
Information Processing Letters 80 (2001) 59–65

Equivalence of recursive specifications in process algebra

Alban Ponsea,b,∗, Yaroslav S. Usenkoa
a CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

b University of Amsterdam, Programming Research Group, P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

Received 28 August 2000; received in revised form 21 December 2000

Abstract

We define an equivalence relation on recursive specifications in process algebra that is model-independent and does not
involve an explicit notion of solution. Then we extend this equivalence to the specification languageµCRL.  2001 Elsevier
Science B.V. All rights reserved.

Keywords: µCRL; Process algebra; Equivalence of recursive specifications

1. Introduction

In process algebra, infinite behavior is usually spec-
ified by means of recursive equations.1 A simple ex-
ample isX = a · X, modeling a process that repeat-
edly executes actiona. It is often convenient to con-
sider asystem of interdependent recursive equations.
For instance, a communication protocol can be speci-
fied such that each of its parallel components (sender,
receiver, etc.) is modeled by one or more equations.
In the following we will use the terminology ‘system
of recursive equations’ to denote a set of one or more
equations in the sense sketched above.

Although the specification of processes by means
of systems of recursive equations serves its purpose
well, proof theory for this type of specification is
not entirely trivial, and goes with various particular
ingredients. For instance, we often want to assert

* Corresponding author.
E-mail address: alban.ponse@cwi.nl (A. Ponse).

1 An alternative method of specification is the use of recursive
operations, such as the Kleene star [4], or the use of fixpoint
operators [16].

that such a system represents a particular process
in some intended model as theunique solution for
one of its variables. As an example, the recursive
equationX = X has (in any model) any process as
its solution, and the equationX = X + a (where+
models choice) has many solutions (in many models),
whereasX = a · X has no solution in models that
represent only finite processes. In the case that a
system of recursive equations has a unique solution
(per variable) in some intended model, we say that
this system is a recursivespecification: some intended
process is specified by means of recursive equations.
Often, establishing the uniqueness of solutions is
intertwined with verification purposes. If one can show
that each solution for some distinguished variable in
a system of recursive equations is also a solution for
a smaller and simpler system (or vice versa), and
both systems have unique solutions per variable, then
both systems specify the same process, one focusing
on ‘implementation details’, and the other abstracting
from these and focusing on the external behavior of
the whole system. Comparing solutions of systems of

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00218-6

60 A. Ponse, Y.S. Usenko / Information Processing Letters 80 (2001) 59–65

recursive equations often plays a major role in process
verification.

In this paper we introduce an equivalence on recur-
sively specified processes that is based on thepreser-
vation of solutions. This equivalence results from the
theory of equivalences for regular systems of equa-
tions and applicative program schemes, as developed,
among others, by Courcelle in [5,6]. Systems of (re-
cursive) equations are considered with respect to their
full sets of solutions in all models. As noted in [3],
considering such a notion of equivalence avoids cer-
tain drawbacks of other methods used in process alge-
bras, such as the restriction of the process domains to
the ordered ones and considering the least solutions of
recursive systems, or the restriction to systems that are
guarded, and considering only the domains where all
such systems have unique solutions (see [2]). In many
cases, especially when data parameters are involved,
such restrictions can be difficult to handle. We use
the specification languageµCRL [13,12] to describe
our approach. This language comprises an extension
of process algebra with features that involve data for
the specification of processes: actions, recursive speci-
fication, communication, summation, and conditionals
can all be data-parametric. For instance, it is not pos-
sible to justify transformations of recursive systems in
value passing process algebras likeµCRL using the
method of restricting to syntactically guarded systems.
For many models of processes (resembling different
equivalences, see, e.g., [8,9]) guardedness becomes a
more involved notion. Therefore it is useful to consider
a model-independent equivalence of recursive systems
in process algebra, and to use model specific equiva-
lences only in cases where the former one is not suffi-
ciently strong.

