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Abstract. We study extensions of the process algebra axiom systemACP with two recursive opera-
tions: thebinary Kleene star∗, which is defined byx∗y = x(x∗y)+ y, and thepush-downoperation
$, defined byx$y = x((x$y)(x$y))+ y. In this setting it is easy to represent register machine com-
putation, and an equational theory results that is not decidable. In order to increase the expressive
power, abstraction is then added: withrooted branching bisimulation equivalenceeach computable
process can be expressed, and withrootedτ -bisimilarity each semi-computable process that initially
is finitely branching can be expressed. Moreover, with abstraction and a finite number of auxiliary
actions these results can be obtained without binary Kleene star. Finally, we consider two alternatives
for the push-down operation. Each of these gives rise to similar results.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.1.1 [Computation by Abstract Devices]: Models of Computation; F.1.2 [Computation by
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General Terms: Theory

Additional Key Words and Phrases: Bisimulation equivalence, computability, concurrency, expres-
sivity, iteration, Kleene star, process algebra, push-down operation

1. Introduction

In this paper we take as a point of departure the process algebra axiom system
ACP, that is, the Algebra of Communicating Processes defined by Bergstra and
Klop [1984] and overviewed in Baeten and Weijland [1990], Baeten and Verhoef
[1995], and Fokkink [2000].ACP is an algebraic approach to concurrency theory
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that supports the interleaving hypothesis: concurrency can be modeled and analyzed
in terms of the interleaving and synchronization of actions (elementary, indivisable
processes) by a small number of primitive operations. (This is further explained
in Section 2.) Although the syntax ofACP is suitable for the specification of finite
processes, it is common practice to consider (potentially) infinite behavior, specified
by means of recursive equations, and analyzed with help of the axioms ofACP and
specific proof rules. Here we follow a different approach to the specification of
infinite behavior and use recursive (or “iterative”)operationsinstead (cf. Bergstra
et al. [1993, 1994] and Bergstra and Ponse [2001]; for an overview see Bergstra
et al. [2001]). This approach has lately attracted significant attention,1 and provides a
way to handle infinite processes as terms, hence supporting the equational founding
of process algebra.

The purpose of this paper is to establish elementary computability and expres-
sivity results of some particular extensions ofACP with recursive operations. We
consider thebinary Kleene staras the most basic recursive operation. This op-
eration, notation∗, stems from Kleene [1956] and is in process algebra defined
by

x∗y= x · (x∗y)+ y

(cf. Bergstra et al. [1993, 1994]). Here,+ is the process algebra operation that
models choice, and· (product) models sequential composition. (As usual,· binds
stronger than+ and the symbol· is often omitted.) With the binary Kleene star
one specifiesregular processes, that is, finite state processes. As an example, for
actionsa andb, the process terma∗b characterizes the following behavior:

�
��

a∗b

6

- √b

a

where the labeled arrows represent the execution of actions and
√

expresses termi-
nation. The present paper can be seen as a follow-up of Bergstra et al. [1994], where
we showed thatACP extended with abstraction and binary Kleene star is suitable
to express eachregular process if one adopts common behavioral semantics.

In this paper we first consider an extension ofACP with two recursive
operations:

—the binary Kleene star∗ as introduced above;
—thepush-downoperation $, defined byx$y = x((x$y)(x$y))+ y (in Bergstra and

Ponse [2001]).

In Section 3 we describe a setting in which (unary) recursive functions are computed
by “register-machine based processes.” Register machine programs and registers,
that is, the essential ingredients of register machine computation, are modeled
by sequential, deterministic processes. A register machine computation is then

1 The quest for axiomatizations of various behavioral equivalences for various forms of iteration
turned out to be attractive: see, for example, Fokkink and Zantema [1994], Fokkink [1994, 1996,
1997], Aceto et al. [1996, 1998b, 1998c], Aceto and Ing´olfsdóttir [1996], Aceto and Fokkink [1997],
van Glabbeek [1997], and Aceto and Groote [1999].
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specified as the parallel composition of these processes, and results in a sequence of
synchronization actions that stem from communications between the “program”
and the “registers.” There is one distinct register that initially contains the input
value, and upon termination of the program the (computed) output value. In the
case of nondefinedness, the register machine computation diverges by performing
an infinite sequence of synchronization actions. It easily follows that the resulting
theory (the set of consequences provable from our extension ofACP) is undecidable.

In spite of having established a set-up in which all recursive functions can be
“implemented,” the resulting setting is not yet sufficiently expressive: even some
very simple processes cannot be defined inACP extended with∗ and $ (its standard
semantics—strong bisimilarity, see Park [1981]—being taken for granted). This is
for instance the case for the processp recursively defined below with actionsa
andb:

p = aq+ b,
q = ap+ a, or in a picture:

�
�- �
� ��
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q

a

b

a

a √

This lack of expressivity is solved in Section 4, where we includeabstrac-
tion as an additional feature. We consider two well-known approaches:

—in the setting ofrooted branching bisimilarityeach computable process over a
finite alphabet of labels can be expressed;

—with rootedτ -bisimilarity each semi-computable process over a finite alphabet
of labels that initially is finitely branching can be expressed.

Moreover, with abstraction (and auxiliary actions) at hand, the use of the binary
Kleene star can be avoided.

Finally, we consider in Section 5 two alternatives for the push-down operation,
and argue that the results described above are preserved. The article ends with
some conclusions (Section 6). We added an appendix on the uniform construction
of register machines with two registers (based on Minsky [1967]).

2. Processes inACP∗$(A,γ)

In this section we briefly recall the process algebra axiom systemACP and consider
its extension with the recursive operations∗ and $ in detail. Then we provide a
(standard) operational semantics. Finally, we show that the second example process
described in the Introduction cannot be expressed in the present extension.

2.1. AXIOM SYSTEMS UP TO ACP∗$(A,γ). Let A be a finite set of actions
a, b, . . . and letγ : A× A→ A be a partial function that iscommutativeandasso-
ciative:

γ(a, b) = γ(b,a) if γ(a, b) ↓ (i.e.,γ(a, b) defined),
γ(a,γ(b, c)) = γ(γ(a, b), c) if γ(a,γ(b, c)) ↓.

The functionγ definescommunication actionsand models the simultaneous execu-
tion of actions. In the case that for alla, b, c ∈ A, γ(a,γ(b, c)) is undefined while
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γ is not fully undefined onA× A, we speak ofhandshaking(two-party communi-
cation, see Bergstra and Tucker [1984]). The action setA and the communication
functionγ can be regarded as the parameters of the axiom systemACP defined by
Bergstra and Klop [1984]. Henceforth we shall writeACP(A,γ). The signature of
ACP(A,γ) is as follows:

sorts: A (a given, finite set of actions),
P (the set of process terms;A⊆P),

operations: + : P ×P→P (alternative composition or sum),
· : P ×P→P (sequential composition or product),
‖ : P ×P→P (parallel composition or merge),
‖ : P ×P→P (left merge),
| : P ×P→P (communication merge, givenγ : A× A→ A),
∂H : P→P (encapsulation,H ⊆ A),

constants: δ ∈P \ A (deadlock or inaction).

We take · to be the operation that binds strongest, and+ the one that binds
weakest. As usual in algebra, we often writexy instead ofx·y. Furthermore,
for n> 0 we definexn+1 as x·xn, andx1 as x. The left merge and the commu-
nication merge are auxiliary operations (allowing a finite axiomatization of the
merge):x ‖ y is asx ‖ y with the restriction that the first action must stem from
x, andx | y is asx ‖ y, except that the first action must be a communication be-
tween x and y. Finally, encapsulation can be used to enforce communications
between parallel components (this is illustrated by some examples in the sequel).
Closed terms are further calledprocess terms, in order to stress that these represent
processes.

In Table I, the axioms of the systemACP(A,γ) are collected, wherea ranges
over Aδ = A ∪ {δ}. Although the‖-operation is not axiomatized as an associative
and commutative operation, it has these properties for all process terms (this can
be proved with structural induction).

Example2.1.1. As an example, assumeγ(a, b)= c. Then one can derive in
ACP(A,γ) that

a2 ‖ b2 = a(a ‖ b2)+ b(b ‖ a2)+ c(a ‖ b)
= a(a · b2+ b(b ‖ a)+ cb)
+ b(b · a2+a(a ‖ b)+ ca)
+ c(ab+ ba+ c)

= a(a · b2+ b(ba+ ab+ c)+ cb)
+ b(b · a2+ a(ab+ ba+ c)+ ca)
+ c(ab+ ba+ c).

The first five axioms (A1)–(A5) form the core systemBPA(A) (Basic Process Al-
gebra), and adding (A6) and (A7) toBPA(A) yieldsBPAδ(A). For a detailed intro-
duction toBPA(A)—ACP(A,γ) and an intuitive account see, for example, Baeten
and Weijland [1990] and Fokkink [2000].

The binary Kleene star was added to process algebra by Bergstra et al. [1993]
with the axioms given in Table II (see also Bergstra et al. [1994]). Bergstra and
Ponse [2001] defined the recursive operationpush-down, notation $, by the single
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TABLE I. THE AXIOMS OF ACP(A,γ) WHEREa, b ∈ Aδ , H ⊆ A

(A1) x + y = y+ x | (CF1) a | b= γ(a, b) if γ(a, b) ↓
(A2) x + (y+ z) = (x + y)+ z | (CF2) a | b= δ otherwise
(A3) x + x = x |
(A4) (x + y)z= xz+ yz | (CM1) x ‖ y = (x ‖ y+ y ‖ x)+ x | y
(A5) (xy)z= x(yz) | (CM2) a ‖ x = ax

| (CM3) ax‖ y = a(x ‖ y)
(A6) x + δ = x | (CM4) (x + y) ‖ z= x ‖ z+ y ‖ z
(A7) δx = δ | (CM5) ax | b= (a | b)x

| (CM6) a | bx = (a | b)x
| (CM7) ax | by= (a | b)(x ‖ y)
| (CM8) (x + y) | z= x | z+ y | z
| (CM9) x | (y+ z) = x | y+ x | z
|
| (D1) ∂H (a) = a δ if a 6∈ H
| (D2) ∂H (a) = δ a if a ∈ H
| (D3) ∂H (x + y) = ∂H (x)+ ∂H (y)
| (D4) ∂H (xy) = ∂H (x) · ∂H (y)

TABLE II. ADDITIONAL AXIOMS FORBINARY KLEENE STAR AND PUSH-DOWN

(BKS1) x∗y = x(x∗y)+ y | (BKS3) x∗(y((x + y)∗z)+ z) = (x + y)∗z
(BKS2) x∗(yz) = (x∗y)z | (BKS4) ∂H (x∗y) = ∂H (x)∗∂H (y)

(Push-Down) x$ y= x((x$ y)(x$ y))+ y

axiom also displayed in Table II. Extension of one of the systems mentioned above
with ∗ or $ and relevant axioms is denoted by adding the appropriate symbol as
a superscript, for example,BPA∗(A) stands forBPA(A) extended with∗ and the
axioms (BKS1)–(BKS3), andACP∗$(A,γ) stands forACP(A,γ) extended with∗
and $, the axioms (BKS1)–(BKS4) and the defining axiom for $. We note that
associativity and commutativity of‖ in process terms cannot be proved from the
given axioms if∗or $ is involved. However, since it is convenient to omit parentheses
in (large)‖-expressions we further adopt thenotational conventionthat‖ associates
to the left, thusx ‖ y ‖ z= (x ‖ y) ‖ z.

