Register-Machine Based Processes

JAN A. BERGSTRA

University of Amsterdam, The Netherlands; Utrecht University, The Netherlands
AND
ALBAN PONSE

University of AmsterdanThe Netherlands<CWI, AmsterdamThe Netherlands

Abstract. We study extensions of the process algebra axiom sys@#hwith two recursive opera-

tions: thebinary Kleene stak, which is defined byx*y = x(x*y) + y, and thepush-dowroperation

$, defined byx®y = x((x®y)(x®y)) + y. In this setting it is easy to represent register machine com-
putation, and an equational theory results that is not decidable. In order to increase the expressive
power, abstraction is then added: witioted branching bisimulation equivaleneach computable
process can be expressed, and wgthtedr -bisimilarity each semi-computable process that initially

is finitely branching can be expressed. Moreover, with abstraction and a finite number of auxiliary
actions these results can be obtained without binary Kleene star. Finally, we consider two alternatives
for the push-down operation. Each of these gives rise to similar results.
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1. Introduction

In this paper we take as a point of departure the process algebra axiom system
ACP, that is, the Algebra of Communicating Processes defined by Bergstra and
Klop [1984] and overviewed in Baeten and Weijland [1990], Baeten and Verhoef
[1995], and Fokkink [2000]AcP is an algebraic approach to concurrency theory
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that supports the interleaving hypothesis: concurrency can be modeled and analyzed
in terms of the interleaving and synchronization of actions (elementary, indivisable
processes) by a small number of primitive operations. (This is further explained
in Section 2.) Although the syntax P is suitable for the specification of finite
processes, itis common practice to consider (potentially) infinite behavior, specified
by means of recursive equations, and analyzed with help of the axiome®a@ind
specific proof rules. Here we follow a different approach to the specification of
infinite behavior and use recursive (or “iterativeif)erationsinstead (cf. Bergstra

et al. [1993, 1994] and Bergstra and Ponse [2001]; for an overview see Bergstra
etal.[2001]). This approach has lately attracted significant attehtiod,provides a

way to handle infinite processes as terms, hence supporting the equational founding
of process algebra.

The purpose of this paper is to establish elementary computability and expres-
sivity results of some particular extensionsaalP with recursive operations. We
consider thebinary Kleene stamas the most basic recursive operation. This op-
eration, notationk, stems from Kleene [1956] and is in process algebra defined

by

X*y=x-(xy)+y
(cf. Bergstra et al. [1993, 1994]). Here, is the process algebra operation that
models choice, and(product) models sequential composition. (As usublnds
stronger thant and the symbol is often omitted.) With the binary Kleene star

one specifiesegular processeghat is, finite state processes. As an example, for
actionsa andb, the process terra*b characterizes the following behavior:

b
ah 2 Ly
(o

\aj

where the labeled arrows represent the execution of actiong/ @xgresses termi-
nation. The present paper can be seen as a follow-up of Bergstra et al. [1994], where
we showed thahcP extended with abstraction and binary Kleene star is suitable
to express eactegular process if one adopts common behavioral semantics.

In this paper we first consider an extension &P with two recursive
operations:

—the binary Kleene sta¥ as introduced above;

—thepush-dowroperation $, defined by®y = x((x®y)(x®y)) +y (in Bergstra and
Ponse [2001]).

In Section 3 we describe a setting in which (unary) recursive functions are computed
by “register-machine based processes.” Register machine programs and registers,
that is, the essential ingredients of register machine computation, are modeled
by sequential, deterministic processes. A register machine computation is then

1 The quest for axiomatizations of various behavioral equivalences for various forms of iteration
turned out to be attractive: see, for example, Fokkink and Zantema [1994], Fokkink [1994, 1996,
1997], Aceto et al. [1996, 1998b, 1998c], Aceto andalifigddttir [1996], Aceto and Fokkink [1997],

van Glabbeek [1997], and Aceto and Groote [1999].
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specified as the parallel composition of these processes, and results in a sequence of
synchronization actions that stem from communications between the “program”
and the “registers.” There is one distinct register that initially contains the input
value, and upon termination of the program the (computed) output value. In the
case of nondefinedness, the register machine computation diverges by performing
an infinite sequence of synchronization actions. It easily follows that the resulting
theory (the set of consequences provable from our extensiarrdis undecidable.

In spite of having established a set-up in which all recursive functions can be
“implemented,” the resulting setting is not yet sufficiently expressive: even some
very simple processes cannot be definesldn extended with- and $ (its standard
semantics—strong bisimilarity, see Park [1981]—being taken for granted). This is
for instance the case for the proceseecursively defined below with actiorss
andb:

p=ag+Db, b

p
g=ap+a, or inapicture: ( W
a a

NP

This lack of expressivity is solved in Section 4, where we incladstrac-
tion as an additional feature. We consider two well-known approaches:

—in the setting ofrooted branching bisimilarityeach computable process over a
finite alphabet of labels can be expressed,

—with rooted t-bisimilarity each semi-computable process over a finite alphabet
of labels that initially is finitely branching can be expressed.

Moreover, with abstraction (and auxiliary actions) at hand, the use of the binary
Kleene star can be avoided.

Finally, we consider in Section 5 two alternatives for the push-down operation,
and argue that the results described above are preserved. The article ends with
some conclusions (Section 6). We added an appendix on the uniform construction
of register machines with two registers (based on Minsky [1967]).

2. Processes inCP*$(A, ~)

In this section we briefly recall the process algebra axiom syatahand consider

its extension with the recursive operatioagnd $ in detail. Then we provide a
(standard) operational semantics. Finally, we show that the second example process
described in the Introduction cannot be expressed in the present extension.

2.1. AXIOM SYSTEMS UP TOACP**(A,~). Let A be a finite set of actions
a,b,...andlety: Ax A— Abe a partial function that isommutativeandasso-
ciative

~(a, b) = ~(b, a) @f ~(a, b) | (i.e.,~(a, b) defined,
(@, (b, ¢)) = v(v(a, b),c) if v(a v(b,c)) .

The functiony definescommunication actionsnd models the simultaneous execu-
tion of actions. In the case that for allb, c € A, v(a, (b, ¢)) is undefined while
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~ is not fully undefined orA x A, we speak ohandshakindtwo-party communi-
cation, see Bergstra and Tucker [1984]). The action®sahd the communication
function~ can be regarded as the parameters of the axiom systerdefined by
Bergstra and Klop [1984]. Henceforth we shall wreP(A, ~). The signature of
ACP(A, 7) is as follows:

sorts: A (a given, finite set of actions)
P (the set of process termé;C P),

operations: +:P x P — P (alternative composition or sum)
i PxP—P  (sequential composition or product)
|:PxP—P (parallel composition or merge)
| :PxP—P (leftmerge)
|[:PxP—>7P (communication merge, given: Ax A— A),
o . P—>"P (encapsulationH C A),

constants: §eP\ A (deadlock or inaction)

We take- to be the operation that binds strongest, apdhe one that binds
weakest. As usual in algebra, we often wrkg instead ofx-y. Furthermore,

for n> 0 we definex"! asx-x", andx! asx. The left merge and the commu-
nication merge are auxiliary operations (allowing a finite axiomatization of the
merge):x ||y is asx || y with the restriction that the first action must stem from

X, andx |y is asx || y, except that the first action must be a communication be-
tweenx andy. Finally, encapsulation can be used to enforce communications
between parallel components (this is illustrated by some examples in the sequel).
Closed terms are further callpdocess termsn order to stress that these represent
processes.

In Table I, the axioms of the systeatP(A, +) are collected, whera ranges
over A; = AU {§}. Although the||-operation is not axiomatized as an associative
and commutative operation, it has these properties for all process terms (this can
be proved with structural induction).

Example2.1.1. As an example, assuméa, b) =c. Then one can derive in
ACP(A, ) that

a?| b* = a(a || b* + b(b || a%) + c(a || b)

a(a-b®+b(b | a)+ch)

+Db(b-a’+a(a | b)+ca)

+c(ab+ba+c)

= a(a- b® + b(ba+ ab+ c) + ch)
+b(b - a? + a(ab+ ba+ c) + ca)
+c(ab+ ba+c).

The first five axioms (A1)—(A5) form the core syst&pA(A) (Basic Process Al-
gebra), and adding (A6) and (A7) BPA(A) yieldsBPAs(A). For a detailed intro-
duction toBPA(A)—ACP(A, +) and an intuitive account see, for example, Baeten
and Weijland [1990] and Fokkink [2000].

