

Information Processing Letters 80 (2001) 41-49

www.elsevier.com/locate/ipl

Process algebra and conditional composition

Jan A. Bergstra^{a,b,*}, Alban Ponse^{a,c}

^a University of Amsterdam, Programming Research Group, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
 ^b Utrecht University, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
 ^c CWI, Department of Software Engineering, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Received 21 July 2000; received in revised form 30 December 2000

Abstract

We discern three non-classical truth values, and define a five-valued propositional logic. We combine this logic with process algebra via conditional composition (i.e., if-then-else-). In particular, the choice operation (+) is regarded as a special case of conditional composition. We present an operational semantics in SOS-style and some completeness results. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Process algebra; Conditional composition; Five-valued logic

1. Introduction

Assume *P* represents some program (or algorithm). Then the initial behavior of the *conditional* program

$\operatorname{if} \phi \operatorname{then} P \operatorname{else} P$

depends on evaluation of the condition ϕ : either it yields an immediate error, or it starts with performing *P*, or it diverges in evaluation of ϕ . The following three non-classical truth values for ϕ are sufficient to accommodate these intuitions:

- *Meaningless*, notation M. Typical examples are errors that are detectable during execution such as a typeclash or division by zero.
- Choice or undetermined, notation C. This value represents 'being either true or false'. An example is as above: if ϕ then P else P represents the same behavior as P.

Divergent or *undefined*, notation D. Typically, evaluation of a partial predicate can diverge.

We describe a five-valued propositional logic that incorporates these three non-classical truth values next to *true* (notation T) and *false* (notation F). Furthermore, we define a generalization of process algebra that is based on conditional composition over this logic.

This paper is a successor of [6], in which ACP with five-valued conditions is introduced. In Section 5 we discuss the main differences with [6].

2. Five-valued logic

The five truth values discerned above can be arranged in the partial ordering given in Fig. 1. Let $x \sqcup y$ stand for the least upper bound of x and y. So, $T \sqcup F = F \sqcup T = C$, and $x \sqcup y \in \{x, y\}$ for all other pairs. Furthermore, each truth value can be described with \sqcup and the *deterministic* truth values M, T, F and D.

⁶ Corresponding author.

E-mail address: janb@science.uva.nl (J.A. Bergstra).

Fig. 1. Five ordered truth values.

We first consider a single, ternary operation on these five truth values: *conditional composition*, notation $x \triangleleft y \triangleright z$ (this notation stems from [10], modeling if y then $x \in z$). Conditional composition is defined as follows:

$$x \lhd \mathsf{M} \rhd y = \mathsf{M},$$

$$x \lhd \mathsf{C} \rhd y = x \sqcup y,$$

$$x \lhd \mathsf{T} \rhd y = x,$$

$$x \lhd \mathsf{F} \rhd y = y,$$

$$x \lhd \mathsf{D} \rhd y = \mathsf{D}.$$

Notice that $x \triangleleft C \triangleright y$ (as a binary operation) is idempotent, commutative, and associative. Furthermore, we have the following convenient distributivity property:

Proposition 1. Conditional composition distributes over \sqcup : let **v** abbreviate $v_1 \sqcup v_2$, then

$$\mathbf{x} \triangleleft \mathbf{y} \triangleright \mathbf{z} = (x_1 \triangleleft \mathbf{y} \triangleright \mathbf{z}) \sqcup (x_2 \triangleleft \mathbf{y} \triangleright \mathbf{z})$$
$$= (\mathbf{x} \triangleleft y_1 \triangleright \mathbf{z}) \sqcup (\mathbf{x} \triangleleft y_2 \triangleright \mathbf{z})$$
$$= (\mathbf{x} \triangleleft \mathbf{y} \triangleright \mathbf{z}_1) \sqcup (\mathbf{x} \triangleleft \mathbf{y} \triangleright \mathbf{z}_2).$$

As a consequence, conditional composition is monotonic.

Next to conditional composition, we consider the following logical operations (cf. [2,6]): *negation, left-sequential conjunction* and *symmetric* (or *strict par-allel*) *conjunction*. Negation on the newly added non-classical values can be explained from the intuitions provided earlier: $\neg M = M$ because the negation of an immediate error is one as well. Since C means "being either true or false", so does its negation, thus $\neg C = C$. Furthermore, as D represents divergence, so does $\neg D$, hence $\neg D = D$. With \Diamond we denote left-sequential

conjunction, i.e., McCarthy's left to right conjunction [12], adopting the asymmetric notation from [2]. First the left argument is evaluated, and depending on the result of this, possibly the right argument. This yields $x \land y = x$ for $x \in \{M, F, D\}$, and $T \land x = x$. The values of $C \land x$ are given below. Finally, symmetric conjunction on the newly added truth values appears to be captured by

$$x \wedge y = (x \wedge y) \sqcup (y \wedge x).$$

Left sequential disjunction, notation $^{\circ}V$, and symmetric disjunction (\vee) are defined as expected:

$$x \lor y = \neg(\neg x \land \neg y),$$
$$x \lor y = \neg(\neg x \land \neg y).$$

The complete truth tables for $\neg,\ {}_{\diamondsuit},\ {}_{\circlearrowright},\ {}_{\land}$ and \land are the following:

	MCTFD						
-	MCFTD						
₼	МСТГD	\wedge	М	С	т	F	D
М	мммм	М	М	М	М	М	М
С	МССГГ	С	М	С	С	F	F
Т	МСТГD	Т	М	С	т	F	D
F	FFFFF	F	М	F	F	F	F
D	DDDDD	D	М	F	D	F	D

These truth tables were also presented in [6], and, when omitting C, coincide with the definitions given in [2]. Note that \wedge and its dual $^{\circ}$ are idempotent and associative.

