
Introducing movement and animations

to virtual victim in USARSim
Author: S. Katt (#6151248) Supervisor: A. Visser

June the 26st, 2012
University of Amsterdam
Faculty of Science
Institute of Informatics

1

FACULTY OF SCIENCE (FNWI)

POSTBUS 94216

1090 GE AMSTERDAM

SCIENCE PARK 904

Bachelor Thesis (18 EC)

Abstract

USARSim is a simulator used for rescuing tasks in the RoboCup Rescue based on the Unreal Engine.
In order to fulfil the rising expectations of this cup, not only the robots but the environment has to
keep up with the demands. Vital to the environment is a good representation of victims in need of
rescue. Up to now victims in USARSim have not been capable of performing movement, controlled
animations or sounds. This thesis provides a method for designing such behaviour for these victims
using Unrealscript and Unreal Kismet. As a result a scenario has been made in which two victims
escape a building, applying different behaviour patterns. Future research could be directed towards
more sophisticated behaviour, introducing Artificial Intelligence, heat emission of victims and a
deeper understanding of blending animations in the Unreal Engine.

2

Table of content

Table of content..3
Introduction...4

RoboCup...4
Simulating...6
Problem definition...6

Related Work..7
Human behaviour in post-disaster situations..7
Human detection...7

Software..7
UDK and USARSim...7
Unrealscript and Kismet..9

Method..11
Description scenario..11
Validation..12
Introduction functionalities...12

Results ..13
Conclusion & Discussion..13

Conclusion..13
Problems..13
Future research..14

References...15
Appendix ..16

A - Victim package...16
B - Programming with UDK...16

Animations..16
Calling custom animations..18
Sound..21

Acknowledgement

I would like to thank my supervisor, Arnoud Visser, for his advice and technical support
throughout the project.

3

Introduction

After a disaster involving human lives, such as the attack on the World Trade Centre in New York, it
is desirable to be able to immediately investigate the area in order to rescue survivors. The area is,
however, often too hostile for humans to enter in order to find and help survivors. As a result, lives are
lost during the period that the area is inaccessible for humans. Highly developed robots, however,
could access such environments.

Robots could possess properties such as high resistance to heat, a small body capable of moving in
tight spots, or other properties beneficial to rescuing. So far, robots are not used for rescue operations
yet, however, they are used for recognition missions on various locations, such as on planet Mars
(Matthies, Gat, Harrison, Wilcox, Volpe, & Litwin, 1995). Furthermore, the development of
technology is fast; according to Bill Gates (2007) it is comparable to the period when Microsoft was
founded and when he was at the cutting edge of computer technology, which was a dynamic period for
technology. It is plausible that robots can and will be used in the future for operations such as
exploration of post-disaster areas and localisation of survivors.

The RoboCup rescue project is a product in the field of computer-technology. The trigger for the
project was the Great Hanshin-Awaji earthquake, causing more than 6500 casualties and resulting into
various requirements for information systems (http://www.robocuprescue.org)
These are those requirements:

- Collection, accumulation, relay, selection, summarisation, and distribution of necessary
information.

- Prompt support for planning disaster mitigation, search and rescue.
- Reliability and robustness of the system during routine and emergency operations

The RoboCup rescue project aims to fulfil these needs, their goal is to
“Promote research and development in this socially significant domain at various levels
involving multi-agent team work coordination, physical robotic agents for search and rescue,
information infrastructures, personal digital assistants, a standard simulator and decision
support systems, evaluation benchmarks for rescue strategies and robotic systems that are all
integrated into a comprehensive systems in future.”
(http://www.robocuprescue.org)

RoboCup
In the Robocup, teams from all over the world compete with each other for the best robot. The
Roborescue is divided into two strands: a project for real robots and a simulation project. In the Project
for real robots teams build and program their own robot which is then tested on its capabilities of
navigation through and exploration of an (unknown) area. The goal is to navigate through the
environment, create a correct map of its surroundings and locate any possible survivors. The
environment is a reconstruction of an imaginative post-disaster situation (figure 1). The purpose of this
project is to investigate new technologies for navigating and recognition. Any successful method may
be useful in the future; these robots have already proven to be capable of mapping and detecting
victims in post-disaster environments and could be used for real rescue operations.