The binary Kleene star was added to process algebra by Bergstra et al. [1993]
with the axioms given in Table Il (see also Bergstra et al. [1994]). Bergstra and
Ponse [2001] defined the recursive operapash-downnotation $, by the single
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TABLE I. THeE Axioms oF ACP(A, v) WHEREa, b € As, H C A

(A1) X+y=y+Xx | (CF1) alb=~(b) ify(@b)l
(A2) x+(y+2)=(Xx+Yy)+z | (CF2) alb=3s otherwise
(A3) X+ X=X |
(Ad)  (x+Vy)z=xz+yz | (CM1) xly=&LYy+yLx)+xly
(A5) xy)z= x(y2) | (CM2) al_x=ax
| (CM3) ax|Ly=a(x1y)
(A6) X+8=X | (CM4) X+Y) L z=x|_z+Yyl| z
(A7) X =134 | (CM5) ax | b= (a]|b)x
| (CM6) a| bx=(a|b)x
| (CM7) ax|by=(@|b)x|y)
| (CM8) (X+Vy)|z=x|z+y|z
| (CM9) x|(y+2)=Xx|y+x]|z
|
| (D1) ow(@=a dsifagH
| (D2) du(@ =4 aifaeH
| (D3)  3u(X+Y)=0u(X)+ dn(y)
| (D4) A (xy) = (X) - I (y)
TABLE Il. ADDITIONAL AXIOMS FORBINARY KLEENE STAR AND PUSH-DOWN
(BKS1) x*y=x(x*y)+y | (BKS3) x*(¥(Xx +¥)'2)+2) = (X +y)*z
(BKS2) x*(y2 = (x*y)z | (BKS4) A (X*Y) = I (X)*u(y)
(Push-Down) xSy =x((x¥y)(x¥y) + vy

axiom also displayed in Table II. Extension of one of the systems mentioned above
with % or $ and relevant axioms is denoted by adding the appropriate symbol as
a superscript, for examplepa*(A) stands forBPA(A) extended with« and the
axioms (BKS1)—(BKS3), andcP*®(A, ~) stands foracP(A, ~) extended withx

and $, the axioms (BKS1)—-(BKS4) and the defining axiom for $. We note that
associativity and commutativity df in process terms cannot be proved from the
given axioms it or $is involved. However, since itis convenientto omit parentheses
in (large)||-expressions we further adopt thetational conventiothat|| associates
tothe left, thux ||y | z=(XX || Y) || z

2.2. OPERATIONAL SEMANTICS.  We relate process terms to labeled transition
systems and define bisimulation equivalence between transition systems. Then we
provide bisimulation equivalence models forthe process algebra systemsintroduced
inthe previous section, thus obtaining an operational semantics that captures process
behavior in terms of the actions that can be executed.

A labeled transition systeis a tuple(S, L, —, s), whereSis a set ofstates L
is a set oflabels — is atransition relation ands € Sis theinitial state or root.
Consider one of the process algebra axiom sys#mEA) — ACP*¥(A, v), and let
P represent all process terms given by its signature. In order to associate transition
systems with elements &f, we takeP itself as the set of states. As labels we take
the actions fromA. The transition relatior> contains transitions

—_CPxAxP,
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TABLE Ill. TRANSITION RULES FORBPA(A) —ACP*$(A, ) WHEREa,be A, H C A

a2/, aeA

X2/ X—25X'
x+y—>¢ X + y—>X'
y+x—>¢ y+x—a>x/
X - y—>y X - y—>x y
X || y—>y X || y——>x Iy
y x—>y y X—>)/||X
XU_y_>y XU_y_>X Iy
8H(x)—>J ifagH aH(x)—>8H(x’) ifagH
x*y-2x*y x*y-5x(x*y)
yEx2>/ yEx-25x/
X2y (x®*y)(x*y) Xy X ((x*y)(x* y))
yEx3 ./ v x-3x
X—a>\/ y-=2/ x—a>x y-2y
X | y==> (ab) D, / ify(ab) | X || y=L=> (ab) L' Iy if v(a.b) |
x| y===/ if v(a b) | X | y-T22x |y if y(a,b) |
X2 y-2>y XXy /
XYY 1@ )y Xl Y X 1 (@ ) 4
x| yT==y ify(a.b) | x| yT==x if y(a. b) |

and for modelingsuccessful) terminatiqrspecial transitions
=/ CPxA. (Jispronounced “tick”.)

The idea is that fom € A, a transitionP—2> P’ expresses that by executing
a, the process represented By can evolve into the remainder process repre-
sented byP’. The transitionP 2>,/ expresses that the process represented by
P can terminate (successfully) after executmgThe rules in Table Il define
the transition relation—, where the signature and parametersFof(possibly
including a communication functioty) determine which rules are appropriate.
Note that the staté has no outgoing transitions. # is fixed and no confu-
sion can arise, we often writeé for (P, L, —, P), so the labeled transition sys-
tem related to a process terfhhas P itself as initial state, and each state that
can be reached from®? via a sequence of transitions is calladsubstate of P
The transition system of Ronsists ofP and all transitions that can be reached
from P.

Example2.2.1. Consider actiore b, c. As a first example, the transition sys-
tem of a*b as defined by the rules in Table Il is displayed below (and also in
the Introduction). Also transition systemsai | ¢ anda®b are displayed below,
where it is assumed thai(b, ¢) = a is the only communication defined.
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ab—P V4 ab| c a$bL>J
. S
billc ab (a®b)?
RV
c |, b (a*b)? - (a®b)
L/t :
v

The following process plays a major role in the sequel of the paper. Consider actions
{a, s, Z, ¢} and process terma(a®s) + z)*c abbreviated byR. The process term

R can be recognized asegister, that is, a memory location for a natural number
with unbounded capacity and restricted access as modeled by the specific actions:
a for “add one,”s for “subtract one,’z for “test zero,” anct for “clear, terminate

the process.” The transition systemmis visualized below.

Y
Z\_Rp_° J

]
0|

@R

Labeled transition systems are too concrete to represent processes. For exam-
ple, process terma*s and @a)*s clearly represent the same process, that is, the
process that repeatedly executes actipbut their transition systems are differ-
ent (nonisomorphic). Therefore we consider bisimulation equivalence [Park 1981]
over transition systems, which is the largest equivalence relation that respects all
behavioral properties captured by process terms: two bisimilar processes cannot be
distinguished in terms of observability.

Definition 2.2.2. Abisimulationis a binary relatiork overP that satisfies the
following conditions:

—if PRQ andP-2> P’ for someac A andP’ € P, then there exist’ € P such
thatQ-2- Q' andP'RQ/,
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—if PRQ andQ-2> Q' for somea e AandQ’ € P, then there exist®’ € P such
thatP 2> P’ andP'RQ/,
—if PRQthen for allae A, P2/ if and only if Q -2 /.

Two statesP, Q arebisimilar, notationP < Q, if there exists a bisimulatiofR
with PRQ.

Note that < is an equivalence relation. Now if we tak@e as the set of
ACP*®(A, ~) terms, it follows that< is a congruence relation for all opera-
tions involved [Baeten and Verhoef 1993; Groote and Vaandrager 1992]. We write
ACP*(A, v)/ . FE P = QwheneverP < Q according to the notions just de-
fined, and for variable sequenge= x, ..., X, we write

ACP*(A, )/ . (%) = ta(X)

ifforall P = Py,..., Py itholds thatacP*$(A, 7)/ = ti(P) = t(P). Itis not
difficult to establish that in the bisimulation model thus obtained all equations of
Tables | and Il are true. So we have the following result:

LEMMA 2.2.3. The systemcP**(A, ~) is sound with respect to bisimulation
equivalenceif ACP*¥(A, v) F t1(X) = ta(X), thenACP**(A,v)/ ., = t(X) =
t2(X). N

Finally, the axioms oACP(A, ~) completely characterize bisimilarity between
the processes that can be expressed [Bergstra and Klop 1984; Baeten and Weij-
land 1990]. Moreover, bisimilarity ovePa*(A) is completely axiomatized by the
axioms ofBPA(A) (i.e., (A1)—(Ab)) and (BKS1)-(BKS3), as was first proved by
Fokkink and Zantema [1994]. For an interesting decidability result on bisimulation
equivalence, see Baeten et al. [1993].

2.3. ON THE EXPRESSIVENESS ORCP*®(A, v). Bergstra et al. [1994] showed

that the expressiveness of systems with binary Kleene star can be analyzed using
properties of cycles in labeled transition systems (these results were strengthened
by Boselie [1995]). In order to show a negative expressivity resukders(A, ~),

we adapt some of these results. A st@te= P is asuccessopf stateP < P if

P-2. Q for somea € A. A cycleis a sequence of distinct statd®(. .., P,) such
thatP 1 is a successor d? fori =0, ...,n— 1 andPyis a successor d?,. An
actiona is anexit actionof stateP if P-2> /.

LEMMA 2.3.1. Let C be acycle in a labeled transition system associated to a
process term ovexcP*¥(A, ). Then C has one of the following fornfer n e N,
where= denotes syntactic equivalence

(i) C=(PQ, P.Q,..., P,Q);

(i) C=(P*Q, P(P*Q), ..., P,(P*Q)), or any cyclic permutation thereof
(i) C = (P®Q, P(P®*Q), ..., P,(P®Q)), or any cyclic permutation thereof
(iv) C=(Poll Qo, Pill Q1,..., Pnll Qn);

(V) C = (31 (Po), dn(P1), ..., dn(Pn)).

PrROOF LetC = (Cy, ..., C,). We apply case distinction d@g. Clearly Cy
is not a single action, and because ||, | do not occur as the first operation in
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right-hand sides of conclusions of transition rules, it follows tBatan not be a
successor, s6y # P o Q foro € {+, ||, |} and five cases remain:

—Co=RS If Sis not a state irC, thenC=(RS R;S, ..., R,S), which corre-
spé)ndsa'go case (i). I8 is a state inC, then there is a sequence of transitions
S3...3 RS Observe that there are only three transition rules that can give rise
to a transitioriT % T’ whereT is a proper subterm of:

X2/ X 2 X/ X 25 X/

xfy 2 (YY) xry 5 x(xry)  xPy 5 X ((xPy)(x®y))
This implies thatSis of the formP*Q or P® Q, and thalC must be of the form
(i) or (iii).
—Cp = R*S. Analogous to the casgy = RS we see tha€ is of form (ii).
—Cy = R®S. Analogous to the caggy = RS we see tha€ is of form (jii).

—Cp = R S AsR | Sis not a substate d® or S, it follows from the transition
rules for the merge th& must be of form (iv).

—Cpy = 04 (R). Since
X =25 X/
(X) 2> ou(x)ifag H
is the only transition rule fobfy that can have been used, it follows tltais of
form (v). [

Lemma 2.3.1 can be used to derive further properties of cycles.