In the following we establish the relation between conditional composition and the operations just discussed.

Proposition 2. *The operations* \neg , $_{o}\land$ *and* \land *are definable from conditional composition:*

$$\neg x = \mathsf{F} \triangleleft x \triangleright \mathsf{T},$$

$$x \triangleleft y = y \triangleleft x \triangleright \mathsf{F},$$

$$x \land y = (x \triangleleft y) \triangleleft \mathsf{C} \triangleright (y \triangleleft x).$$

Furthermore,

$$\begin{aligned} x \triangleleft y \triangleright z &= z \triangleleft \neg y \triangleright x, \\ \neg (x \triangleleft y \triangleright z) &= \neg x \triangleleft y \triangleright \neg z. \end{aligned}$$

Corollary 3. *The operations* $^{\diamond}$ *and* \vee *can be defined by:*

$$x^{\heartsuit} y = \mathsf{T} \triangleleft x \triangleright y,$$

$$x \lor y = (x^{\heartsuit} y) \triangleleft \mathsf{C} \triangleright (y^{\heartsuit} x).$$

Furthermore, \neg , \land , \land , $\stackrel{\diamond}{\lor}$ *and* \lor *distribute over* \sqcup , *and all these operations are monotonic.*

Conversely, $x \triangleleft C \triangleright y$ can be defined by $(C \land x) \lor (C \land y) \lor (x \land y)$. This leads to the following result:

Proposition 4. Conditional composition $x \triangleleft y \triangleright z$ can be defined from \neg , \land and \land by

$$x \triangleleft y \triangleright z = \mathcal{E} \triangleleft \mathbf{C} \triangleright \mathcal{F},$$

where $x \triangleleft C \triangleright y$ is given above, and

$$\begin{aligned} \mathcal{E} &= (\mathbf{y} \lor \mathsf{D}) \land (\mathbf{x} \lor \mathcal{G}), \\ \mathcal{F} &= (\neg \mathbf{y} \lor \mathsf{D}) \land (z \land \mathcal{H}), \\ \mathcal{G} &= (\mathbf{y} \land \mathbf{x}) \lor (\neg \mathbf{y} \land z), \\ \mathcal{H} &= (\neg \mathbf{y} \lor \mathbf{x}) \land (\mathbf{y} \lor z). \end{aligned}$$

We denote the resulting five-valued logic by

$$\mathcal{L}_5(\neg, \land, \land)$$
 or $\mathcal{L}_5(\neg \land _ \triangleright _)$,

or shortly \mathcal{L}_5 whenever we do not care which operations are considered primitive.

Following McCarthy and Hayes [13], let f, g, ... be names for *fluents*, i.e., objects that in any state (i.e., at each instance of time) may take a deterministic value, thus a value in {M, T, F, D}. Let \mathbb{P}_4 be a set of fluents. We write $\mathcal{L}_5(\mathbb{P}_4)$ for the extension of \mathcal{L}_5 with the fluents in \mathbb{P}_4 . In order to equate propositions in $\mathcal{L}_5(\mathbb{P}_4)$ we use substitution of fluents: for $f, g \in \mathbb{P}_4$,

$$\begin{split} & [\phi/f]f \stackrel{\Delta}{=} \phi, \qquad [\phi/f]g \stackrel{\Delta}{=} g, \\ & [\phi/f]c \stackrel{\Delta}{=} c \quad \text{for } c \in \{\mathsf{M},\mathsf{C},\mathsf{T},\mathsf{F},\mathsf{D}\}, \\ & [\phi/f](\psi_1 \lhd \psi_2 \rhd \psi_3) \stackrel{\Delta}{=} \\ & [\phi/f]\psi_1 \lhd [\phi/f]\psi_2 \rhd [\phi/f]\psi_3 \,, \end{split}$$

and as a proof rule the *excluded fifth rule* (cf. [5]):

$$\frac{[c/f]\phi = [c/f]\psi \quad \text{for } c \in \{\mathsf{M},\mathsf{T},\mathsf{F},\mathsf{D}\}}{\phi = \psi}.$$

By Proposition 2 it follows that substitution distributes over the other logical operations in the expected way. Together with the identities generated by the truth tables this yields a complete evaluation system for equations over $\mathcal{L}_5(\mathbb{P}_4)$. We write $\mathcal{L}_5(\mathbb{P}_4) \models \phi = \psi$ or shortly $\models \phi = \psi$, if $\phi = \psi$ follows from the system defined above and the truth tables for $\mathcal{L}_5(\mathbb{P}_4)$.

3. A generalization of BPA with five-valued conditions

Let *A* be a set of constants *a*, *b*, *c*, ... denoting atomic actions (atoms), i.e., processes that are not subject to further division, and that execute in finite time. We consider a generalized version of BPA_{δ,μ}(*A*), i.e., Basic Process Algebra (see, e.g., [3,1,8]) extended with $\delta \notin A$ (*inaction* or *deadlock*) and with $\mu \notin A$. The *meaningless* process μ represents the operational contents of M, and is introduced in [4,5]. We use the notation $G_{\mathcal{L}_5(\mathbb{P}_4)}(\text{BPA}_{\delta,\mu}(A))$ for a generalization of BPA_{δ,μ}(*A*) in which alternative composition is a special case of conditional composition over $\mathcal{L}_5(\mathbb{P}_4)$ (various other generalizations are conceivable). The operations of $G_{\mathcal{L}_5(\mathbb{P}_4)}(\text{BPA}_{\delta,\mu}(A))$ are:

- Sequential composition: $X \cdot Y$ denotes the process that performs X, and upon completion of X starts with Y.
- Conditional composition: $X +_{\phi} Y$ with $\phi \in \mathcal{L}_5(\mathbb{P}_4)$ denotes the process that either performs X or Y, or represents δ or μ , depending on the value of ϕ (which may depend on some valuation). (Conditional composition $X +_{\phi} Y$ is often denoted $X \lhd \phi \triangleright Y$, cf. [10].)

