
ICES/KIS Project No. 1544516

Title: The Virtual-Lab Amsterdam Front-End

Authors: VLAM-G-AM Group

Date: 18th April 2001

Document Code: /UvA/VLAM-G-AM/TN03

Version: 1.1

Status: Proposal

Technology & Scientific Center

WATERGRAAFSMEER

The Virtual-Lab Amsterdam Front-End

(Design document)

A. Belloum, D. Groep, Z.W. Hendrikse, E.C. Kaletas

document version 18th April 2001

Note to the readers:

• This is a working document, it may be considerably changed in the future.
This document aims at pointing out problems related to the design of the
VLAM AM-Front-End. It is also a staring point for the design of the
AM-Front-End

• This report aims also at providing enough references needed for the im-
plementation of the VLAM AM-Front-End.

• While reading this short report the reader is invited to give his comments
and remarks. We especially welcome comments from VLAM developers on
how they see their developments integrated in the VLAM-AM Front-End,
or which services they need from the VLAM-AM Front-End.

• Notation: if ?? sentence/word ?? is found in the text it means that
this sentence/word might be not appropriate to describe the idea being
discussed.
The color used in the figures represent different components

– Yellow: Globus toolkit components;

– Red: packages developed for Globus;

– Gold: Database components;

– Cyan: shared elements, domains etc.;

– Green: Potential software for the implementation;

• Web pages where the reader can find more in formation on the VLAM
Abstract Machine developments:

– http://www.nikhef.nl/˜davidg/vlab/

– http://www.science.uva.nl/˜zegerh/work.html

– http://www.science.uva.nl/˜adam/currentResearch.html

• This document is the result of the VLAM-AM design meetings which
involve: E.C. Kaletas, Z.W. Hendrikse, Victor Klos, David groep and
Adam Belloum.

2

Abstract

The VLAM-G-AM Front-End is the main interface that allows exter-
nal users to access the VLAM-G hardware and software resources as well
as data elements available within the VLAM-G environment. It queries
other VLAM-G components on behalf of the end-users. This information
is presented using a friendly GUI. In this paper both design and imple-
mentation issues are considered.

1 Introduction

The VLAM-G-AM Front-End constitutes what is known as a science portal
since it provides an easy access to VLAM-G resources. Science portals generally
provide easy access to problem solving environments (PSE). A PSE is defined
by Gallopoulos et al. as “a computer system that provides all the computational
facilities necessary to solve a target class of problems.” [5].

As in Abrams et al. [1] (who extended the definition of a PSE to include more
sub-disciplines), several areas of computer science are considered here as well,
such as artificial intelligence (the VLAM-G Assistant [18]) and collaborative
computing (VLAM-G collaborative system [17]). Other areas include graphics
and visualization, HCI (human computer interface) and networking.

Since the VLAM-G-AM Front-End is the main interface that allows external
users to access the VLAM-G computing resources, it has to be easy to use
and provide access to all the available features of the Virtual-Laboratory. A
first division of the VLAM-G-AM Front-End has shown six main categories of
components, see also Figure 1:

1. VLAM-G resource discovery

2. VLAM-G resource monitoring

3. Experiment editing and running

4. Publishing results

5. Collaborating with other users

6. Application specific services

These components constitute the building blocks of the VLAM-G-AM Front-
End, and are used for all the science portals considered in VLAM. In addition to
these main components, specific services may be needed for each science portal
in particular. In the subsequent sections, every components is discussed in a
separate section, where both design an implementation issues are elaborated
upon.

Science Portals

Collaboration Component

Security Component

Monitoring Component

Editing/Running

VLab-AM-Front-End

 Resource Discovery

Figure 1: VLAM-G-AM Front-End components

3

The VLAM-G-AM Front-End has to allow a certain overlapping of different
areas of research, sharing parts of data and processing elements where applica-
ble, see Figure 2. A nice example of shared elements are tools for visualization,
which are commonly applied in many different scientific domains.

