1. Start

This course is an introduction to the concepts of Grid-Technology. I will try in 8 courses to give you an overview which is detailed enough to allow you to be able to tackle any project based on the Grid Technology.

In this first course, I will try to introduce what the Grid? Why do we need? And what is the current state of the Grid technology

2. ----------------------------------Next Slide---

Grid technology has been introduced in the mid-nineties, because there was a real need for coordinating and sharing resources that are becoming more and more geographically distributed. Besides that, the rapid progress of the networking technology and the Internet technology has open new ways for doing business and for doing science. The scientific community was the leader requester for the Grid-technology. At the beginning it was quite hard to convince any industrial partner to accept the concepts of the Grid technology. Then all of a sudden, companies like IBM, SUN, and Microsoft start sponsoring the research around the Grid technology. At the end of this course, we will see the impact of the interest of the industry, and especially IBM, on the Grid concepts.

So in essence, the Grid technology is aiming at coordinating the sharing of resources among dynamic institutions. In the context of Grid technology the word “resource” is used as a generic word to design computers, software, storage facilities, any devices that can accessed and controlled through the network (scientific instruments, tape robots, etc). Grid technology has thus strengthened the concept of VO; which is basically a collection of the independent organizations trying to pool together in order to achieve a predefined goal.

 When we consider a VO composed of independent organization, the problem is always the lack of a central control. Every organization has its own security strategy, its own resource management policy etc. And it is quite hard to convince those organizations to give away their independence. This is why one of the working assumptions of the Grid Technology was and still is the absence of a central control, central location etc. Every thing in the Grid technology is based on a mutual trust and predefined relationships.

3. ----------------------------------Next Slide---

This is an example of a collaboration of multiple organizations to perform an experiment in condensed matter and materials physics using neutron and x-ray scattering called “DOE X-ray grand Challenge”. The organizations working on this experiment are scattered across the USA. Consequently the resources are also geographically distributed over the state and belong to different organizations. The project leaders of this project have chosen to use the Grid technology to coordinate the sharing of the resource in this scientific experiment.

 Description of Doe X-ray challenge:

 Research is aimed at achieving a fundamental understanding of the atomic, electronic, and magnetic properties of materials and their relationship to the physical properties of materials. Both ordered and disordered materials are of interest as are strongly correlated electron systems, surface and interface phenomena, and behavior under environmental variables such as temperature, pressure, and magnetic field.

4. ----------------------------------Next Slide---

The second example of a potential application for the Grid technology is from Europe. In 2007 a very big high-energy physics experiment will be held and huge amount of data will be produced at CERN. There is no way to find the required storage facility at CERN so the organizers of the experiment have decided to use storage facility scattered allover Europe. Besides that almost all the high-energy physics institutions in Europe will participate in this experiment and put their resources to contribute to this experiment. Once again Grid technology has been selected as the technology to coordinate the sharing of resources. A European research program “European DATA Grid” has been started to develop the needed Grid infrastructure to support such an experiment.

5. ----------------------------------Next Slide---

The third and last example of grid potential application come from the world of mathematics, where a problem was standing for more than three decades without a solution. The lack of computation power has prevented the mathematicians from exploring all the possibilities. To solve this mathematical problem; during seven-day period on a collection of more than 1000 computers around the world have been allocated to perform the needed calculations.

The curve show the number of workers (computer) assigned to the NUG30 processing over the time. Here we can see a very interesting point of the context in which the Grid technology is applied. The number of workers is not stable, it goes up and down and number of reasons can be behind this behavior network failure, maintenance of the resources, assignment of the workers to other tasks etc. Remember what we have said in the previous slide that there no central control of the resource, in a Grid environment resource can be used but we cannot guaranty the availability of the resource until the end of the experiment. And that what seems to have happened all along the NUG30 calculation.

Description of the NuG30:

In 1968, Nugent, Vollman, and Ruml posed a set of quadratic assignment problem instances of sizes 5, 6, 7, 8, 12, 15, 20, and 30. The instances were posed in the paper, "An experimental comparison of techniques for the assignment of facilities to locations" appearing in the journal "Operations Research".

6. ----------------------------------Next Slide---

Following are some definitions of the Grid Technology. As you may see, there is not a unique definition of the Grid. It is defined as consistent pervasive and inexpensive access to high-end computational capabilities. Or as an enabler for interaction of resources geographically distributed among organizations. Or Making possible shared large wide-area computational infrastructure.

