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Abstract

We discern three non-classical truth values, and define a five-valued propositional logic. We combine this logic with process
algebra via conditional composition (i.e., if-then-else-). In particular, the choice operatjas fegarded as a special case of
conditional composition. We present an operational semantics in SOS-style and some completeness gfft&lsevier
Science B.V. All rights reserved.
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1. Introduction Divergent or undefined, notationD. Typically, evalu-
ation of a partial predicate can diverge.

AssumeP represents some program (or algorithm).
Then the initial behavior of theonditional program We describe a five-valued propositional logic that
. incorporates these three non-classical truth values
if ¢then pelsep next to true (notation T) and false (notation F).
depends on evaluation of the conditign either it Furthermore, we define a generalization of process
yields an immediate error, or it starts with performing algebra that is based on conditional composition over
P, or it diverges in evaluation op. The following this logic.
three non-classical truth values fgrare sufficient to This paper is a successor of [6], in which ACP with
accommodate these intuitions: five-valued conditions is introduced. In Section 5 we

: . . discuss the main differences with [6].
Meaningless, notationM. Typical examples are errors

that are detectable during execution such as a type-

clash or division by zero. 2. Five-valued logic

Choice or undetermined, notationC. This value rep-
resents ‘being either true or false’. An example is as
above:i f ¢ t hen P el se P represents the same

The five truth values discerned above can be ar-
ranged in the partial ordering given in Fig. 1. Let
x U y stand for the least upper bound.ofandy. So,

behavior asP. ,
TUF=FUT=C,andxuy € {x, y} for all other pairs.
* Corresponding author. Furthermore, each truth value can be described with
E-mail address: janb@science.uva.nl (J.A. Bergstra). and thedeterministic truth valuesav, T, F andD.
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Fig. 1. Five ordered truth values.

We first consider a single, ternary operation on these
five truth values:conditional composition, notation
x <y z (this notation stems from [10], modeling
i f ythenxel sez). Conditional composition is
defined as follows:

X<IMB>y=M,
x<Cry=xUy,
x<T>y=x,
x<F>y=y,
x<<D>y=D.

Notice thatx < C > y (as a binary operation) is idem-
potent, commutative, and associative. Furthermore, we
have the following convenient distributivity property:

Proposition 1. Conditional composition distributes
over Li: let v abbreviate v1 L v, then

x<dy>z=(x1<dy>z)U(x2<dyr>2z)
= X <Ay1>2)U(x <y20>2)

= (x<y>z1))U(x <y z2).

As a consequence, conditional compaosition is mo-
notonic.

Next to conditional composition, we consider the
following logical operations (cf. [2,6])negation, |eft-
sequential conjunction and symmetric (or strict par-
allel) conjunction. Negation on the newly added non-
classical values can be explained from the intuitions
provided earlier—=M = M because the negation of an
immediate error is one as well. SinCemeans “being
either true or false”, so does its negation, thiG= C.
Furthermore, ad represents divergence, so do€s,
hence—D = D. With A we denote left-sequential
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conjunction, i.e., McCarthy'’s left to right conjunction
[12], adopting the asymmetric notation from [2]. First
the left argument is evaluated, and depending on the
result of this, possibly the right argument. This yields
x Ay =x forx e {M,F, D}, andT Ax = x. The val-

ues ofC Ax are given below. Finally, symmetric con-
junction on the newly added truth values appears to be
captured by

XAy =@ Ay U AX).

Left sequential disjunction, notationl/, andsymmetric
disunction (V) are defined as expected:

xSy ==(mxpy),

xVy=-(—-x A—y).

The complete truth tables for, A, and A are the
following:

MCTFD
- MCFTD

HNIMCTED AMCTFD
MIMMMMM MMMMMM
CIMCCFF CIMCCFF
TIMCTEFD TIMCTFD
FIFFFFF FIMFFFF
D DDDDD DIMF D F D

These truth tables were also presented in [6], and,
when omittingC, coincide with the definitions given
in [2]. Note that A and its duaf/ are idempotent and
associative.

In the following we establish the relation between
conditional composition and the operations just dis-
cussed.