LEMMA 2.3.2. Let C be a cycle in a labeled transition system associated to a
process term ovekCP*¥(A, ~). Then there is at most one state in C with an exit
action.

PrRoOOF CycleC = (Cy, ..., C,) must be of one of the forms (i)—(v) from
Lemma 2.3.1. We apply induction with respect to the siz€ of

—C =(PQ, ..., P,Q). Then none of the states @1 has an exit action.

—C =(P*Q, Pi(P*Q), ..., P,(P*Q)), or any cyclic permutation thereof. Then
P*Q is the only state ifC that may have an exit action.

—C=(P*Q, P(P*Q), ..., P,(P®Q)), or any cyclic permutation thereof. Then
P*® Q is the only state ilC that may have an exit action.

—C=(Py || Qo,..., Py Qn). Byinduction, there is at most one= {0, ..., n}
such that botlP, andQ; have an exit action (note that only one &(. .., Py,),
(Qo, - .., Qn) necessarily is a cycle). 98 || Q; is the only state irC that may
have an exit action.

—C =(0n(Po), ..., 94 (Py)). By induction, the cycleR,, ..., P,) contains at most
one stateéP, that has an exit action. S, (P,) is the only state il€ that may have
an exit action. [

Leta, b € A. We now argue that the regular procesecusively defined by

p=aq+Db,
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(also considered in the Introduction) cannot be defineddr*®(A, ) m(b)dulo

strgng bisimulation equivalence. More precisely, given transitods q, p —> v/,
g— p andq— / there does not exist a process teRnn ACP*(A, ~) that

satisfiesR < p, where< is defined oveP U {p, g} andP is the set oACP*®(A, v)
process terms. For assume the contrary: according to Lemma 2.3.2, each process
term yielding a cycle is not a candidate because each cycle with a state bisimilar
to p contains at least two states, and has at least two exit actions. So, the transition
system associated to process tdRmecessarily has an infinite number of states.
(Cf. a®§ that has an infinite number of states and no cycles, and which is bisimilar
to a*8.) This implies thatR contains an occurrence of $, which contributes to
R’s transition system by a transition, s&iy->> T’, that is derived with one of the
rules introducing $ via its left-argument. Becausg| ,|do not occur as the first
operation in right-hand sides of conclusions of transition rules, this impliegthat
cannot have an exit action, which contradif&s>p. Hence,p cannot be defined

in ACP*3(A, 7).

Remark2.3.3. With a little more effort we can show that the regular process
defined byr = aas + a, s = ar 4+ a cannot be specified inRcP**(A, ~) for any
choice of A 2 {a} (cf. Boselie [1995]).

3. Register-Machine Based Processesd®*$(A, v)

In this section we turn to register machines, and establish a process algebraic
representation of register machine computation for a particular repertoire of actions
and handshake communications. Having this, it easily follows that the resulting
theory is undecidable.

3.1. ALPHABETS, REGISTERS AND REGISTERMACHINE PROGRAMS  We define
a setting in which register machine computation is straightforwardly modeled in
ACP*$(A, ~) for a particular choice oA and~. We consider registers modeled by
process terms as in Example 2.2.1: a register ndmel is modeled as a process
R, over alphabet

o ={a,Si,z,C}

by R = (@@&°®s)) + z)*ci. Furthermore, we define foj e N the following
abbreviations:

RO=R,
R(j+1)=@&?®s) R(j)
So R(j) represents registercontaining valuej. Rather than viewing registers

as autonomous processes, we want them to be controlledrégisier machine
iterative program To this end, we define fare N the alphabet

o ={&, 5,7, G}

containing actions that represent instructions to regist8tarting from alphabets
aj, we define a class of process terms representing structured register machine
programs.
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Definition 3.1.1. Fori € N the Register Machine Iterative Programs using
registers 01, ...,i — 1, notation

RMI(i),

is a collection of process terms with alphabetiyy; ax. The clas®mi(i) is induc-
tively defined by the following clauses:

(1) ax e RMI(I) if k<1,

(2) sc*z € RMI(I) if k<1,

(3) sk*ck € RMI(i) if k <1,

(4) if P e rMI(i) andk < i, then &P)*z € RMI(i),

(5) if P, Q € RMI(i), thenP Q € RMI(i),

(6) if P, Q € RMI(i) andk <i, thens P + z,Q € RMI(i).

Note thatifP is an element akmi(i ), then also each successoRofFurthermore,
RMI(i) is closed under associativity of sequential composition (and we will omit
brackets in repeated applications). Finally, note that daelrmI(i) specifies a
deterministigorocess (i.e., in the case that there are two outgoing transitions, these
have different labels).

Lett be an action disjoint fromv; (o U ;). Forn e N, we distinguish the fol-
lowing sets of actions:

An = {t} U Hn,
H, = U(O{j U 071)
j<n
The setdH, will be used for encapsulation, thus enforcing communications between
parallel components. Communication 8g is defined byy(a, b) =t if and only
if for somej <n, eithera € vj,b € «j andb =a, orb € j,a € oj anda = b.
Encapsulated parallel composition of a register machine iterative program to-

gether with the registers it addresses will be used to model register machine com-
putation by synchronization: the actions offemi process term perform handshak-
ing communications with the registers addressed. For example we can derive in
ACP*3(Aq, v) that

IH,(S0*20 || Ro(j)) = 9, (S0*20 L Ro(J)) + 31, (Ro(j) | S0*20)
+ 91, (S0* 20 | Ro(j))
= O, ((So(S0*20) + 20) | Ro(J)) + 9n,(Ro(j) I S0*20)
+ 9m,(So(S0*20) | Ro(j)) + 9n,(20 | Ro(J))-

By encapsulation the first two summands equdin casej =0, the third sum-
mand equal$ and the fourth equals- 9y, (Ro(0)) (becausey(zo, zg) =t). In the
case thaf > 0, the third summand equaisdn,(S*zo || Ro(j — 1)) (by anso | So

communication), and the last summand egdalSo in general,

I, (S0°20 Il Ro(j)) = t! - 9, (Ro(0)).

Because we often consider a number of registers operating in parallel, we intro-
duce fork > 0 the abbreviation

Ry defined byR1 = Ry, Riks1 = Rk || R«.
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So Rk represent& empty registers AL, ...,k — 1 in parallel. (Recall tha} as-
sociates to the left.) In the case that each of these contains mgluee use the
notation

Rk(no, cee nk_l).

As it turns out ACP*3( Ay, 7), in which R andrmi(k) processes are specifiable,
will allow a practical encoding of register machine programming. All phenomena
known to us and connected with the option to encode computability in general
become visible witlk > 4. The casek =1, 2, 3 may feature various anomalies due
to a lack of expressive power, and are of no concern to us.

3.2. REGISTERMACHINE PROGRAMMING IN ACP*¥(A, v). Inthe sequel we will
often consider expressions of the form

I (PX || Ri(no, - .., Nk-1))

abbreviatingdy, (P || [- - - (Ro(no) | Ru(n1)) . .. I Re—1(Nk-1)]) with P in RMi(k)
andx a process variable. The following basic result states that we can ‘implement’
each computable function KcP*$(Ay4, 7).

THEOREM 3.2.1. Let f : N— N be computablénot necessarily totdl There
exist Pe RMI(4) and computable g N — N\ {0} such that if f(n) is definedthen
g(n) is defined and

ACP**(Ag, ) - 31,(PX || R4(0, 0, 0,0)) = t9M - gy, (x || Ra(0, (), 0, 0)),

and if f(n) is not definedthen gn) is not defined and for eachd N\ {0} there
exists a process term;Much that

ACP*¥(A4,¥) I 9, (PX || Ra(0,n,0,0)) =t - M;.

ProOOF  Consider a register machine programming language with instructions
of the following form:

halt halt;
(&,1) add1to register and go to instructiof;

(s, I,l") if registeri holds value zero, then go to instructidnotherwise
subtract 1 from registarand go to instructionh.

Let P be a register machine program that computessing three registers 1, 2, 3,
and instructions numbered 1 ., k: if the tuple (X1, X2, X3) represents the values
of registers 1, 2, 3, respectively, aRdstarted with instruction 1 on machine state
(n, 0, 0) terminates (i.e., has reachedai-instruction), then this termination state
is (f(n), 0, 0). (This is possible; see e.g., Minsky [1967] or Appendix A.)

We turnP into a proces® in RMI(4), taking an extra register proceRgto store
“the next instruction number.” We set

P=L1Q, Q= (s0P1)*20,
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and forline(m, P) denoting themy, instruction ofP,

Lm if k=1,
Pm:[soPm+1+zoLm if k>1andm+1 <k,
Solmi1 + 2obm ifk>1andm+ 1=K,

(55%25)(8,*22)(So*20)  if line(m, P) = hat,
Lm=1{a -a if line(m, P) = (a. 1),
s-al+z-a) if line(m, P) = (s, 1,1).

Starting from the initial state

OH,(L1QX || R4(0, n, 0, 0)), thatis,dn,(L1QOX || (Ro || Ru(n) | Ra || Rs)),
we show that each ‘program state),QXx, that is, the state that models execution
of instructionm, occurs in a pattern of the form
and results in an appropriate update of the register values and the “program state.”
We apply case distinction dme(m, P):

—line(m, F7) = halt. In this case the registefy, R, and R3 must be emptied (set
to value 0) and_,Q must be terminated. We derive

I, (LmQX || Ra(0, X1, X2, X3))

= 9n,((S5*Z3)(S2" 22)(S0* 20) QX || (Ro Il Ru(xa) [| Ra(x2) || Rs(X3)))

=t 0, ((52#22)(S0"20) QX || (Rs || (Ro Il Ra(xa) |l Re(%2))))

= P2 9, ((S0*20) QX || ((Rz Il (Ro I Ra(xa))) Il Re))

=643 95, (O || (Ro || Ra(xa) || R || R))

=Pt 9y (x || (Ro || Ra(xa) || Re || Ra))

=ttt 5 (X || Ra(0, X1, 0, 0)).