Biology
research

Other domains

Physics
domain

shared
resource

VLab-AM-Front-End "Science Portal"

Figure 2: The overlapping of scientific domains in the VLAM.

1.1 HCI—human computer interface

The VLAM-G-AM Front-End is an interface between end-users and components
of the PSE. An important issue when discussing the HCI is to define categories
of end-users who are going to use the system: specific knowledge on PSE’s of a
typical end-user may vary from a novice to an experienced computer scientist.
This holds true when considering a particular scientific domain as well: both
junior and senior researchers may want to carry out an experiment. A simple
classification of such a wide range of users has been proposed in [12], where
three categories have been pointed out:

• the novice scientist,

• the senior scientist and

• the application developer.

1.2 Implementation issues

The VLAM-G-AM Front-End will combine commodity components with existing
Grid technologies, thereby promoting reuse of existing code. Moreover, it should
be readily accessible from a desktop environment, providing effective operation
in large-scale, multi-institutional, wide area environment.

Commodity components focus on issues such as scalability, component com-
position and desktop presentation [12]. Grid technology focuses on high perfor-
mance and high throughput computing on a global scale. A challenge is to find
an appropriate match between similar concepts in these technologies. Research
groups have already developed some tools in order to meet this challenge, c.f.
the Java CoG Kit [10]. Using the Java CoG Kit, both project and computa-
tional resources are handled via a procedural API and call-backs respectively
(Job object and Java events).

Due to the wide range of VLAM-G end-users and the wide range of scientific
domains, it is essential that the VLAM-G-AM Front-End is designed in such a

4

way that it can easily be adapted to include either a new scientific domain or
a new group of users. A modular architecture is essential to establish such a
flexibility.

Figure 3 shows the main interaction of the VLAM-G-AM Front-End with
other modules developed within the VLAM-G project. The aim of this report
is to discuss in detail the design and the implementation issues of both of the
VLAM-G-AM Front-End and its interactions with other VLAM components.

AM Assistant

GLOBUS toolkit

Interfaces to other modules in VL (to be implemented)

VLab-AM Front End

End-user
End-user

End-user

VL domain
AM domain

AM-RTS

AM Collaborative
 system

Module Repository

AM-
Kernel

Databases
Application

Figure 3: Position of the Front-End within global architecture of the VLAM.
Its interaction with various sub-systems has been drawn: the Ab-
stract Machine Run Time System (VLAM-G-AM RTS), the Meta-
data computing directory (Globus MDS), the VLAM-G collaboration
system, and the VLAM-G data handling system (AM-Kernel DB).

1.3 Some definitions

In this report, we will be using terms which may be ambiguous when not prop-
erly defined. Therefore this section will be concluded with some of the most
frequently used terms.

Software resources: data processing modules specifically developed for the
VLAM, as well as the tools and software packages accessible via VLAM-
G environment. Each software resource will have a number of attributes
associated to it such as location of the executable, execution platform,
permissions and accounting information.

Hardware resources: include both computational and network resources. Users
should be able to browse these resources and be able to extract all the nec-
essary information on demand.

Availability: is meant to indicate whether a resource is present (a part of the
network or a node might be down) and whether a particular user has the
appropriate permissions to either monitor or use this resource.

2 VLAM-G resource discovery

5

The VLAM-G resource discovery component enables users to have seamless
access to all the available software and hardware resources of the Virtual-
Laboratory. The information needed to provide such a service will be offered by
a collection of meta-data stored either in a database (AM-Kernel Database) or
in the Globus Meta-Computing Directory (MDS). A connecting layer contains
interfaces to the subsystems managing the meta-data directories:

• Interface querying the database

• Interface transmitting user requests to the global computing resources

2.1 Design

Every accessible resource must be uniquely identifiable. Therefore it has to have
a number of attributes. The MDS service provided by the Globus toolkit allows
a hierarchical characterization of a grid resources using openLDAP ∗ The Grid
Object Specification [21].