Typical for our approach is that we separate the
question to unique solutions from the question how so-
lutions of systems of recursive equations can be com-
pared. This splitting of notions is worthwhile: prop-
erties of solutions are interesting for verification pur-
poses, whereas comparison of systems of recursive
equations is a fundamental notion that in itself can
be applied in a model-independent way, only adher-
ing to the axioms of process algebra. The comparison
of systems of recursive equations plays a major role in
the tool support forµCRL because such systems are
transformed into linear form while preserving all their
solutions [14]. Several kinds of optimizational trans-

formations ofµCRL specifications, see, e.g., [10], can
be proved to be correct using the equivalence relations
presented in this paper.

Structure of the paper. In order to give a simple ex-
position, we start out from the well-known process
algebra system BPA (Basic Process Algebra) in Sec-
tion 2. We characterize the equivalence mentioned,
and consider some examples. Then, in Section 3 we
generalize our equivalence to the setting ofµCRL.
The paper is ended with some conclusions.

2. Equivalence of BPA systems

Recall that the axioms of BPA (Basic Process
Algebra, see, e.g., [2,7]) are the following:

(A1) x + y = y + x
(A2) x + (y + z) = (x + y)+ z
(A3) x + x = x

(A4) (x + y) · z = x · z+ y · z
(A5) (x · y) · z = x · (y · z)
where+ models alternative composition and· sequen-
tial composition. We further omit brackets in repeated
applications of+ and·.

For termst, u over the signature of BPA we write

BPA � t = u
if t = u can be proved from BPA in equational logic.
Furthermore, let�x = x1, . . . , xn be a sequence of
variables. Then we writet (�x) if all free variables
of t are in �x. In this section we consider systems
of (recursive) equations over the signature of BPA.
As a convention for this section we shall use capital
letters for the variables in such systems, in order
to distinguish these from the variables in the BPA
axioms.

Let n fresh variablesX1, . . . ,Xn = �X and terms
t1(�X), . . . , tn(�X) over BPA be fixed. Then we call

G= {
Xi = ti(�X) | i = 1, . . . , n

}

a system of process equations over BPA. A simple
example is{X1 = a ·X2, X2 = b ·X1}. Furthermore, we
call (Xi ,G) for a particulari a process definition (this
terminology is syntax-oriented; the question whether

A. Ponse, Y.S. Usenko / Information Processing Letters 80 (2001) 59–65 61

(Xi ,G) really ‘defines’ a process is a model dependent
one).

Let M be a model of BPA with domainM. Then
(m1, . . . ,mn) ∈Mn is a solution of G in M if for all
i = 1, . . . , n and interpretation functionsI satisfying
I(Xi)=mi ,
M,I |= Xi = ti(�X). (1)

We further abbreviate (statements like) (1) to

M |=mi = ti(�m).
In this case we say thatmi is a solution of(Xi ,G) in
M. Finally, givenG as above, i.e.,

G= {
Xi = ti (�X) | i = 1, . . . , n

}
,

we define for term sequence�v = v1, . . . , vn,

G(�v) �=
n∧
i=1

vi = ti(�v).

We now turn to the preservation of solutions. Let

H = {
Yj = uj (�Y) | j = 1, . . . , k

}

be a system ofk process equations over BPA such that
�X and �Y = Y1, . . . ,Yk do not share any variable. The
preservation of solutions refers to designated process
definitions ofG andH , usually(X1,G) and(Y1,H),
respectively.

Definition 1. LetG refer to the setting whereX1, . . . ,

Xn = �X are regarded as constants and the equations in
G as additional axioms. We say that(X1,G) implies
(Y1,H), notation

(X1,G)⇒ (Y1,H),

if there exist termsw1, . . . ,wk = �w with wi = wi(�X)
such that

BPA∪G � X1 =w1, and

BPA∪G �wj = uj (�w) for all j = 1, . . . , k.