—line(m, I5) = (ag, |) (recall 1<1| <k). In this case we derive
OH, (Lm QX || Ra(0, X1, X2, X3))

= 9, (a1ap Qx || (Ro II Ru(xa) | Ra(X2) Il Ra(xa)))
=t 01, (2pQx || (Re(x1 + 1) || Ro || Ra(x2) || Ra(x3)))
=t 95,(Qx || (Ro(l) || Ru(x1 + 1) || Ro(X2) || Ra(x3)))
=122 94, (LiIQX || (Ro | Ru(xa + 1) | Ra(x2) || Ra(x3)))
=t2%2. 9, (L1 QX || Ra(0, X1 + 1, Xz, X3)).

In casdine(m, I5) = (g,1) fori = 2, 3it follows in a similar way that

3, (LmQX || Ra(0, X1, X2, X3)) = t2+2 . 5y, (L1 QX || Ra4(0, X1, Y2, Y3)),

wherey, = x; + 1 andys i = Xs_j.

—line(m, P) = (s,1,1"). Now there are two cases to distinguish depending on the
valuex; of the current machine configuratidry, Xz, X3). If x; = 0 it follows
that

I, (LmQX [| Ra(0, X1, Xa, X3)) = t2 2. 9, (L1 QX || Ra(0, X1, X2, X3)).
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If x; >0 ands modifies the machine configurati@ry, Xz, X3) into (y1, Y2, y3)
wherey; =x — 1 andy; =x; for j #i, then

I, (LmQX || Ra(0, X1, X2, X3)) = t272 - 8y, (LmQX || Ra(0, y1, Y2, Y3)).

Based upon the number titeps computed above we now provide a definition of
functiong, applying induction on the length of terminating computations. Let the
auxiliary functionskFn (X1, X2, X3) form =1, ..., k be defined as follows:

—if Lm=(s3*23)(2*22)(S0*20), i.€., the encoding ofalt, then Fn (X1, X2, X3) =
X2 + X3 + 4,

—if Lm:a;a{'), i.e., the encoding of instructiorg( 1), then Fy(X1, X2, X3) =
Fi(ys, ¥2, y3) + 20 + 2, wherey, =X + 1 andy; = x; for j #i,

—if Lm=sa,+ z4a), i.e., the encoding of instructios; (1, 1"), then

Fi(y, Yo, ¥3) +2 +2  ifx >0,yi=x —1and
Fm(X1, X2, X3) = yj =X for j #i,
F (X1, X2, X3) + 21’ + 2 otherwise.

Observe that th&, are not necessarilptal, even if f is. However, ifP started at
line m with register values, m2, m3 computes toalt with register values’, 0, 0
then

ACP*¥(As, ¥) F 31,(LmQX || R4(0, n, m2, m3))
= tFm(m2m3) 3., (x || R4(0, 1, 0, 0)).

This follows by induction on the length of (terminating) computations, saly
h=0 thenllne(m P) = halt andL n = ($3*23)($*22)(S*20). If h=h'+1, thenL,
is eithera ) or s &) + zay for somei, |,1”. The identities above suffice to make
the induction step. Takingn =1 andm2 = m3 =0 yields the required information:
g(n) = F1(n, O, 0). Clearly, if f (n) is defined, then so ig(n) andg(n) > O.
In the case thaP started at linen with certain register values does not halt (so
the performance of successive instructions is perpetual), the second statement of
the lemma follows immediately.[]

In Section 4 we will use the following generalizations of this result.

COROLLARY 3.2.2. Let f: N — N be a computable functiofmot necessarily
total). Then there exist PQ € RMI(5) such that for some computable functions
g, h: N — N\{0} and for all n, if f(n) is definedthen so are ¢n) and h(n), and

ACP*¥(As, v) F 9, (PX | Rs(0, n, 0,0,0)) =t9M .5, (x| Rs(0, f(n),0,0,0)),
ACP*¥(As, v) F 34 (QX || Rs(0, n, 0, 0, 0)) =t"™ . §,,_(x || Rs(0, n, f(n), 0, 0)).

PROOF. The first statement follows immediately from the previous proof. Fur-
thermore, letQ; = ((s1a2a0)*z1)((S0a1)*Z0), SO Q1 € RMI(5). It follows easily
that

ACP**(As, ¥) F 01, (Q1x || Ra(0, 1, 0,0))) = t5*2. 8y, (x || Rs(0, N, N, 0, 0)).

Let (52 be a register machine program that compuitassing registers 2, 3 and 4.
As shown in the proof of Theorem 3.2.1, there existe RmI(5) and computable
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functionh’ : N — N\ {0} such that iff (n) is defined, then

ACP*®(As, 7) = 91, (Q2X || (Ro [l Re(n) Il Rs || Ra))
= "™ B, (x || (Ro Il Re(f(M) || Rs || Ra))
if the modeling of thenalt instruction is adapted t&f*z4)(S3*23)(S0* 20). It follows
that if f (n) is defined, then
ACP**(As, ) b 01, (Q1Q2x || R4(0, n, 0, 0)))
= 2+ . 5, (x || Rs(0, n, f(n), 0,0)).

So, settingQ = Q1 Q, andh(n) = 5n + 2 + h’(n) proves the second statement of
the lemma. [J

3.3. LNDECIDABILITY OF ACP*¥(A, 7). Itbeing possible to represent each com-
putable function imcP*$( A4, v), itis not difficult to prove thadcP*$( A4, v) has an
undecidable theory (initial algebra). We provide a family of process téhm¥/,
such thaicP*$(A4, v) - U, =V, is not decidable.

THEOREM 3.3.1. ACP**(A4, v) - u = v is not decidable.

PROOF. Let Wg,, We, be recursively inseparable sets. Lfet N — N be the
partial recursive function defined by

0 ifne W,
f(n=11 ifneW,,
1 otherwise.

By Theorem 3.2.1 there afee RMI(4) and computable functiapsuch that iff (n)
is defined, then

ACP*¥(A4, v) F dn,(PX || R4(0,n, 0,0)) = t9M . 5. (x || Ra4(0, f(n),0,0)).
Now letU, V € RMI(4) andU,, V,, be defined by
U = P(s3*C3)(S2*C2)(S0*Co)(S1*Ca).
V = P(s3*C3)(S2*C2)(So*Co) ((S1(S1*21))*Ca)s
Un = 8H4(U || R4(O, n, O, 0)),
Vi = 3, (V || R4(0, n, 0, 0)).

Then, writingk u = v for ACP*®(A4, v) - u = v, we find
NeWg = f(nN)=0=F+Uy=V, (=to+4),
neWe, = f(n)=1= t/ Uy =V, (t9F5 £ t9+6),

As to the latter implication: assume otherwise, thab@p*$(A,, v) + th = tk+?
for somek > 0. Then by Lemma 2.2.83¢ « tk+1 which clearly is a contradiction.

Thus, decidability oAcP**( A4, v) F U, =V, provides a recursive separation of
We, andW,,, which is contradictory. []

To be a little more general, we call a model for ACP*$(A, ~) left cancelling
or trace consisteni forall a,b € A,

MEVX, y@@ax=by— (a=bAx=Yy)).
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TABLE IV. THE ADDITIONAL AXIOMS OF ACP_ (A, ) WHERE | € A AND
a,be A;

(T1) XT = X |
(T2) X+ X = 17X |
(T3) a(zx+y)=alrx+y)+ax |
| (TI0) n(t)=r

| (TI1) @ =a ifaégl
|

|

|

(TC1) T[X=35

(TC2) X|t=38 (T12) n@=r ifael
(TC3) ™X|y=x|y (M3) (x+y) = (x)+ 7 (y)
(TC4)  xlry=x]y (M4)  nxy) =X u(y)

The following corollary is a straightforward consequence from the proof given
above:

COROLLARY 3.3.2. Let Ay C A and letM be a model oAcP*¥(A, ) that is
left canceling. Then the word problem.® is undecidable.

Remark3.3.3. In the undecidability results above, we use 33 actiphg ¢
|{t}]) and the restriction to handshaking communication. Retaining this last restric-
tion, we can reduce this number: replacesaiictions byz inU, V and us&J §, V§
instead, and replace a by §. So for A containing at least 25 actions it follows
thatAcP**(A, ) has an undecidable theory.

4. Adding Abstraction

A basic ingredient of concurrency theory is thigentor internal action orhidden

move notationr, which dates back to Milner [1980]. We consider two combinations

of the constant andACP(A, ), each of which goes with an operation that renames
actions intor, that is, that defines the distinction between what is observable and
what is not. This facility, known aabstractionor hiding, is a common feature in
process algebra, serving both verification styles and expressive power. In this section
we show that the addition of abstraction yields a substantial increase of expressive
power. Furthermore, we show that the use @i all our results can be avoided.

4.1. AXIoM SYSTEMS AND OPERATIONAL SEMANTICS. Bergstra and Klop
[1985] defined the systemcpP.(A, «). This system extendacP(A, v) with a
constantr and abstraction operatotg(_) renaming the actions ihC A into t.
The axioms ofacp. (A, ~) are those ofACP(A, «) extended with the axioms in
Table IV. These axioms characterimotedr-bisimilarity (explained below). More
recently another extension atrP(A, +) with abstraction was defined: the system
ACPT (A, +) axiomatizingrooted branching bisimilaritfsee Baeten and Weijland
[1990], based on van Glabbeek and Weijland [1989]). Its additional axioms are
given in Table V. Note that in this case theranges oveAs; = As U {t}. For a
detailed introduction to these process algebra systems see, for example, Baeten and
Weijland [1990] and Fokkink [2000].