There three definitions highlight three different aspect of the Grid technology: first easy access to resources, second the interaction of resources, and finally the Grid is viewed as wide area computational infrastructure. The definitions do not contradict each other. In fact, they complement each other.

This is how people involved the design and development of the Grid technology think of the Grid concepts

7. ----------------------------------Next Slide---

For the other scientists, the Grid technology is regarded as the next revolution in the area of distributed computing, distributed information processing, and VO. I have selected a few points of view of well known persons on the Grid technology.

8. ----------------------------------Next Slide---

During the last four year, the Grid technology has become the Buzzword for getting the funding from national and international research foundations. Which has lead to miss use of the word Grid technology. In a number of papers you will find that Grid Technology is covering a variety of domain form advanced networking to artificial intelligence.

I hope that during this course, we will clarify what is Grid Technology.

9. ----------------------------------Next Slide--

The development in Grid Technology is guided or motivated by real and specific problems. I’ve have shown a few examples at the beginning of this course. Since the Grid Technology has emerged a new area in research has consequently emerged known as e-science. All of a sudden all the scientific domains have given at least one application that can fit with the Grid concepts.

The second point I wan to raise here is the fact that the Grid Technology is different from other existing technologies. The grid Technology is often described as “the Grid complete rather than compete”.

The real and specific problem that underlies the Grid concept is coordinated resource sharing and problem solving in dynamic, multi-institutional virtual organizations. The sharing in Grid is concerned with not primarily file exchange but rather direct access to computers, software, data, and other resources, as is required by a range of collaborative problem-solving and resource brokering strategies emerging in industry, science, and engineering. This sharing is, necessarily, highly controlled, with resource providers and consumers defining clearly and carefully just what is shared, who is allowed to share, and the conditions under which sharing occurs.

10. ----------------------------------Next Slide---

Because of their focus on dynamic, cross-organizational sharing, Grid technologies complement rather than compete with existing distributed computing technologies. For example, enterprise distributed computing systems can use Grid technologies to achieve resource sharing across institutional boundaries; in the ASP/SSP space, Grid technologies can be used to establish dynamic markets for computing and storage resources, hence overcoming the limitations of current static configurations. We discuss the relationship between Grids and these technologies in more detail below.

…..

11. ----------------------------------Next Slide---

All along this course, I will repeat this sentence again and again the Grid is about coordinating resource sharing in a dynamic, multi-institutional environment. The major problem facing the developer of the Grid Technology is the absence of central control; every resource owner has full control on his resource and thus has the right to redraw them whenever he wishes.

Hopefully the reality is a lot less messy, because relationships are established between the resource owners. Which can build a mutual trust and allow the building of grid-based systems.

12. ----------------------------------Next Slide---

Let us look at the meaning of the key words high lighted in the previous Slide. Let’s start by the coordinated sharing. Sharing the resources in the Grid environment is highly controlled by the providers. A number of the sharing aspects are considered such as the shared resources, not all the resources can be shared or is useful to share. The second point is who is allowed to share and finally the conditions that control the sharing of the resource.

VOs vary tremendously in their purpose, scope, size, duration, structure, community, and sociology. Nevertheless, careful study of underlying technology requirements leads us to identify a broad set of common concerns and requirements. In particular, we see a need for highly flexible sharing relationships, ranging from client-server to peer-to-peer; for sophisticated and precise levels of control over how shared resources are used, including fine-grained and multi-stakeholder access control, delegation, and application of local and global policies; for sharing of varied resources, ranging from programs, files, and data to computers, sensors, and networks; and for diverse usage modes, ranging from single user to multi-user and from performance sensitive to cost-sensitive and hence embracing issues of quality of service, scheduling, co-allocation, and accounting.

Note:

 While a peer is a computer that behaves as a client in the client/server model, it also contains an additional layer of software that allows it to perform server functions. The peer computer can respond to requests from other peers. The scope of the requests and responses, and how they are executed, are application-specific. Typically, there will be a request for access to resources that belong to the other peer.

In a brokered architecture the client and the server they don’t know the existence of each other on before hand. The architecture involves a broker, which locates the remote object on the network, communicates the request to the object, waits for the results and when available communicates those results back to the client. There is phase of server discovery before the client can do access the server objects/services.