The GOS defines a formal syntax for the definition of objects that form the
core of the grid Information Services (GIS) [20]. According to this model, a
computational resource may be represented by an object of the following form
(following is an explicit example for database designers):

GRID::ComputeResources IBJECT-CLASS ::= {
DUBCLASS OF Grid::PhysicalResource
RDN = hn (hostName)
CHILD OF {

Grid::organizationalUnit,
Grid::organization,

}
MUST CONTAIN {

canonicalSystemNames :: cis,
manufacturer :: cis, single,
model :: cis, single,
serialNumber :: ces, single,

}
MAY CONTAIN {

diskDrive :: dn, multiple,
}

}

2.2 Implementation issues

To implement the resource discovery component (see Figure 1), most of the
information needed is provided by directory services: MDS and the VLab AM-
Kernel Database. Consequently, two interfaces are needed as shown in Figure
4. The the Globus interface allows one to query for Grid related information
(coming from Globus), the VLAM-G Assistant interface allows one to query
the VLAM-G-AM kernel database. The latter stores information related to the
VLAM-G administration and applications.

Globus Interface

The Globus interface issues two types of calls

• white-page look-ups: query a particular resource, e.g. operating system,
processor, memory, etc.

∗LDAP RFC2251: http://www.ietf.org/rfc/rfc2251.txt

6

• yellow-page look-ups: query the grid for a resource matching a certain
specification, e.g. all available resources running Intel Linux 2.2.18, with
at least 256Mb RAM.

MDS: Grid Index Info Server

MDS: Grid Index Info Server

CoG Java Toolkit

LDAP browser

Web-based browsers Interface
Globus
Interface

(a)

(b)

MDS client API calls to Locate resources(a)

(b) MDS client API calls to resource information

AM-Front End
Resource discovery component

Vlab Assitant

Figure 4: VLAM-G-AM Front-End resource discovery component architecture

A Java implementation of these interfaces seems to be most appropriate
in this case. The CoG toolkit may be used to provide easy access to Globus
services: the “org.globus.mds” package simplifies access to the MDS services.
This package features:

• establishing a connection to the MDS Server,

• querying the MDS content,

• printing and

• disconnecting from the MDS server.

Following are some references to open source code tools developed within
the Globus project that could be used in conjunction to the development of this
service.

LDAP browser †: a visualization tool capable of displaying information stored
in a directory service using the LDAP protocol Features: browsing, search-
ing and editing of the Directory Information Tree (DIT), support for the
LDIF (LDAP Date Interchange Format).

Web-based browser: (MDS Browser and the MDS Object Browser) a web in-
terface that allows one to view and browse information from MDS servers.
Demonstration interfaces can be found at:

• http://www-unix.globus.org/cgi/mds/local host lookup 3.pl

• http://www-unix.globus.org/cgi/mds/select host.pl

NetSolve: offers the ability to look for computational resources on a network,
chooses the most suitable, and supports fault tolerance [2].

†LDAP Browser http://developer.novell.com/contest/spotlight.htm

7

Computing portals: Portals are the Web-based front ends for the for the
grid. Portals are developed using the Globus Commodity Grid toolkit
(COG) [10, 11, 12, 13], myproxy authentication model (recently added to
the GIS), and the Grid Portal Kit (GridPort) [15].

GridPort is designed to aid development of science portals on computa-
tional grids. Examples are user portals, applications interfaces and educa-
tion portals. GridPort leverages standard, portable technologies to provide
information services that other portals may access and incorporate.

GridPort is based on advanced web technology, including security (PKI)
and meta-computing. Web pages and data are built from server-side
Perl/face (scripts which render the information from the database) and
simple HTML/JavaScript on the client side. This guarantees easy access
from any browser.