When the operation is added, there is an extra axiom for binary Kleene star:

(BKSS) 71 (x*y) = 71 (X)* 71 (Y).

Extension of one of the systems mentioned above witr $ and relevant ax-
ioms is denoted by adding the appropriate symbol as a superscript, for example,
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TABLE V. THE ADDITIONAL AXIOMS OF ACP* (A, v) WHERE | € A AND
ae A

X | (TI1) @ = a ifaégl
x(y+2) | (TI2) n@ =1t ifael
| (T1B) n(x+Yy) = n(X)+n(y)
| (T4 nxy) = ux)-a(y)

(B1) XT
(B2) x(z(y+2) +vY)

TABLE VI. ADDITIONAL TRANSITION RULES FORACP, (A, ~) AND ACP" (A, 7)
WHEREa € A;

. X2/ X-25x’
YV LS fadl ) ST fadl
1 (x)—./ ifael n(x)->n((x) ifael

ACPT*$(A, ~) stands foracP? (A, ~) extended with« and $, the axioms (BKS1)—
(BKS5), and the defining axiom for $.

We define a structural operational semantics for the systems invaivamglz, .
The transition relation is defined by the axioms and rules in Table 11l whe@v
ranges oveA, = AU {t}, and those in Table VI.

In order to formulate general expressivity results, we define both rooted
bisimilarity and rooted branching bisimilarity for transition systems of which the
states are not necessarily process terms.Qeét {,/} be the set of states un-
der consideration with/ ¢ Q the only terminal state, and let a transition relation
—C Q x A, x QU {,/} be given. We first provide definitions and then some com-
ments. LetP, P’ € Q and let= denote syntactic equivalence. The binary relation
_= _onQis defined by

P = P’ if either P = P’ or for someP”, P - P" = P'.

In a similar way, the unary relation= ./ is defined byP = / if P= P’ 5 /.
WewriteP = P'if P= Q-2 Q' = P’,andP = /ifeitherP = Q -2 Q' = /
orP= Q-2 /forsomeQ, Q € Q.

Definition 4.1.1. A <t-bisimulationis a binary relatioriR over Q U {,/} that
satisfies the following conditions:

—if PRQ andP-3> P’ for someae A, andP’ e QU {/}, then eithem =1 and
P'RQ, or there exist€)’ € Q U {,/} such thatQ > Q' andP'RQ,

—if PRQ andQ - Q' for somea € A, andQ’ € QU {,/}, then eithea=r and
PRQ, or there exist$’ € Q U {,/} such thatP = P’ andP'RQ/,

—if \/RQ then eithelQ= ./ or Q= ./,

—if PR,/ then eitheP =,/ or P= /.

Two statesP, Q € @ are t-bisimilar, notation P <: Q, if there exists ar-
bisimulationR with PR Q.

The relationR is arooted t-bisimulation for two root state® and Q desig-
nating a transition system if it isebisimulation that satisfies the following extra
conditions forP and Q:
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—if PP’ for some P’ € QU {./}, then there exist&)’ ¢ QU {,/} such that
Q-5 Q andP'RQ’, and

—if Q- Q' for some Q' € QU {,/}, then there exist®’ € QU {,/} such that
PS5 P andP'RQ.

Two statesP, Q € Q arerooted t-bisimilar, notationP <- Q, if there exists a

rootedz-bisimulationR for P, Q with PRQ.

Observe that the relations>: and <. are equivalence relations.

Definition 4.1.2. Abranching bisimulatiors a binary relatiorR overQ U {/}
that satisfies the following conditions:

—if PRQ andP-3 P’ for somea e A, andP’ € Q U {,/}, then eithela =t and
P'RQ, orthere ar®Q’ € QU {,/} andQ” € Q such thaQ = Q"% Q’, PRQ",
andP'RQ’,

—if PRQ andQ-%- Q' for somea e A, andQ’ € Q U {,/}, then eithem = r and
PRQ, or there are®’ € QU {,/} andP” € Q such thatP = P"-2 P, P"RQ,
andP'RQ/,

—if /RQ then eitheQ =,/ or Q= ./,

—if PR,/ theneitheP=,/0orP= /.

Two statesP, Q € Q are branching bisimilar notation P<bQ, if there exists a
branching bisimulatiorR with PR Q.

The relationR is arootedbranching bisimulation for two root stat€sand Q
designating a transition system if it is a branching bisimulation that satisfies the
following extra conditions folP and Q:

—if P2 P’ for someae A, andP’ € Q U {/}, then there exist®' € Q U {,/}
such thatQ-3> Q" andP'RQ/,

—if Q-3 Q' for someae A, andQ’ € Q U {/}, then there exist®’ € Q U {,/}
such thatPt-2> P’ andP'RQ".

Two statesP, Q € Q@ arerooted branching bisimilgrnotation P b Q, if there
exists a rooted branching bisimulatiéfor P, Q with PR Q.

Observe that alse>band <rb are equivalence relations. Furthermore, note that

<pC < and € C <17, and thatthese inclusions are strict (cf. simple instances
of axioms (T3) and (T2), respectively).

Example4.1.3. As an example, consider the following transition systems:

A/t_\ 75\
O\f /T'3 a b
1.7 ~2
a \'6 c
b /c
T
4
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where states 4 and 7 both represent deadlock. It follows tkatlD<b2 <53

<b5, but that in none of these casesr- (and thus<rb) holds. Furthermore,
4 <p6 <p7.

The restriction to the rooted versions serves to ensure congruence properties.
Q being the set oAcP. (A, v) terms, the relation<r: is a congruence (but-
is not, e.g.a €+ ra anda + b < ta + b). Moreover,ACP:*(A, v) is sound
with respect to rooted-bisimilarity, and its fragmennacpP (A, v) is complete
with respect to its process terms [Bergstra and Klop 1985; Baeten and Weijland
1990]. Foracp™(A, ~) andACP™$(A, ~) there are similar results with respect to
rooted branching bisimilarity. More information on (rooted) branching bisimulation
equivalence can be found in van Glabbeek [1993]; Glabbeek and Weijland [1996].
Finally, note that bisimilar transition systems also are roeté@similar and rooted
branching bisimilar.

4.2. EXPRESSIVENESSRESULTS Let A,(B) = A, U B, whereB is a finite set
of actions disjoint fromA; for anyi € N. In this section we first prove that each
computable processver action seB (this notion is explained below) can be ex-
pressed imcP™*$(As(B), 7), thusacP**(As(B), v) equipped with abstraction and
rooted branching bisimulation equivalence. This means that for any transition sys-
temT representing a computable process d@énere exists a process tenover
ACP™*¥( As(B), ) such thafl b P. Then we prove that iacP*¥(As(B), v), that
is, ACP*®( As(B), ~v) with abstraction and rootedbisimilarity, a large class of semi-
computable processes can be expressed: those that are initially finitely branching.
Therefore one may say thatr:*(As(B), v) is expressively complet8oth these
expressivity results are based on a representation of processes by transition systems
with states of which the out-degree is at most two.

We consider a transition systeiwith states irlN and with label seB, in which
0 serves as initial state and 1 is the only terminal state (in particular, state 1 is
assumed to have no outgoing transitions). Furthernii®eC Nx N | ac B} is
the transition relation. Adapting our further exposition to prior notation conventions,
we shall often write

n-3m

instead ofR,(n, m). Sometimes we shall use other values than 0 and 1 for the root
and terminal state of a transition system: the notatiomn T makes explicit that
is the root ofT andm the terminal state, thu =0"1T.

Definition 4.2.1. Let SCN be a recursive set of states withe®, and
T=(S, B, {R, € Sx S|ae B}, 0) atransition system.

ThenT isrecursivef for some injective functioin : B — N and bijective pairing
function (_, .) : N> - N, the transition systerii can be represented by a (total)
recursive functiomextsuch that for alk € S the value ofex{s) is the canonical
index (CI) of the finite set encoding all next steps frem

nex(s) = CI({(h(a), ') | s->>5}).

2The canonical index of is 0, of {ky, ko, . .., k} itis the number 2 + 2% 4 ... 4 24 andDy is
the finite set with canonical index Note thaty € Dy = y < X.
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Furthermore T is r.e. fecursively enumerab)éf this is the case for all relations
Ra, thusRa(n, m) if and only if 3k R, (n, m, k) with R}, recursive.

Note that in a recursive transition system all possible transitions from any state
are finite in number and can be computed. We call a prooasgputabldf it can
be represented up to some behavioral equivalence by a recursive transition system,
andsemi-computablé this is the case for some r.e. transition system. In order to
express recursive andr.e. transition systems over alpBalaet define an extended
class of register machine iterative programs.

Definition 4.2.2. LetB; = B U {t}. Let the class of register machine iterative
programs with actions iB;, notation

RMI(Bx, i),
be defined aBMi(i) (see Definition 3.1.1), but with the following two extra clauses:

(7) aeRrMI(B, i) if ae B,
(8) if P, Qe RMI(B, i) anda, b e B, thenaP+ bQe RMI(B, i).

Note thatrRMmI(B, i) is closed under successors and under associativity of se-
guential composition.

We first do not concern ourselves with rootedness, and formulate two basic
lemmas. Using these, our main expressivity results follow in a straightforward
manner.

LEMMA 4.2.3. Let T be arecursive transition system with labelsin B. Then T
modulo branching bisimulation equivalence is expressibkedp®**( As(B), 7).