13. ----------------------------------Next Slide--

Before we start we studying the Grid-technology, we have to make sure that no other existing technology can do exactly what the Grid can do. A number of Technologies allow to a certain extent access to geographically distributed resource. I will try in a few slides describe the main features of these technologies.

Let’s start with a brokered base architecture. CORBA is the acronym for Common Object Request Broker Architecture, OMG's open, vendor-independent architecture and infrastructure
that computer applications use to work together over networks. Using the standard protocol IIOP, a CORBA-based program from any vendor, on almost any computer, operating system, programming language, and network, can interoperate with a CORBA-based program from the same or another vendor, on almost any other computer, operating system, programming language, and network.

NOTE: Some people think that CORBA is the only specification that OMG produces, or that the term "CORBA" covers all of the OMG specifications. Neither is true;

14. ------------------------------Next Slide--

In this slide, I’ve tried to summarize CORBA in three main points. First of all CORBA defines an architecture for distributed Objects. The client requests a service of the distributed object. Without knowing anything about the implementation of the service. The service are made available via what is commonly known as the object interface, which describes in a very abstraction way how the service can be invoked

This is the architecture of CORBA distributed object. We see here both the client and the server and the components composing each side.

Server side

- DSI

- IDL (Interface Definition Language)

- Stub

Client side

- DII (Dynamic Invocation Interface)

- Skeleton

Interface repository

ORB

ORB is the distributed service that implements the request to the remote object. It locates the remote object on the network, communicates the request to the object, waits for the results and when available communicates those results back to the client.

The ORB implements location transparency. Exactly the same request mechanism is used by the client and the CORBA object regardless of where the object is located. It might be in the same process with the client, down the hall or across the planet. The client cannot tell the difference.

The ORB implements programming language independence for the request. The client issuing the request can be written in a different programming language from the implementation of the CORBA object. The ORB does the necessary translation between programming languages. Language bindings are defined for all popular programming languages.

15. -----------------------------------Next Slide---

The RMI or remote invocation is a java-based technology which also allows sharing resource by allowing client program to invoke remote method within an object, which can be, located anywhere. RMI enables the programmer to create distributed Java technology-based to Java technology-based applications, in which the methods of remote Java objects can be invoked from other Java virtual machines, possibly on different hosts. A Java technology-based program can make a call on a remote object once it obtains a reference to the remote object, either by looking up the remote object in the naming service provided by RMI or by receiving the reference as an argument or a return value. A client can call a remote object in a server, and that server can also be a client of other remote objects. RMI uses object serialization to marshal and unmarshal parameters and does not truncate types, supporting true object-oriented polymorphism.

16. ----------------------------------Next Slide---

A client invoking a method on a remote server object actually makes use of a stub or proxy for the remote object as a conduit to the remote object. A client-held reference to a remote object is a reference to a local stub. This stub is an implementation of the remote interfaces of the remote object and forwards invocation requests to that server object via the remote reference layer.

The remote reference layer is responsible for carrying out the semantics of the type of invocation. For example this layer is responsible for handling unicast or multicast invocation to a server. Each remote object implementation chooses its own invocation semantics-whether communication to the server is unicast, or the server is part of a multicast group (to accomplish server replication). Also handled by the remote reference layer are the reference semantics for the server. For example, the remote reference layer handles live and/or persistent references to remote objects. Persistent object references are required in order to activate objects to support long-running servers.

The transport is responsible for connection set-up with remote locations and connection management, and also keeping track of and dispatching to remote objects (the targets of remote calls) residing in the transport's local address space. In order to dispatch to a remote
object, the server's transport forwards the remote call up to the remote reference layer (specific to the server). The remote reference layer handles any server-side behavior that needs to be done before handing off the request to the server-side skeleton. The skeleton for a remote object makes an up-call to the remote object implementation which carries out the actual method call. The return value of a call is sent back through the skeleton, remote reference layer and transport on the server side, and then up through the transport, remote reference layer and stub on the client side.