2.2. OPERATIONAL SEMANTICS. We relate process terms to labeled transition
systems and define bisimulation equivalence between transition systems. Then we
provide bisimulation equivalence models for the process algebra systems introduced
in the previous section, thus obtaining an operational semantics that captures process
behavior in terms of the actions that can be executed.

A labeled transition systemis a tuple〈S, L ,→, s〉, whereS is a set ofstates, L
is a set oflabels,→ is a transition relation, ands ∈ S is theinitial stateor root.
Consider one of the process algebra axiom systemsBPA(A)− ACP∗$(A,γ), and let
P represent all process terms given by its signature. In order to associate transition
systems with elements ofP, we takeP itself as the set of states. As labels we take
the actions fromA. The transition relation→ contains transitions

−→ ⊆ P × A× P,
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TABLE III. TRANSITION RULES FORBPA(A) – ACP∗$(A,γ) WHEREa, b ∈ A, H ⊆ A

a a−−→√, a ∈ A

x a−→√

x + y a−→√
y+ x a−→√
x · y a−→y
x ‖ y a−→y
y ‖ x a−→y
x ‖ y a−→y
∂H (x) a−→√ if a 6∈ H
x∗y a−→x∗y
y∗x a−→√
x$ y a−→(x$ y)(x$ y)
y$ x a−→√

x a−→x′

x + y a−→x′
y+ x a−→x′
x · y a−→x′ · y
x ‖ y a−→x′ ‖ y
y ‖ x a−→y ‖ x′

x ‖ y a−→x′ ‖ y
∂H (x) a−→∂H (x′) if a 6∈ H
x∗y a−→x′(x∗y)
y∗x a−→x′

x$ y a−→x′((x$ y)(x$ y))
y$ x a−→x′

x a−→√ y b−→√

x ‖ y
γ(a,b)−−−−→√ if γ(a, b) ↓

x | y
γ(a,b)−−−−→√ if γ(a, b) ↓

x a−→x′ y b−→y′

x ‖ y
γ(a,b)−−−−→x′ ‖ y′ if γ(a, b) ↓

x | y
γ(a,b)−−−−→x′ ‖ y′ if γ(a, b) ↓

x a−→√ y b−→y′

x ‖ y
γ(a,b)−−−−→y′ if γ(a, b) ↓

x | y
γ(a,b)−−−−→y′ if γ(a, b) ↓

x a−→x′ y b−→√

x ‖ y
γ(a,b)−−−−→x′ if γ(a, b) ↓

x | y
γ(a,b)−−−−→x′ if γ(a, b) ↓

and for modeling(successful) termination, special transitions

−→√ ⊆ P × A. (
√

is pronounced “tick”.)

The idea is that fora ∈ A, a transitionP a−→P′ expresses that by executing
a, the process represented byP can evolve into the remainder process repre-
sented byP′. The transitionP a−→√ expresses that the process represented by
P can terminate (successfully) after executinga. The rules in Table III define
the transition relation→, where the signature and parameters ofP (possibly
including a communication functionγ) determine which rules are appropriate.
Note that the stateδ has no outgoing transitions. IfP is fixed and no confu-
sion can arise, we often writeP for 〈P, L ,→, P〉, so the labeled transition sys-
tem related to a process termP has P itself as initial state, and each state that
can be reached fromP via a sequence of transitions is calleda substate of P.
The transition system of Pconsists ofP and all transitions that can be reached
from P.

Example2.2.1. Consider actionsa, b, c. As a first example, the transition sys-
tem of a∗b as defined by the rules in Table III is displayed below (and also in
the Introduction). Also transition systems ofab ‖ c anda$ b are displayed below,
where it is assumed thatγ(b, c) = a is the only communication defined.
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The following process plays a major role in the sequel of the paper. Consider actions
{ā, s̄, z̄, c̄} and process term (̄a(ā$ s̄) + z̄)∗c̄ abbreviated byR. The process term
R can be recognized as aregister, that is, a memory location for a natural number
with unbounded capacity and restricted access as modeled by the specific actions:
ā for “add one,”s̄ for “subtract one,”z̄ for “test zero,” andc̄ for “clear, terminate
the process.” The transition system ofR is visualized below.
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ā

ā

R

(ā$ s̄)R

(ā$ s̄)2R

-c̄z̄ √

Labeled transition systems are too concrete to represent processes. For exam-
ple, process termsa∗δ and (aa)∗δ clearly represent the same process, that is, the
process that repeatedly executes actiona, but their transition systems are differ-
ent (nonisomorphic). Therefore we consider bisimulation equivalence [Park 1981]
over transition systems, which is the largest equivalence relation that respects all
behavioral properties captured by process terms: two bisimilar processes cannot be
distinguished in terms of observability.

Definition 2.2.2. Abisimulationis a binary relationR overP that satisfies the
following conditions:

—if PRQ andP a−→P′ for somea∈ A andP′ ∈P, then there existsQ′ ∈P such
that Q a−→Q′ andP′RQ′,
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—if PRQ andQ a−→Q′ for somea∈ A andQ′ ∈P, then there existsP′ ∈P such
that P a−→ P′ andP′RQ′,

—if PRQ then for alla∈ A, P a−→√ if and only if Q a−→√.

Two statesP, Q arebisimilar, notationP↔Q, if there exists a bisimulationR
with PRQ.

Note that↔ is an equivalence relation. Now if we takeP as the set of
ACP∗$(A,γ) terms, it follows that↔ is a congruence relation for all opera-
tions involved [Baeten and Verhoef 1993; Groote and Vaandrager 1992]. We write
ACP∗$(A,γ)/↔ |= P = Q wheneverP↔ Q according to the notions just de-
fined, and for variable sequenceEx = x1, . . . , xn we write

ACP∗$(A,γ)/↔ |= t1(Ex) = t2(Ex)

if for all EP = P1, . . . , Pn it holds thatACP∗$(A,γ)/↔ |= t1( EP) = t2( EP). It is not
difficult to establish that in the bisimulation model thus obtained all equations of
Tables I and II are true. So we have the following result:

LEMMA 2.2.3. The systemACP∗$(A,γ) is sound with respect to bisimulation
equivalence: if ACP∗$(A,γ) ` t1(Ex) = t2(Ex), thenACP∗$(A,γ)/↔ |= t1(Ex) =
t2(Ex).

Finally, the axioms ofACP(A,γ) completely characterize bisimilarity between
the processes that can be expressed [Bergstra and Klop 1984; Baeten and Weij-
land 1990]. Moreover, bisimilarity overBPA∗(A) is completely axiomatized by the
axioms ofBPA(A) (i.e., (A1)–(A5)) and (BKS1)–(BKS3), as was first proved by
Fokkink and Zantema [1994]. For an interesting decidability result on bisimulation
equivalence, see Baeten et al. [1993].

2.3. ON THE EXPRESSIVENESS OFACP∗$(A,γ). Bergstra et al. [1994] showed
that the expressiveness of systems with binary Kleene star can be analyzed using
properties of cycles in labeled transition systems (these results were strengthened
by Boselie [1995]). In order to show a negative expressivity result forACP∗$(A,γ),
we adapt some of these results. A stateQ ∈ P is a successorof stateP ∈ P if
P a−→Q for somea∈ A. A cycleis a sequence of distinct states (P0, . . . , Pn) such
that Pi+1 is a successor ofPi for i = 0, . . . ,n− 1 andP0 is a successor ofPn. An
actiona is anexit actionof stateP if P a−→√.

LEMMA 2.3.1. Let C be a cycle in a labeled transition system associated to a
process term overACP∗$(A,γ). Then C has one of the following forms, for n∈N,
where≡ denotes syntactic equivalence:

(i) C ≡ (P0Q, P1Q, . . . , PnQ);
(ii) C ≡ (P∗Q, P1(P∗Q), . . . , Pn(P∗Q)), or any cyclic permutation thereof;

(iii) C ≡ (P$Q, P1(P$Q), . . . , Pn(P$Q)), or any cyclic permutation thereof;
(iv) C ≡ (P0 ‖ Q0, P1 ‖ Q1, . . . , Pn ‖ Qn);
(v) C ≡ (∂H (P0), ∂H (P1), . . . , ∂H (Pn)).

PROOF. Let C ≡ (C0, . . . ,Cn). We apply case distinction onC0. ClearlyC0

is not a single action, and because+, ‖ , | do not occur as the first operation in



Register-Machine Based Processes 1215

right-hand sides of conclusions of transition rules, it follows thatC0 can not be a
successor, soC0 6≡ P ¦ Q for ¦ ∈ {+, ‖ , |} and five cases remain:

—C0≡ RS. If S is not a state inC, thenC≡ (RS, R1S, . . . , RnS), which corre-
sponds to case (i). IfS is a state inC, then there is a sequence of transitions
S

a1→· · · an→RS. Observe that there are only three transition rules that can give rise
to a transitionT a−→ T ′ whereT is a proper subterm ofT ′:

x a−→√

x$y a−→ (x$ y)(x$ y)

x a−→ x′

x∗y a−→ x′(x∗y)

x a−→ x′

x$y a−→ x′((x$y)(x$ y))

This implies thatS is of the formP∗Q or P$ Q, and thatC must be of the form
(ii) or (iii).

—C0 ≡ R∗S. Analogous to the caseC0 ≡ RS, we see thatC is of form (ii).
—C0 ≡ R$S. Analogous to the caseC0 ≡ RS, we see thatC is of form (iii).
—C0 ≡ R ‖ S. As R ‖ S is not a substate ofR or S, it follows from the transition

rules for the merge thatC must be of form (iv).
—C0 ≡ ∂H (R). Since

x a−→ x′

∂H (x) a−→ ∂H (x′) if a 6∈ H

is the only transition rule for∂H that can have been used, it follows thatC is of
form (v).

Lemma 2.3.1 can be used to derive further properties of cycles.

LEMMA 2.3.2. Let C be a cycle in a labeled transition system associated to a
process term overACP∗$(A,γ). Then there is at most one state in C with an exit
action.

PROOF. Cycle C = (C0, . . . ,Cn) must be of one of the forms (i)–(v) from
Lemma 2.3.1. We apply induction with respect to the size ofC.

—C= (P0Q, . . . , PnQ). Then none of the states inC has an exit action.
—C= (P∗Q, P1(P∗Q), . . . , Pn(P∗Q)), or any cyclic permutation thereof. Then

P∗Q is the only state inC that may have an exit action.

—C= (P$ Q, P1(P$ Q), . . . , Pn(P$ Q)), or any cyclic permutation thereof. Then
P$ Q is the only state inC that may have an exit action.