PrOOF  Without loss of generality we assume that > 1. We use the bijective
pairing function(_, _) defined by(n, m) = %((n + m)? + 3m + n), with unpairing
functions ()o and ();. S0(0,0) =0, (1,0) = 1,n = {(n)o, (N)1), and Q) < n >
(n)s.

LetT = (S, B, {R, | a€ B}, 0) be characterized by the functionsandnext(cf.
Definition 4.2.1), and leB, = B U {r}. We transformT into T = (S, B;, {R, |
a e B.}, 0) by replacing each state withraloop of appropriate size, of which each
state has at most one outgoiBgtransition:

(1) S={(s, j) | s€ S, j <nex(s)},

(s,j +1)-5(s,j) if j <nex(s)
(2) vse S\ {1} ((s, 0)— (s, nex{(s)), )

(3) (s, j)->(s,0) eTifs-5sinT and(h(a),s’) = j.

This yields a transition systeﬁwith labels inB; in which the number of outgoing
transitions of each state is at most two, and that is recursive: extend the function
h to B,, thennex{s) (characterizingl') can be computed fromex{s) and the
transitions defined above. Moreoveérsatisfies

01T <07 1T
where the terminal state 1 plays the roledf The branching bisimulation BB is
as follows:

BB((s, j),s)forse S, j < nex(s).
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Let functiong be the inverse ofi. We describel’ with the following four com-
putable functions:

1 if 3ae B, meNwithn-3min T
action(n) = 0 otherW|se

label(n) = m if action(n) = 1 and3l € N with n—— L lin T,
(s, j) if n=(s, ] +1) andj < nex{(s),
u-ste(n) = { s, nex(s)) if n= (s, 0),

next-statén) =mif Jac B, me N with n-3min T.

For process tern andn, k,| e N we write P:n, 0— k, | if there is anme N
suchthaby, (Px || Rs(0, n, 0,0, 0)) =t™M-dn, (X || Rs(0, k, I, 0, 0)). According to
Corollary 3.2.2 we can choo$®, P,, P, P4 € RMI(5) such thancP*$(As(9), v) -

P:: n,0— n,m if m= actionn),
P,: n,0— n,m if m=labeln),
P;:n,0— m,0 if m=t-stefn),
Ps;: n,0— m,0 if m= next-statén).

For the caséB| =4 consider the prograr® schematically depicted in Figure 1,
suggesting how the program should be adapted for other valugB|efl. In

this scheme a dotted arrow stands fot-step, and a bold arrow starting from
Qi (i=1,...,4) marks the initial and terminal state associated with process term
P,. We first argue thaP (and therefore also each of its states) is expressible in
RMI(B;, 5) (modulo strong bisimulation). Le$ be the process that starts in state
Q. and terminates at sta@. Then

S(22(t P3 + 9(2)Ps) + s2(t P + 9(3)Ps)) )

S ( +
P, 2(tPs + 9(1)Ps)
S=P, +
Zo(tPs + g(0)Ps)
+
2,P3

We define

R=sa1a1(219)*s1),
Exit = (So*Co)(S2*C2)(S3%C3)(S4*Ca),

and conclude thaP < R*c; - Exit. (Note thatR*c; € RMI(B, 5).)

Now T bty o dn, (Q || Rs) where the terminal state 1 plays the role
of /. We shall not define a witnessing bisimulation relation in detail but sketch
the idea. Each statés, j) in T with s#1 is related to each state in theloop
containingzy o an, (Q Il Rs(0, (s, 0), 0, 0, 0)). The different statess, .. .) of this
7-loop are maintained in registé; by P; and (if executedP,, and updated by
Ps. Furthermore,

(s. 1) 2 (s, 0) €
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Y
7/

O

2

Q4

L3

Fic. 1. Aregister program scheme.

if and only if

7ty © O (Li [ Rs(0, (s, ), 0,0,0) 2 1) 0 9, (Qa I Rs(0, (s, ), 0,0, 0))
= 70 91s(Q | Rs(0, (S, 0),0,0,0)).

Finally, the terminal statél, 0) in T is related to
ity © OHs (Q || Rs(0, (1, 0),0,0,0)),

which terminates with a-trace via theexit subprogram.
Because=b is an equivalence relation, we conclutle=b tyty o dan, (Q || Rs),
soT can be expressed ATP*¥(As(B), 7). O
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For the case of-bisimilarity we have a stronger result. This result uses the same
type of register program, but is based on a different transformation.

LEMMA 4.2.4. Let T be an r.e. transition system with labels in B. Then T
moduloz-bisimulation equivalence is expressibleaor:*(As(B), 7).

PROOF Assume|B| > 1. We use the bijective pairing functidn, _) from the
previous proof. LeT = (S, B, {Ra | a€ B}, 0) with Ry(n, m) < 3k R, (n, m, k) for
some decidabl®},, and with functionh encoding the actions d. We transform
T into the recursive transition systeim= (N, B, {R; | a € B;}, 0) by defining
the following transitions:

(1) Vne N\{1}(n—=>((n)o, (N)1 + 1)),
(2) vae B andvn,i,meN, Ra((n, i), (m, 0))) if and only if R,(n, m, k), (i)o =
h(@), ((i)1)o=m, and ((()1)1)o =k (thus,i = (h(a), (m, (k,1))) for somel).

So, each statec N\ {1} has exactly one outgoingtransitionn— ((n)g, (n)1 + 1)
and at most one outgoiraystep for at most ona € B.

Moreover, T = (0, 0y (1, 0)T <: T by the followingz-bisimulation TB:

TB(0, 0),
TB(({k, n), k) for all n e N andk € N\ {1}, and
TB(1, 1).

Let g be the inverse oh. We describeT with four computable functions, of
which only t-stefn) is defined differently from the previous proof:

actior(n)— |1 1 38€ B.meNwith n3minT,
~ |0 otherwise,

labekn) = miif actionn) = 1 and3l e Nwith n 22 | in T,
r-stef{n) = ((N)o, (N)1 + 1) if n#£1,
next-statén) =mif Jae B, meNwithn-2 min T.

Using the notationP :n,0— Kk, | from the previous proof, choosE;, P,, Ps,
P4 € RMI(5) such thancrP*$(As(9), v) F

P:: n,0— n,m if m=actionn),
P,: n,0— n,m if m=labeln),

P;: n,0— m,0 if m=t-stegn),
Ps: n,0— m,0 if m= next-statén).

Again consider the register prograf@ < RMI(By, 5) schematically depicted in
Figure 1 (withB ={g(0), g(1), 9(2), 9(3)} and P defined as above).

Now T < 1yy o 9n, (Q || Rs) where the terminal state 1 plays the role of
/. We sketch ar-bisimulation: first note that each stats, j) in T with
s#1 is related to each state in the infinitesequence starting withy, o
Ins (Q || R5(0, (s, 0), 0,0, 0)). The different statess, . ..) of this t-sequence are
maintained in register proce$y by P; and (if executed},, and updated bys.
Furthermore,

s ) 2 g 0eT
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if and only if

Tty 0 Ing (Li I Rs(0, (s, j), 0,0, 0)) 20, Tty 0 9ps (Qa || Rs(0, (s, j), 0,0, 0))
= 11110 9ns(Q | Rs(0, (', 0), 0, 0, 0)).

Finally, the terminal state & (1, 0) of T is related to the process termy, o

s (Q || Rs(0, (1,0, 0,0,0)), which terminates with a-trace via theexit sub-

program.

Because=<is an equivalence relation, we concludel < 1y oy,
(Q Il Rs). T

With these two lemmas our main expressivity results follow immediately.

THEOREM 4.2.5. Let T be a recursive transition system with labels in B.
Then T modulo rooted branching bisimulation equivalence is expressible in
ACP™*$(A5(B), ¥).

PROOF.  TransforniT into T by unfolding its root: rename all statesiiraccord-
ingto p : N— N defined by
(n)= 1 ifn=1,
PUV=1n+2 otherwise.

ThenT with root state 0 and terminal state 1 has for eaeB> me T a transition
p(n) = p(m), and for each 8% ne T a transition 0> p(n). This implies that

0™1T < 01T, and

2 (acBiR,0,1) @ T+ ) i i
4 ~ =~ If Ra(o, J) # @’
01T < ( Z{ae B,meN|m#1, Ry(0,m)} a-m~iT aeETjJeN

) otherwise.

Becagse‘f’ has no incoming transitions in its root state, it is sufficient to express
m~™1T modulo branching bisimulation for each appropriate valumefN \ {0}.
As proved in Lemma 4.2.3, this is possiblé.]

In exactly the same way our next expressivity result follows from Lemma 4.2.4.

THEOREM 4.2.6. Let T be an r.e. transition system with labels in B that ini-
tially is finitely branching. Then T modulo rootedbisimulation equivalence is
expressible imcpP:¥(As(B), ).

We note that Theorem 4.2.6 strengthens an expressivity result of Baeten et al. [1987]
which states that each recursive transition system over a finite set of labels can be
expressed incP. (A, «) with finite, guarded recursive specifications.

4.3. AVOIDING BINARY KLEENE STAR. In the present setting we do not need
binary Kleene star: its use can be encoded with the help of auxiliary actions, com-
munication and abstraction. This is the case for our results>anas well as on
<7, In order to prove this, let

~e{ <rb, ©rr}.