17. ----------------------------------Next Slide---

Jini network technology (which includes JavaSpaces Technology) is an open architecture that enables developers to create network-centric services -- whether implemented in hardware or software -- that are highly adaptive to change. Jini technology can be used to build adaptive
networks that are scalable, evolvable and flexible as typically required in dynamic computing environments

18. ----------------------------------Next Slide--

19. ----------------------------------Next Slide--

20. ----------------------------------Next Slide--

Organizations can build their own components or purchase components from third-party vendors. These server-side components, called enterprise beans, are distributed objects that are hosted in Enterprise JavaBean containers and provide remote services for clients distributed throughout the network

The EJB programming model provides bean developers and EJB server vendors with a set of contracts that defines a common platform for development. The goal of these contracts is to ensure portability across vendors while supporting a rich set of functionality

The JavaBeans component architecture is the platform-neutral architecture for the Java application environment. It's the ideal choice for developing or assembling network-aware solutions for heterogeneous hardware and operating system environments--within the enterprise or across the Internet. In fact, it's the only component architecture you should consider if you're developing for the Java platform.

The JavaBeans component architecture extends "Write Once, Run Anywhere" capability to reusable component development. In fact, the JavaBeans architecture takes interoperability a major step forward--your code runs on every OS and also within any application environment.

A beans developer secures a future in the emerging network software market without losing customers that use proprietary platforms, because
JavaBeans components interoperate with ActiveX. JavaBeans architecture connects via bridges into other component models such as ActiveX. Software components that use JavaBeans APIs are thus portable to containers including Internet Explorer, Visual Basic, Microsoft Word, Lotus Notes, and others.

The JavaBeans specification defines a set of standard component software APIs for the Java platform. The specification was developed by Sun with a number of leading industry partners and was then refined based on broad general input from developers, customers, and end-users during a public review period.

The JavaBeans API makes it possible to write component software in the Java programming language. Components are self-contained, reusable software units that can be visually composed into composite components, applets, applications, and servlets using visual application builder tools. JavaBean components are known as Beans. Components expose their features (for example, public methods and events) to builder tools for visual manipulation. A Bean's features are exposed because feature names adhere to specific design patterns.

A "JavaBeans-enabled" builder tool can then examine the Bean's patterns, discern its features, and expose those features for visual manipulation. A builder tool maintains Beans in a palette or toolbox. You can select a Bean from the toolbox, drop it into a form, modify it's appearance and behavior, define its interaction with other Beans, and compose it and other Beans into an applet, application, or new Bean. All this can be done without writing a line of code

21. ----------------------------------Next Slide---

22. ----------------------------------Next Slide---

We have tried briefly to point out the main features for the other technology to understand why people have pushed so hard for the development of the Grid Technology we have to look at the existing technologies and try to figure out why not just using what is out there instead of creating a new concept.

In this Slide, I have summarized the most known technologies, which can be considered for solving the potential issue addressed by the Grid Technology.

Very briefly let’s start with the Internet technology; this technology has the possibilities for information exchange and communication but the coordination of the resources

B2B allow the sharing but only via centralized servers, this is not the type of sharing being targeted in by the Grid technology, remember that we said that there is no central control

Enterprise computing is allowed also some kind of sharing and information exchange but within a very single enterprise. While the Grid technology is targeting across domain application and sharing.

Storage Service provider and Application Service provider allow organizations to outsource storage and computing requirements to other parties, but only in constrained ways: for example, SSP resources are typically linked to a customer via a virtual private network (VPN).

Emerging “Distributed computing” companies seek to harness idle computers on an international scale but, to date, support only highly centralized access to those resources. In summary, current technology either does not accommodate the range of resource types or does not provide the flexibility and control on sharing relationships needed to establish VOs.

23. ----------------------------------Next Slide---

Comparing to the technologies discussed in the previous Slide Grid is still not mature. It’s architecture in still being discussed. The last two years have shown a real change in the Grid Technology paradigm. The new OGSA has moved the grid technology with Web service technology

24. ----------------------------------Next Slide---

I’ve tried to list here the type of users of the Grid technology. At the very low level we have the developers of the Grid. This group of researchers are focusing on the core grid service. They are building the basic services that can be composed later on by other types of user create more complex and high level grid-service.

The second category of people, dealing with the Grid technology, is the one who is developing generic tools to be used when developing the grid-based application. They usually use the basic services by the grid developer to build the generic tools that are essential for the application developer.

The third category is the developer of the grid-based application. The programs developed by this category of grid-user are application specific or generic within the boundaries of the application domain.

The last level of grid-users are the application end-users. The level of knowledge of this category of users on the grid-technology is very limited indeed. You can compare them to common of the Internet users and there knowledge on the Internet technology.