4

http://www.robocuprescue.org/
http://www.robocuprescue.org/

Figure 1: RoboCup_Rescue_2008_German_open_test_arena. Source:
http://en.wikipedia.org/wiki/File:RoboCup_Rescue_2008_German_open_test_arena.JPG

The simulation project is quite similar to the real robots project: in both projects different teams make
an attempt at creating the best robot, suitable for navigating through environments and localizing
victims. The difference is that the simulation-project does not involve the real world, because the
robots and their environments are simulated on a computer, much like a video-game. The teams
compete with each other between the best simulated robots in a simulated environment (made by the
creators of the RoboCup rescue, figure 2).

Figure 2. Simulated post-disaster environment
5

http://en.wikipedia.org/wiki/File:RoboCup_Rescue_2008_German_open_test_arena.JPG

Simulation
The importance of the second cup is that simulating is less expensive and of shorter duration that
creating a real robot. Additionally, real robots are easily damaged by incidentally bumping into
objects, or by simply losing balance, due to a fault in program or design. These problems are
overcome by simulations. Furthermore, one could improve a robot by testing its design and program in
a simulated environment before ever building it. Lastly, it is possible to make a simulation of
technology that is not yet available now, but could be in the near future. It is possible to create
anything in a simulation, which means that an upcoming technology can be tested before it is (or can
be) built for real. Simulating future technology may lead to a deeper understanding and
implementation of the technology in robots, speeding up the research and development in general. A
simulation, for example, has been used for testing and proposing a method for using an omni
directional camera for distance estimation (Nguyen and Visser, 2009).

Crucial to testing simulated robots in a simulation is the quality of the simulated environment:
A simulation test is useless if the best robot in the simulation does not perform among the best
in a real situation, and as the performance of the simulated robots of the teams in the cup
increases every year, it demands the simulated environment to keep up. Realistic simulation
of the real world, including possible events or actions caused by the robot or survivors, is
necessarily in order to test the robots. Victims are an important aspect of this environment, not
only is placing them in the environment a goal on its own, it is important to simulate their
behaviour correctly.

There are various ways to make a representation or simulation of a human and both research on
human behaviour in post-disaster situations (victims) as simulating this behaviour has been
flourishing. New methods for simulating crowds (Brenner, Wijermans, Nussle & De Boer, 2005)
(Helbing, Farkas &Vicsek, 2000) (Shao & Terzopoulos, 2007) and individual victims (Chaim, 2010)
are presented in order to keep up with the knowledge we gain from research on humans. Different
views on the representation of humans have been introduced, varying from cue balls (BrownBridge,
2008) and electrons (avoidance of obstacles could be simulated like electrons “bounce” of each other
due to magnetic forces) to as realistic as possible. In our case, involving rescue operations, it is of
importance that humans are as realistic as possible, as explained below.

Human recognition is critical to localisation of human, because in a real post-disaster situation
a robot has to be able to localise, and thus recognize, a human at all costs. Secondly is that the
robot has to be able to interact with a human correctly, it has to be able to react on actions
such as being approached by a human (a possible reaction could be not moving, in order to
not harm a human), this area of study is called Human-Robot interaction (HRI).
Furthermore, if a victim is capable of making sounds and movements, having the capability of
interpreting these sounds and detecting the movements would be a significant advantage. This
means that a realistic representation of a victim must also lead too a more suitable robot-
design.Problem definition
So far, victims in Roborescue cup have had limited behaviour. Victims do no interact with or react on
the environment and neither do they move from their place. Their behaviour is restricted to playing a
certain animation; in the previous cups, victims would lie, sit or stand, waiting to be discovered the
entire simulation. Chaim (2010) has provided a design for victim behaviour, presenting a method for
animating a victim. Using Chaim’s findings as a basis, what kind of human behaviour is possible to
simulate in USARSim? This thesis attempts to give an introduction towards providing the victim

6

classes various functionalities, in order to expand the possibilities of simulating behaviour. This thesis
has been divided into a few sections.