We shall only use thatt ~ x, and we repeat below two basic results of Bergstra
and Ponse [2001]. The first of these states that for each finite state transition system
with labels in A (and thus eachegular proceskthere is a finite extensioi®
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of A (i.e., A’* \ Ais finite) such that it can be expressedAoP (A, ~) or
ACP®(AJ¢, 4). So, in particular our modeling akgister machine programdoes
not depend on the use &f

THEOREM 4.3.1. For each finite state transition system T with labels in A
there is a finite extension/Aof A such that T can be expressechtP (A, ~)
or in ACP®(A/®, 4) with handshaking onlyand the actions in A not subject to
communication.

PrROOF. Let T be a finite state transition system with labelsAnThen, for
somen € N, T can be characterized lpy in the linear system

pi = (Zai,j 'pj)+,3i i=1,...,n)
=1

with all «; j and g; finite sums of actions o$. Define A'e as the extension oA
with the following 2h + 3 actions:

{t} U H, whereH ={rj,s; | j=0,...,n},
and let the only communications ové¥® be defined byy(rj,sj) =t (j =
0, ..., n). Consider the following processes:

n
(Zai,j -s,-) + Bi abbreviated by F; fori =1,...,n,

j=1

n
(er ' Fj) Sro  abbreviated by K,
i=1

n
(Z ri -sj) ®s  abbreviated by L.
=

Thenp; >~ 7,y 00 (F1- K || L). This can be shown with help of the infinite transition
system characterized by

n
qi(k)Z( ai,j-qj(k+1)>+ﬁi,i:l,...,nandkeN.
=1

Obviously,p; < qi(k) (ke N). So it suffices to show thaft) o 04 (Fi - K || L) =~
q; (0). We show this by first omitting they,-application: fork € N,

aH(Fi . Kk+l ” Lk+l)

n
= (Y e ouls K< Lk”)) B (K| LR
j=1

J

n
=D g tot-on(F - K2 Lk+2)) + B - thh
j=1

n
Oli,j .t aH(Kk+1 ” S] . Lk+2)> + ﬂi 'tk+1
=1
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Hence, applying;;; and axiomxt = x we find for eactk
Ty o dn (R - KM LY = (Za., Ty 0 an (Fj - KKF2 | |_'<+2)> + Bi.

Soty o dn(Fi - KK || Lk+1) satisfies the equation characterizing statk), and
hence

7ty 0 0k (Fi - KA | L) = g (K),
and in particulap; >~ q;(0) ~ gy o dn(Fi - K | L). O

We are done if we show thategister procestoo can be expressediar™®( A/, )
or ACP®(A/%, v), so without the use of.

THEOREM 4.3.2. ABPA*®(A) register proces$a(a®s) + z)+C can be defined in
ACP™$(Afe, ) or in ACP$(A®, 4) with handshaking only ifA™®\ A| > 5.

PROOF. Let A®\A={t} U H with H={r;,s |i =0, 1}, and lety(ro, S) =~
(r1, s1) be the only communications defined. Consider

(a(@®s) + z)s; + ¢ abbreviated by P,
(r1- P)®ro abbreviated by Q,
(r1-s1)%*sy abbreviated by R.

Then it follows in a similar way as shown above thata®s) + z)*C >~ 1y o
m(PQIR). O

5. Alternatives

In this section we first show that we can reduce the number of registers used in
Section 3.2 for the modeling of register machine computation. Then we consider
two alternatives for the push-down, each of which can be used to obtain similar
results as proved before. Typically, both these operations can be used to define some
form of counting.

5.1. BouNDED REGISTERS Recall the crucial Theorem 3.2.1, which involves
a particular modeling of register machine computationsd@r*$(A4, ). In its
proof, one of the registers is used to keep track of the “current instruction number”
during computation. Therefore, this register can be replaced by a process that
mimics a register up to a finite depth (namely, the number of instructions of the
“current program”). Such processes can be defin&pii(a;) (wherew; contains
the specific register actions, see Section 3.1).

LEMMA 5.1.1. A bounded register over; can be defined iBPA*(«;).

PROOF.  First, let asubcounter S, over alphabet; = {a;, Si, z, ¢} be defined
by induction to itsdepth ne N in the following way:

So=Si, B
Skr1= (& - Sk)*Si-
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Then a bounded registdR ,, that can hold values,@, ...n can be defined as
follows: R o = z*Ci andR ni1 = (@ - S+ z)*ci. O

As a consequence, Theorem 3.2.1 can be formulated as a “three-$-statement,” that
is, with the use of only three registers, and all previous results can be obtained with
one register less. A perhaps more appealing use of bounded registers comes up in
Section 5.3.

5.2. TWO ALTERNATIVES FORPUSH-DOWN. In addition to push-down, we have
defined two other recursive operations that are non-regular, and that can be seen
as variations on the binary Kleene star. Bergstra et al. [1994] introduced the non-
regularnestingoperation* _, which is defined by

Xy =x-(0¢y)-x)+Y.
More recently, Bergstra and Ponse [2001] introducedtmk and forthtoperation
_=_, which is defined by

XTy=x-((xXTy)-y)+Y.
Transition rules fot and= are

a a s
X—>4/ and X—>X
X"y 55 (xF y)x ¥y =5 X((¢F y)x)
yix3 yFx 2 X/
XZy = (xTy)y X7y = X ((xTy)y)
Vi =V yoX -2 X

As an example, consider for actioasandb the transition systems @f b and
a“~hb:

- b
a‘b b \/ a~b \/
a a a b
b
b s
(@®bha —— a (@-b)b b
a a a b
4 b ) L
(@ ba)a —— a? ]

Itis easily seen that# arid are non-regular, and it can be argued that these together
with $ are the most simple candidates for obtaining a binary, non-regular recursive
operation. Let € {f, =}. Adding ¢ to the signature ofCP(A, ~), and its defining
axiom to those oACP(A, ~) yields the system which we denote by

ACP°(A, ).

In the same way, we defimepP*°(A, +) as the extension afcP*(A, ~) with o.
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5.3. RELATED ResuLTs All previous results have their counterpart in
ACP**(A,~). In order to show this we introduce the auxiliary notion of & *“
half-counter” (cf. Bergstra et al. [1994]).

HC; = ((ST&) - z)*Ci,

where we stick to the alphahet, although most actions lose the intuition previously
given. _ _

Letb = sif o = #, andb = aif © = . We use the following, perhaps more
convenient characterization &fC} :

Ci

HC; = HC;(0) Vi HC;(0) T, HC;(0)
HCi(0) = sHCi (1) + 8
a HC;(0)+ G S by
HCi(n+1) = siHCi(n+2) + _
& HCi(n+ 1) HC\(1) —2— HC\(2)
__HCi = HCi(0) S by
HCi(0) = z HC;(0) _
HCi(n+ 1) = b HC;(n) HC(2) — 2+ HC,()

We now provide a result that relates to Theorem 3.2.1. To keep things simple,
we will use a bounded registd®y x (as defined in the proof of Lemma 5.1.1)
when implementing a register machine program wktlinstructions. Further-
more, we will use process terC'(n) to model registei having valuen. Fi-
nally, we will use an extra-half-counterHC for “shifting,” in order to model
instructions &, 1).

THEOREM 5.3.1. Let f:N— N be computablénot necessarily total There
exist Pe BPA*(a5), ke N, and computable g N — N\{0} such that if f(n) is
definedthen dn) is defined and

ACP**(As, ¥) F 3n(PX || (Rok || HC1(n) || HC | HC3 || HC4))
= t9 . 3y (X || (Rok || HC1(f(n)) || HC, || HC3 || HC4)),

and if f(n) is not definedthen gn) is not defined and for eachd N\ {0} there
exists a process term;Much that

ACP*(As, v) F 3 (PX || (Rox || HC1(n) || HCy || HC3 || HC4)) =t - M;.

PROOF. W first consider the #-case. Ltbe a register machine program that
computesf using registers 1, 2 and 3, and numbered instructig@s.1., k. Our
modeling of register machine program expressions is as follows: let

P=L1Q, Q=(2P)z,
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and

L, if k=1,
Pn=1SPm+1+ 2L}, ifk>1andm+ 1<Kk,
SoLlm1 + 2oLy, if k>1andm+ 1=Kk,

(85"2305) (2" 2282) (50" 20) if line(m, P) = hat.
Ll =1 (ssa)*zs4an)((s45)7248) - @y if line(m, P) = (a, 1),
S -ah+za -a) if line(m, P) = (s, 1,1).

We do not provide a precise description of register machine program process terms
in this case, but it is apparent that these are deterministic and resbegifus).
Now the pattern

s (L QX |l (Ro | HC1(xa) | HCo(%2) || HC3(X3) || HC4)),

represents the register machine that is about to perform instruatmmmachine
configuration(xy, X, X3). For example, in the case thiat, models the instruction
(az, 1), we obtain in &, + 2| + 8 t-steps the next (expected) pattern in which
is updated td_| andx; to X 4+ 1. The remaining part of the proof is similar to that
of Theorem 3.2.1.

It should be clear how to adapt the above proof to thecase (occasionally
replacings actions bya;, ands; actions bya;). [

In a similar way Corollary 3.2.2 can be adapted to¢heases. Therefore we have
the following results:

COROLLARY 5.3.2

(1) In bothAcP**(As, v) and ACP*~ (As, ) provable equality between process
terms is not decidable. (Cf. Theorem 3.3.1).

(2) LetT be arecursive transition system with label®8inThenT modulo rooted
branching bisimulation equivalence is expressibledr™**(As(B), v) and in
ACP™7 (Ag(B), 7). (Cf. Theorem 4.2.5).

(3) Let T be an r.e. transition system with labels Bhthat initially is finitely
branching. The modulo rooted -bisimulation equivalence is expressible in
ACP**(As, (B)¥) and inACP*= (As, (B)). (Cf. Theorem 4.2.6).

