1. -------------------------------Start---

2. -------------------------------Next Slide--

3. -------------------------------Next Slide--

For users, the primary requirement is simplicity: Access to the virtual organization’s resources should not be significantly different from access to the local organization’s resources. There should be a single sign-on, where users need to log on only once to access all permitted resources. Programs running on a user’s behalf should possess a subset of the user’s rights and have access to the permitted resources.2

The solution, then, must transparently interface with common remote access tools: remote login via Telnet and rlogin, file access via FTP, Web browsers, and programming libraries such as CORBA and MPI. It must also allow implementation of new inter site applications by providing standardized APIs for accessing security functions. For example, a group developing collaborative design tools should be able to easily integrate authentication and authorization mechanisms.
4. -------------------------------Next Slide--

The concerns of resource-providing sites constrain an authentication and authorization infrastructure in two ways:

Sites typically cannot easily replace or modify their intra-domain security solution, so we need a distinct inter-domain solution that interoperates with local security solutions, is at least as strong as local solutions so that it does not weaken site security, and is easy to understand so that site administrators can trust it.

Site administrators must have tight control over policies governing access to their resources, including how users establish their identity and which users have access to which resources. The “Technical Alternatives for Multi-site Authentication” explains why the two most popular authentication approaches —Kerberos and secure shell—did not meet these requirements, prompting us to develop GSI (paper of Randy Butler et al. “A National-Scale Authentication Infrastructure
· ”).
5. -------------------------------Next Slide--
PKI is asymmetric encryption system; it uses a pair of keys (mathematically linked). A data, encrypted by one key, can only be decrypted by the other key. To the contrary of symmetric system where only one key is used for both encryption and decryption
6. -------------------------------Next Slide--

Digital signatures are created by encrypting the hash of the data by the private key. This hash can only decrypted by my public key. Keys are not bind to a specific user the user who has them is their owner

7. -------------------------------Next Slide--

The public key is given to the world encapsulated in X509 certificate

- X509 certificates bind a name to a public key, it is signed by a trusted third party called CA

- CA:

- signs user certificates

- signs its own certificates (which is distributed in a trusted manner)

- The public key from the CA can be used to verify other certificates
8. -------------------------------Next Slide--

SSL server authentication allows a user to confirm a server's identity. SSL-enabled client software can use standard techniques of public-key
cryptography to check that a server's certificate and public ID are valid and have been issued by a certificate authority (CA) listed in the client's list
of trusted CAs. This confirmation might be important if the user, for example, is sending a credit card number over the network and wants to check the receiving server's identity.

SSL client authentication allows a server to confirm a user's identity. Using the same techniques as those used for server authentication, SSL-enabled server software can check that a client's certificate and public ID are valid and have been issued by a certificate authority (CA) listed in the server's list of trusted CAs. This confirmation might be important if the server, for example, is a bank sending confidential financial information to a customer and wants to check the recipient's identity.
An encrypted SSL connection requires all information sent between a client and a server to be encrypted by the sending software and decrypted by the receiving software, thus providing a high degree of confidentiality. Confidentiality is important for both parties to any private transaction. In addition, all data sent over an encrypted SSL connection is protected with a mechanism for detecting tampering--that is, for automatically determining whether the data has been altered in transit.

The SSL protocol includes two sub-protocols: the SSL record protocol and the SSL handshake protocol.

· The SSL record protocol defines the format used to transmit data.

· The SSL handshake protocol involves using the SSL record protocol to exchange a series of messages between an SSL-enabled server and an SSL-enabled client when they first establish an SSL connection. This exchange of messages is designed to facilitate the following actions:

· Authenticate the server to the client.

· Allow the client and server to select the cryptographic algorithms, or ciphers, that they both support.

· Optionally authenticate the client to the server.

· Use public-key encryption techniques to generate shared secrets.

· Establish an encrypted SSL connection.
9. -------------------------------Next Slide--

10. -------------------------------Next Slide--

Security requirements within the Grid environment are driven by the need to support scalable, dynamic, distributed virtual organizations (VOs)—collections of diverse and distributed individuals that seek to share and use diverse resources in a coordinated fashion.

From a security perspective, a key attribute of VOs is that participants and resources are governed by the rules and policies of the classical organizations of which they are members. Furthermore, while some VOs, such as multiyear scientific collaborations, may be large and long-lived (in which case explicit negotiations with resource providers are acceptable), others will be short-lived—created, perhaps, to support a single task, for example, two individuals sharing documents and data as they write a proposal—in which case overheads associated with VO creation and operation have to be small.