We mostly suppress the \cdot in process expressions, and brackets according to the rule that \cdot binds strongest. Accommodating to classical process algebra, we shall often use the *abbreviation* + for +_c (modeling 'alternative composition' or 'choice'), thus X + Y is short for $X +_c Y$.

In Table 1 we give the rule of equivalence (ROE) and the axioms of $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$.

Example 5. In $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ one easily derives

$$X + \delta = X,$$

$$X + X = X$$

$$X + \mu = \mu.$$

Rule of equivalence and axioms of $G_{\mathcal{L}_5(\mathbb{P}_4)}(BPA_{\delta,\mu}(A))$			
(ROE)	$\mathcal{L}_{5}(\mathbb{P}_{4}) \models \phi = \psi \Rightarrow X +_{\phi} X$	$Y = X +_{\psi} Y$	7
(CM)	$X +_{M} Y = \mu$	(GA1)	$X +_{\phi} (Y +_{\phi} Z) = (X +_{\phi} Y) +_{\phi} Z$
(CC)	$(X +_{\phi} X') +_{C} (Y +_{\phi} Y') =$	(GA2)	$X +_{\phi} Y = Y +_{\neg \phi} X$
	$(X+_{C}Y)+_{\phi}(X'+_{C}Y')$	(GA3)	$(X +_{\phi} Y) +_{\psi} (X +_{\chi} Y) = X +_{(\phi \lhd \psi \triangleright \chi)} Y$
(CT)	$X +_{T} Y = X$	(GA4)	$(X +_{\phi} Y)Z = XZ +_{\phi} YZ$
(CD)	$X +_{D} Y = \delta$	(GA5)	(XY)Z = X(YZ)

(Use axiom GA3 with $\phi = T$, $\psi = C$, and $\chi = D$, T, M, respectively).

Furthermore, with $\models \mathsf{T} \lhd \phi \triangleright \phi = \phi$ and GA3 it follows that

 $X +_{\phi} (X +_{\phi} Y) = X +_{\phi} Y.$

Finally, Proposition 2 implies that

$$X +_{(\phi_{\diamond} \land \psi)} Y = (X +_{\psi} Y) +_{\phi} Y.$$

With δ , the *conditional guard construct* from [7] (called *guarded command* in that paper, and roughly expressing an *if_then_construct*) can be defined as a special case of conditional composition:

 $\phi :\to X \stackrel{\triangle}{=} X +_{\phi} \delta.$

Example 6. With the axioms CC, GA2, and $X + \delta = X$ we find

$$X +_{\phi} Y = (\phi :\to X) + (\neg \phi :\to Y).$$

An intricate identity is $(\phi \lor \psi) :\to X = \phi :\to X + \psi :\to X$. First we derive

$$\begin{split} X+_{(\phi \lor \psi)} \delta &= (X+_{(\phi \lor \psi)} \delta) + (X+_{\mathsf{F}} \delta) \\ &= X+_{((\phi \lor \psi) \lhd \mathsf{C} \triangleright \mathsf{F})} \delta. \end{split}$$

In a similar way it follows that

$$X +_{(\phi \triangleleft \mathsf{C} \triangleright \psi)} \delta = X +_{((\phi \triangleleft \mathsf{C} \triangleright \psi) \triangleleft \mathsf{C} \triangleright \mathsf{F})} \delta$$

Because $\models (\phi \lor \psi) \triangleleft C \triangleright F = (\phi \triangleleft C \triangleright \psi) \triangleleft C \triangleright F$, we can apply the rule of equivalence (ROE).

Closed terms over $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ will be further called *process terms*. We provide an operational semantics for process terms. Given a (non-empty) set \mathbb{P}_4 of fluents, let *w* range over \mathcal{W} , the *valuations*

Table 2 Rules for the $\mu(w, _)$ predicate				
$\mu(w,\mu)$ $\mu(w,X+$	$+_{\phi} Y$) if $w(\phi) = M$			
$\mu(w, X)$				
$\int \mu(w, X +_{\phi} Y)$	if $w(\phi) = C, T,$			
$\left\{ \mu(w, Y +_{\phi} X) \right\}$	if $w(\phi) = C, F, \$			
$\mu(w, X \cdot Y)$	J			

(interpretations) of \mathbb{P}_4 in {M, T, F, D}. Valuations are extended to propositions in the usual way. In Table 2 we define for each $w \in W$ a unary predicate *meaningless*, notation $\mu(w, _)$, over process terms in $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$. This predicate defines whether a process term represents the meaningless process μ under valuation w.

The axioms and rules for $\mu(w, _)$ given in Table 2 are extended by those given in Table 3, which define transitions $_ \stackrel{w,a}{\longrightarrow} _$ as a binary relation on process terms, and unary "tick-predicates" or "termination transitions" $_ \stackrel{w,a}{\longrightarrow} \checkmark$, where w ranges over W and a over A. Transitions characterize under which interpretations a process term defines the possibility to execute an atomic action, and what remains to be executed (if anything, otherwise \checkmark symbolizes successful termination). Note that if a process term P has a transition $P \stackrel{w,a}{\longrightarrow} \cdots$, then $\neg \mu(w, P)$.