—C= (P0 ‖ Q0, . . . , Pn ‖ Qn). By induction, there is at most onei ∈ {0, . . . ,n}
such that bothPi andQi have an exit action (note that only one of (P0, . . . , Pn),
(Q0, . . . , Qn) necessarily is a cycle). SoPi ‖ Qi is the only state inC that may
have an exit action.

—C= (∂H (P0), . . . , ∂H (Pn)). By induction, the cycle (P0, . . . , Pn) contains at most
one statePi that has an exit action. So∂H (Pi ) is the only state inC that may have
an exit action.

Let a, b ∈ A. We now argue that the regular processp recusively defined by

p = aq+ b,
q = ap+ a,
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(also considered in the Introduction) cannot be defined inACP∗$(A,γ) modulo
strong bisimulation equivalence. More precisely, given transitionsp

a−→ q, p
b−→√,

q
a−→ p and q

a−→√ there does not exist a process termR in ACP∗$(A,γ) that
satisfiesR↔p, where↔ is defined overP ∪{p, q} andP is the set ofACP∗$(A,γ)
process terms. For assume the contrary: according to Lemma 2.3.2, each process
term yielding a cycle is not a candidate because each cycle with a state bisimilar
to p contains at least two states, and has at least two exit actions. So, the transition
system associated to process termR necessarily has an infinite number of states.
(Cf. a$ δ that has an infinite number of states and no cycles, and which is bisimilar
to a∗δ.) This implies thatR contains an occurrence of $, which contributes to
R’s transition system by a transition, sayT a−→ T ′, that is derived with one of the
rules introducing $ via its left-argument. Because+, ‖ ,|do not occur as the first
operation in right-hand sides of conclusions of transition rules, this implies thatT ′

cannot have an exit action, which contradictsR↔p. Hence,p cannot be defined
in ACP∗$(A,γ).

Remark2.3.3. With a little more effort we can show that the regular processr
defined byr = aas + a, s = ar + a cannot be specified inACP∗$(A,γ) for any
choice ofA ⊇ {a} (cf. Boselie [1995]).

3. Register-Machine Based Processes inACP∗$(A,γ)

In this section we turn to register machines, and establish a process algebraic
representation of register machine computation for a particular repertoire of actions
and handshake communications. Having this, it easily follows that the resulting
theory is undecidable.

3.1. ALPHABETS, REGISTERS, AND REGISTERMACHINE PROGRAMS. We define
a setting in which register machine computation is straightforwardly modeled in
ACP∗$(A,γ) for a particular choice ofA andγ. We consider registers modeled by
process terms as in Example 2.2.1: a register namedi ∈ N is modeled as a process
Ri over alphabet

ᾱi ={āi , s̄i , z̄i , c̄i }
by Ri = (āi (āi

$ s̄i ) + z̄i )∗c̄i . Furthermore, we define forj ∈N the following
abbreviations:

Ri (0) = Ri ,

Ri ( j + 1) = (āi
$ s̄i ) · Ri ( j ).

So Ri ( j ) represents registeri containing valuej . Rather than viewing registers
as autonomous processes, we want them to be controlled by aregister machine
iterative program. To this end, we define fori ∈ N the alphabet

αi ={ai , si , zi , ci }
containing actions that represent instructions to registeri . Starting from alphabets
αi , we define a class of process terms representing structured register machine
programs.
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Definition 3.1.1. Fori ∈ N the Register Machine Iterative Programs using
registers 0, 1, . . . , i − 1, notation

RMI(i ),

is a collection of process terms with alphabet in∪k<iαk. The classRMI(i ) is induc-
tively defined by the following clauses:

(1) ak ∈ RMI(i ) if k< i ,
(2) sk

∗zk ∈ RMI(i ) if k< i ,
(3) sk

∗ck ∈ RMI(i ) if k< i ,
(4) if P ∈ RMI(i ) andk < i , then (sk P)∗zk ∈ RMI(i ),
(5) if P, Q ∈ RMI(i ), thenP Q∈RMI(i ),
(6) if P, Q ∈ RMI(i ) andk< i , thensk P+ zk Q∈RMI(i ).

Note that ifP is an element ofRMI(i ), then also each successor ofP. Furthermore,
RMI(i ) is closed under associativity of sequential composition (and we will omit
brackets in repeated applications). Finally, note that eachP ∈RMI(i ) specifies a
deterministicprocess (i.e., in the case that there are two outgoing transitions, these
have different labels).

Let t be an action disjoint from∪i (αi ∪ ᾱi ). For n∈N, we distinguish the fol-
lowing sets of actions:

An = {t} ∪ Hn,

Hn =
⋃
j<n

(α j ∪ ᾱ j ).

The setsHn will be used for encapsulation, thus enforcing communications between
parallel components. Communication onAn is defined byγ(a, b) = t if and only
if for some j < n, eithera ∈ α j , b ∈ ᾱ j andb = ā, or b ∈ α j ,a ∈ ᾱ j anda = b̄.

Encapsulated parallel composition of a register machine iterative program to-
gether with the registers it addresses will be used to model register machine com-
putation by synchronization: the actions of anRMI process term perform handshak-
ing communications with the registers addressed. For example we can derive in
ACP∗$(A1,γ) that

∂H1(s0
∗z0 ‖ R0( j ))= ∂H1(s0

∗z0 ‖ R0( j ))+ ∂H1(R0( j ) ‖ s0
∗z0)

+ ∂H1(s0
∗z0 | R0( j ))

= ∂H1((s0(s0
∗z0)+ z0) ‖ R0( j ))+ ∂H1(R0( j ) ‖ s0

∗z0)
+ ∂H1(s0(s0

∗z0) | R0( j ))+ ∂H1(z0 | R0( j )).

By encapsulation the first two summands equalδ. In case j = 0, the third sum-
mand equalsδ and the fourth equalst · ∂H1(R0(0)) (becauseγ(z0, z̄0)= t). In the
case thatj > 0, the third summand equalst · ∂H1(s0

∗z0 ‖ R0( j − 1)) (by ans0 | s̄0
communication), and the last summand equalsδ. So in general,

∂H1(s0
∗z0 ‖ R0( j )) = t j+1 · ∂H1(R0(0)).

Because we often consider a number of registers operating in parallel, we intro-
duce fork> 0 the abbreviation

Rk defined byR1 = R0, Rk+1 = Rk ‖ Rk.
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SoRk representsk empty registers 0, 1, . . . , k − 1 in parallel. (Recall that‖ as-
sociates to the left.) In the case that each of these contains valueni , we use the
notation

Rk(n0, . . . ,nk−1).

As it turns out,ACP∗$(Ak,γ), in whichRk andRMI(k) processes are specifiable,
will allow a practical encoding of register machine programming. All phenomena
known to us and connected with the option to encode computability in general
become visible withk≥ 4. The casesk= 1, 2, 3 may feature various anomalies due
to a lack of expressive power, and are of no concern to us.

3.2. REGISTERMACHINE PROGRAMMING IN ACP∗$(A,γ). In the sequel we will
often consider expressions of the form

∂Hk(Px ‖ Rk(n0, . . . ,nk−1))

abbreviating∂Hk(Px ‖ [· · · (R0(n0) ‖ R1(n1)) . . . ‖ Rk−1(nk−1)]) with P in RMI(k)
andx a process variable. The following basic result states that we can ‘implement’
each computable function inACP∗$(A4,γ).

THEOREM 3.2.1. Let f : N→N be computable(not necessarily total). There
exist P∈RMI(4) and computable g: N→N\{0} such that if f(n) is defined, then
g(n) is defined and

ACP∗$(A4,γ) ` ∂H4(Px ‖ R4(0, n, 0, 0))= t g(n) · ∂H4(x ‖ R4(0, f (n), 0, 0)),

and if f(n) is not defined, then g(n) is not defined and for each i∈ N\{0} there
exists a process term Mi such that

ACP∗$(A4,γ) ` ∂H4(Px ‖ R4(0, n, 0, 0))= t i · Mi .

PROOF. Consider a register machine programming language with instructions
of the following form:

halt halt;
(ai , l ) add 1 to registeri and go to instructionl ;
(si , l , l ′) if registeri holds value zero, then go to instructionl ′, otherwise

subtract 1 from registeri and go to instructionl .

Let P̄ be a register machine program that computesf using three registers 1, 2, 3,
and instructions numbered 1, . . . , k: if the tuple〈x1, x2, x3〉 represents the values
of registers 1, 2, 3, respectively, and̄P started with instruction 1 on machine state
〈n, 0, 0〉 terminates (i.e., has reached ahalt-instruction), then this termination state
is 〈 f (n), 0, 0〉. (This is possible; see e.g., Minsky [1967] or Appendix A.)

We turnP̄ into a processP in RMI(4), taking an extra register processR0 to store
“the next instruction number.” We set

P = L1Q, Q = (s0P1)∗z0,
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and forline(m, P̄) denoting themth instruction ofP̄,

Pm=
{

Lm if k= 1,
s0Pm+1+ z0Lm if k> 1 andm+ 1< k,
s0Lm+1+ z0Lm if k> 1 andm+ 1= k,

Lm=
(s3

∗z3)(s2
∗z2)(s0

∗z0) if line(m, P̄) = halt,
ai · al

0 if line(m, P̄) = (ai , l ),
si · al

0+ zi · al ′
0 if line(m, P̄) = (si , l , l ′).

Starting from the initial state

∂H4(L1Qx ‖ R4(0, n, 0, 0)), that is,∂H4(L1Qx ‖ (R0 ‖ R1(n) ‖ R2 ‖ R3)),

we show that each ‘program state’LmQx, that is, the state that models execution
of instructionm, occurs in a pattern of the form

∂H4(LmQx ‖ R4(0, x1, x2, x3)),

and results in an appropriate update of the register values and the “program state.”
We apply case distinction online(m, P̄):

—line(m, P̄) = halt. In this case the registersR0, R2 andR3 must be emptied (set
to value 0) andLmQ must be terminated. We derive

∂H4(LmQx ‖ R4(0, x1, x2, x3))
= ∂H4((s3

∗z3)(s2
∗z2)(s0

∗z0)Qx ‖ (R0 ‖ R1(x1) ‖ R2(x2) ‖ R3(x3)))

= t x3+1 · ∂H4((s2
∗z2)(s0

∗z0)Qx ‖ (R3 ‖ (R0 ‖ R1(x1) ‖ R2(x2))))

= t x2+x3+2 · ∂H4((s0
∗z0)Qx ‖ ((R2 ‖ (R0 ‖ R1(x1))) ‖ R3))

= t x2+x3+3 · ∂H4(Qx ‖ (R0 ‖ R1(x1) ‖ R2 ‖ R3))

= t x2+x3+4 · ∂H4(x ‖ (R0 ‖ R1(x1) ‖ R2 ‖ R3))

= t x2+x3+4 · ∂H4(x ‖ R4(0, x1, 0, 0)).