In the case of BPA,⇒ characterizes the preserva-
tion of solutions. This can be seen as follows: we say
that(X1,G) is preserved by (Y1,H), notation

(X1,G)
 (Y1,H),

if in each model of BPA, each solution of(X1,G) is
also a solution of(Y1,H). So,(X1,G)
 (Y1,H) if in
each modelM of BPA, say with domainM, ∀ �m ∈

Mn(M |= G(�m) ⇒ ∃�n ∈ Mk(M |= H(�n) ∧ m1 =
n1)). Thus, a characterization of(X1,G)
 (Y1,H) in
first order logic is the following:

BPA |= ∀�X(
G(�X)→ ∃�Y(H(�Y)∧ X1 = Y1)

)
. (2)

We proceed to show that
 is characterized by
⇒, i.e., to derive from (2) necessary and sufficient
proof obligations inequational logic. Let the symbol
�fol refer to derivability in first order logic. By the
completeness of first order logic, (2) is equivalent with

BPA �fol ∀�X(
G(�X)→ ∃�Y(H(�Y)∧ X1 = Y1)

)
,

and thus with

BPA �fol ∀�X∃�Y(
G(�X)→H(�Y)∧ X1 = Y1

)
.

Because the variablesX1, . . . ,Xn do not occur in the
axioms of BPA, the latter statement is equivalent with:

BPA �fol ∃�Y(
G(�X)→H(�Y)∧ X1 = Y1

)
.

The above statement is in turn equivalent with:

There exist termsw1, . . . ,wk = �w
with wi =wi(�X) such that

BPA �fol G(�X)→H(�w)∧ X1 =w1,

and finally also equivalent with:

There exist termsw1, . . . ,wk = �w
with wi =wi(�X) such that

BPA∪G �fol H(�w)∧ X1 =w1.

(This last equivalence follows from the Deduction
Theorem on open formulae, see, e.g., [17, pp. 33, 34].)

Now we have transformed our logical characteriza-
tion of the preservation of solutions into the setting of
equational logic:

Theorem 2. Let (X1,G) and (Y1,H) be process
definitions over BPA. Then (X1,G)
 (Y1,H) iff
(X1,G)⇒ (Y1,H).

Proof. (X1,G)
 (Y1,H) iff (2) holds. As argued
above, this is the case iff there exist termsw1, . . . ,

wk = �w with wi = wi(�X) such thatG �fol H(�w) ∧
X1 =w1 is derivable from BPA∪G in first order logic,
which in turn is the case iff each conjunct is derivable,
or in other words, iff (X1,G) ⇒ (Y1,H). (By the

62 A. Ponse, Y.S. Usenko / Information Processing Letters 80 (2001) 59–65

completeness of first order logic and of equational
logic, for any setΓ of equationsΓ � t = u iff Γ �fol

t = u.) ✷
Implication between process definitions induces the

following equivalence between process definitions:

(X1,G)= (Y1,H)

if (X1,G) ⇒ (Y1,H) and (Y1,H) ⇒ (X1,G). Evi-
dently, this is an equivalence. (We do not treat its pos-
sible congruence property: we do not have any use for
that.)

Some examples. If G = {X = X + a + b} andH =
{Y = Y + a}, then(X,G)⇒ (Y,H) but not vice versa.

If G = {X1 = a · X2, X2 = b · X1} andH = {Y =
a · b · Y}, then(X1,G) = (Y,H), the proof of which
we leave to the reader.

The systemsG= {X = a ·X} andH = {Y = a ·Y ·b}
are incomparable: in the model with domainZ, and
with + interpreted as maximum,· as addition, anda as
the value−1 andb as the value 1, there is no solution
for X and many forY. The converse holds in casea is
interpreted as 0 andb as 1.