Proposition 2. The operations =, A and A are
definable from conditional composition:

—X
XY
XAy = (xAY) ACD> (yAX).
Furthermore,

F<xp>T,

y<x>F,

x<dypz =z<d-yb>ux,

—(x<y>2) —x<yD> -z
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Corollary 3. Theoperations %/ and v can be defined
by:

x({/y =T<axb>y,

xXVy= (xOVy) <Cp (yo\/x).

Furthermore, =, A, A, & and v distribute over L,
and all these operations are monotonic.

Converselyx < C > y can be defined byC A x) v
(CA YY)V (x Ay). This leads to the following result:

Proposition 4. Conditional composition x <y >z
can be defined from —, A and A by

x<dy>z=E<CD> F,

where x <1 C > y isgiven above, and

E=(yvD)AKVG),

F=(yVvDAGprH),
G=(QNx)V (myND),
H=(=yVx)A(ya).

We denote the resulting five-valued logic by

Ls(=, N A) Ls(_<_> ),

or shortly L5 whenever we do not care which opera-
tions are considered primitive.

Following McCarthy and Hayes [13], l¢t ¢, ... be
names foffluents, i.e., objects that in any state (i.e., at
each instance of time) may take a deterministic value,
thus a value if{M, T, F, D}. Let P4 be a set of fluents.
We write L5(P4) for the extension ofls with the
fluents inP4. In order to equate propositionsis(P4)
we use substitution of fluents: fgf; g € Pa,

W/f1f =¢.  [9/fls=s.
[¢/flc2c force{M,C,T,F,D},
[6/f1(41 <4 Y2 > Yr3) =
o/ flvr<[o/flvar[o/f1¥s,
and as a proof rule thexcluded fifth rule (cf. [5]):

[c/fl¢p =[c/flY force{M,T,F, D}

o=y '
By Proposition 2 it follows that substitution distributes
over the other logical operations in the expected way.

or
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Together with the identities generated by the truth
tables this yields a complete evaluation system for
equations oveLs(P4). We write L5(P4) = ¢ = or
shortly = ¢ = ¢, if ¢ = ¢ follows from the system
defined above and the truth tables fiy(P4).

3. A generalization of BPA with five-valued
conditions

Let A be a set of constants, b, ¢, ... denoting
atomic actions (atoms), i.e., processes that are not
subject to further division, and that execute in finite
time. We consider a generalized versiomeh; ,(A),

i.e., Basic Process Algebra (see, e.g., [3,1,8]) extended
with § ¢ A (inaction or deadlock) and with u ¢ A.
Themeaningless processu represents the operational
contents ofM, and is introduced in [4,5]. We use
the notationG . p,) (BPAs, . (A)) for a generalization

of BPAs . (A) in which alternative composition is a
special case of conditional composition ov&§(IP4)
(various other generalizations are conceivable). The
operations olG . p,) (BPA; ,(A)) are:

Sequential composition: X - Y denotes the process
that performsX, and upon completion ok starts
with Y.

Conditional composition: X +, ¥ with ¢ € L5(P4)
denotes the process that either perforkhor Y,
or representss or u, depending on the value
of ¢ (which may depend on some valuation).
(Conditional compositiorX +, Y is often denoted
X <¢rY,cf [10])

We mostly suppress thein process expressions,
and brackets according to the rule thhinds strongest.
Accommodating to classical process algebra, we shall
often use thabbreviation + for +. (modeling ‘alter-
native composition’ or ‘choice’), thuX + Y is short
forX+.7Y.

In Table 1 we give the rule of equivalence (ROE)
and the axioms of; o, p,) (BPA;, ;. (A)).

Example 5. In G p,) (BPAs ,(A)) one easily de-
rives

X+5=X,
X+X=X,
X+ u=u.
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Table 1
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Rule of equivalence and axioms GQ;S(M)(BPAB,”(A))