11. -------------------------------Next Slide--

In “Grids” and “collaboratories,” we find distributed communities of resource providers and resource consumers, within which often complex and dynamic policies govern who can use which resources for which purpose.

We propose a new approach to the representation, maintenance, and enforcement of such policies that provides a scalable mechanism for specifying and enforcing these policies. Our approach allows resource providers to delegate some of the authority for maintaining fine-grained access control policies to communities, while still maintaining ultimate control over their resources. We also describe a prototype implementation of this approach and an application in a data management context.

12. -------------------------------Next Slide--

This combination of dynamic policy overlays and dynamically created entities drives the need for three key functions in a Grid security model

 2. These services must be coordinated and must interact securely with other services. Thus, we must be able to name the service with an as sertable identity and to grant rights to that identity without contradicting the governing local policy

 3. These trust domains can span multiple organizations and must adapt dynamically as participants join, are created, or leave the VO. Traditional means of security administration

13. -------------------------------Next Slide--

Grid technologies are increasingly becoming the platform of choice for developing and deploying distributed computation and data intensive applications across large virtual organizations, such as the NASA Information Power Grid and the NSF PACI Grids.

 Grid Portals are a common approach to providing user interfaces to such Grid applications. By combining a web server and Grid enabled software, a Grid Portal allows the use of a standard Web browser as a simple graphical client for Grid applications.

Unfortunately, standard Web security protocols, employed between a Web client and server, do not support the needs of Grid Portals. Most Grid Portals require that the user delegate to the server the right for that server to act on the user’s behalf, in order to initiate and monitor operations for that user on Grid resources. Such Grid resources are generally protected by the Grid Security Infrastructure (GSI), a component of the Globus Toolkit that has become the de-facto standard for Grid security.

While GSI supports such delegation, the standard Web security protocols do not. This leads to an incompatibility between Web and Grid security, which must be overcome in order to enable the smooth operation of Grid Portals

14. -------------------------------Next Slide--

The GSI system is based on a Public Key Infrastructure (PKI). In a PKI, all entities (users and resources) are identified by a globally unique name known as a Distinguished Name (DN). Authentication with the GSI is a matter of proving that a user or resource is the entity identified by a DN. Resources then typically have local configuration for mapping the DN to a local identity (e.g. Unix hosts have a file containing DN and username pairs).

15. -------------------------------Next Slide--

An important thing to note about credentials in a PKI environment is that an entity must have sole possession of its private key to maintain the integrity of the system. If another party were to gain possession of the private key, the second party would be able to impersonate the owner at will and without restraint until the theft was discovered and the certificate revoked by the CA.

To limit the danger of an entity’s private key being stolen, two things are usually done. First it is typically protected from unauthorized access in some manner. This is generally done by storing the key in a file with restricted access, storing it in an encrypted file with a decryption pass phrase known only to the owner, or storing it on hardware token (e.g. a smart card) that requires a pass code. The hardware token provides the best security but is in very limited use due to the lack of deployment of hardware support for using the tokens.

16. -------------------------------Next Slide--

GSI uses Secure Socket Layer (SSL) to implement authentication (providing identity to another entity), message integrity (making sure no one has modified a message between two entities) and message privacy (making sure no one has can read a message between two entities). SSL is a standard software tool used in web browsers, web servers, and other applications. It uses PKI credentials for authentication and is used in GSI without modification.

17. -------------------------------Next Slide--

In the Grid environment, a user may need to authenticate themselves multiple times in a relatively short period of time, for example if multiple resources are being coordinated.

Requiring the user to repeatedly type their pass phrase for the multiple authentications is clearly undesirable from a convenience standpoint. It is also undesirable from a security standpoint, as each time their private key is decrypted; it is another opportunity for it to be compromised.

An alternative is for the software to only prompt for the user’s pass phrase once, but retain either the pass phrase or the unencrypted private key for multiple usages. However, while this is much more convenient for the user, this is even more undesirable from the security standpoint, as it exposes the private key to attack for a long period of time.

GSI solves this problem with proxy credentials. A proxy credential is a short-term credential that is created by a user, which can be used in place of the long-term credential to authenticate that user. The proxy credential has its own private key and certificate, and is signed using the user’s long-term credential. The proxy certificate, in effect, is a short-term binding of the user’s DN to an alternate private key. Proxy credentials are stored unencrypted on the local file system, protected only by file system permissions, and so can be used by the user repeatedly without inconvenience. Because a proxy credential is more vulnerable to compromise, they are typically given much shorter lifetimes than the user’s long-term credentials; usually on the order of hours or days.