—line(m, P̄) = (a1, l ) (recall 1≤ l ≤ k). In this case we derive

∂H4(LmQx ‖ R4(0, x1, x2, x3))
= ∂H4

(
a1al

0Qx ‖ (R0 ‖ R1(x1) ‖ R2(x2) ‖ R3(x3))
)

= t · ∂H4

(
al

0Qx ‖ (R1(x1+ 1) ‖ R0 ‖ R2(x2) ‖ R3(x3))
)

= t l+1 · ∂H4(Qx ‖ (R0(l ) ‖ R1(x1+ 1) ‖ R2(x2) ‖ R3(x3)))

= t2l+2 · ∂H4(Ll Qx ‖ (R0 ‖ R1(x1+ 1) ‖ R2(x2) ‖ R3(x3)))

= t2l+2 · ∂H4(Ll Qx ‖ R4(0, x1+ 1, x2, x3)).

In caseline(m, P̄) = (ai , l ) for i = 2, 3 it follows in a similar way that

∂H4(LmQx ‖ R4(0, x1, x2, x3)) = t2l+2 · ∂H4(Ll Qx ‖ R4(0, x1, y2, y3)),

whereyi = xi + 1 andy5−i = x5−i .
—line(m, P̄) = (si , l , l ′). Now there are two cases to distinguish depending on the

valuexi of the current machine configuration〈x1, x2, x3〉. If xi = 0 it follows
that

∂H4(LmQx ‖ R4(0, x1, x2, x3)) = t2l ′+2 · ∂H4(Ll Qx ‖ R4(0, x1, x2, x3)).
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If xi > 0 andsi modifies the machine configuration〈x1, x2, x3〉 into 〈y1, y2, y3〉
whereyi = xi − 1 andyj = xj for j 6= i , then

∂H4(LmQx ‖ R4(0, x1, x2, x3)) = t2l+2 · ∂H4(LmQx ‖ R4(0, y1, y2, y3)).

Based upon the number oft-steps computed above we now provide a definition of
functiong, applying induction on the length of terminating computations. Let the
auxiliary functionsFm(x1, x2, x3) for m= 1, . . . , k be defined as follows:

—if Lm= (s3
∗z3)(s2

∗z2)(s0
∗z0), i.e., the encoding ofhalt, then Fm(x1, x2, x3) =

x2+ x3+ 4,
—if Lm=ai al

0, i.e., the encoding of instruction (ai , l ), then Fm(x1, x2, x3)=
Fl (y1, y2, y3)+ 2l + 2, whereyi = xi + 1 andyj = xj for j 6= i ,

—if Lm= si al
0+ zi al ′

0 , i.e., the encoding of instruction (si , l , l ′), then

Fm(x1, x2, x3)=


Fl (y1, y2, y3)+ 2l + 2 if xi > 0, yi = xi − 1 and
yj = xj for j 6= i ,

Fl ′(x1, x2, x3)+ 2l ′ + 2 otherwise.

Observe that theFm are not necessarilytotal, even if f is. However, ifP̄ started at
line m with register valuesn,m2,m3 computes tohalt with register valuesn′, 0, 0
then

ACP∗$(A4,γ) ` ∂H4(LmQx ‖ R4(0, n,m2,m3))

= t Fm(n,m2,m3) · ∂H4(x ‖ R4(0, n′, 0, 0)).

This follows by induction on the length of (terminating) computations, sayh. If
h= 0 thenline(m, P̄) = halt andLm= (s3

∗z3)(s2
∗z2)(s0

∗z0). If h= h′ + 1, thenLm
is eitherai al

0 or si al
0 + zi al ′

0 for somei, l , l ′. The identities above suffice to make
the induction step. Takingm= 1 andm2=m3= 0 yields the required information:
g(n)= F1(n, 0, 0). Clearly, if f (n) is defined, then so isg(n) andg(n)> 0.

In the case that̄P started at linem with certain register values does not halt (so
the performance of successive instructions is perpetual), the second statement of
the lemma follows immediately.

In Section 4 we will use the following generalizations of this result.

COROLLARY 3.2.2. Let f : N→ N be a computable function(not necessarily
total). Then there exist P, Q ∈ RMI(5) such that for some computable functions
g, h : N→ N\{0} and for all n, if f(n) is defined, then so are g(n) and h(n), and

ACP∗$(A5,γ) ` ∂H5 (Px‖R5(0, n, 0, 0, 0))= t g(n) ·∂H5 (x‖R5(0, f (n), 0, 0, 0)) ,
ACP∗$(A5,γ) `∂H5 (Qx‖R5(0, n, 0, 0, 0))= th(n) · ∂H5 (x‖R5(0, n, f (n), 0, 0)) .

PROOF. The first statement follows immediately from the previous proof. Fur-
thermore, letQ1= ((s1a2a0)∗z1)((s0a1)∗z0), so Q1 ∈ RMI(5). It follows easily
that

ACP∗$(A5,γ) ` ∂H5 (Q1x ‖ R4(0, n, 0, 0))) = t5n+2 · ∂H5 (x ‖ R5(0, n, n, 0, 0)) .

Let Q̄2 be a register machine program that computesf using registers 2, 3 and 4.
As shown in the proof of Theorem 3.2.1, there existQ2 ∈ RMI(5) and computable
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functionh′ : N→N\{0} such that if f (n) is defined, then

ACP∗$(A5,γ) ` ∂H5 (Q2x ‖ (R0 ‖ R2(n) ‖ R3 ‖ R4))

= th′(n) · ∂H5 (x ‖ (R0 ‖ R2( f (n)) ‖ R3 ‖ R4))

if the modeling of thehalt instruction is adapted to (s4
∗z4)(s3

∗z3)(s0
∗z0). It follows

that if f (n) is defined, then

ACP∗$(A5,γ) ` ∂H5 (Q1Q2x ‖ R4(0, n, 0, 0)))

= t5n+2+h′(n) · ∂H5 (x ‖ R5(0, n, f (n), 0, 0)) .

So, settingQ= Q1Q2 andh(n) = 5n+ 2+ h′(n) proves the second statement of
the lemma.

3.3. UNDECIDABILITY OF ACP∗$(A,γ). It being possible to represent each com-
putable function inACP∗$(A4,γ), it is not difficult to prove thatACP∗$(A4,γ) has an
undecidable theory (initial algebra). We provide a family of process termsUn,Vn
such thatACP∗$(A4,γ) ` Un=Vn is not decidable.

THEOREM 3.3.1. ACP∗$(A4,γ) ` u = v is not decidable.

PROOF. Let We1,We2 be recursively inseparable sets. Letf : N → N be the
partial recursive function defined by

f (n) =
{

0 if n ∈ We1,
1 if n ∈ We2,↑ otherwise.

By Theorem 3.2.1 there areP ∈RMI(4) and computable functiong such that iff (n)
is defined, then

ACP∗$(A4,γ) ` ∂H4(Px ‖ R4(0, n, 0, 0))= t g(n) · ∂H4(x ‖ R4(0, f (n), 0, 0)).

Now letU,V ∈ RMI(4) andUn,Vn be defined by

U = P(s3
∗c3)(s2

∗c2)(s0
∗c0)(s1

∗c1),
V = P(s3

∗c3)(s2
∗c2)(s0

∗c0)((s1(s1
∗z1))∗c1),

Un= ∂H4(U ‖ R4(0, n, 0, 0)),
Vn= ∂H4(V ‖ R4(0, n, 0, 0)).

Then, writing` u = v for ACP∗$(A4,γ) ` u = v, we find

n ∈ We1 ⇒ f (n) = 0⇒ ` Un = Vn
(= t g(n)+4

)
,

n ∈ We2 ⇒ f (n) = 1⇒ 6` Un = Vn
(
t g(n)+5 6= t g(n)+6

)
.

As to the latter implication: assume otherwise, that is,ACP∗$(A4,γ) ` tk = tk+1

for somek > 0. Then by Lemma 2.2.3,tk ↔ tk+1, which clearly is a contradiction.
Thus, decidability ofACP∗$(A4,γ) ` Un=Vn provides a recursive separation of

We1 andWe2, which is contradictory.

To be a little more general, we call a modelM for ACP∗$(A,γ) left cancelling
or trace consistentif for all a, b ∈ A,

M |= ∀x, y(ax = by→ (a = b∧ x = y)).
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TABLE IV. THE ADDITIONAL AXIOMS OF ACPτ (A,γ) WHERE I ⊆ A AND

a, b ∈ Aδ

(T1) xτ = x |
(T2) τx + x = τx |
(T3) a(τx + y) = a(τx + y)+ ax |

| (TI0) τI (τ ) = τ
(TC1) τ | x = δ | (TI1) τI (a) = a if a 6∈ I
(TC2) x | τ = δ | (TI2) τI (a) = τ if a ∈ I
(TC3) τx | y = x | y | (TI3) τI (x + y) = τI (x)+ τI (y)
(TC4) x | τy = x | y | (TI4) τI (xy) = τI (x) · τI (y)

The following corollary is a straightforward consequence from the proof given
above:

COROLLARY 3.3.2. Let A4 ⊆ A and letM be a model ofACP∗$(A,γ) that is
left canceling. Then the word problem ofM is undecidable.

Remark3.3.3. In the undecidability results above, we use 33 actions (|A4| +
|{t}|) and the restriction to handshaking communication. Retaining this last restric-
tion, we can reduce this number: replace allci actions byzi in U,V and useUδ, Vδ
instead, and replace all̄ci by δ. So for A containing at least 25 actions it follows
thatACP∗$(A,γ) has an undecidable theory.

4. Adding Abstraction

A basic ingredient of concurrency theory is thesilentor internal action orhidden
move, notationτ , which dates back to Milner [1980]. We consider two combinations
of the constantτ andACP(A,γ), each of which goes with an operation that renames
actions intoτ , that is, that defines the distinction between what is observable and
what is not. This facility, known asabstractionor hiding, is a common feature in
process algebra, serving both verification styles and expressive power. In this section
we show that the addition of abstraction yields a substantial increase of expressive
power. Furthermore, we show that the use of∗ in all our results can be avoided.

4.1. AXIOM SYSTEMS AND OPERATIONAL SEMANTICS. Bergstra and Klop
[1985] defined the systemACPτ (A,γ). This system extendsACP(A,γ) with a
constantτ and abstraction operatorsτI ( ) renaming the actions inI ⊆ A into τ .
The axioms ofACPτ (A,γ) are those ofACP(A,γ) extended with the axioms in
Table IV. These axioms characterizerootedτ -bisimilarity (explained below). More
recently another extension ofACP(A,γ) with abstraction was defined: the system
ACPτ (A,γ) axiomatizingrooted branching bisimilarity(see Baeten and Weijland
[1990], based on van Glabbeek and Weijland [1989]). Its additional axioms are
given in Table V. Note that in this case thea ranges overAδτ = Aδ ∪ {τ }. For a
detailed introduction to these process algebra systems see, for example, Baeten and
Weijland [1990] and Fokkink [2000].

When the operation∗ is added, there is an extra axiom for binary Kleene star:

(BKS5) τI (x∗y) = τI (x)∗τI (y).