VLAM-G Assistant Interface

The VLAM-G project extends grid discovery features provided by the Globus
Toolkit. It allows retrieval of information related to previous experiments. It
offers VLab-specific data, see (Figure 4. Such a feature may be built using
the Experiment Environment data model (EE data model) proposed in [6].
In the EE data model, elements from which the experiment is built up may
either be processes or data elements and can be randomly ordered allowing for
different data flows. The retrieval of information related to data elements of
previous experiments is performed by the VLAM assistant, which forwards this
information to the VLAM-G-AM Front-End, using either a user profile or a user
request (Figure 5).

VLab Assitant Core

Kernel - DB

Administrive

Meta-data on the Data

AM-Front End
Resourcae discovery component

VLab Assitant
Interface

Globus
Interface

Figure 5: VLAM-G-AM Front-End Data discovery architecture

The above mentioned EE model enables users to keep track of all information
they judge to be important for their experiments and contains the core data
needed for VLAM-specific resource discovery. In addition, a (small) extension
is needed to maintain information related to VLAM-G-AM administration, such
as the topology of experiments, user sessions, module descriptions etc. [9]. This
will henceforth be referred to as the EE-extended model.

In the EE-extended data model, experiments are characterized by a number
of features, such as the topology of an experiment and the modules composing
a particular experiment.

8

A module may either be an elementary (i.e. doing simple processing) or
a composite modules, also known as super-modules. The latter may recur-
sively be built up from elementary and composite modules. Both atomic and
super-modules are presented to the users as black boxes with a number of I/O
ports. The VLAM-G-AM interperter decomposes each super-module into its
constituent components. The EE-extended data model allows for such an ap-
proach by defining an appropriate hierarchy between data elements (topology,
super-modules, modules, ports, and connections) [7].

3 VLAM-G resource monitoring

3.1 Design

VLAM-G users should able to monitor their experiments. There are two ways
of monitoring parameters: the parameters may be monitored using the VLAM-
G-AM Front-End (using application probes), or using the Globus monitoring
tools. The monitoring process is carried out via the VLAM-G AM or even
directly via the Globus monitoring toolkits. This is shown in Figure 6.

3.2 Implementation

The Globus HBM (HeartBeat Monitoring) service may be easily accessed Us-
ing the package org.globus.hbm from the CoG toolkit. However, monitoring of
application related parameters is done via the VLAM-G AM, as is indicated
in [16].

Monitored
Process

Monitored
Process

Monitored
Process

CoG Java ToolkitGlobus
Interface

VLab Monitoring component

HBM Monitor

Register/Unregister

HBM Data Collector

Interface
Abstract Machine

Abstract Machine RTS

GECCO

GLoperf

NWS

Figure 6: VLAM-G-AM Front-End monitoring architecture.

Following are some references to the grid monitoring toolkits:

NetSolve : described in the previous section 2.

Network Weather Service (NWS): provides accurate forecasting of the dy-
namic change in performance of distributed computing resources [22].

Graph Enabled Console COmponent (GECOO): a graphical tool for spec-
ifying and monitoring execution of sets of tasks (with mutual dependen-
cies).

9

Globus Hart Beat Monitoring (HBM): provides a simple, highly reliable
mechanism for monitoring the state of processes. The HBM is designed
to detect and report failure of processes which have registered themselves
to the HBM. Originally designed for monitoring Globus system processes
exclusively, the HBM design has been extended to allow simultaneous
monitoring of both Globus system and application processes.

Globus performance (Gloperf): GloPerf performs periodic network perfor-
mance tests between pairs of IP addresses using a “librarized” version of
the netperf utility. Using a netperf library permits a single process to act
as both a netperf client and server ‡.

4 Experiment editing and running

Editing of experiments is one of the most important topics. Editing will be
performed using an appropriate science portal, but basically boils down to a
drag-and-drop GUI (Figure 7). Processing elements, selected from a predefined
list appear on an editing sheet as a box with a number of I/O ports. Connections
are established by drawing lines between input and output ports. A user may
also include his own modules. The experiment editing interface automatically
generates a module skeleton appropriate to his needs. Thereafter a user can add
his own code to this skeleton.

Figure 7: VLAM-G-AM Front-End editing “ergonomics”.