The next section describes typical human post-disaster behaviour, then the second section covers the
software used in the Roborescue cup. In the third section a possible scenario is described and a method
is presented for creating such scenarios, followed by the result and discussion section. Lastly steps in
how to create behaviour and packages in UDK are presented in the appendix.

Related WorkHuman behaviour in post-disaster situations
Human behaviour has been widely studied and there is a significant amount of insight on post-disaster
behaviour. Articles about post-disaster behaviour have been produced since 1950, in which it was
made clear that humans do not enter a ‘panic-state’ or lose all common sense (Quarantelli, 1960).
Quarantelli claims that, instead of the common misconceptions that human will flee the area as soon as
possible, we tend to react quite “cool” and show different rational behaviour from rescuing others to
estimating the dangers of the situation.

Other studies as well claimed that humans do not simply enter a panic-state unless certain conditions
are met (Fritz & Williams, 1957). One of those conditions is that the human(s) in question must
believe that there are only a limited amount of escape routes combined with the believe that these
escape routes are closing quickly. People try to protect their immediate associates even during hectic
and violent impacts.

Because it is evident that even in post-disaster situations, humans show rational behaviour, it can be
concluded that a simulation of human behaviour in such situation must include reacting/interacting
with the environment and rescue robot, searching for other survivors and, of course, moving to an exit. Human detection
Several characteristics of humans are used for human detection and it depends on the achievements
made in the future which will prove to be most successful. Chaim (2010) claims that promising
subjects of human recognition include skin (Visser, Slamet, Schmits, Jaime, & Ethembabaoglu, 2007)
and object recognition (Flynn, 2009). These approaches are based on colour, shape and pattern as
features to distinguish humans from their surroundings. Other characteristics could be heat emission,
because living beings distinguish themselves from animate objects by emitting heat and this could be
used for human recognition. In order to be able to test human detection in a simulation, realistic
texture and materials of both humans as the environment, as well as realistic sensors are required.

A thorough understanding of UDK is necessarily, in order to implement a realistic representation of
victims in the USARSim by applying knowledge about human behaviour as described in related work.
Therefore, the next section is dedicated to the software used in this thesis and in the Robocup rescue.

SoftwareUDK and USARSim
The software used for simulations in the Roborescue cup is called USARSim (Urban Search
and Rescue Simulator). This software is an extension of (based on) the Unreal Engine.
The Unreal Engine is a programmed environment made for the purpose of creating games;
various are created using this engine, such as Unreal Tournament 3 and Borderlands 2. The
Engine is flexible, capable of supporting numerous desired environments and, because of its

7

commercial origin, the graphics are realistic. It is easy to create an environment using code of
the Unreal Engine because the programming language is object orientated. Therefore creating
a simulation can be done by extending and modifying classes from the Unreal Engine, in
stead of starting from scratch. Because of these reasons, the Unreal Engine has become the
basis for the Roborescue simulation software.

The Unreal Development Kit (UDK) is a release of the Unreal Engine in which it is, as the
name suggests, possible to develop your own game or, in our case, simulation. It comes with
native language code and development code. The native language code is the core language of
the Unreal Engine, and is not accessible for regular developers. The development code in the
language unrealscript, on the other hand, is accessible and can be used for your own
convenience, be it extending or modifying it. The kit also contains an editor (figure 3), in
which it is possible to create environments, add objects and even game play (events, actions)
without touching the unrealscript. This is ideal for developers unknown to programming, it is
fairly easy to create a landscape with tree’s and mountains, add a few lights, and “play”.