(ROD LsPy) o=y = X+,¥Y=X+,7Y

(CM) X+,Y =nun (GAL) X,V +,2) = X+,V)+,Z
(CO X+, X)+c Y +,¥)= (GA2) X+,Y =Y+_, X
X4c Dty X+ Y (GAY (X, V)4, X+, V) = Xk Y
(CTY X+, Y=X (GA4) X+,NZ = XZ+,YZ
(CD) X+,Y =56 (GA5) (XY)Z = X(YZ)
(Use axiom GA3 withp =T, =C,andy =D, T, M, Table 2
respectively). Rules for theu(w, ) predicate
Furthermore, with=T <¢>¢ = ¢ and GA3 it ww. ) pw. X+, ) ifw@) =M
follows that
u(w, X)
X+, X+, Y)=X+,7. Ww.X 4, ¥) if w(@)=C.T,
Finally, Proposition 2 implies that nww,Y +, X) if w(g)=C.F,
X Y=(X Y Y. (w,X-Y)
o am X+, Y)+, 2

With §, the conditional guard construct from [7]
(calledguarded command in that paper, and roughly
expressing anf _t hen_construct) can be defined as
a special case of conditional composition:

¢:—>XéX—i—¢8.

Example 6. With the axioms CC, GA2, andl + § =
X we find
X+¢Y=(¢:—>X)+(—-¢:—> Y).

An intricate identity is(¢p vV ¢) :—> X =¢ :—> X +
¥ :— X. First we derive

X+pupd=X+4,, 0+ X +6)

X +((¢V¢)<C>F) 3.

In a similar way it follows that
)

X +(¢<1C>x/f) d=X +((¢<1C>x/f)<nC>F) :

Because= (¢ V) <C>F=(¢p<aC> ) <CD>F,
we can apply the rule of equivalence (ROE).

Closed terms oveG ;. p,) (BPA;, , (A)) will be fur-
ther calledprocess terms. We provide an operational

(interpretations) of?4 in {M, T, F, D}. Valuations are
extended to propositions in the usual way. In Ta-
ble 2 we define for eaclv € W a unary predicate
meaningless, notationu (w, ), over process terms in
G cspy) (BPA; ; (A)). This predicate defines whether a
process term represents the meaningless procasas
der valuatiorw.

The axioms and rules fqr(w, ) given in Table 2
are extended by those given in Table 3, which define
transitons _—% _ as a binary relation on process
terms, and unary “tick-predicates” or “termination
transitions” _ % ./, where w ranges over\y
anda over A. Transitions characterize under which
interpretations a process term defines the possibility
to execute an atomic action, and what remains to
be executed (if anything, otherwisg’ symbolizes
successful termination). Note that if a process tétrm
has a transitiol® —=%> ..., then—u(w, P).

The axioms and rules in Tables 2 and 3 yield a
structured operational semantics (SOS) with negative
premises in the style of [9]. Moreover, they satisfy the
so calledpanth-format [15]. Using [9,15], it is easy to
establish that the meaningless instances and transitions

semantics for process terms. Given a (non-empty) setdefined by these rules are uniquely determined, and go

P4 of fluents, letw range overVV, the valuations

with the following notion of bisimulation equivalence:
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Table 3
Transition rules irpanth-format
acA a24
X5, —uw,Y) X5 X, —p(w,Y)
+
]
X+,Y =5 ifuw(g)=cC, X+,Y 25X ifwg)=c,
Y+, X 25 ifw@)=C Y+, X =5 X ifw@)=C
X w,a «/ X w,a X/
+
e
Xy 2%y, Xy 24 x' .y,
X+,Y 2%/ ifw@) =T, X+, Y =5 X ifw@)=T,
Y+, X =5/ if w@)=F Y+, X 25 X' if w(g)=F

Definition 7. A binary relationB over process terms
is a bismulation if for all P, Q with PBQ the
following conditions hold for allw € W anda € A:

o n(w, P) < ww,Q),

o P24 J e 0 BUN

o VP (P24 P = 30/(Q 25 Q' AP'BQ)),

e VO' (0 2% Q' = 3IP/(P 2% P'AP'BQ)).
Two processe®, Q arebisimilar, notationP < Q, if
there exists a bisimulation containing the pam, Q).

By the main result in [15] it follows that bisimilar-
ity is acongruencerelation for all operations involved.
Note that conditional composition constructs are con-
sidered binary operations: for eaghe L5(P4) there
is an operation+, .

We write G/_, = P = Q wheneverP < Q ac-
cording to the notions just defined, and far =
X1,.... X, G/, F1(X) = t’()g) if for all P =
Pyi,..., PyitholdsthatG/  =1(P)= t'(P). Itis not
difficult to show that in the bisimulation model thus
obtained all equations of Table 1 are true. Hence we
conclude:

Lemma 8 (Soundness)If G p,) (BPAs . (A))
t(X) =1'(X), then G/_, = 1(X) =1'(X).