If G = {X1 = a + X1 · a, X2 = a · X2} andH =
{Y = a+Y ·a}, then(X1,G)⇒ (Y,H), but the reverse
implication does not hold. Consider the model where
processes are trees with finite paths, but possibly in-
finite branching, taken modulo bisimulation equiva-
lence In this model(Y,H) has a solution which is the
class of trees representing the process

∑
i∈Nat a

i+1.
ButG has no solutions in this model because of its sec-
ond equation, which requires an infinite path. See [2,
p. 33] and [1, p. 153] for more information about this
counterexample.

3. Up to µCRL

The languageµCRL [13,12] is an extension of
ACP-style process algebra with data-parametric ac-
tions, alternative composition over data domain, value-
passing communication, and conditions. Furthermore,
recursion inµCRL allows to specify data-parametric
processes by means of systems of data-parametric
process equations.

The axioms ofµCRL define two sorts, Booleans
Bool and processesProc, which are part of anyµCRL

specification. Other data types, like natural numbers,
integers, lists, queues, stacks, and domain specific data
types can be defined by algebraic specifications.

Let �f = f1, . . . , fn be a sequence of typed function
symbols f1 :

−→
Df1 → Proc, . . . , fn :

−→
Dfn → Proc for

given data types
−→
Dfi , and �d be a sequence of (typed)

data variables. Then we writet (�f , �d) for a termt over
the signature ofµCRL extended with�f , if all its free
data variables are in�d .

Let n fresh typed function symbolsX1, . . . ,Xn be
fixed. Then we call

G= {
Xi (

−−−−−→
dXi :DXi)= ti(�X,−→dXi) | i = 1, . . . , n

}

a system of process equations over µCRL. Each
function symbolXi is called aprocess name of G.
Furthermore, we call each pair(Xi (

−→
dt),G), for some

appropriately typed sequence of data terms
−→
dt , a

process definition. As an example,

G= {
X(b : Bool)= a(b) · X(¬b)}

is a system of process equations, and(X(t),G) and
(X(b),G) wheret stands for “true” andb is a Boolean
variable, both are process definitions.

Process definitions inµCRL comprise a restricted
form of recursive applicative program schemes as
defined in [5,6]. The restrictions are that all unknowns
(process names) have the same rangeProc and that
there are no functions fromProc to other sorts. On
the other hand, process definitions extend recursive
applicative program schemes with binders (because
the sum operators ofµCRL are binders), and therefore
require a more refined approach for a formal treatment,
such as generalized equational logic [11].

Let M be a model ofµCRL and the data types
used inG and�t , with domainsP for processes,B for
Booleans andDXi for DXi . A solution of G in M is a
tuple(f1, . . . , fn) of functionsfi :

−→
DXi → P such that

for all i = 1, . . . , n

M |= fi(−→dXi)= ti(�f ,−→dXi).

In this casefi(
−→
tM) is a solution of(Xi(�t),G) in M.

GivenG as above, let

H = {
Yj (

−−−−−→
dYj :DYj)= uj (�Y,−→dYj) | j = 1, . . . , k

}

be a fresh system of process equations overµCRL.
We say that(X1(�t),G) is preserved by (Y1(�u),H),
notation(
X1(�t),G

)
 (
Y1(�u),H

)
,

A. Ponse, Y.S. Usenko / Information Processing Letters 80 (2001) 59–65 63

if in each modelM of µCRL and the data we have

∀ �f ((∀iM |= fi(−→dXi)= ti (�f ,−→dXi)
)

⇒
∃�g(∀j M |= gj (−→dYj)= ui(�g,−→dYj) ∧

M |= f1(�t)= g1(�u)
))
,

wherefi :
−→
DXi → P andgj :

−−→
DYj → P .

We now define implication between process defini-
tions in the setting ofµCRL. Let the symbol� stand
for derivability in generalized equational logic. We say

that (X1(
−→
dt),G) conditionally implies (Y1(

−→
dt′),H),

notation
(
X1(

−→
dt),G

) ⇒c

(
Y1(

−→
dt′),H

)
,

if there exist termswj(
−→
dYj)=wj(�X,−→dYj) such that

µCRL∪ DATA ∪G � X1(
−→
dt)=w1(

−→
dt′),

and for allj = 1, . . . , k,

µCRL∪ DATA ∪G �wj(−→dYj)= uj (�w,−→dYj).