18. -------------------------------Next Slide--

It is often important in distributed applications for a user’s application to be able to act, unattended, on the user’s behalf on the Grid. An example of this is a user’s job that needs to be able to authenticate as the user to mass storage system to store the result of a long computation. The GSI solves this problem by allowing the user to delegate a proxy credential to processes on remote hosts. Delegation is very similar to proxy credential creation in that an existing set of credentials is used to create a new set of proxy credentials that is identical in function. The difference is that the creation occurs over a GSI-authenticated connection, with the result being the remote process acquiring proxy credentials for the user. It is also worth noting that delegation can be chained. In other words one can delegate credentials to host A and then the process on host A can delegate credentials to host B and so forth.

19. -------------------------------Next Slide--

20. -------------------------------Next Slide--

We introduce the grid security problem with an example illustrated in the Figure. This example, although somewhat contrived, captures important elements of real applications.

We imagine a scientist, a member of a multi-institutional scientific collaboration, who receives e-mail from a colleague regarding a new data set. He starts an analysis program, which dispatches code to the remote location where the data is stored (site C). Once started, the analysis program determines that it needs to run a simulation in order to compare the experimental results with predictions. Hence, it contacts a resource broker service maintained by the collaboration (at site D), in order to locate idle resources that can be used for the simulation. The resource broker in turn initiates computation on computers at two sites (E and G). These computers access parameter values stored on a file system at yet another site (F) and also communicate among themselves (perhaps using specialized protocols, such as multicast) and with the broker, the original site, and the user.

 This example illustrates many of the distinctive characteristics of the grid-computing environment:

· The user population is large and dynamic. Participants in such virtual organizations as this scientific collaboration will include members of many institutions and will change frequently.

· The resource pool is large and dynamic. Because individual institutions and users decide whether and when to contribute resources, the quantity and location of available resources can change rapidly.

· A computation (or processes created by a computation) may acquire, start processes on, and release resources dynamically during its execution. Even in our simple example, the computation acquired (and later released) resources at five sites. In other words, throughout its lifetime, a computation is composed of a dynamic group of processes running on different resources and sites.

· The processes constituting a computation may communicate by using a variety of mechanisms, including unicast and multicast. While these processes form a single, fully connected logical entity, low-level communication connections (e.g., TCP/IP sockets) may be created and destroyed dynamically during program execution.

· Resources may require different authentication and authorization mechanisms and policies, which we will have limited ability to change. In the Figure, we indicate this situation by showing the local access control policies that apply at the different sites. These include Kerberos, plaintext passwords, Secure Socket Library (SSL), and secure shell.

· An individual user will be associated with different local name spaces, credentials, or accounts, at different sites, for the purposes of accounting and access control. At some sites, a user may have a regular account (“ap”, “physicist,” etc.). At others, the user may use a dynamically assigned guest account or simply an account created for the collaboration.

· Resources and users may be located in different countries.

To summarize, the problem we face is providing security solutions that can allow computations, such as the one just described, to coordinate diverse access control policies and to operate securely in heterogeneous environments.
21. -------------------------------Next Slide--

Grid systems and applications may require any or all of the standard security functions, including authentication, access control, integrity, privacy, and non-repudiation. In this paper, we focus primarily on issues of authentication and access control. Specifically, we seek to (1) provide authentication solutions that allow a user, the processes that comprise

 a user's computation, and the resources used by those processes, to verify each other's identity; and (2) allow local access control mechanisms to be applied without change, whenever possible. As will be discussed in Section 4, authentication forms the foundation of a security policy that enables diverse local security policies to be integrated into a global framework.

 In developing a security architecture that meets these requirements, we also choose to satisfy the following constraints derived from the characteristics of the grid environment and grid applications:

Single sign-on: A user should be able to authenticate once (e.g., when starting a computation) and initiate computations that acquire resources, use resources, release resources, and communicate internally, without further authentication of the user.

Protection of credentials: User credentials (passwords, private keys, etc.) must be protected.

Interoperability with local security solutions: While our security solutions may provide inter-domain access mechanisms, access to local resources will typically be determined by a local security policy that is enforced by a local security mechanism. It is impractical to modify every local resource to accommodate inter-domain access; instead, one or more entities in a domain (e.g., inter-domain security servers) must act as agents of remote clients/users for local resources.