Finally, we provide a completeness result for
G 5P, (BPAs , (A)). Our proof refers to the com-

pleteness result in [5], which is based on a represen-

tation of process terms for which bisimilarity implies
derivability in a straightforward way.

Definition 9. A process termP over
Gz, (BPA;  (A)) is ageneralized basic termif it is
of the form

P:=d|pnlalaP| P+, P,
wherea € A and¢g € Ls5(Py).

Lemma 10. Each processterm over
Gz, (BPA;  (A)) is provably equal to a general-
ized basic term.

In the following we relate process terms over
G c5py) (BPA;  (A)) with terms overBPA;s ,(A) ex-
tended with conditional guard constructs, of which the
conditions are in

A
L4(Ps) = Lim,1,,0)Pa, =, N A),

thus L5(P4) without C. The only operations of
BPAs, ;. (A) are sequential composition and the choice
operation+, i.e., the operation+. . In the follow-
ing, finite sumsPy + P> + --- + P, are abbreviated
by >7_1 Pi.

Let the symbok= denote syntactic equivalence, and
let £ C L5(Py).

Definition 11. A process termP over
Gz, (BPA; ; (A)) is called anl-basictermif P =
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Y ic; @i :— Qi, wherel is a finite, non-empty index
set,p; € L,andQ; €{8,a,aR|a € A, R anL-basic
term}.

Lemma 12. Eachprocesstermover G . (BPA; ,,(A))
isprovably equal to an £4(P4)-basic term.

Proof. By Lemma 10 it is sufficient to consider

generalized basic terms. Then, representation easily

follows for L5(P4)-basic terms by induction (where
axiom CC is needed, cf. footnotes 5, 6 in Section 5).
It remains to be shown that ea¢la(IP4)-basic term is
provably equal to one in whiclk does not occur in
any conditional guard construct. &s.— X = X, this
follows easily by induction on the complexity of the
guardg ing :— X. O

Theorem 13. ThesystemG . p,) (BPAs, . (A)) iscom-
plete with respect to bisimulation eguivalence.

Proof. By Lemmas 12 and 8 it is sufficient to prove
that bisimilarity betweerC4(IP4)-basic terms implies
their provable equality. A detailed (inductive) proof is
spelled outin [5], which is also sufficient as all axioms
of Basic Process Algebra with four-valued logic are
derivable fromG ;. p,)(BPA; ,(A)) (the less trivial
ones were derived in Examples 5 and 6)n

4. A generalization of ACP with five-valued
conditions

We extendG .. p,) (BPA; . (A)) to a generalized
version of ACP(A,|) (Algebra of Communicating

J.A. Bergstra, A. Ponse/ Information Processing Letters 80 (2001) 41-49

that the first action is a synchronization of bath
andY.

Parametrized left communication merge, an auxiliary

operatorX | , Y is used to definé(¢|¢ Y.

Encapsulation: 9y (X) (whereH C A) renames atoms
in H to34.

In ACP(A, |), the commutative and associative com-
munication functior}: A x A — A U {8} is given (and
extended to process terms). The axioms of our general-
ization of ACP(A, |) are those o6 2 p,) (BPA; 1, (A))
(including ROE) and those in Table 4. We adopt
the convention that+, binds weakest and binds
strongest, and denote the resulting system by
G5y (ACP(A,])). We note that thel| operation

of ACP(A,|) equals .||.. Furthermore, the opera-
tion .||, restricts || to interleaving only, while_||,

for o € {C,T,F} defines “synchronous ACP” and
-l; represents sequential composition. Some typical
Gz, (ACP(A, |)) identities are:

XM, Y =Y,l.,X,
Xoly ¥ =Yyl X,
Myly 8 =wn+,9,
Hylya=pn+, 1 (acA),
Sylya=68+,8 (aecA).