The editing component of the VLAM-G-AM Front-End may be considered
as a simple visual programming environment. Therefore it must fulfill some ba-
sic requirements with respect to GUI design. This is not to be underestimated,
‡http://www.globus.org/details/gloperf.html

10

see [4]. For example, a common encountered pitfall (which used to give GUI
designers serious problems) is information overload. In many designs this prob-
lem has been solved by spreading questionnaires to users, and by interviewing
the programmers.

A number of interesting conclusions been drawn from the analysis performed
at York university, when designing the CLock Visual programming Language [4].
At an early stage of ClockWorks, application development consisted of two
sharply separated steps: architecture design and implementation. The design
suffered from a lack of information on architecture. At a later stage, users
started following a more progressive approach. It became clear that the design of
a visual programming environment is a continuing process of interaction between
the programmers and environment developers. The following steps turned out
to play an important role

• performing task analysis by Visual programmers to determine the require-
ments in the visual programming environment.

• evaluating the visual programming environment using heuristics, and task-
oriented specifications.

• collecting feedback from users using complementary methods. Each method
has its pro’s and con’s. For example, when questionnaires and surveys
were of limited use, the Gomoll’s ten steps [4, 14] has proven to be very
successful.

• involving both expert and naive visual programmers in the analysis; an
expert may not want to use such an environment at all!

In most cases, Visual programming environments will be applied to real-
world problems. It is thus of extreme importance that issues such as scalability
have to be considered during early stages of development already:

• Allowing designers to perform a step wise approach, in other words support
for a continuing refinement process in the design of visual applications.

• Providing support for information hiding .

4.1 Design

While editing experiments, VLAM-G users have access to the services described
in Section 2. Access to resource related information should be strait-forward.
Let us give some requirements needed for editing and running experiments:

• The characteristics (attributes) of a modules should be accessible by a
mouse click. Example attributes: data type of the I/O ports, the module
parameters (if defined by the module writer), execution platform and usage
history.

• When an end-user wants to use his own code to the experiment, he must be
able to generate a skeleton by simply filling in a form (in a pop-up window)
when the appropriate menu item is activated. This newly created module
should be made accessible just like the resident ones: the VLAM-G-AM
Front-End has to generate an additional box representing this module.

• The VLAM-G-AM Front-End has to perform a minimum check during the
editing process, for example type checking (connection between inputs and
an outputs of different types should not be allowed).

• The VLAM-G-AM Front-End should support collaborative editing of an
experiment, i.e. geographically distributed users must be able to edit an
experiment. The collaboration means are addressed in a separate technical
report [17]

11

4.2 Implementation

The development is totally dependent on the interface to the VLAM-G AM,
The VLAM-G collaborative system [17] and the VLAM-G resource discovery
module Figure 10.

DUROC

GRAM GRAMGRAM

Fork LSF LoadLeveler

P4P3P2P1

Interface
Abstract Machine

VLab Editing/Running component
Collaborative system

VLab

Resource discovery
VLab-GUI

Abstract Machine RTS

RSL

Translates to a graph representation

Figure 8: VLAM-G-AM Front-End editing component architecture

Experiments are usually part of a larger study that aims to answer a par-
ticular question. For example, a PIXE study of a surface sample (including
acquisition of data, analysis and visualization), is part of an experimental pro-
cess flow to determine the decomposition into its elements. In this respect, the
biogenetic experiments are similar, although their proper experimental steps
are generally smaller and less automated. These processes (topics) have previ-
ously been identified as application domains, and database-supported process
flow-schemes have been designed (MACS [3], Expressive [8]).

These case studies provide an excellent starting point for the ‘AM-Assistant’:
they supply the scientist with a flow-template which he can use during his
experiment (Figure 9 shows the process flow defined in the MACS data-model).
These flow-templates provide the Virtual Lab information repositories with the
relevant context for the data that are going to be generated. In addition, these
templates make sure that all the necessary information is provided by the users
running an experiment. By adding new process-flow schemes, new application
domains can be added to the Virtual Lab.

