Slide1:
Let us now discuss the cache coherence issue, we said the last time that it may have an impact on the simulation result we have discussed in the previous course.

Slide 2:

This is a summary of the course as well as the references used to prepare it.

Slide 3:

What is it about coherence? Remember that cached objects are copies of original documents that can be modified at any time. For some application keeping the cached copied coherent with the original ones is a must, while for other applications they still can do with a copy of the cached documents.

Keeping the copies up-to-date with the original one will generate a new traffic, which will consist mainly in checking if the document is still up to date. The new traffic doesn’t introduce a large number of byte transfer (checking messages are short, unless the cached object is no more up-to-date) but they can overload the very popular servers.

Slide 5:

If one follows he will probably come up by most of the commonly used cache coherence strategies: Check every time with the origin server, it is obvious that this strategy is a bit too expensive, the wild guess suggests that the most of the time the response will be “no modified”. A large number of the checks are in fact useless. However, it guarantees that the object forwarded from the cache are always up-to-date. We have seen in the introductory course that method can be easily implemented using the some directives defined in the HTTP1.1 protocol (expire time).
The second possible approach is to check periodically with the origin server if the cache is still valid. This method does not guarantee that the forwarded object are up-to-date, it is known as “weak cache coherence”. However, all the implementations of this strategy try to minimize the number of stale hit or hits on out-of-date document. The main parameter that has to be carefully selected is the period at which the cached objects are checked against the origin server.

The third intuitive approach is that initiated by the origin server, which sends a message to all the locations where the copies are cached to inform about any modification on the original documents. At first sight, it seems that traffic generated is minimal, but if a very popular object is cached a large number of times, the origin server has to keep track of the location of most the copies if not all. Besides, the object may have been removed from a number of locations.
Slide 6:

Here are some the side effects of the intuitive solutions. One of the problem facing the cache coherence is the fact the main source of information about the state of the cached objects is inaccurate or incomplete. HTTP1.1 has introduced a number of directives that can help estimating the validity of a cached object, but the statistics have shown that only few requests come to the cache with the right values, beside some cache managers and web server managers used them for other purposes and on purpose provide wrong values.

 Cache managers have the tendency to rely more on the some statistical methods than using the information provided with the response. For instance the Harvest cache has specified the time to live of the most commonly requested type of object for instance ps, jpg, gif, avi, html, etc. So the ttl of the document is assigned locally by the cache. Statistical the method works but it leave room for errors.
Slide 7:

Selecting between the intuive approaches is really application depended, if a strong cache coherence is needed you can do much, you have to choose a solution that has that feature. Usually, people have the tendency to choose the solution that pushes the burden away from them. Admin of origin server will not go for a origin-server oriented solution unless they are forced.

Slide 8:

For us, it is mandatory to upgrade our simulation model to be able to remove the assumption made in the previous course relate to the state of the cached document. So what do we need to simulate. First updates on cached object that is rather an easy task. We add an object repository (containing all the object composing the considered access log file) and each object is assigned a tag which says valid or not valid. The second task we need to simulation is the frequency of updates of the objects.
Slides 9:

This is the graphical representation of the cache model, the red components have been added to the previous version of the module to simulate object updates. In order to do the measuring we have used the invalidation approach to copy the state of the repository in the cache. The state is not used for the cache coherence but to assess the quality of the hits. Before recording any hit, we check locally the flag to see if the hit was good on not.

Slide 10:

The major problem we faced in building this part of the simulator, was to come up with the right distribution of the object updating process. This component has to select periodically one object from the repository and mark it out of date. To implement this we had to rely on some statistic result which showed that very larger and small size document are rarely updated and also old documents are also not updated that often. We have thus build a process which depending on the size of the object and the age of the objects.
Slide 11:

Other internet traffic analysis showed that the average percentage of object updates on the Internet is between 2.5 and 0.5 percent. Actually, we wanted to build an object updating process which get as close as possible to these numbers. We have build a process which compared the frequency of the incoming requests (which represent the speed at which requests are arriving to the cache) to the frequency of object updating process, to maintain a specific percentage of the updates on a specific document.
Slide 12:

Because a large number of the object logged in the access log file used did not provide the object ttl, we have decided to specify the object life time based on the object type exactly as it is done the harvest cache project.

We have used the same workload as in the previous simulation: two one with a strong locality of references and one without weak locality of references. We measured the same metrics namely the object hit ratio (OHR) and the byte hit ratio (BHR)
Slide 13:

A completely different behavior has been recorded, it seems that a large number of hits were recorded in the previous simulation were in fact performed on out of date object. It turned out that increasing the cache size doesn’t help that much, if want to minimize the hit of stale objects. However, the very simple strategies behave always better than the one which were supposed to be more appropriate to Web caching.

Slides 14:

More observations can be made if we compare the evolution curves of the OHR and BHR. It seems that two main class of replacement policies have been outlined. One that performes well for small cache size configuration the other not. This suggested that one class is performing hits on recently cached objects this is why when enough space has been provided to allow objects to remain in the cache the number of false hits didn’t dramatically increase. The order class is more likely performing the hits on long term cached documents. More details can be found in the paper we have published in the simulation journal.
Slide 15:
Let us not focus on the side effects, of the invalidation. Let’s only look at the impact the invalidation protocol may have on the on the performance of the system. The only difference between this experiment and the previous one is that we used the invalidation process implemented in the simulation model to forbid any faulty hits.
Slide 16:
It seems that invalidation protocol has increased the number of correct hits for large size cache configurations. We can conclude that invalidated document have been requested again and subsequent requests to these objects have been performed on up-to-date documents which quite good. I will not dicuss here at which price this result has been achieved. This can determined by just counting the number of new hits performed in the system and the number of invalidation message (only 10% of increase in the hit rate due to invalidation protocol)

Slide 17:
The size based strategy has won the race this time, at least in term of object hit ratio. This is expected because when you remove large size objects first, you can store more object in the cache which may increase the number of hit, but not the byte hit rate as you may see on the right figure. For the first time one of the new method has overcome the simple ones. In term of byte transferred the different replacement strategies seem to converge all to the same point for large size cache configurations.

Slide 18:

To finish the set of simulation, we wanted to see if we can use a prefething approach to prevent stale hits. In other words, is the cached object appears to be out of date or is going to be out of date very soon, the cache take the initiative to refetch the object. There is a risk that the object is still up-to-date, or it is not going to be requested again. In this case no improvement or little improvement will be recorded on the hit ratios.

Slide 19:

The result shows clearly a big improvement especially for large size cache configuration. We almost get the same result as when we considered static document, which mean that we are close to the optimal hit ratios. The simple strategies LRU and LFU could not take advantage of the prefetching process, while the other methods have greatly took advantage of it.
It is almost clear that LRU, and LFU perform hits on recently cached objects, so what ever you do to improve the coherence of the cache they will be less sensitive to it.

On the other hands the other strategies perform hit on long time cached objects, it is thus likely that they take advantage of the method that improve the coherence of the cache