Here DATA represents the specification of the data

types involved in both systems and in
−→
dt and

−→
dt′ . Fur-

thermore,G refers to the setting where the equations
in G are considered to define additional axioms.

We continue with an example. As before, letG =
{X(b : Bool) = a(b) · X(¬b)} and, withNat a specifi-
cation of the naturals,H = {Y(n : Nat)= a(even(n)) ·
Y(S(n))}. We show that
(
X(t),G

) ⇒c

(
Y(0),H

)

by choosingw(n) = X(even(n)). In this case we need
to show thatX(t)=w(0) (this follows fromeven(0)=
t, which we assume to be derivable fromDATA) and
that X(even(n)) = a(even(n)) · X(even(S(n))). This
latter identity follows fromX(b) = a(b) · X(¬b) and
the necessarily derivable data identityeven(S(n)) =
¬even(n). If we assume the existence of a function
f : Bool → Nat, defined byf (t) = 0 andf (f) = 1
(wheref stands for “false”), we can also prove that
(
X(b),G

) ⇒c

(
Y(f (b)),H

)

using the same termw(n) and the data identities
even(f (b)) = b and even(S(f (b))) = ¬b, both of
which seem reasonable. We do not have any of
the reverse implications: consider the model with
carrier setNat, in which a(b) is interpreted as 1, and

sequential composition as+. Then Y(0) has many
solutions, whereasX(t) has none.

Theorem 3. Let (X1(
−→
dt),G) and (Y1(

−→
dt′),H) be

process definitions over µCRL. If (X1(
−→
dt),G) ⇒c

(Y1(
−→
dt′),H), then (X1(

−→
dt),G)
 (Y1(

−→
dt′),H).

Proof. Let M be a model forµCRL with data
theories for the data types used inG, H ,

−→
dt , and−→

dt′ , and let wj(
−→
dj) be such that(X1(

−→
dt),G) ⇒c

(Y1(
−→
dt′),H). Now assume thatG has a solution inM.

So for i = 1, . . . , n there arefi(
−→
di) such thatM |=

fi(
−→
di) = ti(�f ,−→di) wherefi is the interpretation of

Xi . Then, by M |= f1(
−→
dt) = w1(

−→
dt′) and M |=

wj(
−→
dYj)= uj (�w,−→dYj) the theorem follows. ✷

The question whether our definition of⇒c is com-
plete in the sense that itcharacterizes the preservation
of solutions (in all models) is hard to answer. In gen-
eral, proof principles such as induction are intertwined
with such a question (cf. the example below).

We defineconditional equivalence, notation
(
X1(

−→
dt),G

) =c
(
Y1(

−→
dt′),H

)
,

by requiring conditional implications in both direc-
tions. Indeed, conditional equivalence is an equiva-
lence relation.

An example. Let NAT be a specification of the nat-
urals comprising induction schemes (see, e.g., [15]),
and letG andH be the following systems of equa-
tions:

G=




X1(n : Nat)= (
a · X2(n− 1)+

X1(n− 1)
) ✁ n > 0✄ a,

X2(n : Nat)= a · X2(n− 1)

✁ n > 0✄ a




H =




Y1(n : Nat)= (
a + Y1(n− 1) · a

)

✁ n > 0✄ a,

Y2(n : Nat)= a · Y2(n− 1)

✁ n > 0✄ a




We show that(Xi (n),G) =c (Yi (n),H) for i = 1,2.
For both implications⇒c and ⇐c we choose the
termsw1 and w2 to be trivial, namely, in the first