Actually, the knowledge on the Grid technology is diminishing the more you go through this list of categories of users.

25. ----------------------------------Next Slide---

In this Slide I have summarized the advantages of the Grid-Technology. Let’s first look the advantages brought to the tool developers. The big advantage is the fact that they have support for dynamic resource management: dynamic allocation, co-allocation. Another advantage is the support for heterogeneous computation and communication. The third advantage is some support for the information management and collaboration. Finally, the security aspect which covers all the Grid transactions.

For the end-user, the most important feature is the single sign on, users’ on the Grid don’t have type in their password every time they want to access any resource throughout the Grid. The other advantage is the uniform interface to local and distributed resources. The last point I want to mention here is the fact that there is a full support for staging the executables throughout the Grid

26. ----------------------------------Next Slide---

27. ----------------------------------Next Slide---

Let’s look at the Grid architecture as it was defined some years ago. The First Grid specification defined the Grid-architecture as a layered architecture. In this Slide we are going to compare each of the Grid-layer architecture to the Internet protocol architecture.

The bottom layer called “Fabric layer” is comparable to the link layer in the Internet Protocol Architecture. The Fabric layer is concerned with all the access and control to the resource. In the Fabric layer you can find all the programs that control the shared resources.

The second layer is the connectivity layer, is comparable to the transport layer for in the Internet protocol stack. This layer converts all the communication protocol needed to allow distributed system cross the world to communicate and I will add in a secure way. This layer has also the task to build the security needed for every Grid transaction.

The third layer is called the resource layer. It defines the sharing policies of the resources. In other terms at the level it is decided what resource is shared? Who is going to access what? What are the sharing conditions etc?

 The fourth and the last layer is called the collective layer. At this level the shared resource are coordinated, it assures the co-allocation of the resource, and apply the sharing policy defined in the resource layer.

On top of this architecture come the grid-based application, the application can have access to service belonging to the top three layers through a predefined APIs. In the internet protocol stack application plus the three top layers are called application layer.

28. ----------------------------------Next Slide---

The Grid Fabric layer provides the resources to which shared access is mediated by Grid protocols: for example, computational resources, storage systems, catalogs, network resources, and sensors. A “resource” may be a logical entity, such as a distributed file system, computer cluster, or distributed computer pool; in such cases, a resource implementation may involve internal protocols (e.g., the NFS storage access protocol or a cluster resource management system’s process management protocol), but these are not the concern of Grid architecture.

Fabric components implement the local, resource-specific operations that occur on specific resources (whether physical or logical) as a result of sharing operations at higher levels. There is thus a tight and subtle interdependence between the functions implemented at the Fabric level, on the one hand, and the sharing operations supported, on the other. Richer Fabric functionality enables more sophisticated sharing operations; at the same time, if we place few demands on

Fabric elements, then deployment of Grid infrastructure is simplified. For example, resource level support for advance reservations makes it possible for higher-level services to aggregate

(co-schedule) resources in interesting ways that would otherwise be impossible to achieve.
29. ----------------------------------Next Slide--

The Connectivity layer defines core communication and authentication protocols required for Grid-specific network transactions. Communication protocols enable the exchange of data between Fabric layer resources. Authentication protocols build on communication services to provide cryptographically secure mechanisms for verifying the identity of users and resources.

Communication requirements include transport, routing, and naming. While alternatives certainly exist.

With respect to security aspects of the Connectivity layer, we observe that the complexity of the security problem makes it important that any solutions be based on existing standards whenever possible. As with communication, many of the security standards developed within the context of the Internet protocol suite are applicable.
Authentication solutions for VO environments should have the following characteristics:

Single sign on. Users must be able to “log on” (authenticate) just once and then have access to multiple Grid resources defined in the Fabric layer, without further user intervention.

Delegation. A user must be able to endow a program with the ability to run on that user’s behalf, so that the program is able to access the resources on which the user is authorized. The program should (optionally) also be able to conditionally delegate a subset of its rights to another program (sometimes referred to as restricted delegation).

Integration with various local security solutions: Each site or resource provider may employ any of a variety of local security solutions, including Kerberos and Unix security.

Grid security solutions must be able to interoperate with these various local solutions.

They cannot, realistically, require wholesale replacement of local security solutions but rather must allow mapping into the local environment.