The axioms and rules in Tables 2 and 3 yield a structured operational semantics (SOS) with negative premises in the style of [9]. Moreover, they satisfy the so called *panth-format* [15]. Using [9,15], it is easy to establish that the meaningless instances and transitions defined by these rules are uniquely determined, and go with the following notion of bisimulation equivalence:

Table 1

Transition rules in <i>panth</i> -format				
$a \in A$	$a \xrightarrow{w,a} \checkmark$			
$+_{\phi}$	$\frac{X \xrightarrow{w,a} \sqrt{, \neg \mu(w, Y)}}{\left\{ \begin{array}{l} X +_{\phi} Y \xrightarrow{w,a} \sqrt{ \text{if } w(\phi) = C,} \\ Y +_{\phi} X \xrightarrow{w,a} \sqrt{ \text{if } w(\phi) = C} \end{array} \right\}}$	$\begin{array}{c} X \xrightarrow{w,a} X', \neg \mu(w,Y) \\ \hline \left\{ \begin{array}{l} X +_{\phi} Y \xrightarrow{w,a} X' & \text{if } w(\phi) = C, \\ Y +_{\phi} X \xrightarrow{w,a} X' & \text{if } w(\phi) = C \end{array} \right\} \end{array}$		
\cdot , $+_{\phi}$	$\begin{array}{c} X \xrightarrow{w,a} \checkmark \\ \\ \hline \\ \left\{ \begin{array}{l} X \cdot Y \xrightarrow{w,a} Y, \\ X +_{\phi} Y \xrightarrow{w,a} \checkmark & \text{if } w(\phi) = T, \\ Y +_{\phi} X \xrightarrow{w,a} \checkmark & \text{if } w(\phi) = F \end{array} \right\} \end{array}$	$\begin{array}{c} X \xrightarrow{w,a} X' \\ \hline \\ \left\{ \begin{array}{l} X \cdot Y \xrightarrow{w,a} X' \cdot Y, \\ X +_{\phi} Y \xrightarrow{w,a} X' & \text{if } w(\phi) = T, \\ Y +_{\phi} X \xrightarrow{w,a} X' & \text{if } w(\phi) = F \end{array} \right\} \end{array}$		

Definition 7. A binary relation *B* over process terms is a bisimulation if for all P, Q with PBQ the following conditions hold for all $w \in W$ and $a \in A$:

Table 3

• $\mu(w, P) \Leftrightarrow \mu(w, Q),$ • $P \xrightarrow{w,a} \sqrt{\Leftrightarrow Q} \xrightarrow{w,a} \sqrt{,}$ • $\forall P' (P \xrightarrow{w,a} P' \Rightarrow \exists Q'(Q \xrightarrow{w,a} Q' \land P'BQ')),$ • $\forall Q' (Q \xrightarrow{w,a} Q' \Rightarrow \exists P'(P \xrightarrow{w,a} P' \land P'BQ')).$

Two processes P, Q are bisimilar, notation $P \Leftrightarrow Q$, if there exists a bisimulation containing the pair (P, Q).

By the main result in [15] it follows that bisimilarity is a *congruence* relation for all operations involved. Note that conditional composition constructs are considered binary operations: for each $\phi \in \mathcal{L}_5(\mathbb{P}_4)$ there is an operation $+_{\phi}$.

We write $G/\underset{\Longrightarrow}{\overset{\psi}{\mapsto}} \models P = Q$ whenever $P \Leftrightarrow Q$ according to the notions just defined, and for $\vec{X} =$ $X_1, \ldots, X_n, G/_{\leftrightarrow} \models t(\vec{X}) = t'(\vec{X})$ if for all $\vec{P} = P_1, \ldots, P_n$ it holds that $G/_{\leftrightarrow} \models t(\vec{P}) = t'(\vec{P})$. It is not difficult to show that in the bisimulation model thus obtained all equations of Table 1 are true. Hence we conclude:

Lemma 8 (Soundness). If
$$G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A)) \vdash t(\vec{X}) = t'(\vec{X})$$
, then $G/_{\leftrightarrow} \models t(\vec{X}) = t'(\vec{X})$.

Finally, we provide a completeness result for $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$. Our proof refers to the completeness result in [5], which is based on a representation of process terms for which bisimilarity implies derivability in a straightforward way.

Definition 9. A process term *P* over

 $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ is a generalized basic term if it is of the form

$$P ::= \delta \mid \mu \mid a \mid aP \mid P +_{\phi} P,$$

where $a \in A$ and $\phi \in \mathcal{L}_5(\mathbb{P}_4)$.

Lemma 10. Each process term over

 $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ is provably equal to a generalized basic term.

In the following we relate process terms over $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ with terms over $\mathsf{BPA}_{\delta,\mu}(A)$ extended with conditional guard constructs, of which the conditions are in

$$\mathcal{L}_4(\mathbb{P}_4) \stackrel{\bigtriangleup}{=} \mathcal{L}_{\{\mathsf{M},\mathsf{T},\mathsf{F},\mathsf{D}\}}(\mathbb{P}_4,\neg, \land, \land),$$

thus $\mathcal{L}_5(\mathbb{P}_4)$ without C. The only operations of $\mathsf{BPA}_{\delta,\mu}(A)$ are sequential composition and the choice operation +, i.e., the operation $+_{c}$. In the following, finite sums $P_1 + P_2 + \cdots + P_n$ are abbreviated by $\sum_{i=1}^{n} P_i$.

Let the symbol \equiv denote syntactic equivalence, and let $\mathcal{L} \subseteq \mathcal{L}_5(\mathbb{P}_4)$.