12

Figure 9: An example experiment, the MACS process-flow.

The process-flow chars should be envisioned on a higher level than the DFG
(data-flow graphs) executed the AM Run-Time System (RTS). Given their vi-
sual nature, they provide a good starting point for a specific scientific exper-
iment: depending on its context (physicist interested in surface analysis, ge-
nomics expert, physician), an appropriate process flow template is presented.
The user is required to provide the relevant context to his experiment — in
the case of MACS: what object, where was the sample taken —, then possibly
perform a detailed experiment — Material Analysis in MACS —. Data gener-
ated by this experiment will be stored on bulk media, where the meta-data and
context will be an integral part of the process flow context.

Once all the meta-data has been entered, the experiment can be executed.
Because the meta-data play such an important role during execution, it is also
known as active meta-data: they do not only describe their associated data,
they also tell how certain operations are to be performed on it.

As a practical side-note, one may think of a GUI based on this process
scheme, Figure 9. A new experiment starts with a fresh template, where the
user — by clicking — selects the steps (but cannot skip any step before starting
his experiment). Process stages that only provide context will usually result in
a fill-in form. Steps associated with experiments will pop-up a AM experiment
designer (describing ‘data-flow’ AM-RTS experiments) as well as filling the boxes
associated with the resulting data file (to describe information content and meta-
data). In this way, the ‘Assistant’ can also supply context to the AM-RTS and
the modules running there (e.g. modules writing data to a database).

5 Publishing results

Users may publish information obtained on a particular experiment using the
VLAM-G-AM Front-End. They should also be able to submit new processing
elements (modules) to the VLAM-G standard module library.

13

VL Assistant
Export the experiment

AM
Kernel

Application

RSL

VL Front-End editor
graph description

VL-AM RTS

Scheduler

context

Figure 10: VLAM-G-AM Front-End editor interactions

5.1 Design

The publishing of results has to be done via a form generated by the VLAM-
G-AM Front-End to guarantee uniformity. Depending on the domain of the
experiment, a user will be provided with standard form to fill in. Not only
results can be published this way, but also a topology of an experiment, as well as
the components being used. This kind of publishing is performed automatically
without interaction of the VLAM-G system manager(s).

On the other hand, submission of new code for the shared library, needs
the authorization of VLAM-G system manager(s). VLAM-G end-users need to
have access to a specific form for these kind of submissions. Its format has to be
determined yet, in cooperation with the future VLAM-G system manager(s).

5.2 Implementation

The implementation of the publisher component is more or less strait forward.
It has to interact with the Database and the Globus MDS. To publish an experi-
ment topology, the publisher component has to translate the graph representing
the experiment topology into an XML description.

Interface

VLab publishing component

VLab-GUI

AssistantVLab

Editing/running
Globus
Interface

MDS

XML??

CoG toolkitMatisse

Email to VLab administrator

Kernel - DB

Figure 11: VLAM-G-AM Front-End publishing component

14

6 Conclusions

This report focuses on the design of the VLAM-G-AM Front-End. Six compo-
nents have been indicated. For each of these components, we have presented
basic requirements and proposed possible ways of implementing them.

The VLAM-G-AM Front-End combines the information stored in the Globus
MDS with the information stored in the VLAM-G database AM-Kernel. This
guarantees a comprehensive access to all the available resources in the VLAM-G
environment.

The design of the VLAM-G-AM Front-End presented in this report, pro-
motes the reuse of Globus components. Most of the VLAM-G-AM Front-End
components are based on existing Globus tools, which makes this design open
to all the developments currently being investigated within the Globus project.
So far we have not studied performance of any of these components. It seems
useful to wait for a first prototype, before addressing any probable performance
bottlenecks.

This document also addressed topics related to the definition of the graphical
environment needed to set up a typical VLAM-G experiment. An extensive
meta-data driven system (active meta-data) based on application process-flows
has been proposed.

