
RoboAKUT 2013 Rescue Simulation League Agent
Team Description

H. Levent Akın and Okan Aşık

Department of Computer Engineering
Boğaziçi University, 34342, Istanbul, Turkey

{akin}@boun.edu.tr
http://robot.cmpe.boun.edu.tr/rescue

Abstract. RoboAKUT is a multi-agent rescue team developed at the Artificial
Intelligence Lab of the Computer Engineering Department of Bogazici Univer-
sity. In this paper, we give a description of the software architecture and the algo-
rithms used by the RoboAKUT 2013 team. Our current rescue team is based on
the market paradigm together with regional task management. For the RoboCup
2013 competition, based on our experiences in RoboCup 2012 we made changes
to improve the effectiveness and robustness of the developed algorithms. Addi-
tionally, we are now in the process of implementing a Decentralized Partially Ob-
servable Markov Decision Process based approach. Our results with the RoboCup
2012 maps show that RoboAKUT 2013 team will be a serious contender in
RoboCup 2013.

1 Introduction

RoboCup Rescue Simulation agent competition consists of a disaster management sim-
ulation with multi-tasking heterogeneous agents (Fire brigades, Fire Station, Police
Forces, Police Office, Ambulance Teams and Ambulance Center). In addition to being
one of the best test beds for agent coordination, there are many other challenges such
as the development of agent communication protocols for limited communication and
noisy message arrivals, multi-agent path planning, scheduling, optimization, supervised
learning for civilian death time and fire behavior estimation and unsupervised learning
for agents to develop policies.

RoboAKUT is a multi-agent rescue team developed at the Artificial Intelligence
Laboratory of the Department of Computer Engineering of Bogazici University. The
team performs rescue operations on the simulation environment provided by the RoboCup
Rescue Simulation League. RoboAKUT has been participating in the RoboCup Rescue
Simulation Competitions since 2002. Our team has won the First Place in the agent
competition in RoboCup 2010 Singapore.

The rest of the paper is organized as follows. In Section 2 the team members and
their duties are introduced. The contributions made for RoboCup 2013 are given in
Section 3. In Section 4 the Market algorithm and its implementation for the fire fight-
ers, ambulances and police forces are described. The proposed Decentralized Partially
Observable Markov Decision Process (Dec-POMDP) based approach is described in
5. The current scores of RoboAKUT 2013 are given in Section 6. The conclusions are
given in Section 7.



2 Team Members and Their Contributions

– Okan Aşık (Developer)
– H. Levent Akın (Advisor)

3 RoboAKUT 2013

RoboAKUT team code was completely rewritten for the RoboCup 2010 competition
[1]. RoboAKUT 2013 is the optimized and improved version of the RoboCup 2012 [2]
code based on the competition experiences.

RoboAKUT 2013 currently uses a market driven approach in the task assignments
to the agents. In addition to the regional task assignment system, we use an auction sys-
tem for the task assignment to each agent. This effectively is a hybrid market paradigm
and regional task assignment system. We are now in the process of adapting a new
approach based on Decentralized Partially Observable Markov Decision Process (Dec-
POMDP) developed in [3, 4] and which was succesfully applied to robot soccer [5].

4 The Market-Driven Method used in RoboAKUT 2013

Market-driven methods (MDM) are based on the maximization of the overall gain of
a group of robots by cooperation, collaboration and/or competition among them. This
requires taking the total profit of that group into consideration while planning. Com-
munication between robots for trading jobs, power and information is essential. Either
distributed or centralized decision mechanisms may be employed based on the struc-
tures of teams [6].

4.1 Application of MDM

In our implementation we integrate MDM and behavior based (BB) methods as shown
in Fig. 1. An additional behavior that applies the market logic is integrated to the be-
havior based system. For every task this market implementation is specialized in order
to meet the specific needs. The details of using MDM is given in [2].

Fig. 1. The hybrid architecture



4.2 Generalized Market Algorithm and Auction Mechanism

The most important goal in a search and rescue mission is optimizing the process
through high level planning. In the RSL competitions, the optimization measure is the
score of a team at the end of the simulation. The whole system is a “heterogeneous
multi-agent system” as there are different agents specialized in different tasks and there
is more than one agent contributing to the same aim. Our goal is integrating market
driven methods in order to balance reactive characteristics of the system with delibera-
tive ones.

For this purpose, we first started with a general market based algorithm implemen-
tation. We determined the most common requirements for a market algorithm. Then
we designed a general system containing these required objects in abstract forms. Our
abstract system consists of four major components which form the basic requirements
of any market algorithm implementation. These are:

– Visualization component provides us with the opportunity of observing the ongo-
ing state of our simulation, i.e., the decisions made, the fires around the city, the
placement of agents, and the actions by agents are visualized using this tool. The
distinction between the states of objects is achieved through the use of colors and
tones of colors. We use this tool for debugging purposes.

– Auction component used for holding auctions, taking bids from the agents, and
coming up with results, taking all the data concerning that auction into considera-
tion according to a user-defined function. This general auction mechanism can be
modified for the specific needs of different auctioneers.