Definition 11. A process term *P* over

 $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ is called an \mathcal{L} -basic term if $P \equiv$

 $\sum_{i \in I} \phi_i :\to Q_i$, where *I* is a finite, non-empty index set, $\phi_i \in \mathcal{L}$, and $Q_i \in \{\delta, a, aR \mid a \in A, R \text{ an } \mathcal{L}\text{-basic term}\}$.

Lemma 12. Each process term over $G_{\mathcal{L}_5}(\mathsf{BPA}_{\delta,\mu}(A))$ is provably equal to an $\mathcal{L}_4(\mathbb{P}_4)$ -basic term.

Proof. By Lemma 10 it is sufficient to consider generalized basic terms. Then, representation easily follows for $\mathcal{L}_5(\mathbb{P}_4)$ -basic terms by induction (where axiom CC is needed, cf. footnotes 5, 6 in Section 5). It remains to be shown that each $\mathcal{L}_5(\mathbb{P}_4)$ -basic term is provably equal to one in which C does not occur in any conditional guard construct. As $C :\to X = X$, this follows easily by induction on the complexity of the guard ϕ in $\phi :\to X$. \Box

Theorem 13. The system $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ is complete with respect to bisimulation equivalence.

Proof. By Lemmas 12 and 8 it is sufficient to prove that bisimilarity between $\mathcal{L}_4(\mathbb{P}_4)$ -basic terms implies their provable equality. A detailed (inductive) proof is spelled out in [5], which is also sufficient as all axioms of Basic Process Algebra with four-valued logic are derivable from $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ (the less trivial ones were derived in Examples 5 and 6). \Box

4. A generalization of ACP with five-valued conditions

We extend $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{BPA}_{\delta,\mu}(A))$ to a generalized version of $\mathsf{ACP}(A, |)$ (Algebra of Communicating Processes, see, e.g., [3,1,8]) by including encapsulation and parametrized merge operations $_{\phi}\diamond_{\psi}$. In the latter, ϕ covers the choice between interleaving and synchronization, and ψ determines the order of interleaving and synchronization:

- *Parametrized merge*: $X_{\phi} \|_{\psi} Y$ denotes the parallel execution of X and Y under conditions ϕ and ψ .
- *Parametrized left merge*, an auxiliary operator: $X_{\phi} \parallel_{\psi} Y$ denotes $X_{\phi} \parallel_{\psi} Y$ with the restriction that the first action stems from *X*.
- Parametrized communication merge, an auxiliary operator: $X_{\phi}|_{\psi} Y$ denotes $X_{\phi}|_{\psi} Y$ with the restriction

that the first action is a synchronization of both *X* and *Y*.

- Parametrized left communication merge, an auxiliary operator: $X_{\phi} \downarrow_{\psi} Y$ is used to define $X_{\phi} \mid_{\psi} Y$.
- *Encapsulation*: $\partial_H(X)$ (where $H \subseteq A$) renames atoms in H to δ .

In ACP(A, |), the commutative and associative communication function $|: A \times A \to A \cup \{\delta\}$ is given (and extended to process terms). The axioms of our generalization of ACP(A, |) are those of $G_{\mathcal{L}_5(\mathbb{P}_4)}(\text{BPA}_{\delta,\mu}(A))$ (including ROE) and those in Table 4. We adopt the convention that $+_{\phi}$ binds weakest and \cdot binds strongest, and denote the resulting system by $G_{\mathcal{L}_5(\mathbb{P}_4)}(\text{ACP}(A, |))$. We note that the || operation of ACP(A, |) equals $_{\mathbb{C}}||_{\mathbb{C}}$. Furthermore, the operation $_{\mathbb{T}}||_{\mathbb{C}}$ restricts || to interleaving only, while $_{\mathbb{F}}||_{\diamond}$ for $\diamond \in \{\mathbb{C}, \mathbb{T}, \mathbb{F}\}$ defines "synchronous ACP" and $_{\mathbb{T}}||_{\mathbb{T}}$ represents sequential composition. Some typical $G_{\mathcal{L}_5(\mathbb{P}_4)}(\text{ACP}(A, |))$ identities are:

$$\begin{split} X_{\phi} \|_{\psi} Y &= Y_{\phi} \|_{\neg\psi} X, \\ X_{\phi} |_{\psi} Y &= Y_{\phi} |_{\neg\psi} X, \\ \mu_{\phi} |_{\psi} \delta &= \mu +_{\psi} \delta, \\ \mu_{\phi} |_{\psi} a &= \mu +_{\psi} \mu \quad (a \in A), \\ \delta_{\phi} |_{\psi} a &= \delta +_{\psi} \delta \quad (a \in A). \end{split}$$

In Table 5 we give additional rules for the meaningless predicate defined in Table 2 and the transition rules defined in Table 3. We stick to bisimulation equivalence as defined in Definition 7, and as before it follows that bisimilarity is a congruence for all operations involved. It is not difficult (but tedious) to establish that in the bisimulation model thus obtained all equations of Table 4 are true. Furthermore, each process term over $G_{\mathcal{L}_5(\mathbb{P}_4)}(ACP(A, |))$ is provably equal to a generalized basic term (see Definition 9). Hence:

Theorem 14. The system $G_{\mathcal{L}_5(\mathbb{P}_4)}(ACP(A, |))$ is complete with respect to bisimulation equivalence.