Extension of one of the systems mentioned above with∗ or $ and relevant ax-
ioms is denoted by adding the appropriate symbol as a superscript, for example,
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TABLE V. THE ADDITIONAL AXIOMS OF ACPτ (A,γ) WHERE I ⊆ A AND

a ∈ Aδτ

(B1) xτ = x | (TI1) τI (a) = a if a 6∈ I
(B2) x(τ (y+ z)+ y) = x(y+ z) | (TI2) τI (a) = τ if a ∈ I

| (TI3) τI (x + y) = τI (x)+ τI (y)
| (TI4) τI (xy) = τI (x) · τI (y)

TABLE VI. ADDITIONAL TRANSITION RULES FORACPτ (A,γ) AND ACPτ (A,γ)
WHEREa ∈ Aτ

τ
τ−−→√ x a−→√

τI (x) a−→√ if a 6∈ I
τI (x) τ−→√ if a ∈ I

x a−→x′

τI (x) a−→τI (x′) if a 6∈ I
τI (x) τ−→τI (x′) if a ∈ I

ACPτ∗$(A,γ) stands forACPτ (A,γ) extended with∗ and $, the axioms (BKS1)–
(BKS5), and the defining axiom for $.

We define a structural operational semantics for the systems involvingτ andτI .
The transition relation is defined by the axioms and rules in Table III wherea now
ranges overAτ = A∪ {τ }, and those in Table VI.

In order to formulate general expressivity results, we define both rootedτ -
bisimilarity and rooted branching bisimilarity for transition systems of which the
states are not necessarily process terms. LetQ ∪ {√} be the set of states un-
der consideration with

√ 6∈Q the only terminal state, and let a transition relation
→⊆ Q× Aτ ×Q∪ {√} be given. We first provide definitions and then some com-
ments. LetP, P′ ∈ Q and let≡ denote syntactic equivalence. The binary relation
⇒ onQ is defined by

P⇒ P′ if either P ≡ P′ or for someP′′, P τ−→ P′′ ⇒ P′.

In a similar way, the unary relation⇒√ is defined byP⇒√ if P⇒ P′ τ−→√.
We writeP

a⇒ P′ if P⇒ Q a−→ Q′ ⇒ P′, andP
a⇒√ if either P⇒ Q a−→ Q′ ⇒√

or P⇒ Q a−→√ for someQ, Q′ ∈Q.

Definition 4.1.1. A τ -bisimulationis a binary relationR overQ ∪ {√} that
satisfies the following conditions:

—if PRQ andP a−→P′ for somea∈ Aτ andP′ ∈Q ∪ {√}, then eithera= τ and
P′RQ, or there existsQ′ ∈Q ∪ {√} such thatQ

a⇒ Q′ andP′RQ′,
—if PRQ andQ a−→ Q′ for somea∈ Aτ andQ′ ∈Q∪ {√}, then eithera= τ and

PRQ′, or there existsP′ ∈Q ∪ {√} such thatP
a⇒ P′ andP′RQ′,

—if
√RQ then eitherQ≡√ or Q⇒√,

—if PR√ then eitherP≡√ or P⇒√.

Two statesP, Q∈Q are τ -bisimilar, notation P↔τ Q, if there exists aτ -
bisimulationR with PRQ.

The relationR is a rooted τ -bisimulation for two root statesP and Q desig-
nating a transition system if it is aτ -bisimulation that satisfies the following extra
conditions forP andQ:
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—if P τ−→P′ for some P′ ∈Q∪ {√}, then there existsQ′ ∈Q∪ {√} such that
Q τ−→ Q′ andP′RQ′, and

—if Q τ−→Q′ for some Q′ ∈Q∪ {√}, then there existsP′ ∈Q∪ {√} such that
P τ−→ P′ andP′RQ′.

Two statesP, Q ∈ Q arerootedτ -bisimilar, notationP↔r τ Q, if there exists a
rootedτ -bisimulationR for P, Q with PRQ.

Observe that the relations↔τ and↔r τ are equivalence relations.

Definition 4.1.2. Abranching bisimulationis a binary relationR overQ∪ {√}
that satisfies the following conditions:

—if PRQ andP a−→P′ for somea∈ Aτ andP′ ∈Q ∪ {√}, then eithera= τ and
P′RQ, or there areQ′ ∈Q∪{√} andQ′′ ∈Q such thatQ⇒ Q′′ a−→Q′, PRQ′′,
andP′RQ′,

—if PRQ andQ a−→Q′ for somea∈ Aτ andQ′ ∈Q∪ {√}, then eithera = τ and
PRQ′, or there areP′ ∈Q∪ {√} andP′′ ∈Q such thatP⇒ P′′ a−→P′, P′′RQ,
andP′RQ′,

—if
√RQ then eitherQ≡√ or Q⇒√,

—if PR√ then eitherP≡√ or P⇒√.

Two statesP, Q∈Q arebranching bisimilar, notation P↔bQ, if there exists a
branching bisimulationR with PRQ.

The relationR is a rootedbranching bisimulation for two root statesP andQ
designating a transition system if it is a branching bisimulation that satisfies the
following extra conditions forP andQ:

—if P a−→P′ for somea∈ Aτ and P′ ∈Q ∪ {√}, then there existsQ′ ∈Q ∪ {√}
such thatQ a−→Q′ andP′RQ′,

—if Q a−→Q′ for somea∈ Aτ and Q′ ∈Q ∪ {√}, then there existsP′ ∈Q ∪ {√}
such thatP a−→P′ andP′RQ′.

Two statesP, Q∈Q are rooted branching bisimilar, notationP↔rb Q, if there
exists a rooted branching bisimulationR for P, Q with PRQ.

Observe that also↔b and↔rb are equivalence relations. Furthermore, note that
↔b⊆↔τ and↔rb ⊆ ↔r τ ,and that these inclusions are strict (cf. simple instances
of axioms (T3) and (T2), respectively).

Example4.1.3. As an example, consider the following transition systems:
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where states 4 and 7 both represent deadlock. It follows that 0↔b1↔b 2↔b 3
↔b 5, but that in none of these cases↔r τ (and thus↔rb ) holds. Furthermore,
4↔b 6↔b 7.

The restriction to the rooted versions serves to ensure congruence properties.
Q being the set ofACPτ (A,γ) terms, the relation↔r τ is a congruence (but↔τ

is not, e.g.,a ↔τ τa anda + b ��↔τ τa + b). Moreover,ACP∗$τ (A,γ) is sound
with respect to rootedτ -bisimilarity, and its fragmentACPτ (A,γ) is complete
with respect to its process terms [Bergstra and Klop 1985; Baeten and Weijland
1990]. ForACPτ (A,γ) andACPτ∗$(A,γ) there are similar results with respect to
rooted branching bisimilarity. More information on (rooted) branching bisimulation
equivalence can be found in van Glabbeek [1993]; Glabbeek and Weijland [1996].
Finally, note that bisimilar transition systems also are rootedτ -bisimilar and rooted
branching bisimilar.

4.2. EXPRESSIVENESSRESULTS. Let An(B)= An ∪ B, whereB is a finite set
of actions disjoint fromAi for any i ∈N. In this section we first prove that each
computable processover action setB (this notion is explained below) can be ex-
pressed inACPτ∗$(A5(B),γ), thusACP∗$(A5(B),γ) equipped with abstraction and
rooted branching bisimulation equivalence. This means that for any transition sys-
temT representing a computable process overB there exists a process termP over
ACPτ∗$(A5(B),γ) such thatT↔rb P. Then we prove that inACP∗$τ (A5(B),γ), that
is,ACP∗$(A5(B),γ) with abstraction and rootedτ -bisimilarity, a large class of semi-
computable processes can be expressed: those that are initially finitely branching.
Therefore one may say thatACP∗$τ (A5(B),γ) is expressively complete. Both these
expressivity results are based on a representation of processes by transition systems
with states of which the out-degree is at most two.

We consider a transition systemT with states inN and with label setB, in which
0 serves as initial state and 1 is the only terminal state (in particular, state 1 is
assumed to have no outgoing transitions). Furthermore,{Ra ⊆ N×N | a∈ B} is
the transition relation. Adapting our further exposition to prior notation conventions,
we shall often write

n a−→m

instead ofRa(n,m). Sometimes we shall use other values than 0 and 1 for the root
and terminal state of a transition system: the notationnymT makes explicit thatn
is the root ofT andm the terminal state, thusT = 0y1T .

Definition 4.2.1. Let S⊆N be a recursive set of states with 0∈ S, and
T =〈S, B, {Ra⊆ S× S | a∈ B}, 0〉 a transition system.

ThenT is recursiveif for some injective functionh : B→N and bijective pairing
function 〈 , 〉 : N2→N, the transition systemT can be represented by a (total)
recursive functionnextsuch that for alls∈ S the value ofnext(s) is the canonical
index2 (CI) of the finite set encoding all next steps froms:

next(s) = CI({〈h(a), s′〉 | s a−→s′}).

2The canonical index of∅ is 0, of {k1, k2, . . . , kl } it is the number 2k1 + 2k2 + · · · + 2kl , andDx is
the finite set with canonical indexx. Note thaty∈ Dx⇒ y < x.
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Furthermore,T is r.e. (recursively enumerable) if this is the case for all relations
Ra, thusRa(n,m) if and only if ∃k R′a(n,m, k) with R′a recursive.

Note that in a recursive transition system all possible transitions from any state
are finite in number and can be computed. We call a processcomputableif it can
be represented up to some behavioral equivalence by a recursive transition system,
andsemi-computableif this is the case for some r.e. transition system. In order to
express recursive and r.e. transition systems over alphabetB, we define an extended
class of register machine iterative programs.

Definition 4.2.2. LetBt = B ∪ {t}. Let the class of register machine iterative
programs with actions inBt , notation

RMI(Bt , i ),

be defined asRMI(i ) (see Definition 3.1.1), but with the following two extra clauses:

(7) a∈RMI(Bt , i ) if a∈ Bt ,
(8) if P, Q∈RMI(Bt , i ) anda, b∈ Bt , thenaP+ bQ∈RMI(Bt , i ).

Note thatRMI(Bt , i ) is closed under successors and under associativity of se-
quential composition.

We first do not concern ourselves with rootedness, and formulate two basic
lemmas. Using these, our main expressivity results follow in a straightforward
manner.

LEMMA 4.2.3. Let T be a recursive transition system with labels in B. Then T
modulo branching bisimulation equivalence is expressible inACPτ∗$(A5(B),γ).

PROOF. Without loss of generality we assume that|B|> 1. We use the bijective
pairing function〈 , 〉 defined by〈n,m〉 = 1

2((n+m)2+ 3m+ n), with unpairing
functions ()0 and ( )1. So〈0, 0〉 = 0, 〈1, 0〉 = 1, n = 〈(n)0, (n)1〉, and (n)0 ≤ n ≥
(n)1.

Let T = 〈S, B, {Ra | a∈ B}, 0〉 be characterized by the functionsh andnext(cf.
Definition 4.2.1), and letBτ = B ∪ {τ }. We transformT into T̄ = 〈S̄, Bτ , {R̄a |
a∈ Bτ }, 0〉 by replacing each state with aτ -loop of appropriate size, of which each
state has at most one outgoingB-transition:

(1) S̄= {〈s, j 〉 | s∈ S, j ≤ next(s)},
(2) ∀s∈ S\ {1}

(〈s, j + 1〉 τ−→〈s, j 〉 if j < next(s)
〈s, 0〉 τ−→〈s, next(s)〉,

)
(3) 〈s, j 〉 a−→〈s′, 0〉 ∈ T̄ if s a−→s′ in T and〈h(a), s′〉 = j .