Figure 3. UDK editor

USARSim is a software extension of the Unreal Engine which creates the environment and
provides the instances, objects and behaviour necessary for simulating a rescue operation.
USARSim provides code, additionally to the already available UDK, in the form of its own
classes, such as rescue robots, but also more abstract instances, smoke for example. Lastly
USARSim provides various tools, of which one is controlling a robot using IridiumSE.
USARSim has been proven to be able to realistically simulate real-time events. Although most often
the results of methods or algorithms are less effective as implementation in the real world, USARSim
simulations have been proven valid (Noort, 2012) (Balaguer, Balakirsky, Carpin, Lewis & Scrapper,
2008).

8

Unrealscript and Kismet
Objects (including victims) in USARSim are made out of various assets and classes (code). One asset
is of importance to this thesis, the animation tree, the others will only be briefly described in the
appendix A.

When the victim is walking, a combination of walking animations should be played, a
diagonal walk is the combination of a forward walking animation and a walk side-ways
animation. The animation tree is the asset responsible for determining what animation to play,
accordingly to the situation. In addition to the assets, a victim class, victimpawn (extending
pawn class of UDK), tells UDK (and USARSim) that all these different assets together form
one object, the victim. (Chaim, 2010). The only thing left for the victim to show behaviour is
Artificial Intelligence, which is a controller that determines the victim’s behaviour. Whereas
the animation tree is used for displaying animations, the controller determines when the
conditions are met for the victim to start showing a type of behaviour. In other words, the
controller tells the engine when and where to walk to or when to show a certain animation,
while the animation tree actually shows the requested animations. Additionally, they UDK
controllers work with states, which means that behaviour can be defined in particular states,
such as “chasing” or “idle”. Events could put a victim in a state, activating a particular desired
behaviour, providing multiple possibilities for Artificial Intelligence.

The victim classes consist of three classes, the 1) MaleVictim and FemaleVictim classes, the
2) VictimPawn class and the 3) VictimController class. The first classes extend the
Victimpawn class, initializing the sex-specific assets. Victimpawn extends the regular
UTpawn classes of UDK, receiving a large amount of code necessarily for most pawn-like
behaviour such as moving and rotating. The Victimcontroller class extends the UDK
AIcontroller class, again receiving many pre-built functionalities for intelligent behaviour in
pawns.

The actor class is the base class of all game play objects in the UDK, and both the
Victimpawn as the Victimcontroller are indirect children of the Actor. The Pawn classes can be
seen as the physical representation of the victim, while the Controller classes are the brains, the
internal functions.

Whereas the victim contains of assets and unrealscript, the simulated environment is created through
the UDK editor. In this editor the environment is made just like an image can be created with editors
such as Photoshop. One can easily add a terrain, trees, static objects or even actors such as victims.
This environment, however, is mostly static, since one does not desire any behaviour from terrain,
buildings or static objects. In order to determine the behaviour of dynamic objects, such as the
animation of trees or the behaviour of objects, Kismet is used. Kismet (figure 4) uses Events, Actions,
a few flow-controller statements such as if, switch and variables. Events are triggers, such as the start
of a simulation, touching an object or the event of an object getting destroyed. Actions are that what
are triggered, this can be anything from showing an animation, and moving an actor, to inserting an
object in the environment. Additionally, actions can call upon other actions, which means that actions
can optionally act as triggers for other actions. The editor is created through native language, it cannot
be altered. The objects that make up the environment, however, can altered using the editor (assigning
material and texture to a mesh for example) or through unrealscript (adding a new object, a victim, to
the editor). Unrealscript is also capable of adding objects to Kismet, such as Events or Actions.

9

Figure 4. Kismet determining the behaviour of a storm

Although the procedures of Kismet is determined through native language, the objects within Kismet
can be freely modified by unrealscript, Actions such as picking up items and announcements can be
created through unrealscript (figure 5). These objects, however, are only capable of storing variables
and trigger an unrealscript function. Because these unrealscript functions can then be created in classes
(such as victim), Kismet operates as a communication link between the editor and the development
code (unrealscript).

