Note of the course on Web caching part of the course on Advance Computer Architecture

 Slide1:

Today we are going to focus on some aspects of the cache management. These aspects where depicted by the research community as potential points to improve the cache performance. The first topic is the cache replacement policy and the second topic is the cache coherence.
Slide2:
This the summary of the course and some references used in the preparation of this course.

Slide3:

This is the outline of the course 5 main points will be addressed: the cache model, the cache replacement policies: simple vs. new ones which is best? And finally we compare some of the well known replacement strategies based on the simulation performed on real workload.
Slide 4:

The first part of this course will focus only on the different aspects of the cache replacement. What are the most important parameters to consider for the cache replacement? When to start cache replacement? How to measure its impact of the cache performance?

Slide 5:

There are two possibilities to study the performance of a given system, building a prototype, which looks pretty much like the real working system, or building a simulation model. We have chosen to build a simulator, because of the following reasons. To make a long story short, we didn’t have neither the time nor the man power to build a prototype, besides that as a research institution we where not interested in all the aspects involved in the developing a prototype. We wanted to address only the research questions and building a simulation model was the appropriate approach.

Slide 6:

The question that comes immediately to our mind is: what are these research issues? At that time 70% of the discussions were about the cache replacement, cache coherence, and the Web traffic analysis. We have decided to rely on the existing Web traffic analysis rather than doing our own traffic analysis, and focus on the cache management.
Slide 7:
The main difficulty in building Simulation models is the fact that they have to be flexible enough to allow a wide rang of simulations. The model should allow you to switch easily from one approach to another, it should allow you to easily, tune some parameters of your system. In the case of the Web cache model we where interested in comparing the existing replacement strategies when they are submitted to the same workload and for the same web cache configuration. In this model we have reduced on purpose the configuration of the Web cache to its size. We have considered to a two level cache configuration. The second level is used as victim cache, which means that objects which are removed from the first level cache are stored in the second level before they are removed permanently.
Slide 8:

The structure of the cache is very simples, it consists of set of entries, each corresponding to a cached object. Only a few characteristics of the cached document are kept in the cache, for scalability reasons. We kept for each document: the ID, the size, the time it entred the cache and the priority tag. All these characteristics are extracted form the request/response header (sotred in the log file) except the priority tag. Actually, it is the way we are going to assign the priority value which will determine the cache replacement strategy. Actually, the model is implemented as a priority heap, so when I switch form on e strategy to another I don’t have re-implement the real implementation I just modify the way the priority is assigned, and this have helped a lot in speeding up the simulation process.
Slide 9:

The curiosity which has driven our research was: how a simple strategy (LRU, LFU or any other well know strategy behaves in the context of web caching, and we wanted to compare these simple strategies with some new ones which at first sight seems to be better suited to the Web context.

Slide 10:
There is a direct relationship between the cache size and the cache replacement strategy, as long as the cache is not full the cache strategy in not needed. That’s what we usually call a cold start. It will be quit useless to start measuring during this period; some research suggests waiting until the cache has been filled for the first time before you start collecting the measure. I have the tendency to agree with this approach for small size caches but not when that cache size becomes quite large, and my guess a reseanably sized cache should be quite large these, because of the low price of the storage system. There are other ways to determine the transient phase which correspond to the cold start.
Slide 11:

To summarize here, we have a strong relationship between the cache size and the replacement policy: because the replacement policy acts only when space is needed. In some approaches that replacement strategy is activated when there is no more enough space to store a newly requested object. In other strategies they define what is a watermark when it is reached the started removing object form the cache anyway. Of course the performance of the system is quite impacted by your removal policy and that’s what we want to study.
Slide 12:

The game is to find a good reason(s) for removing a cached object form the cache. An object can be removed because it is not frequently referenced, that seems to be a good reason indeed. We can also remove an object which has not been requested for a long time, or because it is not up-to-date with the origin object. If we predict that an object is not going to be requested
Slide 13:

There are a lot more reasons to remove an object from the cache, it depends really on what is the final aim of the cache administrator. In this slides we can see more reasons, the size of the object, the age of the object, the fact the object may change in the future, or because the object can be easily retrieved from the original server. I’m sure we can come up with more reasons for removing objects form a web cache.