– Cost function component calculates the costs for alternative tasks given the per-
cepts and past knowledge,. The tool can be considered as a black box that gets
inputs and gives out a numeric cost as output. Like the auction tool, this is imple-
mented as a general one that can be modified according to specific requirements
concerning different bidders.

– Communication component is used for simulating and imitating communication
in the real system for debugging purposes.

Application of the Market Based Algorithm In the implemented market algorithm,
every agent without an assignment calculates the costs for its known fires, and sends the
best two of these costs to the center. The center, using its auction tools adds those bids to
the appropriate auctions and gathers results for the ongoing auctions. If according to the
results one agent is assigned to more than one building, an auction weighing the priority
of the building and the cost for agent in taking action against that building is held on
those results and the final decision is sent to the agent. If according to the results one
agent is not assigned to any building, it is added in the auctions held for three buildings
with the highest priority and no utilization. If there are results involving more than one
agent, they are interpreted using the method described above.

During the cycles of central decision making, an agent starts its action for the build-
ing with the least cost to it and according to the final decision by the center, it either
preempts its current action or not.This approach does not put much strain on the existing
communication structure.



As can be seen in the test results in [7], the market algorithm is a very important
factor in enhancing the scores by establishing communication hence cooperation and
collaboration between agents. It is this collaboration that improves the scores, as it
avoids “excessive clustering” around disaster events and provides a close-to-optimal
distribution of work, and resources around jobs in an intelligent manner, taking into
consideration important factors like collective capacities of a groups versus jobs.

Due to the nature of the search and rescue task there are many parameters that
need to be considered, however, the scores in the competitions show that this approach
improvess task achievement considerably.

5 The Proposed Approach for Solving Problems Modeled as
Decentralized Markov Decision Processes

The Decentralized Partially Observable Markov Decision Process (DEC-POMDP) [8]
model consists of 7-tuple (n,S,A,T,Ω ,Obs,R) where:

– n is the number of agents.
– S is a finite set of states.
– A is the set of joint actions which is the Cartesian product of Ai (i = 1,2...,n) i.e.

the set of actions available to agenti.
– T is the state transition function which determines the probabilities of the possible

next states given the current state S and the current joint action a.
– Ω is the set of joint observations which is the Cartesian product of Ωi (i = 1,2...,n)

i.e. the set of observations available to agenti. At any time step the agents receive a
joint observation o = (o1,o2, ...,on) from the environment.

– Obs is the observation function which specifies the probability of receiving the joint
observation o given the current state S and the current joint action a.

– R is the immediate reward function specifying the reward taken by the multiagent
team given the current state and the joint action.

5.1 Dec-POMDP Policies and Finite State Controllers

A Dec-POMDP policy is a mapping of the observation history to the actions. Policies
are usually represented as a policy tree. Since the tree representation is not sufficiently
compact, a Finite state controller (FSC) representation can also be used. A FSC is a
special finite state machine consisting of a set of states and transitions. These abstract
states called FSC nodes are different from the actual environment states. Every FSC
node corresponds to a single action which is the best action for that particular state.
Transitions are based on making a particular observation at a particular FSC node. An
example finite state controller with only two observations and three actions is given in
Figure 2. In a FSC, there is always an initial state. If we assume that S1 is the initial
state then first A1 is executed. If the agent gets an observation O2, it updates its current
FSC node to S2 and executes the action A2. Action execution and FSC node update
continues until the the end of the episode. This finite state controller represents the
policy of a single agent.



It is possible to model a Dec-POMDP policy using FSCs with different numbers of
nodes. Since every node corresponds to one action, the minimum number of nodes is
the number of actions. Since having greater number of nodes than the number of actions
does not improve the performance of the algorithm[4], we use the number of FSC nodes
as equal to the number of actions. This approach has been succesfully applied to robot
soccer in [5].

Fig. 2. An Example Finite State Controller

5.2 Genetic Algorithms

In a genetic algorithm, a candidate solution is encoded in a chromosome and the set of
all chromosomes is called a population. The fitness of a candidate solution determines
how good the candidate is. Through the application of evolutionary operators such as
selection, crossover, and mutation, a new population is created from the current pop-
ulation. When the typically fitness based convergence criteria are met, the algorithm
terminates and the best candidate becomes the solution of the algorithm [9].

Encoding In order to solve a Dec-POMDP using genetic algorithms, the candidate
policy must be encoded. We encode a FSC as a chromosome as follows: the first n
genes represent node-action mapping and their values are between 1 and the number of
actions (A). The next genes contain for each node, the observation-node mapping which
denotes the transition when an observation is made as seen in Figure 3. The value of
this range is between 1 and S i.e. the number of nodes. The whole chromosome of
the Dec-POMDP policy is constructed by concatenating the policies of each and every
agent.