Figure 5. Unrealscript example

10

For a more thorough explanation on how to program in unrealscript, in order to create Kismet
functionalities, see appendix B. In the next a method is created in order to show to show the
possibilities of behaviour in USARSim. This is done by creating a scenario in which victims show
different behaviours.

Method

A scenario has been created in which two victims are in a building, or which one is hurt and the other
is unhurt. The first victim will be unable to move without being treated by the other, because he is
obstructed by a pillar.

A possible scenario would be that the unhurt victim starts looking for an exit, and after he has found
one, he rushed back to his friend in order to help him reach the exit. Another could be that he first
helps his friend and they search together.

UDK provides various methods for creating these scenario’s, it is even possible to randomize actions
sequences, leading to an unpredictable outcome. In the appendix an explanation for coding various
victim behaviours in UDK is given. Description scenario
The environment consists of a big building divided in two rooms by a wall with an opening. One room
will represent an escape route, and the other room the post-disaster environment. The first room, for
escaping to, is completely empty with the exception of pathnodes (See appendix for pathnodes). The
second room consists of a few chairs, tables, fallen pillars and rocks, it is a representation of a post-
disaster environment. Additionally two victims reside in this room, of which one is laying face down
with a pillar on to op, and the other is standing. These two victims represent a hurt person (with a
pillar on top) (figure 6) and a ‘fortunate’ unscratched person. In stead of the regular situation, in which
both victims would only show an animation and no other behaviour, movement or interaction with the
environment, this time the victims are supposed to escape the room.

Figure 6. Pillar on victim
11

When the simulation has started, the standing victim will walk towards the lying victim and will start a
crouching animation. While the victim is crouching, an animation in matinee will be played in which
the pillar on top of the lying victim will be removed. After the pillar is remove, both victims stand up
from their position and will walk towards the exit of the room.

Validation
The scenario just described has been chosen because it is a representation of the 1) most basic
desirable human behaviour and because it is a good 2) example of a post-disaster situation: It is a
representation of the most 1) basic human behaviour, because there are only two victims, which leads
to the possibility of interaction between victims that is not too complex to understand. This basic
behaviour are the fundamentals for more complex designs, more appropriate for simulating post-
disaster situations.

This scenario is a good 2) example of post-disaster situation, because it has victims of which at least
one is hurt and it has objects lying around due to, for example, an earthquake. Secondly the
environment has been kept fairly simple, since it does not consist of any complex structures or paths as
it consists of a single square room and some objects in it. The objects are placed in the room to display
obstacle avoidance behaviour using paths, and in order to maintain a realistic simulation. Again, the
scenario has been kept simple because its purpose was not to create a scenario as complex as possible,
but to demonstrate the possibilities of creating more complex scenarios.

Introduction functionalities
As introduced in the software section, the UDK comes with an editor for creating environments,
unrealscript for programming classes, and kismet in order to make interaction between the
environment and the classes possible.

Moving around is a fundamental characteristic of humans, or any living being, and is necessarily for
even the most basic behaviours. That is why adding movement to a victim can be seen as the first step
towards providing possibilities for behaviour. If moving is possible, one could use the Events in
kismet in order to create significantly different behaviour compared to what victims have been capable
of up till now. The victim could be programmed to either follow or run from a rescue robot, whenever
such robot comes in sight.

Animations are a second important aspect of behaviour in the UDK. Animations show what the
victims are doing, and can vary from simply standing and breathing to making gestures. Therefore is
the capability of controlling the animation sequence highly important, making the difference between
endlessly lying on the ground and interaction with the world.
The third functionality described in this thesis will be making sound. Whereas in a real disaster
information gained from sound is imminent (yelling for help for example), the victims in USARSim
have not shown any capabilities of producing sounds. Producing sounds actually have nothing to do
with the victim classes and it can be achieved without the use of any unrealscript, it is already
available through Kismet in the editor. For a step by step explanation of implementing movement,
animations and sound see appendix B.