This yields a transition system̄T with labels inBτ in which the number of outgoing
transitions of each state is at most two, and that is recursive: extend the function
h to Bτ , thennext(s) (characterizingT̄) can be computed fromnext(s) and the
transitions defined above. Moreover,T̄ satisfies

0y1T̄↔b 0y1T

where the terminal state 1 plays the role of
√

. The branching bisimulation BB is
as follows:

BB(〈s, j 〉, s) for s∈ S, j ≤ next(s).
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Let functiong be the inverse ofh. We describeT̄ with the following four com-
putable functions:

action(n)=
{

1 if ∃a∈ B,m∈N with n a−→m in T̄,
0 otherwise,

label(n)=m if action(n) = 1 and∃l ∈N with n
g(m)−−−→l in T̄,

τ -step(n)=
{〈s, j 〉 if n = 〈s, j + 1〉 and j < next(s),
〈s, next(s)〉 if n = 〈s, 0〉,

next-state(n)=m if ∃a∈ B, m∈N with n a−→m in T̄ .

For process termP andn, k, l ∈N we write P : n, 0→ k, l if there is anm∈N
such that∂H5 (Px ‖ R5(0, n, 0, 0, 0)) = tm·∂H5 (x ‖ R5(0, k, l , 0, 0)).According to
Corollary 3.2.2 we can chooseP1, P2, P3, P4∈RMI(5) such thatACP∗$(A5(∅),γ) `

P1 : n, 0→ n,m if m= action(n),
P2 : n, 0→ n,m if m= label(n),
P3 : n, 0→ m, 0 if m= τ -step(n),
P4 : n, 0→ m, 0 if m= next-state(n).

For the case|B| =4 consider the programP schematically depicted in Figure 1,
suggesting how the program should be adapted for other values of|B|> 1. In
this scheme a dotted arrow stands for at-step, and a bold arrow starting from
Qi (i = 1, . . . ,4) marks the initial and terminal state associated with process term
Pi . We first argue thatP (and therefore also each of its states) is expressible in
RMI(Bt , 5) (modulo strong bisimulation). LetS be the process that starts in state
Q1 and terminates at stateQ. Then

S= P1


s2P2

 s2

(
s2(z2(t P3+ g(2)P4)+ s2(t P3+ g(3)P4))
+
z2(t P3+ g(1)P4)

)
+
z2(t P3+ g(0)P4)


+
z2P3


We define

R= s1a1a1S((z1S)∗s1),
Exit= (s0

∗c0)(s2
∗c2)(s3

∗c3)(s4
∗c4),

and conclude thatP↔R∗c1 · Exit. (Note thatR∗c1∈RMI(Bt , 5).)
Now T̄↔b τ{t} ◦ ∂H5 (Q ‖ R5) where the terminal state 1 plays the role

of
√

. We shall not define a witnessing bisimulation relation in detail but sketch
the idea. Each state〈s, j 〉 in T̄ with s 6= 1 is related to each state in theτ -loop
containingτ{t} ◦ ∂H5 (Q ‖ R5(0, 〈s, 0〉, 0, 0, 0)). The different states〈s, . . .〉 of this
τ -loop are maintained in registerR1 by P1 and (if executed)P2, and updated by
P3. Furthermore,

〈s, j 〉 g(i )−−→〈s′, 0〉 ∈ T̄
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FIG. 1. A register program scheme.

if and only if

τ{t} ◦ ∂H5 (Li ‖ R5(0, 〈s, j 〉, 0, 0, 0)) g(i )−−→τ{t} ◦ ∂H5 (Q4 ‖ R5(0, 〈s, j 〉, 0, 0, 0))
τ⇒ τ{t} ◦ ∂H5(Q ‖ R5(0, 〈s′, 0〉, 0, 0, 0)).

Finally, the terminal state〈1, 0〉 in T̄ is related to

τ{t} ◦ ∂H5 (Q ‖ R5(0, 〈1, 0〉, 0, 0, 0)) ,

which terminates with aτ -trace via theExit subprogram.
Because↔b is an equivalence relation, we concludeT↔b τ{t} ◦ ∂H5 (Q ‖ R5),

soT can be expressed inACPτ∗$(A5(B),γ).
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For the case ofτ -bisimilarity we have a stronger result. This result uses the same
type of register program, but is based on a different transformation.

LEMMA 4.2.4. Let T be an r.e. transition system with labels in B. Then T
moduloτ -bisimulation equivalence is expressible inACP∗$τ (A5(B),γ).

PROOF. Assume|B|> 1. We use the bijective pairing function〈 , 〉 from the
previous proof. LetT =〈S, B, {Ra | a∈ B}, 0〉with Ra(n,m)⇔∃k R′a(n,m, k) for
some decidableR′a, and with functionh encoding the actions ofB. We transform
T into the recursive transition system̄T =〈N, Bτ , {R̄a | a ∈ Bτ }, 0〉 by defining
the following transitions:

(1) ∀n∈N\{1}(n τ−→〈(n)0, (n)1+ 1〉),
(2) ∀a∈ B and∀n, i,m∈N, R̄a(〈n, i 〉, 〈m, 0〉)) if and only if R′a(n,m, k), (i )0 =

h(a), ((i )1)0=m, and (((i )1)1)0= k (thus,i =〈h(a), 〈m, 〈k, l 〉〉〉 for somel ).

So, each staten∈N\{1} has exactly one outgoingτ -transitionn τ−→〈(n)0, (n)1+1〉
and at most one outgoinga-step for at most onea∈ B.

Moreover,T̄ =〈0, 0〉y〈1, 0〉T̄ ↔τ T by the followingτ -bisimulation TB:

TB(0, 0),
TB(〈k, n〉, k) for all n∈N andk∈N\{1}, and
TB(1, 1).

Let g be the inverse ofh. We describeT̄ with four computable functions, of
which onlyτ -step(n) is defined differently from the previous proof:

action(n)=
{

1 if ∃a∈ B,m∈N with n a−→m in T̄,
0 otherwise,

label(n)=m if action(n) = 1 and∃l ∈N with n
g(m)−−−→ l in T̄,

τ -step(n)=〈(n)0, (n)1+ 1〉 if n 6= 1,

next-state(n)=m if ∃a∈ B, m∈N with n a−→m in T̄ .

Using the notationP : n, 0→ k, l from the previous proof, chooseP1, P2, P3,
P4∈RMI(5) such thatACP∗$(A5(∅),γ) `

P1 : n, 0→ n,m if m= action(n),
P2 : n, 0→ n,m if m= label(n),
P3 : n, 0→ m, 0 if m= τ -step(n),
P4 : n, 0→ m, 0 if m= next-state(n).

Again consider the register programQ∈RMI(Bt , 5) schematically depicted in
Figure 1 (withB={g(0), g(1), g(2), g(3)} andPi defined as above).

Now T̄ ↔τ τ{t} ◦ ∂H5 (Q ‖ R5) where the terminal state 1 plays the role of√
. We sketch aτ -bisimulation: first note that each state〈s, j 〉 in T̄ with

s 6= 1 is related to each state in the infiniteτ -sequence starting withτ{t} ◦
∂H5 (Q ‖ R5(0, 〈s, 0〉, 0, 0, 0)). The different states〈s, . . .〉 of this τ -sequence are
maintained in register processR1 by P1 and (if executed)P2, and updated byP3.
Furthermore,

〈s, j 〉 g(i )−−→ 〈s′, 0〉 ∈ T̄
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if and only if

τ{t} ◦ ∂H5 (Li ‖ R5(0, 〈s, j 〉, 0, 0, 0)) g(i )−−→ τ{t} ◦ ∂H5 (Q4 ‖ R5(0, 〈s, j 〉, 0, 0, 0))
τ⇒ τ{t} ◦ ∂H5(Q ‖ R5(0, 〈s′, 0〉, 0, 0, 0)).

Finally, the terminal state 1=〈1, 0〉 of T̄ is related to the process termτ{t} ◦
∂H5 (Q ‖ R5(0, 〈1, 0〉, 0, 0, 0)) , which terminates with aτ -trace via theExit sub-
program.

Because↔τ is an equivalence relation, we concludeT↔τ τ{t} ◦ ∂H5

(Q ‖ R5).

With these two lemmas our main expressivity results follow immediately.

THEOREM 4.2.5. Let T be a recursive transition system with labels in B.
Then T modulo rooted branching bisimulation equivalence is expressible in
ACPτ∗$(A5(B),γ).

PROOF. TransformT into T̃ by unfolding its root: rename all states inT accord-
ing toρ : N→N defined by

ρ(n)=
{

1 if n= 1,
n+ 2 otherwise.

ThenT̃ with root state 0 and terminal state 1 has for eachn a−→m∈ T a transition
ρ(n) a−→ ρ(m), and for each 0a−→ n∈ T a transition 0 a−→ ρ(n). This implies that
0y1T ↔ 0y1T̃ , and

0y1T̃↔


(∑

{a∈B|Ra(0,1)} a +∑
{a∈B,m∈N|m6=1, Ra(0,m)} a ·my1T̃

)
if

⋃
a∈B, j∈N

Ra(0, j ) 6= ∅,

δ otherwise.

BecauseT̃ has no incoming transitions in its root state, it is sufficient to express
my1T̃ modulo branching bisimulation for each appropriate value ofm∈N \ {0}.
As proved in Lemma 4.2.3, this is possible.

In exactly the same way our next expressivity result follows from Lemma 4.2.4.

THEOREM 4.2.6. Let T be an r.e. transition system with labels in B that ini-
tially is finitely branching. Then T modulo rootedτ -bisimulation equivalence is
expressible inACP∗$τ (A5(B),γ).

We note that Theorem 4.2.6 strengthens an expressivity result of Baeten et al. [1987]
which states that each recursive transition system over a finite set of labels can be
expressed inACPτ (A,γ) with finite, guarded recursive specifications.

4.3. AVOIDING BINARY KLEENE STAR. In the present setting we do not need
binary Kleene star: its use can be encoded with the help of auxiliary actions, com-
munication and abstraction. This is the case for our results on↔rb as well as on
↔r τ . In order to prove this, let

'∈ { ↔rb , ↔r τ }.
We shall only use thatxτ ' x, and we repeat below two basic results of Bergstra
and Ponse [2001]. The first of these states that for each finite state transition system
with labels in A (and thus eachregular process) there is a finite extensionAfe
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of A (i.e., Afe \ A is finite) such that it can be expressed inACPτ$(Afe ,γ) or
ACP$

τ (Afe ,γ). So, in particular our modeling ofregister machine programsdoes
not depend on the use of∗.

THEOREM 4.3.1. For each finite state transition system T with labels in A
there is a finite extension Afe of A such that T can be expressed inACPτ$(Afe ,γ)
or in ACP$

τ (Afe ,γ) with handshaking only, and the actions in A not subject to
communication.