In Table 5 we give additional rules for the mean-
ingless predicate defined in Table 2 and the transi-
tion rules defined in Table 3. We stick to bisimula-
tion equivalence as defined in Definition 7, and as be-
fore it follows that bisimilarity is a congruence for
all operations involved. It is not difficult (but tedious)

Processes, see, e.g., [3,1,8]) by including encapsula-to establish that in the bisimulation model thus ob-

tion and parametrized merge operatigrs, . In the
latter, ¢ covers the choice between interleaving and
synchronization, angr determines the order of inter-
leaving and synchronization:

Parametrized merge: X ||, Y denotes the parallel ex-
ecution ofX andY under conditiong and1/.

Parametrized left merge, an  auxiliary  operator:
X4, Y denotesX ||, Y with the restriction that
the first action stems fror¥.

Parametrized communication merge, an auxiliary op-

erator:X .|, Y denotesX |, Y with the restriction

tained all equations of Table 4 are true. Furthermore,
each process term ovef .., ) (ACP(A, |)) is prov-
ably equal to a generalized basic term (see Defini-
tion 9). Hence:

Theorem 14. Thesystem G £ p,) (ACP(A, |)) iscom-
plete with respect to bisimulation eguivalence.

5. Conclusions

In this paper we have shown that process alge-
bra can be viewed from a logical perspective that
comprises the truth valueshoice C and divergent
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Table 4

Additional axioms OfGES(]}h4) (ACP(A,])),a,b,ce AandH C A

(C1 alb=bla (GDY) @) =a ifa¢ H

(C2 (alb)lc =al®]|c) (GD2) dg(a) =8 ifaeH
(GD3) 0y (X +,Y) = 0g(X) +, 0 (Y)
(GD4) 0 (XY) = 0y (X))o (Y)

(GCM1) Xy ¥ = (X4l Y, Yyl X)+, Xyl Y

(GCM2) a¢|_\_¢ X = aX

(GCM3) aXyll, Y = aX )

(GCMA) (X +, V) L, Z = X Ly Z+,Y )Ly Z

(GCMC) Xgly ¥ = Xyl Y+, Yyl X

(GCM5) aXyl, Y =agl, Yy, X)

(GCM®b) aglyb =alb

(GCM7) u¢L¢bX = (a|b)X

(GCM8)  a,l, (X+,Y) = a,l,

X+,a

oly Y

(GCMY) (X +, V)l Z = X [, Z+, Y 1, Z

D, and the basic operatiortenditional composition
and sequential composition. For instance, the axiom
X 4+, Y = é expresses thdtis associated with “diver-
gence”. This may seem incompatible with the usual
“deadlock” interpretation (modeled by the standard
axiomsX 4+ § = X and§X = §), but can be clarified
as follows: in order to support an axiomatic approach
to the interleaving hypothesisthe operation+ mod-

els “optimistic choice” in the sense th&alternatives
are discardedX + 6§ = X). E.g., the derivationb||§ =
a(bé 4 8b) 4+ ab = abs shows thas has an aspect of
divergence: the deadlockrb||$ is postponed until all
concurrent behavior has been executed.

In the following we shortly discuss the main differ-
ences between this paper and [6]. Taking four-valued
logic over{M, T, F, D} [2,14] and its combination with
process algebra [5] as a point of departure, the contri-
bution of [6] can be characterized as follows:

e The introduction ot as a ‘natural’ truth valuéand
the associated logi€s(P4).

lle, concurrency can be analyzed in terms of all possible
interleavings.

2 This establishes a second intuition for Kleene’s third truth value
(D modeling the first). We note that a complete axiomatization of
Kleene’s three-valued logic [11] admits exactlyo non-classical
truth values, the conjunction of which must eqgal

e The introduction of conditional composition as a
definable operation ifs(P4).

e An axiomatization ofACP(A, |) with conditional
guard construct ovefs(P4), 3 going with an oper-
ational semantics and a completeness result.

e A generalization ofACP(A, |): the + and merge
operators can bearameterized with propositions
over Ls(IP4) (or one of its sublogics containir@g T
andr).4

The present paper records a non-trivial extension of

our understanding of5(IP4), and of its combination

with process algebra:

e We showthat’s(Ps4, —, A, A) @andLs(Ps, _<_1> )
are interdefinable (Propositions 2 and 4).

e \We provide operational semantics and (ground com-
plete) axiomatizations for oufs(P4)-generaliza-
tions of BPAs(A) and ACP(A,|) (Theorems 13
and 14)°
Inspired by one of the referees, we end with some

considerations about a six-valued logic. By symmetry

3 These axioms are derivable e py) (ACP(A, ]).

4For the cas€dC, T, F} we give the axioms. For the proposed
generalization talg(P4) it must be required that # § in axiom
GCM8.