12

Results

The result shows that sequences of animations are controllable in combination with movement. In the
simulation the victims were capable of showing various behaviours: At the start of the simulation the
standing victim walks towards the hurt victim, and crouches for 5 seconds. In that period, an
animation is played in which the pillar is moved from the victim (figure 7). Afterwards, both of the
victims stand up and walk toward the exit.

Figure 7. Victim helping other by removing pillar

Conclusion & DiscussionConclusion
This thesis attempted to extend the possibilities of victim in USARSim used in the Roborescue cup.
Compared to the previous behaviour of the victims, improvement has been made by adding movement
and animation control capabilities. It has been shown through a scenario that basic human behaviour
can be created using UDK and especially Kismet.

Problems
However, a few problems have been encountered in the thesis. Firstly, whenever the environment is
created in such a way that a path is obstructed by two blocking objects, the victim tends to get stuck
and quit halfway. This shows that the victim does not actually calculate a path before moving.
Providing a different route by (re)placing pathnodes strategically or control its movement through
Kismet can solve this.

Secondly, although blending of animations is done fairly realistic by the engine itself, some animation
sequences may display surprising blending positions. Blending from a lying position into a standing
position, for example, creates a flying victim halfway through the transition.

13

Additionally, it should be marked that even though this thesis aimed to provide victims behaviour, it
does not claim to have created any Artificial Intelligence. However, in contrast to victim simulations
so far, it attempts to show the capabilities simulating behaviour using USARSim.

Future research
Future research is possible in multiple directions:

1) Firstly extending the behaviour towards creating intelligent behaviour. This should be done in the
controller in stead of the methods used in this thesis (Kismet mostly). Kismet is used for pre-
programmed scenarios and events. On the other hand, the VictimController is more suitable for
general (intelligent) behaviour. As briefly mentioned in the software section, states in the controller
could be used for more sophisticated behaviour, such as programming curiosity whenever the victim is
in an idle state: It would try and explore its surroundings, or be attracted to various objects around him
for example.

The first steps toward achieving this would be creating a path-planning structure in the
VictimController. As previously states, victims do not plan their paths when moving towards a
particular goal, they simply start moving towards it and as a result end up stuck whenever the path is
blocked (figure 8).

Figure 8. Two barrels successfully block a victim, walking towards the lying victim, even
though plenty of space is available for actually reaching it.

2) Secondly, future research should be conducted towards heat emission of victims. Heat detection
could prove to be an important factor of human recognition, and should be included in the victims as
such. When heat emission is added to the victims, the teams in Roborescue cup are motivated to create
heat-emission-detectors, which may lead to significant progress towards human detection.

3) Thirdly, a deeper understanding of animation blending in the UDK is required for a more realistic
representation of humans. The UDK offers numerous methods for blending animations, from
instructing a single bone to adding face animations. In this paper, an introduction is made towards

14

controlling the animations of a victim, investigating these possibilities will lead to a more realistic
victim.
4) Lastly natural language processing is a possible direction towards creating communication between
the victims and rescue robots. This paper is an introduction towards reaction between environment and
victim, future research should determine whether the Unreal Engine is capable of creating and
processing natural language, overseeing the possibilities of providing and processing information of
victims.

References

B. Balaguer, S. Balakirsky, S. Carpin, M. Lewis, and C. Scrapper. USARSim:
a validated simulator for research in robotics and automation. In Workshop
on Robot Simulators: Available Software, Scientific Applications, and Future
Trends at IEEE/RSJ, 2008.

C. Bastiaan, Virtual victims in USARSim, Bachelor Thesis, Universiteit van Amsterdam,

June 2010.