64 A. Ponse, Y.S. Usenko / Information Processing Letters 80 (2001) 59–65

casew1(n)= X1(n),w2(n)= X2(n), and in the second
casew1(n)= Y1(n), w2(n) = Y2(n). The proofs then
reduce to showing that

µCRL∪ NAT ∪G � X1(n)

= (
a + X1(n− 1) · a

) ✁ n > 0✄ a

and

µCRL∪ NAT ∪H � Y1(n)

= (
a · Y2(n− 1)+ Y1(n− 1)

) ✁ n > 0✄ a

First we show by induction onn thatµCRL∪NAT ∪
G � a · X2(n)= X2(n) · a. The casen= 0 is trivial. In
the other case we get:

a · X2(n+ 1) = a · a · X2(n)

IH= a · X2(n) · a = X2(n+ 1) · a

Similarly,µCRL∪ NAT ∪H � a · Y2(n)= Y2(n) · a.
Next, we show by induction onn that µCRL ∪

NAT ∪G � a · X2(n)+ X1(n)= a + X1(n) · a. Again,
for n = 0 we geta · a + a in both sides. In the other
case we get:

a · X2(n+ 1)+ X1(n+ 1)

= a · a · X2(n)+ a · X2(n)+ X1(n)

and

a + X1(n+ 1) · a

= a + (
a · X2(n)+ X1(n)

) · a

= a + a · X2(n) · a + X1(n) · a

= (
a + X1(n) · a

) + a · a · X2(n)

IH= a · X2(n)+ X1(n)+ a · a · X2(n)

= a · a · X2(n)+ a · X2(n)+ X1(n)

Next, we show that a similar identity is derivable
from H , namelyµCRL ∪ NAT ∪ H � a · Y2(n) +
Y1(n)= a + Y1(n) · a. Again, the casen= 0 is trivial,
and in the other case we have:

a · Y2(n+ 1)+ Y1(n+ 1)

= a · a · Y2(n)+ a + Y1(n) · a

= a + a · a · Y2(n)+ Y1(n) · a

and

a + Y1(n+ 1) · a

= a + (
a + Y1(n) · a

) · a

IH= a + (
a · Y2(n)+ Y1(n)

) · a

= a + a · Y2(n) · a + Y1(n) · a

= a + a · a · Y2(n)+ Y1(n) · a

The last two identities imply the conditional equality
we are proving.

It is important to note that the equation forY2 is
not needed for the preservation of solutions. IfH ′
is the systemH with only the first equation, then
(Y1(n),H

′)
 (Y1(n),H). This is due to the fact that
the equation forY2 has a solution in each model of
µCRL and NAT, namely the functionf : Nat → P

such thatf (0) = a and f (n + 1) = a · f (n). This
differs with the necessity of the equation forY2 in the
last example of Section 2.

4. Conclusions

We have defined equivalence between (recursive)
process definitions over BPA, and showed that this
equivalence emerges from a logical characterization
of the preservation of solutions. Furthermore, we
have presented a straightforward generalization of
this equivalence to the data-parametric setting of
µCRL. The main motivation to write this paper is to
show that reasoning about equality (or implication)
between solutions of systems of equations can be
separated from considerations about unique solutions.
As a consequence, transformation algorithms (e.g., for
tools as now are available forµCRL) can be easily
proved correct (cf. [14]).

We note that our counter examples concern models
that do not satisfy theleft cancellation property, i.e.,

a · x = b · y→ a = b ∧ x = y,
where a and b are actions. The left cancellation
property holds in common process semantics.

Future work could focus on defining transforma-
tions of recursive systems in process algebras and
µCRL that preserve the equivalence or the implica-
tion defined in this paper. Such transformations were
studied in [5] in a general setting, but applying them
to process algebras may be useful for optimization and
verification purposes.

A. Ponse, Y.S. Usenko / Information Processing Letters 80 (2001) 59–65 65

Acknowledgements

We thank Bas Luttik for careful proofreading of the
manuscript and useful comments.