PROOF. Let T be a finite state transition system with labels inA. Then, for
somen∈N, T can be characterized byp1 in the linear system

pi =
(

n∑
j=1

αi, j · p j

)
+ βi (i = 1, . . . ,n)

with all αi, j andβi finite sums of actions orδ. Define Afe as the extension ofA
with the following 2n+ 3 actions:

{t} ⋃ H, whereH = {r j , sj | j = 0, . . . ,n},
and let the only communications overAfe be defined byγ(r j , sj ) = t ( j =
0, . . . ,n). Consider the following processes:(

n∑
j=1

αi, j · sj

)
+ βi abbreviated by Fi for i = 1, . . . ,n,

(
n∑

j=1

r j · Fj

)
$ r0 abbreviated by K ,

(
n∑

j=1

r j · sj

)
$ s0 abbreviated by L .

Thenp1' τ{t} ◦∂H (F1 ·K ‖ L). This can be shown with help of the infinite transition
system characterized by

qi (k) =
(

n∑
j=1

αi, j · q j (k+ 1)

)
+ βi , i = 1, . . . ,n andk∈N.

Obviously,pi ↔ qi (k) (k∈N). So it suffices to show thatτ{t} ◦ ∂H (Fi · K ‖ L) '
qi (0). We show this by first omitting theτ{t}-application: fork∈N,

∂H
(
Fi · K k+1 ‖ Lk+1

)
=
(

n∑
j=1

αi, j · ∂H
(
sj · K k+1 ‖ Lk+1

))+ βi · ∂H (K k+1 ‖ Lk+1)

=
(

n∑
j=1

αi, j · t · ∂H
(
K k+1 ‖ sj · Lk+2

))+ βi · tk+1

=
(

n∑
j=1

αi, j · t · t · ∂H
(
Fj · K k+2 ‖ Lk+2

))+ βi · tk+1.



1232 J. A. BERGSTRA AND A. PONSE

Hence, applyingτ{t} and axiomxτ = x we find for eachk

τ{t} ◦ ∂H
(
Fi · K k+1 ‖ Lk+1

)= ( n∑
j=1

αi, j · τ{t} ◦ ∂H
(
Fj · K k+2 ‖ Lk+2

))+ βi .

Soτ{t} ◦ ∂H (Fi · K k+1 ‖ Lk+1) satisfies the equation characterizing stateqi (k), and
hence

τ{t} ◦ ∂H
(
Fi · K k+1 ‖ Lk+1

) ' qi (k),

and in particularp1 ' q1(0)' τ{t} ◦ ∂H (Fi · K ‖ L).

We are done if we show that aregister processtoo can be expressed inACPτ$(Afe ,γ)
or ACP$

τ (Afe ,γ), so without the use of∗.
THEOREM 4.3.2. A BPA∗$(A) register process(ā(ā$ s̄)+ z̄)∗c̄ can be defined in

ACPτ$(Afe ,γ) or in ACP$
τ (Afe ,γ) with handshaking only if|Afe\A| ≥ 5.

PROOF. Let Afe\A={t} ∪ H with H ={ri , si | i = 0, 1}, and letγ(r0, s0)=γ
(r1, s1) be the only communications defined. Consider

(ā(ā$ s̄)+ z̄)s1+ c̄ abbreviated by P,
(r1 · P)$ r0 abbreviated by Q,
(r1 · s1)$ s0 abbreviated by R.

Then it follows in a similar way as shown above that (ā(ā$ s̄)+ z̄)∗c̄ ' τ{t} ◦
∂H (P Q ‖ R).

5. Alternatives

In this section we first show that we can reduce the number of registers used in
Section 3.2 for the modeling of register machine computation. Then we consider
two alternatives for the push-down, each of which can be used to obtain similar
results as proved before. Typically, both these operations can be used to define some
form of counting.

5.1. BOUNDED REGISTERS. Recall the crucial Theorem 3.2.1, which involves
a particular modeling of register machine computations inACP∗$(A4,γ). In its
proof, one of the registers is used to keep track of the “current instruction number”
during computation. Therefore, this register can be replaced by a process that
mimics a register up to a finite depth (namely, the number of instructions of the
“current program”). Such processes can be defined inBPA∗(ᾱi ) (whereᾱi contains
the specific register actions, see Section 3.1).

LEMMA 5.1.1. A bounded register over̄αi can be defined inBPA∗(ᾱi ).

PROOF. First, let asubcounter Si,n over alphabet ¯αi = {āi , s̄i , z̄i , c̄i } be defined
by induction to itsdepth n∈N in the following way:

Si,0 = s̄i ,
Si,k+1 = (āi · Si,k)∗s̄i .
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Then a bounded registerRi,n that can hold values 0, 1, . . .n can be defined as
follows: Ri,0 = z̄i

∗c̄i andRi,n+1 = (āi · Si,n + z̄i )∗c̄i .

As a consequence, Theorem 3.2.1 can be formulated as a “three-$-statement,” that
is, with the use of only three registers, and all previous results can be obtained with
one register less. A perhaps more appealing use of bounded registers comes up in
Section 5.3.

5.2. TWO ALTERNATIVES FORPUSH-DOWN. In addition to push-down, we have
defined two other recursive operations that are non-regular, and that can be seen
as variations on the binary Kleene star. Bergstra et al. [1994] introduced the non-
regularnestingoperation ] , which is defined by

x] y = x · ((x] y) · x)+ y.

More recently, Bergstra and Ponse [2001] introduced theback and forthoperation
¿ , which is defined by

x¿y = x · ((x¿y) · y)+ y.

Transition rules for] and¿ are

x a−→√

x] y a−→ (x] y)x
y] x a−→√
x¿y a−→ (x¿y)y
y¿x a−→√

and
x a−→x′

x] y a−→ x′((x] y)x)
y] x a−→ x′

x¿y a−→ x′((x¿y)y)
y¿x a−→ x′

As an example, consider for actionsa andb the transition systems ofa] b and
a¿b:

?

?

6

6

.....

-

-

-

a

a

b

b

b

a

a

a] b

(a] b)a

((a] b)a)a

√

a

a2

?

?

6

6

.....

-

-

-

b

b

b

b

b

a

a

a¿b

(a¿b)b

((a¿b)b)b

√

b

b2

It is easily seen that # and¿ are non-regular, and it can be argued that these together
with $ are the most simple candidates for obtaining a binary, non-regular recursive
operation. Let¦∈ {],¿}. Adding¦ to the signature ofACP(A,γ), and its defining
axiom to those ofACP(A,γ) yields the system which we denote by

ACP¦(A,γ).

In the same way, we defineACP∗¦(A,γ) as the extension ofACP∗(A,γ) with ¦.
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5.3. RELATED RESULTS. All previous results have their counterpart in
ACP∗¦(A,γ). In order to show this we introduce the auxiliary notion of a “¦-
half-counter” (cf. Bergstra et al. [1994]).

HC i = ((s̄¦i āi ) · z̄i )∗c̄i ,

where we stick to the alphabet ¯αi , although most actions lose the intuition previously
given.

Let b̄ = s̄ if ¦ = #, andb̄ = ā if ¦ =¿. We use the following, perhaps more
convenient characterization ofHC i :

HC i = HC i (0)
HC i (0) = s̄i HC i (1)+

āi HC i (0)+ c̄i
HC i (n+ 1) = s̄i HC i (n+ 2)+

āi HC i (n+ 1)

HC i = HC i (0)
HC i (0) = z̄i HC i (0)

HC i (n+ 1) = b̄i HC i (n)

?

?

6

6

.....

�
-

-

-

�

b̄i

b̄i

z̄i

āi

āi

āi

s̄i

s̄i

HC i (0)

HC i (1)

HC i (2)

HC i (0)

HC i (1)

HC i (2)

c̄i√

We now provide a result that relates to Theorem 3.2.1. To keep things simple,
we will use a bounded registerR0,k (as defined in the proof of Lemma 5.1.1)
when implementing a register machine program withk instructions. Further-
more, we will use process termHC i (n) to model registeri having valuen. Fi-
nally, we will use an extra¦-half-counterHC 4 for “shifting,” in order to model
instructions (ai , l ).

THEOREM 5.3.1. Let f :N→N be computable(not necessarily total). There
exist P∈ BPA∗(ᾱ5), k∈N, and computable g: N → N\{0} such that if f(n) is
defined, then g(n) is defined and

ACP∗¦(A5,γ) ` ∂H5(Px ‖ (R0,k ‖ HC 1(n) ‖ HC 2 ‖ HC 3 ‖ HC 4))

= t g(n) · ∂H5(x ‖ (R0,k ‖ HC 1( f (n)) ‖ HC 2 ‖ HC 3 ‖ HC 4)),

and if f(n) is not defined, then g(n) is not defined and for each i∈N\{0} there
exists a process term Mi such that

ACP∗¦(A5,γ) ` ∂H5(Px ‖ (R0,k ‖ HC 1(n) ‖ HC 2 ‖ HC 3 ‖ HC 4)) = t i · Mi .

PROOF. We first consider the #-case. Let̄P be a register machine program that
computesf using registers 1, 2 and 3, and numbered instructions 1, 2, . . . , k. Our
modeling of register machine program expressions is as follows: let

P = L ′1Q, Q = (s0P1)∗z0,
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and

Pm=


L ′m if k= 1,
s0Pm+1+ z0L ′m if k> 1 andm+ 1< k,
s0L ′m+1+ z0L ′m if k> 1 andm+ 1= k,

L ′m=


(s3
∗z3a3)(s2

∗z2a2)(s0
∗z0) if line(m, P̄) = halt,

((si s4)∗zi s4a4)((s4si )∗z4ai ) · al
0 if line(m, P̄) = (ai , l ),

si · al
0+ zi ai · al ′

0 if line(m, P̄) = (si , l , l ′).

We do not provide a precise description of register machine program process terms
in this case, but it is apparent that these are deterministic and reside inBPA∗(ᾱ5).
Now the pattern

∂H5(L
′
mQx ‖ (R0,k ‖ HC 1(x1) ‖ HC 2(x2) ‖ HC 3(x3) ‖ HC 4)),

represents the register machine that is about to perform instructionm on machine
configuration〈x1, x2, x3〉. For example, in the case thatL ′m models the instruction
(a2, l ), we obtain in 4x2 + 2l + 8 t-steps the next (expected) pattern in whichL ′m
is updated toL ′l andx2 to x2+ 1. The remaining part of the proof is similar to that
of Theorem 3.2.1.

It should be clear how to adapt the above proof to the¿-case (occasionally
replacingsi actions byai , ands̄i actions byāi ).

In a similar way Corollary 3.2.2 can be adapted to the¦-cases. Therefore we have
the following results:

COROLLARY 5.3.2

(1) In both ACP∗](A5,γ) and ACP∗¿(A5,γ) provable equality between process
terms is not decidable. (Cf. Theorem 3.3.1).

(2) LetT be a recursive transition system with labels inB. ThenT modulo rooted
branching bisimulation equivalence is expressible inACPτ∗](A6(B),γ) and in
ACPτ∗¿(A6(B),γ). (Cf. Theorem 4.2.5).