User-based trust relationships: In order for a user to use resources from multiple providers together, the security system must not require each of the resource providers to cooperate or interact with each other in configuring the security environment. For example, if a user has the right to use sites A and B, the user should be able to use s sites A and B together without requiring that A’s and B’s security administrators interact.
30. ----------------------------------Next Slide---

The Resource layer builds on Connectivity layer communication and authentication protocols to define protocols (and APIs and SDKs) for the secure negotiation, initiation, monitoring, control, accounting, and payment of sharing operations on individual resources. Resource layer implementations of these protocols call Fabric layer functions to access and control local resources. Resource layer protocols are concerned entirely with individual resources and hence ignore issues of global state and atomic actions across distributed collections; such issues are the concern of the Collective layer discussed next.

Two primary classes of Resource layer protocols can be distinguished:

Information protocols are used to obtain information about the structure and state of a resource, for example, its configuration, current load, and usage policy (e.g., cost).

Management protocols are used to negotiate access to a shared resource, specifying, for example, resource requirements (including advanced reservation and quality of service) and the operation(s) to be performed, such as process creation, or data access. Since management protocols are responsible for instantiating sharing relationships, they must serve as a “policy application point,” ensuring that the requested protocol operations are consistent with the policy under which the resource is to be shared. Issues that must be considered include accounting and payment. A protocol may also support monitoring the status of an operation and controlling (for example, terminating) the operation.

While many such protocols can be imagined, the Resource (and Connectivity) protocol layers form the neck of our hourglass model, and as such should be limited to a small and focused set.

These protocols must be chosen so as to capture the fundamental mechanisms of sharing across many different resource types (for example, different local resource management systems), while not overly constraining the types or performance of higher-level protocols that may be developed.

The list of desirable Fabric functionality provided in Section 4.1 summarizes the major features required in Resource layer protocols. To this list we add the need for “exactly once” semantics for many operations, with reliable error reporting indicating when operations fail.
31. ----------------------------------Next Slide---

While the Resource layer is focused on interactions with a single resource, the next layer in the architecture contains protocols and services (and APIs and SDKs) that are not associated with any one specific resource but rather are global in nature and capture interactions across collections of resources. For this reason, we refer to the next layer of the architecture as the Collective layer.

Because Collective components build on the narrow Resource and Connectivity layer “neck” in the protocol hourglass, they can implement a wide variety of sharing behaviors without placing new requirements on the resources being shared. For example:

Directory services allow VO participants to discover the existence and/or properties of

VO resources. A directory service may allow its users to query for resources by name and/or by attributes such as type, availability, or load. Resource-level GRRP and

GRIP protocols are used to construct directories.

Co-allocation, scheduling, and brokering services allow VO participants to request the allocation of one or more resources for a specific purpose and the scheduling of tasks on the appropriate resources. Examples include AppLeS, Condor-G, Nimrod-G, and the DRM broker.

Monitoring and diagnostics services support the monitoring of VO resources for failure, adversarial attack (“intrusion detection”), overload, and so forth.

Data replication services support the management of VO storage (and perhaps also network and computing) resources to maximize data access performance with respect to metrics such as response time, reliability, and cost .

Grid-enabled programming systems enable familiar programming models to be used in Grid environments, using various Grid services to address resource discovery, security, resource allocation, and other concerns. Examples include Grid-enabled implementations of the Message Passing Interface and manager-worker frameworks .

Workload management systems and collaboration frameworks—also known as problem solving environments (“PSEs”)—provide for the description, use, and management of multi-step, asynchronous, multi-component workflows

Software discovery services discover and select the best software implementation and execution platform based on the parameters of the problem being solved. Examples include NetSolve and Ninf .

Community authorization servers enforce community policies governing resource access, generating capabilities that community members can use to access community resources.

These servers provide a global policy enforcement service by building on resource information, and resource management protocols (in the Resource layer) and security protocols in the Connectivity layer. Akenti addresses some of these issues.

Community accounting and payment services gather resource usage information for the purpose of accounting, payment, and/or limiting of resource usage by community members.

Collaboratory services support the coordinated exchange of information within potentially large user communities, whether synchronously or asynchronously. Examples are CAVERNsoft, Access Grid, and commodity groupware system
32. ----------------------------------Next Slide---

The final layer in our Grid architecture comprises the user applications that operate within a VO environment. This figure illustrates an application programmer’s view of Grid architecture.