Slide 14:

The question which immediately comes to the mind is which factor should we consider? It is indeed that the removal policy should not harm the performance of the system. As far as, I know there is no clear response to this question. The impact of the removal policy is on the cache performance depends on many factors. Among other factors, we have the traffic that crosses the cache, the targeted performance, etc.
Slide 15:

In the rest of this course, we are going to discuss some very basic replacement strategies, based on ideas developed in other contexts and compare them with new recently developed one using the simulation model discussed before.

The first strategy that was used in Web caches was based on the LFU, which consist of removing the objects which are not frequently requested. The idea is very simple; it consists of assigning the counter to each object to count the number of requests to this object. The objects which have the lowest counter are the one which are going to be removed first.
Slide 16:

Here is graphical representation of what we have just said. Let us use this representation to discuss some issues related to the LFU strategy. The first thing you will notice is the fact the a newly requested object is in danger to be removed very soon since it is assigned the a very low priority tag (count =1). This may prevent some popular object to enter the cache.

Slide 17:

There is another side effect, which is related to the previous one, which is the fact is some objects have build a high number of counts there are never removed again, even if they are not accessed. Besides that, the LFU strategy does not optimize the number of removed objects. When LFU is activated is just remove the objects until enough space has been made available for the newly requested objects, this strategy may lead to remove a large number of objects to make room for one object, which may harm the hit rates of the cache.

This is way, a number of papers have published to overcome these side effects of the LFU strategy. A number of variant of the LFU have proposed: two of them are listed here. When we start working on the subject, we were convinced LFU is not enough to lead to the best performance.

Slide 18:

We have even, thought of a new variant of the LFU, which can help improve its performance. The idea was to split the cache into partitions: in one partition the objects are sorted according to the LFU strategy, and one partition where the time is considered (we basically used the LRU strategy). Our idea is to give enough time to any fresh object to stay in the cache to see its count going up.
Slide 19:

How this works: documents are removed from the second partition, based on there entry time for instance. If an object within this partition is referenced more than once, it is moved to the first partition where it is to be sorted according to its count number. If the first partition is full the object is moved to the second partition and sorted according to the last time it was referenced.

There are number of parameter that could be tuned here: the size of the partitions, the value of the reference count when abject is moved between partitions etc. These parameters may have a direct impact on how fast the transition time of the object in the cache. We have published a paper on the subject for those of you who are interested they can download from our web site:
Slides 20:

Immediately, the idea that comes to our mind is to consider the time when removing the objects. Indeed, there is a well known strategy which does this: the LRU. Objects are removed if they have not been requested recently. LRU has the advantage to purge old objects which have been at certain time very popular.

Slide 21:

Let us look at the graphical representation of the LRU strategy. Every object enters the cache which the highest priority. The transition time of the object in the cache the max we cannot get higher time. However, this is also a drawback, because not all object are that enter the cache are useful, some are requested only once, but they still stay in the cache for a long time, if these objects have large size, then this may have an impact on the performance of the system.
Slide 22:

There another side effect of the LRU strategy and which is similar to the one discussed for the LFU strategy and which is: non optimization of the number of removed objects.

Slide 23:

It turned out that a partition of the cache can also be used for to improve the LRU strategy. Because object are pushed in the second partition instead of the first partition the transition time of the one time referenced objects is reduced
Slide 24:
Both LRU and LFU did have a problem of not optimizing the number of removed objects. Researchers were tempted to introduce the size as removal factor for web caches. Especially, when the statistics showed that large size objects are not the most frequently requested ones. So a removal policy has been introduced based on the size, it very simple also, it consists of removing large size first.

Slide 25:

After having listed most of the replacement strategy, it seems that considering only one factor to decide which object to remove is not an effective strategy. Combining a number of these factors may lead to better performance. By combining the factor such as the reference count, the time of the last reference, and the size we may optimize the number of removed objects, we will optimize the transition time of the objects in the cache.

That’s what we call new replacement strategies. If we consider combining a number of parameters to decide which document should be removed: we need to come up first with a mathematical model, where all the parameters are considered, we have of course to chose the factors, and finally to decide how to consider the importance of the each parameters, this is usually done via the assignment of weights.
Slide 26:

A few research institutions looked into this problem, here we list one of the first work published. It is from 1996, and it proposes a model that combines: the reference time, the time-to-live, and the size of the objects. It is clear form this work that the number of reference is not an important factor. The optimization function is calculated for each object that enters the cache. The objects are sorted according to the values of the function to be removed. Objects with maximum values are removed first
Slide 27:

Another work was published in the same time, and which consider that the reference count is important factor to be considered in the cache replacement strategy. They have considered that other parameter: such the bandwidth, the latency to open the connection to the origin server. The time is not considered directly in this cost function. If the cost function is high then the object is not removed.
Slide 28:

We have also been tempted to have our own replacement policy, which combines a number of factors. This work has been published also, and all the details and results can be accessed through the web site of the course. Our approach is based on a very popular method used in the area of pattern recognition and classification called “Nearest Neighbor Classifier”. The main component analysis selects the factor to be considered in the removal process. We have just seen two different research works considering completely different factors for the removal policy. It is quite hard to judge which one is right and which one is wrong. We need a method which allow to asses the importance of the factor to be considered and that exactly what the PCA offers.
Slides 29:

The idea is very simple, we define two classes, one representing the objects that should be removed and the other the objects that should be kept in the cache. For each class we describe the unique descriptor, which the best object to represent the class. We define a metric to measure the similarity between objects (we have chosen the Euclidian distance). The removal policy should remove the object which is the most similar to the WCO and in terms of distance the most close to the WCO.

Slide 30:

Here is the graphical representation of the NNC replacement policy. Note here that we don’t define any parameter yet. We just say parameter 1, 2, 3 etc. So the nature of the parameter itself does not influence the replacement policy.
Slide 31:

There are three main “parameter” that could be tuned for this strategy: the choice of the distance to measure the similarity, the choice of the definition of what WCO is? and finally the parameter-of the workload. We did have the time to look into the two first factors but we indeed wanted to figure out the importance of the parameters considered in the two other studies.
Slide 32:

Briefly, the idea of the PCA is to find out the relationships between parameters of set of observations, in our case the set of observation is the access log file and each observation is one request sent to the proxy cache. The parameters we could consider are: the time the object entered the cache, its size, and the number of references.

Given a set of observations here xi the PCA will produce an ordered set yi where the first one will have the most information to represent the original set.

Slide 33:

We have tried the PCA on a number of workloads with different number of observations.

Here we have made a 2 representation of the considered parameters, if one parameter is more important than the other the dots should be scattered along its axis. As you may see, it is not clear which one is more important for this workload

Slide 34:

Similar phenomenon was recorded with a larger set. Most of the points are concentrated around the origin of the axis. The tests we have made are not enough to point out any real advantage for the usage of a specific parameter for the removal policy.

Slide 35:

There is another way to point out the importance of the workload components, it consists in following the evolution of the eigen-values associated which each component. The evolution of the eigen value plotted here confirmed that the values have the tendency to remain within the same range, giving a small advantage to the number of the reference of the others.
Slide 36:
We are ready now to do our simulations. Almost there is one last thing to do: chose the appropriate workload. First the longer the workload the better its (longer here reference to the window of time covered by the workload), however, we are limited in time and space, the simulation has to be fast and the available space should also a limit. Second, the workload should not reflect the reality of the internet traffic because of the limited size of the workload we might have a workload with a very strong locality of reference, or the inverse. Just to be fair in our comparison, we have selected two extreme situations: very high locality of reference and very low locality of reference. The reality is for sure in between.

Slide 37:
Here are the characteristics of the two workloads

Slide 38:

One last step before, we start the simulation, is to select the metrics. As we have seen in the previous course the most commonly used metrics are the OHR and the BHR.

Slide 39:

In the beginning of the simulation process we have made one main assumption: the object are static, every hit is a good hit.

Slide 40:

We have compared the number of hit recorded for different replacement strategies for different sizes of the cache. The goal of the simulation was to increase the size of the cache until we notice there is no more difference between the replacement strategies. Know that the optimal cache size is infinite.
The figures show the Hit rates obtained when we used a workload with a strong locality of reference. The hit rates increases to reach 90% of hits and all the replacement strategies start having the same behavior when cache size reaches 600 MB.
Slide 41:

The number of hit can drop dramatically if the workload has a week locality of the references. But still there is clear impact of the replacement strategies on the hit ratio. In this case the very simple strategies have overtaken the new replacement strategies, especially in terms of byte hit ratio.
Slide 42:

To summarize, with a relatively small cache size the replacement strategies have exhibit the same behavior.

Slide 43:

There is one question that remains to be asked: How confident are we with the quality of the hits. Remember that we have considered that documents are static, so we did not consider in these simulations the problem of document coherence.
This concludes the first part of the course. In the next part we will add a new component to our simulation model to see if the same phenomena will be observed.