(3) Let T be an r.e. transition system with labels inB that initially is finitely
branching. ThenT modulo rootedτ -bisimulation equivalence is expressible in
ACP∗]τ (A6, (B)γ) and inACP∗¿τ (A6, (B)γ). (Cf. Theorem 4.2.6).

(4) Results 2 and 3 hold without the∗ operation if a finite number of auxiliary
actions (and handshaking communication over these) is included. Result 1 holds
without the∗ operation if abstraction and a finite number of auxiliary actions
(and handshaking communication over these) are included. (Cf. Theorems 4.3.1
and 4.3.2, and Bergstra and Ponse [2001] for some proofs).

6. Conclusions

We have shown thatACP∗$(A,γ) (i.e., ACP(A,γ) with binary Kleene star and
push-down) allows for a straightforward modeling of register machine computation.
Adding abstraction to this setting (either axiomatizing rooted branching bisimilarity
or rootedτ -bisimilarity) yields a substantial increase in expressivity: (at least) each
computable process can be specified with help of auxiliary actions. Furthermore,
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with abstraction the use of the binary Kleene star can be avoided. In our presentation
the use of push-down has paved the way to corresponding results using] (the nesting
operation) or¿ (the back and forth operation) instead. It should be noticed that the
systemsACP∗](A,γ) andACP∗¿(A,γ) (and their versions with abstraction) have
their own strong points. In particular, a cycle cannot be defined inACP∗](A,γ) or
ACP∗¿(A,γ) without use of∗, so both] and¿ are not “iterative” in the most strict
sense, and thus may be judged “more primitive.”

These results establish various equational foundings of process algebra: each
computable process can simply be represented by a term in each ofACPτ$(A,γ),
ACPτ](A,γ) andACPτ¿(A,γ) or the associated rootedτ version. Adding binary
Kleene star as well yields a more flexible and natural format for the specification
of concurrent processes. Straightforward definitions of typical processes such as
stacks, bags (multi-sets) and queues with these recursive operations are given in
our companion paper [Bergstra and Ponse 2001].

In the modeling of computability provided here, both register machineprograms
andregistersare captured by process terms, and their sequential interaction is spec-
ified in a concurrent fashion. Of course, many alternatives are conceivable. We
mention the approach of Bergstra and Loots [1999], where typically a register is
viewed as acoprogram, i.e., a data type that provides a service to a program. This
view emphasizes that programs inRMI can be defined as finite state objects, whereas
registers (coprograms) necessarily have unbounded capacity. A process algebraic
approach that explicitly incorporates data isµCRL (micro Common Representa-
tion Language) defined by Groote and Ponse [1995]), anACP-based language in
which processes can be parameterized with data via data-parametric actions and
recursive specifications. Furthermore,µCRL contains conditional composition and
data-parametric forms of communication and summation. Ponse [1996] proved that
each computable process can be specified in aBPA-oriented fragment ofµCRL.

In this paper we showed undecidability ofACP with one of $, ],¿ and at least
one of abstraction or binary Kleene star. We did not further address the issue of
proof theory. Some interesting conditional proof rules are the following variants of
RSP, the Recursive Specification Principle (cf. e.g., Baeten and Weijland [1990]
and Fokkink [2000]):

(RSP∗)
∂A(y)= δ x= yx+ z

x= y∗z
, (RSP$)

∂A(y)= δ x= yxx+ z

x= y$z
,

(RSP¿)
∂A(y)= δ x= yxz+ z

x= y¿z
, (RSP

]

)
∂A(y)= δ x= yxy+ z

x= y]z
.

Here the condition∂A(y) = δ (the formulation of which stems from Kamsteeg
[1999]) is only relevant for settings with abstraction and rules out processes with an
initial τ -step, in order to exclude undesirable identities likeτa = τ ∗δ. It is an open
question whether the variousACP extensions when equipped with the appropriate
RSP variant(s)characterizethe associated type of bisimulation equivalence (strong,
rooted branching or rootedτ ). This is a topic of ongoing research. A positive result
in this vein is the completeness ofBPA(A)+ (BKS1)+ (RSP∗) for strong bisimula-
tion equivalence (which follows from the equational axiomatization of Fokkink
and Zantema [1994]: (BKS2) and (BKS3) are derivable). Furthermore, Aceto
et al. [1998b] proved that a whole range of process semantics coarser than strong
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bisimulation donot allow a finite equational characterization of the binary Kleene
star (see also Aceto et al. [1998a]). Moreover, Sewell [1997] showed that there does
not exist a finite equational characterization of the binary Kleene star modulo strong
bisimulation in the presence ofδ, due to the fact that (ak)∗δ is strongly bisimilar to
a∗δ for positive integersk. Fokkink [1997] defined theperpetual loop, a restricted
form of the binary Kleene star:xω= x(xω) (in a setting withδ and∗ this yields
xω= x∗δ), and provided an RSP-based complete axiomatization of bisimulation
equivalence forBPAδ with perpetual loop. Finally, equational axiomatizations of
bisimilarity for otherBPA-oriented systems with some form of iteration were given
in Fokkink [1994]; Aceto et al. [1996]; Aceto and Ing´olfsdóttir [1996]; Fokkink
[1996]; Aceto and Fokkink [1997]; van Glabbeek [1997]; Aceto et al. [1998c]; and
Aceto and Groote [1999] (for an overview, see Bergstra et al. [2001]).

Appendix A. Universal Register Machines with Two Registers

It is a standard result that the class of recursive functions is characterized by
register machine computability. Here we recall a particular approach, in which a
register machine program is a (finite) set of instructions numbered 1, . . . , k of the
following form:

halt halt;
(ai , l ) add 1 to registeri and go to instructionl ;
(si , l , l ′) if registeri holds value zero, then go to instructionl ′, otherwise

subtract 1 from registeri and go to instructionl .

Let them-tuple 〈x1, x2, . . . , xm〉 describe the contents of registers 1, 2, . . . ,m. A
unary functionf : N→N is register machine computableif there exists a register
programP that operates on a finite number of registers, say 1, . . . ,m, in such a
way that f (n) is defined if and only ifP started with the instruction numbered
1 on register machine configuration〈n, 0, . . . ,0〉 computes to ahalt instruction.
We adopt as output convention that in this case the contents of the register machine
is 〈 f (n), 0, . . . ,0〉, and we represent this situation graphically as:

〈n, 0, . . . ,0〉
⇓ P

〈 f (n), 0, . . . ,0〉.
If f (n) is not defined, the computation programmed byP on state〈n, 0, . . . ,0〉 is
perpetual (“diverges”).

Let P be some fixed register program that usesm registers and that computes
unary functionf . We sketch a uniform construction (based on Minsky [1967]) for
transformingP into a register program that uses only two registers. To this end
we assumem> 2 (otherwise there is nothing to show) and useprime factorization.
Computation ofP can be simulated by encoding eachm-tuple

〈x1, x2, . . . , xm〉
(representing some state of them registers) as the number

2x1 · 3x2 · 5x3 · · · · · pxm
m ,
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wherepm is themth prime number. It suffices to show how the effect of instructions
(ai , l ) and (si , l , l ′) of P can be simulated on these encoded states. The translation
of (ai , l ), say register machine program fragment (Ai , L) for some appropriate
instruction numberL, should be such that it transforms 2x1 · 3x2 · · · · · pxm

m into

2x1 · 3x2 · · · · · pxi+1
i · · · · · pxm

m = pi · 2x1 · 3x2 · · · · · pxi
i · · · · · pxm

m .

This can be easily defined in terms of (aj , l ) and (sj , l , l ′) for j ∈ {1, 2}, for instance
as follows:

1 : (s1, 2, pi + 2)
2 : (a2, 3)
3 : (a2, 4)

...
pi : (a2, pi + 1)

pi + 1 : (a2, 1)
pi + 2 : (s2, pi + 3, L)
pi + 3 : (a1, pi + 2).

so
〈
2x1 · 3x2 · · · · · pxm

m , 0
〉

⇓ (Ai , L)〈
pi · 2x1 · 3x2 · · · · · pxi

i · · · · · pxm
m , 0

〉
with L the current instruction no.

Simulating (si , l , l ′) is slightly more complex: the problem is to decide whether our
codex has pi as a divisor, i.e., to decide whetherxi is zero or not. This can be
done by repeatedly subtractingpi from x in register 1, while counting upwards in
register 2 (which initially is empty). If this leaves no remainder in register 1, then
the quotient can be copied back into register 1. If this leaves a remainder (pi is
not a divisor), this remainder is stored by a position in the program, upon which
the remaining part of the program should copy back thepi -fold of the contents
of register 2 in register 1. As an example assumepi = 3 (thusi = 2). The sim-
ulation (S2, L , L ′) for appropriate instruction numbersL , L ′ can be programmed
as follows:

1 : (s1, 2, 5)
2 : (s1, 3, 8)
3 : (s1, 4, 7)
4 : (a2, 1)
5 : (s2, 6, L)
6 : (a1, 5)
7 : (a1, 8)
8 : (a1, 9)
9 : (s2, 10, L ′)

10 : (a1, 11)
11 : (a1, 12)
12 : (a1, 9)

So, for example, 〈2, 0〉
⇓ (S2, L , L ′)
〈2, 0〉

with L ′ the current
instruction no.

and 〈3, 0〉
⇓ (S2, L , L ′)
〈1, 0〉

with L the current
instruction no.

So each instruction (ai , l ) and (si , l , l ′) occurring inP can be systematically trans-
lated into a program fragment that operates on a two register machine and transforms
the encoded states appropriately. Modifying the instruction numbers of the program
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fragments thus obtained, this yields a two register machine programP̄ that satisfies

〈n, 0, . . . ,0〉
⇓ P

〈 f (n), 0, . . . ,0〉

if and only if 〈2n, 0〉

⇓ P̄

〈2 f (n), 0〉.
Of course, ifP diverges on some input configuration〈x1, . . . , xm〉, thenP̄ diverges
on 〈2x1 · · · · · pxm

m , 0〉.
Finally, P̄ can easily be used to simulate each terminating computation pro-

grammed byP, including the (de)coding of input/output values: add a register 0
for input/output, and letpre be a register program that transforms〈n, 0, 0〉 into
〈0, 2n, 0〉 andpost a program with the reverse effect. Then

〈n, 0, 0〉
⇓ pre

〈0, 2n, 0〉
⇓ P̄

〈0, 2 f (n), 0〉
⇓ post

〈 f (n), 0, 0〉

where pre= 1 : (a1, 2)
2 : (s0, 3, 8)
3 : (s1, 4, 6)
4 : (a2, 5)
5 : (a2, 3)
6 : (s2, 7, 2)
7 : (a1, 6)
8 : halt

and post= 1 : (s1, 2, 4)
2 : (s1, 3, 7)
3 : (a2, 1)
4 : (s2, 5, 6)
5 : (a1, 4)
6 : (a0, 1)
7 : halt

Sopre; P̄; post simulates the computation off on a three register machine, just as is
claimed in the proof of Theorem 3.2.1. It is straightforward how concatenation “;”
of programs can be defined in this case, e.g.,pre; P̄ can be obtained by removing
instruction 8 inpre and adding 7 to all instruction numbers and references occurring
in P̄.
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