Applications are constructed in terms of, and by calling upon, services defined at any layer. At each layer, we have well-defined protocols that provide access to some useful service: resource management, data access, resource discovery, and so forth. At each layer, APIs may also be defined whose implementation (ideally provided by third-party SDKs) exchange protocol messages with the appropriate service(s) to perform desired actions.

 Figure: APIs are implemented by software development kits (SDKs), which in turn use Grid protocols to interact with network services that provide capabilities to the end user. Higher level SDKs can provide functionality that is not directly mapped to a specific protocol, but may combine protocol operations with calls to additional APIs as well as implement local functionality. Solid lines represent a direct call; dash lines protocol interactions.

We emphasize that what we label “applications” and show in a single layer in Figure 4 may in practice call upon sophisticated frameworks and libraries (e.g., the Common Component

Architecture, SciRun , CORBA, Cactus, workflow systems) and feature much internal structure that would, if captured in our figure, expand it out to many times its current size. These frameworks may themselves define protocols, services, and/or APIs. (E.g., the Simple Workflow Access Protocol.) However, these issues are beyond the scope of this article, which addresses only the most fundamental protocols and services required in a Grid.
33. ----------------------------------Next Slide---

34. ----------------------------------Next Slide---

Nowadays, Grid-Technology is being aligned with Web services technologies, to capitalize on desirable Web services properties, such as service description and discovery; automatic generation of client and server code from service descriptions; binding of service descriptions to interoperable network protocols; compatibility with emerging higher-level open standards, services and tools; and broad commercial support.

This alignment—and augmentation—of Grid and Web services technologies an Open Grid Services Architecture (OGSA), with the term architecture denoting here a well-defined set of basic interfaces from which can be constructed interesting systems, and open being used to communicate extensibility, vendor neutrality, and commitment to a community standardization process.

This architecture uses the Web Services Description Language (WSDL) to achieve self-describing, discoverable services and interoperable protocols, with extensions to support multiple coordinated interfaces and change management.

OGSA leverages experience gained with the Globus Toolkit to define conventions and WSDL interfaces for a Grid service, a (potentially transient) stateful service instance supporting reliable and secure invocation (when required), lifetime management, notification, policy management, credential management, and virtualization. OGSA also defines interfaces for the discovery of Grid service instances and for the creation of transient Grid service instances. The result is a standards-based distributed service system (we avoid the term distributed object system due to its overloaded meaning) that supports the creation of the sophisticated distributed services required in modern enterprise and inter-organizational computing environments.

35. ----------------------------------Next Slide---

The Open Grid Services Architecture addresses a number of challenges often related to the integration services across distributed, heterogeneous, dynamic “virtual organizations” formed from the disparate resources within a single enterprise and/or from external resource sharing and service provider relationships.
Building on concepts and technologies from the Grid and Web services communities, this architecture defines a uniform exposed service semantics (the Grid service); defines standard mechanisms for creating, naming, and discovering transient Grid service instances; provides location transparency and multiple protocol bindings for service instances; and supports integration with underlying native platform facilities.

36. ----------------------------------Next Slide---

The Open Grid Services Architecture also defines, in terms of Web Services Description Language (WSDL) interfaces and associated conventions, mechanisms required for creating and composing sophisticated distributed systems, including lifetime management, change management, and notification. Service bindings can support reliable invocation, authentication, authorization, and delegation, if required

37. ----------------------------------Next Slide---

The toolkit components that are most relevant to OGSA are the Grid Resource Allocation and Management (GRAM) protocol and its “gatekeeper” service, which provides for secure, reliable, service creation and management; the Meta Directory Service (MDS-2), which provides for information discovery through soft state registration, data modeling, and a local registry (“GRAM reporter”); and the Grid Security Infrastructure (GSI), which supports single sign on, delegation, and credential mapping. As illustrated in Figure 1, these components provide the essential elements of a service-oriented architecture, but with less generality than is achieved in OGSA.

38. ----------------------------------Next Slide---

A basic premise of OGSA is that everything is represented by a service: a network enabled entity that provides some capability through the exchange of messages. Computational resources, storage resources, networks, programs, databases, and so forth are all services. This adoption of a uniform service-oriented model means that all components of the environment are virtual.