5. Conclusions

In this paper we have shown that process algebra can be viewed from a logical perspective that comprises the truth values *choice* C and *divergent*

J.A. Bergstra, A. Ponse / Information Processing Letters 80 (2001) 41-49

Table 4				
Additional axioms of $G_{\mathcal{L}_5(\mathbb{P}_4)}(ACP(A,)), a, b, c \in A$ and $H \subseteq A$				
(C1)	$a \mid b = b \mid a$	(GD1)	$\partial_H(a) = a \text{ if } a \notin H$	
(C2) ($a \mid b) \mid c = a \mid (b \mid c)$	(GD2)	$\partial_H(a) = \delta \text{if } a \in H$	
		(GD3)	$\partial_H(X +_{\phi} Y) = \partial_H(X) +_{\phi} \partial_H(Y)$	
		(GD4)	$\partial_H(XY) = \partial_H(X)\partial_H(Y)$	
(GCM1)	$X_{\phi} \ _{\psi} Y =$	$= (X_{\phi} \parallel_{\psi} Y$	$+_{\psi} Y_{\phi} \underline{\parallel}_{\neg \psi} X) +_{\phi} X_{\phi} _{\psi} Y$	
(GCM2)	$a_{\phi} \parallel_{\psi} X =$	= aX		
(GCM3)	$aX_{\phi} \parallel_{\psi} Y =$	$= a(X_{\phi} \ _{\psi} Y)$)	
(GCM4)	$(X +_{\phi} Y) \underset{\psi}{\sqsubseteq} \chi Z =$	$= X_{\psi} \parallel_{\chi} Z$	$+_{\phi} Y_{\psi} \parallel_{\chi} Z$	
(GCMC)	$X_{\phi} _{\psi} Y =$	$= X_{\phi \downarrow \psi} Y +$	$\psi Y_{\phi} _{\neg \psi} X$	
(GCM5)	$aX_{\phi \downarrow \psi}Y =$	$= a_{\phi} \lfloor_{\psi} (Y_{\phi})$		
(GCM6)	$a_{\phi \downarrow \psi} b =$	$= a \mid b$		
(GCM7)	$a_{\phi} _{\psi}bX =$	$= (a \mid b)X$		
(GCM8)	$a_{\phi} \downarrow_{\psi} (X +_{\chi} Y) =$	$= a_{\phi \downarrow \psi} X +$	$x a_{\phi} \downarrow_{\psi} Y$	
(GCM9)	$(X +_{\phi} Y)_{\psi} \downarrow_{\chi} Z =$	$= X_{yy} \lfloor_{\chi} Z +$	$\frac{1}{2} \frac{1}{2} \frac{1}$	

D, and the basic operations *conditional composition* and *sequential composition*. For instance, the axiom $X +_{D} Y = \delta$ expresses that δ is associated with "divergence". This may seem incompatible with the usual "deadlock" interpretation (modeled by the standard axioms $X + \delta = X$ and $\delta X = \delta$), but can be clarified as follows: in order to support an axiomatic approach to the interleaving hypothesis, ¹ the operation + models "optimistic choice" in the sense that δ -alternatives are discarded ($X + \delta = X$). E.g., the derivation $ab || \delta =$ $a(b\delta + \delta b) + \delta ab = ab\delta$ shows that δ has an aspect of divergence: the deadlock in $ab || \delta$ is postponed until all concurrent behavior has been executed.

In the following we shortly discuss the main differences between this paper and [6]. Taking four-valued logic over {M, T, F, D} [2,14] and its combination with process algebra [5] as a point of departure, the contribution of [6] can be characterized as follows:

• The introduction of C as a 'natural' truth value² and the associated logic $\mathcal{L}_5(\mathbb{P}_4)$.

- The introduction of conditional composition as a definable operation in L₅(P₄).
- An axiomatization of ACP(A, |) with conditional guard construct over L₅(P₄),³ going with an operational semantics and a completeness result.
- A generalization of ACP(A, |): the + and merge operators can be *parameterized* with propositions over L₅(P₄) (or one of its sublogics containing C, T and F).⁴

The present paper records a non-trivial extension of our understanding of $\mathcal{L}_5(\mathbb{P}_4)$, and of its combination with process algebra:

- We show that $\mathcal{L}_5(\mathbb{P}_4, \neg, \land, \land)$ and $\mathcal{L}_5(\mathbb{P}_4, _ \triangleleft _ \triangleright _)$ are interdefinable (Propositions 2 and 4).
- We provide operational semantics and (ground complete) axiomatizations for our $\mathcal{L}_5(\mathbb{P}_4)$ -generalizations of BPA $_{\delta}(A)$ and ACP(A, |) (Theorems 13 and 14).⁵

Inspired by one of the referees, we end with some considerations about a six-valued logic. By symmetry

 $^{^{1}}$ I.e., concurrency can be analyzed in terms of all possible interleavings.

 $^{^2}$ This establishes a second intuition for Kleene's third truth value (D modeling the first). We note that a complete axiomatization of Kleene's three-valued logic [11] admits exactly *two* non-classical truth values, the conjunction of which must equal F.

³ These axioms are derivable in $G_{\mathcal{L}_5(\mathbb{P}_4)}(\mathsf{ACP}(A, |))$.

⁴ For the case {C, T, F} we give the axioms. For the proposed generalization to $\mathcal{L}_5(\mathbb{P}_4)$ it must be required that $a \neq \delta$ in axiom GCM8.

⁵ In [6] we have a less general version of axiom GA3, which requires separate axioms $X + \delta = X$ and $X + \mu = \mu$. Moreover, in [6] the axiom CC (see Table 1) is neither present, nor derivable.