5In [6] we have a less general version of axiom GA3, which
requires separate axion+ § = X and X + u = u. Moreover,
in [6] the axiom CC (see Table 1) is neither present, nor derivable.
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Table 5

Additional meaningless and transition rules @ES(M) (ACP(A4, ])) in panth-format

pw, X, Y) fw@<adey)=M

u(w,X¢|¢ Y) ifw@)=M

u(w, X)
m(w, X¢H_v, V), u(w, X(pl_]/, Y),
u(w,a(le//X), p,(w,aYd)LwX),
n(w, 9 (X))

n(w, X), wip)=T

pw, X), w)=C

pw X, Y) i w@)=C.T.F,
pw,a,l, X) if w@)=C,F,
pu(w,aY J, X) if w(¢)=C,F,

w@w, X 41, ¥),

w(w, X I, V) it w@)=C.T.F,
M(wsyd,‘lwx) if wi¢)=C,T,F,

(W, Xy, Y), pw, ¥ 1, X)

p(w, X), w)=F

w(w,ayl, X), p(w,al |, X)

pw,Y ), X)  if w@)=C,T.F,
ww, X @) if w@)=C,F,
pmw, X, a¥) if w(¢)=C,F,

ww, Y yl, X),

p(w, X 1, @), p(w, X |, a¥)

X =5, mpw, Y), w@)=C,T

X, Y =%y ifw@y)=CT,
Yd,u,,,XMY if wy)=C,F

x 24 s Y—>w’b Jeoalb=c

X =5 X, —p(w,Y), w@)=C,T

X, Y =5 X, Y ifw@)=C,T,
Y¢\|,,,XM> Y ll, X" if w(y)=C,F

X 24 oy 2bhy ab=c

X¢||wyﬂ>¢ if w(g)=C,F
andw(y¥)=C,T,F,
Xyl, Y =5 ifw@)=CT,F,

w,c
XL, v 25
X 24 xy b g b=c

X I, Y LSy ifw(@)=C,F
andw(y) =C,T,F,
X,l, ¥ =5Y ifw@y)=CTF,

w,c /
Xyl ¥ =5 Y

X 24 xy Wby g h=c

X, Y =5X" ifw@)=CF
andw(y) =C,T,F,
Xyl Yy 25 X if wy)=C,T,F,
w,c /
XL, Y =5 X

x _W.a \/

X¢MYM>Y,

o (X) 25 ifag¢ H

X, Y =5 X, Y ifw@)=CF
andw(y) =C,T,F,
w,c

X4y Yy =5 X' I, Y ifw@)=CT,F,
Xyl Y =5 X, Y

x 24 x/

X L, Y =5X ), 7,
g (X) 2% 9y (X') ifa¢ H
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Fig. 2. Six ordered truth values.

one can distinguish a greatest lower bound (notation
n) of T and F that majorizesD (see Fig. 2), and
extend the definition of conditional composition with
x<(TNF)»>y=uxny. This yields a six-valued
logic in which the identities < (T F) > F =F and

F <D F =D illustrate the difference betweenn

F and D. Although this logic is simple and elegant
(e.g., conditional composition also distributes over
n, cf. Proposition 1), we see no algorithmic motive
for distinguishingD and T n F. We can employ
process algebraic conditional composition to support
this position: byx < (T 1 F) > x = x we obtain the
associated identityX +, . X = X, and byx < (TN
F)>D =D we find X 4+, § = 4. This illustrates
that the operation4-,,. models a notion of choice,
say “pessimistic choice”, for which we have no useful
intuition or application®

Acknowledgements

We thank the referees for useful and inspiring
comments.

6 when combining this six-valued logic with process algebra, the

axiom CC (see Table 1) appears to be the only one that should [15]

be changed: it allows one to derive undesirable identities, such
asa 4+ b= (a + X) 4+ b. We note that CC is crucial for
Lemma 12, and thereby for our completeness results.

(10]

(13]

[14]
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