More specifically, OGSA represents everything as a Grid service: a Web service that conforms to a set of conventions and supports standard interfaces for such purposes as lifetime management. This core set of consistent interfaces, from which all Grid services are implemented, facilitates the construction of higher-order services that can be treated in a uniform way across layers of abstraction

As everything in OGSA is a Grid service, there must be Grid services that manipulate the Grid service, handle, and reference abstractions that define the OGSA model. Defining a specific set of services would result in a specific rendering of the OGSA service model. We therefore take a more flexible approach and define a set of basic OGSA interfaces (i.e., WSDL portTypes) for manipulating service model abstractions. These interfaces can then be combined in different ways to produce a rich range of Grid services.

Creating Transient Services: Factories OGSA defines a class of Grid services that implement an interface that creates new Grid service instances. We call this the Factory interface and a service that implements this interface a factory. The Factory interface’s CreateService operation creates a requested Grid service and returns the GSH and initial GSR for the new service instance.

 Service Lifetime Management The introduction of transient service instances raises the issue of determining the service’s lifetime: that is, determining when a service can or should be terminated so that associated resources can be recovered. In normal operating conditions, a transient service instance is created to perform a specific task and either terminates on completion of this task or via an explicit request from the requestor or from another service designated by the requestor. In distributed systems, however, components may fail and messages may be lost. One result is that a service may never see an expected explicit termination request, thus causing it to consume resources indefinitely.

Managing Handles and References As discussed above, the result of a factory request is a GSH and a GSR. While the GSH is guaranteed to reference the created Grid service instance in perpetuity, the GSR is created with a finite lifetime and may change during the service’s lifetime. While this strategy has the advantage of increased flexibility from the perspective of the Grid service provider, it introduces the problem of obtaining a valid GSR once the GSR returned by the service creation operation expires. At its core, this is a bootstrapping problem: how does one establish communication with a Grid service given only its GSH? We describe here how these issues are addressed in the Grid service specification as of June 2002, but note that this part of the specification is likely to evolve in the future, at a minimum to support multiple handle representations and handle mapping services.
 Service Data and Service Discovery

Associated with each Grid service instance is a set of service data, a collection of XML elements encapsulated as service data elements. The packaging of each element includes a name that is unique to the Grid service instance, a type, and time-to-live information that a recipient can use for lifetime management.

 Notification The OGSA notification framework allows clients to register interest in being notified of particular messages (the NotificationSource interface) and supports asynchronous, one-way delivery of such notifications (NotificationSink). If a particular service wishes to support subscription of notification messages, it must support the NotificationSource interface to manage the subscriptions. A service that wishes to receive notification messages must implement the NotificationSink interface, which is used to deliver notification messages. To start notification from a particular service, one invokes the subscribe operation on the notification source interface, giving it the service GSH of the notification sink. A stream of notification messages then flow from the source to the sink, while the sink sends periodic keepalive messages to notify the source that it is still interested in receiving notifications. If reliable delivery is desired, this behavior can be implemented by defining an appropriate protocol binding for this service

 Change Management In order to support discovery and change management of Grid services, Grid service interfaces must be globally and uniquely named. In WSDL, an interface is defined by a portType and is globally and uniquely named by the portType’s qname (i.e., an XML namespace as defined by the targetNamespace attribute in the WSDL document’s definitions element, and a local name defined by the portType element’s name attribute). Any changes made to the definition of a Grid service, either by changing its interface or by making semantically significant implementation changes to the operations, must be reflected through new interface names (i.e., new portTypes and/or serviceTypes). This feature allows clients that require Grid Services with particular properties (either particular interfaces or implementation semantics) to discover compatible services.

 Other Interfaces We expect in the future to define an optional Manageability interface that supports a set of manageability operations. Such operations allow potentially large sets of Grid service instances to be monitored and managed from management consoles, automation tools, and the like. An optional Concurrency interface will provide concurrency control operations.
39. ------------------------- ----Next Slide--

OGSA defines the semantics of a Grid service instance: how it is created, how it is named, how its lifetime is determined, how to communicate with it, and so on. However, while OGSA is prescriptive on matters of basic behavior, it does not place requirements on what a service does or how it performs that service. In other words, OGSA does not address issues of implementation programming model, programming language, implementation tools, or execution environment.

In practice, Grid services are instantiated within a specific execution environment or hosting environment. A particular hosting environment defines not only implementation programming model, programming language, development tools, and debugging tools, but also how an implementation of a Grid service meets its obligations with respect to Grid service semantics
40. --------------------------- ----Next Slide---