Table 5

Additional meaningless and transition rules for $G_{\mathcal{L}_5(\mathbb{P}_4)}(ACP(A, |))$ in *panth*-format

$\mu(w, X, \ , Y) \text{if } w(\psi \triangleleft \phi \triangleright \psi) = M$	$\mu(w, X \mid Y)$ if $w(\psi) = M$
$m(\infty, \infty, \phi^{\parallel}\psi^{\perp}) = m(\psi^{\perp}\psi^{\perp}\psi^{\perp}) = m$	$\psi(\omega), \psi(\psi) \to \psi(\psi) \to \psi(\psi)$
$\mu(w, X)$	$\mu(w, X), \ w(\psi) = C$
$\left[\mu(w, X_{\phi} \Vdash_{\psi} Y), \ \mu(w, X_{\phi} \downarrow_{\psi} Y), \right]$	$\left[\mu(w, \overline{X_{\phi}} \ _{\psi} Y) \text{if } w(\phi) = C, T, F, \right]$
$\left\{ \begin{array}{c} \varphi & \varphi \\ \mu(w, a_{ a }, \mu, X), \ \mu(w, aY_{ a }, \mu, X), \end{array} \right\}$	$\left\{ \mu(w, Y_{\phi}) \right\}_{\psi} X \text{if } w(\phi) = C, T, F, \left\{ \psi(w, Y_{\phi}) \right\}_{\psi} X $
$\mu(w, \partial_H(X))$	$\mu(w, X_{\perp} _{\mathcal{L}} Y), \ \mu(w, Y_{\perp} _{\mathcal{L}} X)$
	$\left(\begin{array}{cccc} r & r & \phi & \psi & r & r & \phi & \phi & \psi & r \\ r & r & \phi & \psi & r & r & \phi & \psi & r \end{array} \right)$
$\mu(w,X), \ w(\psi) = T$	$\mu(w,X), \ w(\psi) = F$
$\left[\mu(w, X_{\phi} \ _{\psi} Y) \text{if } w(\phi) = C, T, F, \right]$	$\left[\mu(w, Y_{\phi} \ _{\psi} X) \text{if } w(\phi) = C, T, F, \right]$
$\mu(w, a_{\phi} \ _{\psi} X) \text{ if } w(\phi) = C, F,$	$\mu(w, X_{\phi} \ _{\psi} a) \qquad \text{if } w(\phi) = C, F,$
$\left\{ \mu(w, aY_{\phi} \ _{\psi} X) \text{if } w(\phi) = C, F, \right\}$	$\left\{ \begin{array}{l} \mu(w, X_{\phi} \ _{\psi} aY) \text{if } w(\phi) = C, F, \end{array} \right\}$
$\mu(w, X_{\phi} _{\psi} Y),$	$\mu(w, Y_{\phi} _{\psi} X),$
$\mu(w, a_{\phi} _{\psi} X), \ \mu(w, aY_{\phi} _{\psi} X)$	$\mu(w, X_{\phi} _{\psi} a), \ \mu(w, X_{\phi} _{\psi} aY)$
$X \xrightarrow{w,a} , \ \neg \mu(w, Y), \ w(\phi) = C, T$	$X \xrightarrow{w,a} X', \ \neg \mu(w,Y), \ w(\phi) = C, T$
$\left[X_{\phi} \ _{\psi} Y \xrightarrow{w,a} Y \text{if } w(\psi) = C, T, \right]$	$\left[X_{\phi} \ _{\psi} Y \xrightarrow{w,a} X'_{\phi} \ _{\psi} Y \text{if } w(\psi) = C, T, \right]$
$\begin{cases} Y \not \downarrow \psi \\ Y \not \downarrow \psi \\ \psi \end{pmatrix} \xrightarrow{w,a} Y \text{if } w(\psi) = C, F \end{cases}$	$\left\{ \begin{array}{c} Y_{\phi} \ _{\psi} X \xrightarrow{w,a} Y_{\phi} \ _{\psi} X' \text{if } w(\psi) = C, F \end{array} \right\}$
	$\left(\begin{array}{cc} \varphi \\ \psi \\$
$X \xrightarrow{w,a} \sqrt{, Y \xrightarrow{w,b}} \sqrt{, a \mid b = c}$	$X \xrightarrow{w,a} , \ Y \xrightarrow{w,b} Y', \ a \mid b = c$
$\begin{bmatrix} X_{\phi} \ _{\psi} Y \xrightarrow{w,c} \sqrt{\text{if } w(\phi) = C, F} \end{bmatrix}$	$\left[X_{\phi} \ _{\psi} Y \xrightarrow{w,c} Y' \text{if } w(\phi) = C, F \right]$
and $w(\psi) = C, T, F,$	and $w(\psi) = C, T, F,$
$\left\{ X \downarrow Y \xrightarrow{w,c} \sqrt{if w(\psi)} = C T F_{v} \right\}$	$\left\{ X \downarrow Y \xrightarrow{w,c} Y' \text{ if } w(\psi) = C, T, F, \right\}$
$X = \frac{w, c}{\sqrt{w}, c}$	$X + Y \xrightarrow{w,c} Y'$
$\left(\begin{array}{c} & \phi L \psi \end{array} \right)$	$(-\phi_{L}\psi^{*})$
$X \xrightarrow{w,a} X', \ Y \xrightarrow{w,b} , \ a \mid b = c$	$X \xrightarrow{w,a} X', Y \xrightarrow{w,b} Y', a \mid b = c$
$\left[X_{\phi} \ _{\psi} Y \xrightarrow{w,c} X' \text{if } w(\phi) = C, F \right]$	$\left[X_{\phi} \ _{\psi} Y \xrightarrow{w,c} X'_{\phi} \ _{\psi} Y' \text{if } w(\phi) = C, F \right]$
and $w(\psi) = C, T, F,$	and $w(\psi) = C, T, F$,
$\begin{cases} X_{\phi} _{\psi} Y \xrightarrow{w,c} X' & \text{if } w(\psi) = C, T, F, \end{cases}$	$\begin{cases} X_{\phi} _{\psi} Y \xrightarrow{w,c} X'_{\phi} _{\psi} Y' & \text{if } w(\psi) = C, T, F, \end{cases}$
$X \downarrow \downarrow , Y \xrightarrow{w,c} X'$	$\begin{array}{c} & \varphi \downarrow \varphi \\ X \downarrow \downarrow , Y \xrightarrow{w,c} X' \downarrow \downarrow \downarrow Y' \end{array}$
(ψ-ψ	$\left(\begin{array}{cc} \varphi \bullet \varphi & \varphi^{\prime \prime} \psi & \end{array}\right)$
$X \xrightarrow{w,a} \checkmark$	$X \xrightarrow{w,a} X'$
$\left[X_{\phi} \middle _{\psi} Y \xrightarrow{w,a} Y, \right]$	$\left[X_{\phi} \bigsqcup_{\psi} Y \xrightarrow{w,a} X'_{\phi} \rVert_{\psi} Y, \right]$
$\left\{\begin{array}{c} \partial_H(X) \xrightarrow{w,a} & \text{if } a \notin H \end{array}\right\}$	$ \left\{ \begin{array}{l} \partial_H(X) \xrightarrow{w,a} \partial_H(X') & \text{if } a \notin H \end{array} \right\} $