Exportability: We require that the code be (a) exportable and (b) executable in multinational testbeds. In short, the exportability issues mean that our security policy cannot directly or indirectly require the use of bulk encryption.
22. -------------------------------Next Slide--

Before delving into the specifics of security architecture, it is important to identify the security objectives, the participating entities, and the underlying assumptions. In short, we must define a security policy, a set rules that define the security subjects (e.g., users), security objects (e.g., resources) and relationships among them. While many different security policies are possible, we present a specific policy that addresses the issues introduced in the preceding section while reflecting the needs and expectations of applications, users, and resource owners. To our knowledge, the following discussion represents the first such grid security policy that has been defined to this level of detail.

In the following discussion, we use the following terminology from the security literature:

· A subject is a participant in a security operation. In grid systems, a subject is generally a user, a process operating on behalf of a user, a resource (such as a computer or a file), or process acting on behalf of a resource.

· A credential is a piece of information that is used to prove the identity of a subject. Passwords and certificates are examples of credentials.

· Authentication is the process by which a subject proves its identity to a requestor, typically through the use of a credential. Authentication in which both parties (i.e., the requestor and the requestee) authenticate themselves to one another simultaneously is referred to as mutual authentication.

· An object is a resource that is being protected by the security policy.

· Authorization is the process by which we determine whether a subject is allowed to access or use an object.

· A trust domain is a logical, administrative structure within which a single, consistent local security policy holds. Put another way, a trust domain is a collection of both subjects and objects governed by single administration and a single security policy.

23. -------------------------------Next Slide--

With these terms in mind, we define our security policy as follows:
1. The grid environment consists of multiple trust domains. Comment: This policy element states that the grid security policy must integrate a heterogeneous collection of locally administered users and resources. In general, the grid environment will have limited or no influence over local security policy. Thus, we can neither require that local solutions be replaced, nor are we allowed to over ride local policy decisions. Consequently, the grid security policy must focus on controlling the inter-domain interactions and the mapping of inter-domain operations into local security policy.

2. Operations that are confined to a single trust domain are subject to local security policy only. Comment: No additional security operations or services are imposed on local operations by the grid security policy. The local security policy can be implemented by a variety of methods, including firewalls, Kerberos and SSH.

3. Both global and local subjects exist. For each trust domain, there exists a partial mapping from global to local subjects. Comment: In effect, each user of a resource will have two names, a global name and a potentially different local name on each resource. The mapping of a global name to a local name is site-specific. For example, a site might map global user names to: a predefined local name, a dynamically allocated local name, or a single “group” name. The existence of the global subject enables the policy to provide single sign-on.

4. Operations between entities located in different trust domains require mutual authentication.

5. An authenticated global subject mapped into a local subject is assumed to be equivalent to being locally authenticated as that local subject. Comment: In other words, within a trust domain, the combination of the grid authentication policy and the local mapping meets the security objective of the host domain.

6. All access control decisions are made locally on the basis of the local subject. Comment: This policy element requires that access control decisions remain in the hands of the local system administrators.

7. A program or process is allowed to act on behalf of a user and be delegated a subset of the user's rights. Comment: This policy element is necessary to support the execution of long-lived programs that may acquire resources dynamically without additional user interaction. It is also needed to support the creation of processes by other processes.

8. Processes running on behalf of the same subject within the same trust domain may share a single set of credentials. Comment: Grid computations may involve hundreds of processes on a single resource. This policy component enables scalability of the security architecture to large-scale parallel applications, by avoiding the need to create a unique credential for each process.
24. -------------------------------Next Slide--

The security policy defined provides a context within which we can construct specific security architecture. In doing so, we specify the set of subjects and objects that will be under the jurisdiction of the security policy and define the protocols that will govern interactions between these subjects and objects. The following components are depicted: entities, credentials, and protocols. The thick lines represent the protocols described later in the paper. The curved line separating the user from the rest of the figure signifies that the user may disconnect once the user proxy has been created; the dashed lines represent authenticated inter process communication.

We are interested in computational environments. Consequently, the subjects and objects in our architecture must include those entities from which computation is formed. A computation consists of many processes, each process acting on behalf of a user. Thus, the subjects are users and processes. The objects in the architecture must include the wide range of resources that are available in a grid environment: computers, data repositories, networks, display devices, and so forth.

Grid computations may grow and shrink dynamically, acquiring resources when required to solve a problem and releasing them when they are no longer needed. Each time a computation obtains a resource, it does so on behalf of a particular user. However, it is frequently impractical for that “user” to interact directly with each such resource for the purposes of authentication: the number of resources involved may be large, or, because some applications may run for extended period of time (i.e., days or weeks), the user may wish to allow a computation to operate without intervention.