Data manipulation and analysis have been addressed in a separate docu-
ment [19].

References

[1] M. Abrams, D. Allison, D. Kafura, C. Ribbens, M. B. Rosson, C. Shaffer,
and L. Watson. Pse research at virginia tech: An overview. white paper
http://vtopus.cs.vt.edu/˜pse/intro.html, Department of Computer Science Vir-
ginia Tech.

[2] H. Casanova and J. Dongarra. Netsolve: A network-enable sever for solving
comutational science problems. Proposal Draft, Data Access Grid Forum working
group, 2000.

[3] A. Frenkel, G. Eijkel, H. Afsarmanash, and L. Hertzberger. Information manage-
ment for physics applications in the vl environment. Technical Report CS-2001-
03, University of Amsterdam, 2000.

[4] T. N. Graham, C. A. Morton, and T. Urnes. Clockworks: Visual programming
of component-based software architectures. Journal of Visual Languages and
Computing, pages 175–196, July 1996.

[5] E. Houstis, E. Gallapoulos, and J. Rice. Problem-solving environment for compu-
tational science. IEEE Computational Science & Engineering, 3(4):18–22, July-
September 1997.

[6] E. Kaletas and H. Afsarmanesh. Virtual laboratory experimentation environment
data model. Technical Report CS-2001-01, University of Amsterdam, 2001.

[7] E. Kaletas, A. Belloum, D. Group, and Z. Hendrikse. Vl-am kernel db: Database
model. Technical Report UvA/VL-AM/TN07, University of Amsterdam, 2000.

[8] E. Kaletas and et al. Expressive - a database for gene expression experiments.
Technical Report CS-2001-02, University of Amsterdam, 2000.

[9] V. Klos. Database model design for the abstract machine. Technical Report
-Draft Version-, Nikhef, 2000.

[10] G. V. Laszewski, et, and al. Cog high-level components. White paper, Argonne
National Laboratory, 2000.

15

[11] G. V. Laszewski, et, and al. A java commodity grid kit. White paper to be
published in Experience and Practice 2001, Argonne National Laboratory, 2001.

[12] G. V. Laszewski, I. Foster, J. Gawor, P. Lane, and M. Russell. Designing grid-
based problem solving environments and portals. white paper, Argonne National
Laboratory, 2000.

[13] G. V. Laszewski, I. Foster, J. Gawor, W. Smith, and S. Tuecke. Cog kits: A
bridge between commodity distributed-computing and high-performance grids.
In Proceedings of the ACM Java Grande 2000, San Francisco, June 2000.

[14] J. Nielsen. Usability Engineering. AP Processional, Cambridge, MA, 1993.

[15] M. Thomas, S. Mock, and J. Boisseau. Development of web toolkits for compu-
tational science portals: The npaci hotpage. In Proceedings of High Performance
Distributed Computing Conference 2000, Pittsburgh, Pennsylvania, August 1-4
2000.

[16] A. van Halderen. User guide for vlab developers. Technical Report UvA/VLab-
AM/TN05, University of Amsterdam, 2000.

[17] VLab-AM-Group. Vlab am collaborative system. Technical Report UvA/VLab-
AM/TN03, University of Amsterdam, 2000.

[18] VLab-AM-Group. The vlab assistant. Technical Report UvA/VLab-AM/TN0??,
University of Amsterdam, 2000.

[19] VLab-AM-Group. Vlab data handling system. Technical Report UvA/VLab-
AM/TN04, University of Amsterdam, 2000.

[20] G. von Laszewski. Defining schemas for the grid information services. Proposal
for the Grid forum Draft, Grid Forum, 2000.

[21] G. von Laszewski and P. Lane. Mdsml: An xml binding to the grid object
specificaction. Proposal Draft, Grid Forum, 2000.

[22] R. Wolski, N. T. Sprin, and J. Hayes. The network weather service: A distributed
resources preformance forecasting services for the metacomputing. Technical Re-
port TR-CS98-599, UCSD, 1998.

16