Fig. 2. Six ordered truth values.

one can distinguish a greatest lower bound (notation \sqcap) of T and F that majorizes D (see Fig. 2), and extend the definition of conditional composition with $x \triangleleft (\mathsf{T} \sqcap \mathsf{F}) \triangleright y = x \sqcap y$. This yields a six-valued logic in which the identities $F \triangleleft (T \sqcap F) \triangleright F = F$ and $F \triangleleft D \triangleright F = D$ illustrate the difference between $T \sqcap$ F and D. Although this logic is simple and elegant (e.g., conditional composition also distributes over \sqcap , cf. Proposition 1), we see no algorithmic motive for distinguishing D and T \sqcap F. We can employ process algebraic conditional composition to support this position: by $x \triangleleft (T \sqcap F) \triangleright x = x$ we obtain the associated identity $X +_{T \sqcap F} X = X$, and by $x \triangleleft (T \sqcap$ F) \triangleright D = D we find $X +_{T \cap F} \delta = \delta$. This illustrates that the operation $+_{T \cap F}$ models a notion of choice, say "pessimistic choice", for which we have no useful intuition or application.⁶

Acknowledgements

We thank the referees for useful and inspiring comments.

References

- J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer Science 18, Cambridge University Press, 1990.
- [2] J.A. Bergstra, I. Bethke, P.H. Rodenburg, A propositional logic with 4 values: true, false, divergent and meaningless, J. Appl. Non-Classical Logics 5 (1995) 199–217.
- [3] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Inform. and Control 60 (1–3) (1984) 109– 137.
- [4] J.A. Bergstra, A. Ponse, Bochvar–McCarthy logic and process algebra, Notre Dame J. Formal Logic 39 (4) (1998) 464–484.
- [5] J.A. Bergstra, A. Ponse, Process algebra with four-valued logic, J. Appl. Non-Classical Logics 10 (1) (2000) 27–53.
- [6] J.A. Bergstra, A. Ponse, Process algebra with five-valued conditions, in: C.S. Calude, M.J. Dinneen (Eds.), Combinatorics, Complexity, and Logic, Australian Computer Science Communications, Vol. 21, Springer, Singapore, 1999, pp. 128–143.
- [7] E.W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Comm. ACM 18 (8) (1975) 453– 457.
- [8] W.J. Fokkink, Introduction to Process Algebra, Springer, Berlin, 2000.
- [9] J.F. Groote, Transition system specifications with negative premises, Theoret. Comput. Sci. 118 (2) (1993) 263–299.
- [10] C.A.R. Hoare, I.J. Hayes, H. Jifeng, C.C. Morgan, A.W. Roscoe, J.W. Sanders, I.H. Sorensen, J.M. Spivey, B.A. Sufrin, Laws of programming, Comm. ACM 30 (8) (1987) 672–686.
- [11] S.C. Kleene, On a notation for ordinal numbers, J. Symbolic Logic 3 (1938) 150–155.
- [12] J. McCarthy, A basis for a mathematical theory of computation, in: P. Braffort, D. Hirshberg (Eds.), Computer Programming and Formal Systems, North-Holland, Amsterdam, 1963, pp. 33–70.
- [13] J. McCarthy, P.J. Hayes, Some philosophical problems from the standpoint of artificial intelligence, in: B. Meltzer, D. Michie (Eds.), Machine Intelligence 4, Edinburgh University Press, 1969, pp. 463–502, Reprinted in: V. Lifschitz (Ed.), Formalization of Common Sense, Papers by John McCarthy, Ablex, Norwood, NJ, 1990.
- [14] P.H. Rodenburg, A complete system of four-valued logic, Report P9616, University of Amsterdam, 1996; J. Appl. Non-Classical Logics, to appear.
- [15] C. Verhoef, A congruence theorem for structured operational semantics with predicates and negative premises, Nordic J. Comput. 2 (2) (1995) 274–302.

⁶ When combining this six-valued logic with process algebra, the axiom CC (see Table 1) appears to be the only one that should be changed: it allows one to derive undesirable identities, such as $a +_{\mathsf{T} \cap \mathsf{F}} b = (a + X) +_{\mathsf{T} \cap \mathsf{F}} b$. We note that CC is crucial for Lemma 12, and thereby for our completeness results.