(4) Results 2 and 3 hold without theoperation if a finite number of auxiliary
actions (and handshaking communication over these) isincluded. Result 1 holds
without thex operation if abstraction and a finite number of auxiliary actions
(and handshaking communication over these) are included. (Cf. Theorems 4.3.1
and 4.3.2, and Bergstra and Ponse [2001] for some proofs).

6. Conclusions

We have shown thaacrP*$(A, v) (i.e., ACP(A, ) with binary Kleene star and
push-down) allows for a straightforward modeling of register machine computation.
Adding abstraction to this setting (either axiomatizing rooted branching bisimilarity
or rootedr -bisimilarity) yields a substantial increase in expressivity: (at least) each
computable process can be specified with help of auxiliary actions. Furthermore,
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with abstraction the use of the binary Kleene star can be avoided. In our presentation
the use of push-down has paved the way to corresponding resultg (girgesting
operation) or= (the back and forth operation) instead. It should be noticed that the
systemsACP*(A, v) andACP*~ (A, ~) (and their versions with abstraction) have
their own strong points. In particular, a cycle cannot be definectiri*(A, ~) or

ACP*= (A, ) without use of, so botht and= are not “iterative” in the most strict
sense, and thus may be judged “more primitive.”

These results establish various equational foundings of process algebra: each
computable process can simply be represented by a term in eaclPG{A, ~),
ACPT*(A, v) andACP™ ™ (A, +) or the associated rootadversion. Adding binary
Kleene star as well yields a more flexible and natural format for the specification
of concurrent processes. Straightforward definitions of typical processes such as
stacks, bags (multi-sets) and queues with these recursive operations are given in
our companion paper [Bergstra and Ponse 2001].

In the modeling of computability provided here, both register magbiograms
andregistersare captured by process terms, and their sequential interaction is spec-
ified in a concurrent fashion. Of course, many alternatives are conceivable. We
mention the approach of Bergstra and Loots [1999], where typically a register is
viewed as aoprogram i.e., a data type that provides a service to a program. This
view emphasizes that programsimi can be defined as finite state objects, whereas
registers (coprograms) necessarily have unbounded capacity. A process algebraic
approach that explicitly incorporates datgui€RL (micro Common Representa-
tion Language) defined by Groote and Ponse [1995]aGmbased language in
which processes can be parameterized with data via data-parametric actions and
recursive specifications. Furthermom; RL contains conditional composition and
data-parametric forms of communication and summation. Ponse [1996] proved that
each computable process can be specifieddpraoriented fragment ol CRL.

In this paper we showed undecidability afP with one of $ 1, = and at least
one of abstraction or binary Kleene star. We did not further address the issue of
proof theory. Some interesting conditional proof rules are the following variants of
RSP, the Recursive Specification Principle (cf. e.g., Baeten and Weijland [1990]
and Fokkink [2000]):

oa(y)=8 X=yxx+z

(RSP) BA(y) =§ X= yX+ Z’ (RSF$) ,
X=Yy*Z X = y$7
= = j = =

(RSF™) oaly)=68 X=yxz+ z’ (RSP) oaly)=68 X=yxy+ z.
X=y~z X=Yy'z

Here the conditiorba(y) = & (the formulation of which stems from Kamsteeg
[1999]) is only relevant for settings with abstraction and rules out processes with an
initial z-step, in order to exclude undesirable identities tike= t*§. It is an open
guestion whether the variougp extensions when equipped with the appropriate
RSP variant(sgharacterizehe associated type of bisimulation equivalence (strong,
rooted branching or rooted. This is a topic of ongoing research. A positive result

in this vein is the completenessg#A(A) + (BKS1)+ (RSP) for strong bisimula-

tion equivalence (which follows from the equational axiomatization of Fokkink
and Zantema [1994]. (BKS2) and (BKS3) are derivable). Furthermore, Aceto
et al. [1998b] proved that a whole range of process semantics coarser than strong
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bisimulation donot allow a finite equational characterization of the binary Kleene
star (see also Aceto et al. [1998a]). Moreover, Sewell [1997] showed that there does
not exist a finite equational characterization of the binary Kleene star modulo strong
bisimulation in the presence 6fdue to the fact thaef)*s is strongly bisimilar to

a*g for positive integer&k. Fokkink [1997] defined thperpetual loopa restricted

form of the binary Kleene stax® = x(x®) (in a setting withs andx this yields

x® =x*§), and provided an RSP-based complete axiomatization of bisimulation
equivalence foBPA; with perpetual loop. Finally, equational axiomatizations of
bisimilarity for othersPa-oriented systems with some form of iteration were given

in Fokkink [1994]; Aceto et al. [1996]; Aceto and laffisdéttir [1996]; Fokkink
[1996]; Aceto and Fokkink [1997]; van Glabbeek [1997]; Aceto et al. [1998c]; and
Aceto and Groote [1999] (for an overview, see Bergstra et al. [2001]).

Appendix A. Universal Register Machines with Two Registers

It is a standard result that the class of recursive functions is characterized by
register machine computabilityHere we recall a particular approach, in which a
register machine program is a (finite) set of instructions numbered ]k of the
following form:

halt halt;
(&,l) add 1 to register and go to instructiom;

(s,1,1l) if registeri holds value zero, then go to instructibnotherwise
subtract 1 from registarand go to instruction.

Let them-tuple (X1, X2, ..., Xm) describe the contents of register2]..., m. A
unary functionf : N — N is register machine computabikthere exists a register
programP that operates on a finite humber of registers, say.l m, in such a
way that f (n) is defined if and only ifP started with the instruction numbered

1 on register machine configuratign, O, ..., 0) computes to aalt instruction.
We adopt as output convention that in this case the contents of the register machine
is (f(n),0,...,0), and we represent this situation graphically as:
(n,0,...,0)
UP
(f(n),0,...,0).
If f(n)is notdefined, the computation programmedfbgn state(n, 0, ..., 0) is

perpetual (“diverges”).

Let P be some fixed register program that usesegisters and that computes
unary functionf. We sketch a uniform construction (based on Minsky [1967]) for
transformingP into a register program that uses only two registers. To this end
we assumen > 2 (otherwise there is nothing to show) and psiene factorization
Computation ofP can be simulated by encoding eankuple

(X1, X2, .+ .y Xm)
(representing some state of timregisters) as the number
X e 5%, pkn

m °
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wherepn, is themth prime number. It suffices to show how the effect of instructions
(&,l)and g,1,1") of P can be simulated on these encoded states. The translation
of (a,1), say register machine program fragment,(L) for some appropriate

instruction numbet., should be such that it transform§ 23% . . .. . pX» into
2x.3%. ..., p.xi+1 ..... r’]"]mzpi.2X1.3X2.....p.Xi..... ?;]m
| | °

This can be easily defined interms af (1) and §;, |, ) for j € {1, 2}, for instance
as follows:

1: (5,2, p+2) SO (2X1 L3 r);]m’ 0>

2 @3 U (AL L)

3: .(az, 4) <p| LXK L. plxu |)"(nm’ O>

o :(az, o+ 1) with L the current instruction no.
pi+1: (@, 1)

Ppi+2: (s p+3L)
p+3: (@, pi +2).

Simulating §, 1, 1") is slightly more complex: the problem is to decide whether our
codex hasp; as a divisor, i.e., to decide whetheris zero or not. This can be
done by repeatedly subtractiqg from x in register 1, while counting upwards in
register 2 (which initially is empty). If this leaves no remainder in register 1, then
the quotient can be copied back into register 1. If this leaves a remaipdéer (
not a divisor), this remainder is stored by a position in the program, upon which
the remaining part of the program should copy back phéold of the contents

of register 2 in register 1. As an example assume- 3 (thusi = 2). The sim-
ulation (S, L, L) for appropriate instruction numbelks L’ can be programmed

as follows:

: (s1,2,5) So, for example, (2, 0) and (3, 0)

233 LS L L) INCANE
: (zlz’, 1) (2,0) (1,0)

' (s, 6, L) with L’ the current with L the current
: (a1, 5) instruction no. instruction no.
(a1, 8)

(a1, 9)

1 (s,10,L)

10: (@, 11)

11: (a1, 12)

12: (@1, 9)

OCO~NOOUITA~,WNPE

So each instructiora(, 1) and &, 1,1”) occurring inP can be systematically trans-
lated into a program fragment that operates on a two register machine and transforms
the encoded states appropriately. Modifying the instruction numbers of the program
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fragments thus obtained, this yields a two register machine proQ_rEhat satisfies
(n,0,...,0) if and only if (2", 0)

JP _
((n),0,...,0) 4P
(25 0.
Of course, ifP diverges on some input configuration, . . ., Xm), thenﬁdiverges
on (2% ..... pk 0).

Finally, P can easily be used to simulate each terminating computation pro-
grammed byP, includingthe (de)coding of input/output values: add a register O
for input/output, and lepre be a register program that transforrms 0, 0) into
(0, 2", 0) andpost a program with the reverse effect. Then

(n, 0, 0) wherepre=1: (@;,2) andpost=1: (5,2, 4)

2: (%0, 3,8) 2:(s1,3,7)

U pre 3:(s1,4,6) 3: (@, 1)

, 4: (az.5) 4: (%.5,6)
0.2".0 5 (a 3) 5: (ay, 4)

LP S: ng g,)z) gr (80, 1)

. D (ag, . halt
(0,2, 0) 8 : halt

| post
(f(n), 0,0

Sopre; P; post simulates the computation dfon a three register machine, justas is
claimed in the proof of Theorem 3.2.1. It is straightforward how concatenation “;"
of programs can be defined in this case, exg;,P can be obtained by removing
instruction 8 inpre and adding 7 to all instruction numbers and references occurring
in P.
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