Fitness Calculation Fitness calculation is an essential componenet of any genetic al-
gorithm. When the transition and reward functions of a Dec-POMDP problem is avail-
able, the fitness values for a given policy can be calculated. However, for problems with



Fig. 3. An Example FSC Encoding

unknown transition and reward functions, only approximate fitness calculation is pos-
sible. One method of calculating fitness approximately is by running a large number of
simulations with a given policy [4].

5.3 The GA-FSC Algorithm

The evolutionary strategy based approach proposed in [3] has been shown to be not
sufficiently scalable as the number of agents increase. In [4] a better approach that uses
FSCs is proposed. In our implementation we use this approach.

This algorithm has two major components :

– Encoding the candidate policy: A policy is represented as a FSC and is encoded
as an integer chromosome.

– Searching the policy space for the best policy with genetic algorithm: In [4],
two fitness calculation approaches are proposed: exact and approximate. For the
rescue simulation problem considered here, exact calculation is not possible since
the dynamics of the environment are not known exactly. The approximate calcula-
tion method, however, relies on running many simulations with a given policy and
taking the average reward of those simulations as the fitness of the policy.

The algorithm has three stages: pre-evolution, during evolution, and post-evolution.
After a random population is formed, the k best chromosomes are selected based on
their fitnesses. Those k chromosomes are copied to the best chromosomes list. At the
end of each generation, the best k chromosomes of the population are compared to the
chromosomes in the best chromosomes list. If it is better than one of the current best
chromosomes, its fitness is calculated more precisely by running additional simulations.
If it is still better, it is added to the current best chromosomes list. At the end of the
evolution which is determined by setting a maximum generation number, the best of
best chromosomes list is determined by running additional simulations. In this study,
we keep 10 chromosomes in the best chromosomes list.

5.4 Implementation of the GA-FSC Algorithm

The GA-FSC Algorithm will be used to determine the policies for the firefighter, police
and ambulance agents separately in an off-line manner. The obtained FSCs will be used
during the actual competition runs.



6 Current Scores of RoboAKUT 2013

Table 1. RoboCup 2012 Final Scenario Results

Maps

Berlin5 Kobe3 VC3
AUT S.O.S. 56.395 89.433 4.645

Ri-one 36.499 47.35 6.385
MRL Agent 14.16 93.882 5.529

ZJUBase 14.08 90.499 5.246

RoboAKUT 2013 18.171 16.651 1.858

Fig. 4. The final state of Berlin 5 scenario with RoboAKUT agent

We have tested RoboAKUT 2013 code on the scenarios used in the finals of the
RoboCup 2012 RSL competition. Table 1 demonstrates that the current state of Robo-
AKUT team is on par with the runners up of RoboCup 2012. The first four rows display
the scores of the finalists in the official RoboCup 2012 results. The last row shows
the scores of the RoboAKUT 2013 team. Figure 4 displays the map at the end of the
simulation as a result of a run in Berlin 5 scenario.



7 Conclusions

In this paper we presented an overview of the agent system model and the algorithms
of RoboAKUT 2013 team. They consists of market based agents which can utilize re-
sources effectively even under dynamic conditions for fire fighting, saving civilians and
clearing roads. The work on applying a DEC-POMDP based algorithm is in progress.

The test runs on the simulator show that code is more robust and the fires are suc-
cessfully extinguished and the majority of the civilians are saved with an overall signif-
icant performance increase over RoboAKUT 2012.

References

1. H. Levent Akın, Orçun Yılmaz, and Mehmet Murat Sevim. Roboakut 2010 rescue simulation
league agent team description. Technical report, Bogazici University, 2010.

2. H. Levent Akın and Mehmet Murat Sevim. Roboakut 2012 rescue simulation league agent
team description. Technical report, Bogazici University, 2012.

3. Barış Eker and H. Levent Akın. Using evolution strategies to solve DEC-POMDP prob-
lems. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 14(1):35–
47, 2010.

4. Barış Eker and H. Levent Akın. Solving decentralized pomdp problems using genetic algo-
rithms. Journal of Autonomous Agents and Multi-Agent Systems, 2012.

5. O. Aşık and H.L. Akın. Solving multi-agent decision problems modeled as dec-pomdp: A
robot soccer case study. In RoboCup 2012 Symposium, June 24, 2012, Mexico City, 2012,
2012.

6. H. Kose, K. Kaplan, C. Mericli, U. Tatlidede, and L. Akin. Market-driven multi-agent collab-
oration in robot soccer domain. In Cutting Edge Robotics, pages 407–416. pIV pro literatur
Verlag, 2005.

7. Burak Zeydan and H. Levent Akın. Market-driven multi-agent collaboration for extinguishing
fires in the robocup rescue simulation domain. In 2nd CSE Student Workshop (CSW’11), 2011.

8. Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The Complex-
ity of Decentralized Control of Markov Decision Processes. Math. Oper. Res., 27:819–840,
November 2002.

9. H. Levent Akın. Evolutionary Computation: A Natural Answer to Artificial Questions. In Pro-
ceedings of ANNAL: Hints from Life to Artificial Intelligence, pages 41–52, METU, Ankara,
1994.