References

[1] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, On the consistency of
Koomen’s fair abstraction rule, Theoret. Comput. Sci. 51 (1/2)
(1987) 129–176.

[2] J.C.M. Baeten, W.P. Weijland, Process Algebra, Cambridge
Tracts in Theoretical Computer Science, Vol. 18, Cambridge
Univ. Press, Cambridge, 1990.

[3] D.B. Benson, I. Guessarian, Algebraic solutions to recursion
schemes, J. Comput. System Sci. 35 (1987) 365–400.

[4] J.A. Bergstra, I. Bethke, A. Ponse, Process algebra with
iteration and nesting, Comput. J. 37 (4) (1994) 243–258.

[5] B. Courcelle, Equivalences and transformations of regular
systems — applications to recursive program schemes and
grammars, Theoret. Comput. Sci. 42 (1986) 1–122.

[6] B. Courcelle, Recursive applicative program schemes, in:
J. van Leeuwen (Ed.), Handbook of Theoretical Computer
Science, Vol. B, Elsevier, Amsterdam, 1990, pp. 459–492,
Chapter 9.

[7] W.J. Fokkink, Introduction to Process Algebra, Texts in
Theoretical Computer Science, An EATCS Series, Springer,
Berlin, 2000.

[8] R.J. van Glabbeek, The linear time–branching time spec-
trum, II. The semantics of sequential systems with silent
moves, Manuscript. Preliminary version available by ftp at
ftp://boole.stanford.edu/pub/spectrum.ps.gz, 1993. Extended
abstract, in: E. Best (Ed.), Proc. CONCUR’93, 4th Internat.

Conf. on Concurrency Theory, Hildesheim, Germany, Lec-
ture Notes in Comput. Sci., Vol. 715, Springer, Berlin, August
1993, pp. 66–81.

[9] R.J. van Glabbeek, The linear time–branching time spec-
trum. I. The semantics of concrete, sequential processes, in:
J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of
Process Algebra, Chapter 1. Elsevier, to appear. Available at
http://boole.stanford.edu/pub/spectrum1.ps.gz.

[10] J.F. Groote, B. Lisser, Computer assisted manipulation of al-
gebraic process specifications, Technical Report, CWI, Ams-
terdam, To appear.

[11] J.F. Groote, S.P. Luttik, Undecidability and completeness
results for process algebras with alternative quantification
over data, Report SEN-R9806, CWI, The Netherlands, July
1998. Available from http://www.cwi.nl/∼luttik/; submitted
for publication.

[12] J.F. Groote, A. Ponse, Proof theory forµCRL: A language for
processes with data, in: D.J. Andrews, J.F. Groote, C.A. Mid-
delburg (Eds.), Semantics of Specification Languages, Work-
shop in Computing Series, Springer, Berlin, 1994, pp. 232–
251.

[13] J.F. Groote, A. Ponse, The syntax and semantics ofµCRL,
in: A. Ponse, C. Verhoef, S.F.M. van Vlijmen (Eds.), Algebra
of Communicating Processes 1994, Workshop in Computing
Series, Springer, Berlin, 1995, pp. 26–62.

[14] J.F. Groote, A. Ponse, Y.S. Usenko, Linearization in parallel
pCRL, Technical Report SEN-R0019, CWI, July 2000.

[15] J.F. Groote, J.J. van Wamel, Algebraic data types and induction
in µCRL, Technical Report P9409, University of Amsterdam,
Programming Research Group, 1994.

[16] R. Milner, Communication and Concurrency, Prentice-Hall,
Englewood Cliffs, NJ, 1989.

[17] J.R. Shoenfield, Mathematical Logic, Addison-Wesley, Read-
ing, MA, 1967.

ftp://boole.stanford.edu/pub/spectrum.ps.gz
http://boole.stanford.edu/pub/spectrum1.ps.gz
http://www.cwi.nl/~luttik/