Hence, we introduce the concept of a user proxy that can act on a user's behalf without requiring user intervention.

Definition A user proxy is a session manager process given permission to act on behalf of a user for a limited period of time.

The user proxy acts as a stand-in for the user. It has its own credentials, eliminating the need to have the user on-line during a computation and eliminating the need to have the user's credentials available for every security operation. Furthermore, because the lifetime of the proxy is under control of the user and can be limited to the duration of a computation, the consequences of its credentials being compromised are less dire than exposure of the user's credentials. Within the architecture, we also define an entity that represents a resource, serving as the interface between the grid security architecture and the local security architecture.

Definition A resource proxy is an agent used to translate between inter-domain security operations and locolsecurity. Given a set of subjects and objects, the architecture is determined by specifying the protocols that are used when subjects and object interact. In defining the protocols, we will use U, R, and P to refer to a user, resource, and process, respectively, while UP and RP will denote a user proxy and resource proxy, respectively. Many of the following protocols will rely on the ability to assert that a piece of data originated from a known source, X, without modification. We know these conditions to be true if the text is “signed "by X. However, based on experience and the current grid systems that have been built to date, it is reasonable to assume that the grid system will include the following operations:

- Allocation of a resource by a user (i.e., process creation),allocation of a resource by a process, and

- Communication between processes located in different trust domains.(We use the term allocation to denote the operations required to provide a user with access to a resource. On some systems, this will involve interaction with a scheduler to obtain a reservation.) We must define protocols that control UP-RP, P-RP, and P-P interactions. In addition, the introduction of the user proxy means that we must establish how the user and user proxy (U-UP) interact. Within our architecture, we meet the above requirement by allowing a user to \log on" to the grid system, creating a user proxy using Protocol 1. The user proxy can then allocate resources (and hence create processes) using Protocol 2.Using Protocol 3, a process created can allocate additional resources directly. Finally, Protocol 4 can be used to define a mapping from a global to a local subject. We now describe each of these protocols in more detail. We note that to minimize problems with export controls, the protocols are all designed to rely on authentication and signature techniques, not encryption. Furthermore, our descriptions do not talk about specific cryptographic methods. In fact, as we shall see below, our implementation uses the Generic Security Services application-programming interface to achieve independence from any specific security technology
25. -------------------------------Next Slide--

Recall that a user proxy is an entity within our architecture that acts on behalf of a user. In practice, the user proxy is a special process started by the user, which executes on some host local to that user. The main issue in the user proxy creation protocol is the nature of credentials given to the proxy and how the proxy can obtain these credentials.

A user could enable a proxy to act on her behalf by giving the proxy the appropriate credentials (e.g., a password or private key). The proxy could then use those credentials directly. However, this approach has two significant disadvantages: it introduces an increased risk of the credentials being compromised and does not allow us to restrict the time duration for which a proxy can act on the user's behalf.

Instead, a temporary credential, CUP, is generated for the user proxy; the user indicates her permission by signing this credential with a secret (e.g., private key). CUP includes the validity interval as well as other restrictions imposed by the user, e.g., host names (where the proxy is allowed to operate from) and target sites (where the proxy is allowed to start processes and/or use resources.)

The actual process of user proxy creation is summarized in Protocol 1. As a consequence of this protocol, the user proxy can use its temporary credential to authenticate with resource proxies a limited lifetime certificate, which is then signed by the user to indicate that this certificate represents, or is a proxy for, the user. What distinguishes our architecture from these approaches is the way that a user proxy interacts with the resource proxy to achieve single sign-on and delegation, which is discussed in the next section.
26. -------------------------------Next Slide--

In discussing resource allocation, we decompose the problem into two classes: allocation of resources by a user proxy and allocation of resources by a process. As process allocation is a generalization of user proxy allocation, we will start our discussion with allocation by a user proxy.

