + µ = µ. Moreover,
in [6] the axiom CC (see Table 1) is neither present, nor derivable.
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Table 5
Additional meaningless and transition rules forGL5(P4)

(ACP(A, |)) in panth-format

µ(w,X
φ
‖
ψ
Y) if w(ψ � φ 	ψ)=M µ(w,X

φ
|
ψ

Y) if w(ψ)=M

µ(w,X)


µ(w,X
φ
‖

ψ
Y ), µ(w,X

φ
|
ψ
Y ),

µ(w,a
φ
|
ψ
X), µ(w,aY

φ
|
ψ
X),

µ(w,∂H (X))




µ(w,X), w(ψ)= T


µ(w,X φ‖ψ Y ) if w(φ)= C,T,F,

µ(w,a φ‖ψ X) if w(φ)= C,F,

µ(w,aY φ‖ψ X) if w(φ)= C,F,

µ(w,X φ|ψ Y ),

µ(w,a φ |ψ X), µ(w,aY φ|ψ X)




µ(w,X), w(ψ)= C


µ(w,X φ‖ψ Y ) if w(φ)= C,T,F,

µ(w,Y φ‖ψ X) if w(φ)= C,T,F,

µ(w,X
φ
|
ψ

Y ), µ(w,Y
φ
|
ψ

X)




µ(w,X), w(ψ)= F


µ(w,Y φ‖ψ X) if w(φ)= C,T,F,

µ(w,X φ‖ψ a) if w(φ)= C,F,

µ(w,X φ‖ψ aY ) if w(φ)= C,F,

µ(w,Y φ |ψ X),

µ(w,X φ |ψ a), µ(w,X φ |ψ aY )




X
w,a−−−→√

, ¬µ(w,Y ), w(φ)= C,T


X φ‖ψ Y
w,a−−−→ Y if w(ψ)= C,T,

Y φ‖ψ X
w,a−−−→ Y if w(ψ)= C,F




X
w,a−−−→√

, Y
w,b−−−→√

, a | b= c


X φ‖ψ Y
w,c−−−→√

if w(φ)= C,F

andw(ψ)= C,T,F,

X φ|ψ Y
w,c−−−→√

if w(ψ)= C,T,F,

X φ| ψ Y
w,c−−−→√




X
w,a−−−→X′, Y

w,b−−−→√
, a | b= c



X φ‖ψ Y
w,c−−−→X′ if w(φ)= C,F

andw(ψ)= C,T,F,

X φ|ψ Y
w,c−−−→X′ if w(ψ)= C,T,F,

X φ| ψ Y
w,c−−−→X′




X
w,a−−−→√




Xφ‖ ψ Y
w,a−−−→ Y,

∂H (X)
w,a−−−→√

if a /∈H




X
w,a−−−→X′, ¬µ(w,Y ), w(φ)= C,T


Xφ‖ψ Y

w,a−−−→X′ φ‖ψ Y if w(ψ)= C,T,

Y φ‖ψ X
w,a−−−→ Y φ‖ψ X′ if w(ψ)= C,F




X
w,a−−−→√

, Y
w,b−−−→ Y ′, a | b= c



Xφ‖ψ Y
w,c−−−→ Y ′ if w(φ)= C,F

andw(ψ)= C,T,F,

X φ |ψ Y
w,c−−−→ Y ′ if w(ψ)= C,T,F,

X φ| ψ Y
w,c−−−→ Y ′




X
w,a−−−→X′, Y

w,b−−−→ Y ′, a | b= c


Xφ‖ψ Y
w,c−−−→X′ φ‖ψ Y ′ if w(φ)= C,F

andw(ψ)= C,T,F,

X φ |ψ Y
w,c−−−→X′ φ‖ψ Y ′ if w(ψ)= C,T,F,

X φ| ψ Y
w,c−−−→X′ φ‖ψ Y ′




X
w,a−−−→X′


Xφ‖ ψ Y

w,a−−−→X′ φ‖ψ Y,

∂H (X)
w,a−−−→ ∂H (X′) if a /∈H
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Fig. 2. Six ordered truth values.

one can distinguish a greatest lower bound (notation
&) of T and F that majorizesD (see Fig. 2), and
extend the definition of conditional composition with
x � (T & F) 	 y = x & y. This yields a six-valued
logic in which the identitiesF � (T & F) 	 F = F and
F � D 	 F = D illustrate the difference betweenT &
F and D. Although this logic is simple and elegant
(e.g., conditional composition also distributes over
&, cf. Proposition 1), we see no algorithmic motive
for distinguishing D and T & F. We can employ
process algebraic conditional composition to support
this position: byx � (T & F) 	 x = x we obtain the
associated identityX +T&F X = X, and byx � (T &
F) 	 D = D we find X +T&F δ = δ. This illustrates
that the operation+T&F models a notion of choice,
say “pessimistic choice”, for which we have no useful
intuition or application.6
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6 When combining this six-valued logic with process algebra, the
axiom CC (see Table 1) appears to be the only one that should
be changed: it allows one to derive undesirable identities, such
as a +T&F b = (a + X) +T&F b. We note that CC is crucial for
Lemma 12, and thereby for our completeness results.
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