Recall that operations on resources are controlled by an entity, called a resource proxy, which is responsible for scheduling access to a resource and for mapping a computation on to that resource. The resource proxy is used as follows. A user proxy requiring access to a resource first determines the identity of the resource proxy for that resource. It then issues a request to the appropriate resource proxy. If the request is successful, the resource is allocated and a process created on that resource. (The procedure would be similar if our goal was simply to allocate a resource, such as network or storage, with which no process was to be associated. However, for brevity, we assume here that process creation always follows resource allocation.) The request can fail because the requested resource is not available (allocation failure), because the user is not a recognized user of the resource (authentication failure), or because the user is not entitled to use the resource in the requested mode (authorization failure). As discussed above, it is up to the resource proxy to enforce any local authorization requirements. Depending on the nature of the resource and local policy, authorization may be checked at resource allocation time or process creation time, or it maybe implicit in authentication and not be checked at all. We define as Protocol 2 the mechanism used to issue a request to a resource proxy from a user proxy. The verification in Step 3 may require mapping the user's credentials into a local user id or account name if the policy of the resource proxy is to check for authorization at resource allocation time. Alternatively, authorization checks can be delayed until process creation time. Notice that the ability to have a resource proxy create credentials on behalf of the process it creates relies on a process and its resource proxy executing in the same trust domain. The protocol creates a temporary credential for the newly created processes. This credential, CP, gives the process both the ability to authenticate itself and identify of the user on whose behalf the process was created. A single resource allocation request may result in the creation of multiple processes on the remote resource. We assign all such processes the same credential, as allowed by security policy element 8. An advantage of this decision is that in the situation when a user allocates resources on large parallel computers, scalability is enhanced. A disadvantage is that it is not possible to use credentials to distinguish two processes started on the same resource by the same allocation request. However, we do not believe that this feature is often useful in practice.
27. -------------------------------Next Slide--

While resource allocation from a user proxy is necessary to start a computation, the more common case is that resource allocation will be initiated dynamically from a process created via a previous resource allocation request. Protocol 3 defines the process by which this can be accomplished. Admittedly, this technique lacks scalability because of its reliance on a single user proxy to forward the request to the resource proxy. However, this protocol offers the advantage of both simplicity and fine-grained control. While the former is self-evident, fine-grained control requires some elaboration. Consider the obvious alternative of allowing a process (running remotely on behalf of a user) to allocate further resources and create other processes unilaterally. This would have two limitations:
28. -------------------------------Next Slide--

A central component of the security policy and the resulting architecture is the existence of a “correct" mapping between a global subject and a corresponding local subject. We achieve this conversion from a global name (e.g., a ticket or certificate) into a local name (e.g., login name or user ID) by accessing a mapping table maintained by the resource proxy. While the local system administrator can create a mapping table, this approach imposes a certain administrative burden and introduces the possibility for error.

1 Hence, we have developed a technique that allows a mapping to be added by a user.

The basic idea behind this technique, presented as Protocol 4, is for a user to prove that he holds credentials for both a global and local subject. This is accomplished by authenticating both globally and directly to the resource using the local authentication method. The user then asserts a mapping between global and local credentials. The assertion is coordinated through the resource proxy, since it is in a position to accept both global and local credentials. In the first two steps, we show the different activities performed by user as it authenticates globally (1.a and 1.b) and to the resource (2.a and 2.b). Matching MAP-SUBJECT-P and MAP-SUBJECT-UP requests must be issued from both the user proxy and mapping process. This ensures that the same user is in possession of both global and local credentials. If the results of the mapping protocol are stored in a database accessible to the resource proxy, then the user need execute the mapping protocol only once per resource. The duration of time for which a mapping remains valid is determined by local system administration policy. However, we would hope that a mapping would remain in place for the lifetime of either the global credentials or the user's local account. Part of the mapping protocol requires that the user login to the resource for which the mapping is being created. This requires that a user authenticate themselves to the local system. Consequently, the mapping protocol is only as secure as the local authentication method. Clearly, resources with strong authentication (for example based on Kerberos, S/KEY, or Secure Shell) will result in amore secure mapping.
29. -------------------------------Next Slide--

30. -------------------------------Next Slide--

Revealed a number of requirements that impact security. These included:

· Users must be able to use any standard web browser t access the Grid portals.

· Users must be able to use a web browser from locations where their Grid credentials would not normally be available to them.

· Users must be able to do anything through a Grid portal that their credentials would entitle them to do. For example, a user should be able to access the Grid using a web browser at an airport kiosk in the same manner as they could from a web browser installed on a system on their desktop in their office.

31. -------------------------------Next Slide--

The combination of the portal requirements and limitations brought about the need for a system to meet a number of goals:

· It should allow users to access their credentials from anywhere on the Grid, even if they are on a system without Grid software and without secure access to their long-term credentials.

· It should allow them to delegate credentials to resources to which they normally would not be able to, since the applications involved do not support the GSI delegation mechanism (e.g. from a web browser to a portal).

· It should remove, as much as possible, any credentials from the portal except when they are actually needed, in order to lower the risk of compromise if the portal is compromised.

· It should be scalable. Multiple portals should be able to use a single system in the case of a domain having more than one portal, and a portal should be able to use multiple systems in the case of a portal that supports users from multiple domains.

· It should give the user as much control of their credentials and proxy credentials as possible. Portals should only be able to get a user’s credentials if allowed to do so by a user.

32. -------------------------------Next Slide--

Repository server and a set of client tools that can be used to delegate to and retrieve credentials from the repository. Normally, a user would start by using the myproxy-init. Client program along with their permanent credentials to contact the repository and delegate a set of proxy credentials to the server along with authentication information and retrieval restrictions The authentication information in this process consists of a user identity and a pass phrase to be used to authenticate any later retrieval operations. Both the user identity and pass phrase are chosen by the user, but can be tested by the repository to make sure they meet any local policy.(e.g. the pass phrase must be a certain length, survive dictionary checks, etc.). The user identity is also typically different from the user’s Distinguished Name (DN) in their Grid credentials, as it is actually hand-typed by the user at later times Because of this it is desirable for the user identity to be more memorable and concise than a typical DN. The retrieval restrictions are currently limited to a maximum lifetime for proxy credentials that the repository may delegate on the user’s behalf. The credentials delegated to the repository normally have a lifetime of a week. The user can change this to any length of time desired. The user can also, at any point, use the myproxy-destroy client program to destroy any credentials they previously delegated to the repository

33. -------------------------------Next Slide--

At a later time, the user, or service acting on behalf of the user, uses the myproxy-get-delegation program to contact the server and request a delegation of the user’s credentials. The user must supply the same user identity and pass phrase that they provided when initially delegating the credentials to the server. After verifying this information and checking any restrictions that the user presented with the delegation, the repository will in turn delegate a proxy credential back to the user or service. This delegated proxy from the repository may then be used as any other proxy credential generated by the user to initiate actions on the user’s behalf on the Grid.

34. -------------------------------Next Slide--

The first step to using MyProxy system with a portal is to delegate a proxy credential to the repository as shown in the Figure above. Then, at a potentially different time and place, the user would connect to a Grid portal (using a web browser) and supply the authentication information given earlier to the repository through a web form or similar interface. The user might also specify a MyProxy repository for the portal to use, assuming it’s configured to use more than one. The portal would then connect to the MyProxy repository using the myproxy-get-delegation program, authenticates itself using it’s own Grid credentials, presents the authentication information (user identity and pass phrase) as provided by the user, and requests a proxy credential for the user. The repository then, after verifying all the presented information, would delegate a proxy credential for the user back to the portal. The portal then can securely access the Grid using standard Grid applications as the user normally would. At this point the user would direct the portal through the existing connection with the web browser. The operation of logging out of the portal deletes the user’s delegated credential on the portal. If a user forgets to log off, than the credential will expire at the lifetime specified when requested from the MyProxy service. This lifetime is normally on the order of a few hours. This process could then be repeated as many times as the user desires until the credentials held by the MyProxy repository expire, at which point the user would need to rerun the myproxy-init program from a location where their permanent credentials were available and delegate a new set of credentials to the repository. The maximum lifetime of credentials delegated to the repository is set by policy on the repository server, but defaults to one week.

35. -------------------------------Next Slide--

In “Grids” and “collaboratories,” we find distributed communities of resource providers and resource consumers, within which often complex and dynamic policies govern who can use which resources for which purpose. We propose a new approach to the representation, maintenance, and enforcement of such policies that provides a scalable mechanism for specifying and enforcing these policies. Our approach allows resource providers to delegate some of the authority for maintaining fine-grained access control policies to communities, while still maintaining ultimate control over their resources. We also describe a prototype implementation of this approach and an application in a data management context.

36. -------------------------------Next Slide--

The CAS server contains entries for CAs, users, servers and resources that comprise the community and groups that organize these entities. It also contains policy statements that specify who (which user or group) has the permission, which resource or resource group the permission is granted on, and what permission is granted.

What permission is denoted by a service type and an action; the action describes the type of action (e.g., “read” or “execute program”), and the service type defines the namespace in which the action is defined. Different resource servers may recognize different service types, but all resource servers that recognize the same service

37. -------------------------------Next Slide--

As illustrated in Figure, a member of a community may send the CAS server a request for a capability that will allow the user to perform a set of actions; if that request is consistent with the community’s policy, the CAS server will delegate an appropriate capability back to the user. The user can then use that delegated credential to authenticate to a resource server and exercise the rights described by the capability. Of course, this authentication and exercise of rights is effective only if the resource provider has granted those rights to the community.

Note:

4. The user uses the capability to authenticate to a resource server and exercise the right described by the capability. The request action can be easily integrated with existing applications, as we discuss

38. -------------------------------Next Slide--

As shown in Figure 2, when the user presents the capability to a resource, the resource grants the user access to the local community resources based on local policy for the community (determined using the resource server’s normal local access control mechanisms) and the community policy for the user (determined by examining the policy statements carried in the capability). In other words, the resource server will permit a request authenticated with a capability if the resource server’s local policy authorizes the request for the grantor of the capability, and the capability itself authorizes the request for the bearer. This structure addresses the scalability problem by reducing the necessary trust relationships from CxP t C+P: each consumer needs to be known, and trusted, by the CAS server, but not by each producer; each producer needs to be known and trusted by the CAS server, but not by each consumer. Of course, the CAS server itself is a potential bottleneck and single point of failure, but\ standard replication techniques can be used to address this concern.

This structure also addresses flexibility and expressibility by allowing producer-community agreements and community policies to be expressed directly within the CAS server. Thus, for example, it is straightforward for a provider to agree to provide 10% of their resources to a community, and for the community to decide to provide 30% of its aggregate resources for one purpose. Finally, by externalizing policy enforcement into a third party server, it is possible to set up specialized policy servers, representing sub-communities within a VO or completely different VOs.

In the rest of this section, we provide more details on these interactions between the CAS and the different

39. -------------------------------Next Slide--

The CAS server grants rights to community members by using GSI delegation mechanisms to grant them proxy credentials. GSI originally supported only a simple form of delegation, namely impersonation. However, in most cases it is inappropriate for the CAS server to delegate all of its authority to a user, because a community’s access control policy usually grants different sets of rights to different users. We have extended the GSI delegation feature to support rich restriction policies to allow grantors to place specific limits on rights that they grant. We accomplished this by defining extensions to X.509 Certificates to carry restriction policies; we call a proxy carrying such a restriction policy a restricted proxy. CAS servers use these restricted proxies to delegate to each user only those rights granted to that user under the community’s policy. The CAS server uses restricted proxy credentials to delegate to each user only those rights granted to that user by the community policy. The CAS server delegates the user a restricted proxy credential that both authorizes the user to act as a member of the community and limits what the user can do as part of that community. Some applications base authorization decisions on the comparison of two identities (for example, a peer-to-peer application may permit access if and only if the remote and local identities are the same). This comparison becomes meaningless for proxy credentials, because the same entity may grant proxies to several different individuals. We have implemented a hierarchical "proxy group" mechanism that enables the grantor of a proxy credential to associate a group name with each proxy certificate it grants, so that these applications can use the combination of issuer identity and proxy group (for example, a peer-to-peer application may permit access if and only if both the remote and local issuer identities and proxy groups are the same). The CAS server uses a

40. -------------------------------Next Slide--

 To summarize, we have tried to ensure that an entity cannot delegate more authority than it has and that a server process that does not know how to enforce the restrictions in a restricted proxy certificate will reject the certificate outright. The effective validity time for a proxy certificate (restricted or otherwise) is the intersection of the validity times of all the certificates in the certificate chain; the effective set of allowed operations is the intersection of what’s allowed by all the certificates in the chain. Proxy restrictions are encoded in a critical X.509 extension, so restricted proxies are rejected by authentication libraries that don’t understand restrictions. The authentication libraries that do understand restrictions reject restricted proxies unless the calling program has indicated its willingness to enforce proxy restrictions. We do not currently provide a mechanism for the revocation of proxy certificates, relying instead on their short lifetimes.

41. -------------------------------Next Slide--

If a CAS server is compromised or untrustworthy, it can issue credentials that do not reflect the policies of the community that it represents; for example, it may grant access to people who are not members of the community. A resource provider would honor such a credential for any access that its local policies grant to that community. A compromised CAS server might also issue credentials that (attempt to) grant access to resources that don’t belong to the community, but unless a resource server has been configured to grant access on those resources to that community, those credentials will be rejected. If a CAS server is discovered to have been compromised, resource servers can use their local access control mechanisms to revoke any permission granted to that server.

42. -------------------------------Next Slide--

Although a compromised or untrustworthy resource server is likely to be a serious problem (e.g., if a community stores sensitive files on that server), this does not create cascaded security issues. For example, if a user uses a CAS credential to authenticate to a compromised resource server, that server cannot use that CAS credential to gain additional access, because the resource server never sees the private key.

For highly sensitive applications where greater assurance of resource enforcement of community policy is required, a mechanism such as Law-Governed Interaction can be used to help assure this.