M. Brenner, N. Wijermans, T. Nussle, and B. De Boer. Simulating and controlling
civilian crowds in robocup rescue. Proceedings of RoboCup, 2005.

J. Brownbridge. Teleoperation of Rescue Robots in Urban Search and Rescue
Tasks. 2008.

H. Flynn. Machine learning applied to object recognition in robot search and
rescue systems. Master’s thesis, University of Oxford, 2009.

C.E. Fritz and H.B. Williams. The human being in disasters: A research
perspective. The Annals of the American Academy of Political and Social
Science, 309(1):42, 1957.

B. Gates. A robot in every home. Scientific American, 296(1):58–65,
2007.

D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape
panic. Nature, 407(6803):487–490, 2000.

L. Matthies, E. Gat, R. Harrison, B. Wilcox, R. Volpe and T. Litwin. Mars microrover navigation:
Performance evaluation and enchanement. Autonomous Robots, 1995-12-01. Volume 2 Issue 4, p.
291-311.

Q. Nguyen and A. Visser. "A Color Based Rangefinder for an Omnidirectional Camera",

Workshop on Robots, Games, and Research: Success stories in USARSim (IROS 2009), p.

41-48, St. Louis, USA, October 2009.

15

https://robotics.ucmerced.edu/Robotics/iros-2009-usarsim-workshop

S. van Noort, "Validation of the dynamics of a humanoid robot in USARSim", Master’s

thesis, Universiteit van Amsterdam (May 2012)

E.L. Quarantelli. Images of withdrawal behavior in disasters: Some basic
misconceptions. Social Problems, 8(1):68–79, 1960.

W. Shao, D. Terzopoulos. Autonomous pedestrians, Graphical Models, Volume 69, Issues 5–6,
September–November 2007, Pages 246-274, ISSN 1524-0703, 10.1016/j.gmod.2007.09.001.

A. Visser, B. Slamet, T. Schmits, L.A.G. Jaime, and A. Ethembabaoglu. Design
decisions of the UvA Rescue 2007 Team. In Fourth International Workshop
on Synthetic Simulation and Robotics to Mitigate Earthquake Disaster
(SRMED 2007), pages 20–26.

Appendix

A - Victim package
A victim consists of a 1) skeletal mesh, 2) texture and material, 3) physics, and an 4) a) animation set
and b) tree. The 1) skeletal mesh is the silhouette of the victim; it is in fact the whole physical form of
a victim, without any colour or texture on the victim. The 2) texture and material are the layers around
the skeletal mesh, granting the victim colour (human skin, cloths) and surface (hair has got a different
look and feel than clothing). The 3) physics asset is the skeletal as we know it from biology; this asset
provides the UDK knowledge of the joints and bones of the skeletal mesh. Lastly the 4) a) animation
set is a set of possible animations, pre-programmed motions of the skeletal mesh in accordance with
the physics asset, and the b) animation tree decides what kind of animation should be used, depending
on the situation. For more information on how to create a package, see Chaim’s Virtual victims in
USARSim.B - Programming with UDK
Animations
There are two kinds of methods available to insert animations into an environment. The first method is
matinee, which is a function in Kismet. It works very much like a video creator, by creating key
frames one can place objects on different positions on each frame, and the UDK creates the frames in
between. This however, is only useful with static meshes, like an elevator going up and down, or the
animation of grass. For pawns (victim is a specific pawn), the second method is used: animation tree.
An animation tree (figure 9) is a tree diagram consisting of mainly animation sequences and blending
nodes, together with a few nodes with special functions. An animation sequence node is a specific
animation out of the animation set provided in the package, such as crouching or walking forward.
Special nodes each have their own purpose and should be investigated separately. There are various
types of blending nodes, but their main purpose is either combining the tree’s branches into one
animation or forming a threshold for deciding what branch in the tree to take.
16

Figure 9. Animation tree example

Blending of animations consists of creating a combination of multiple animations and mixing them
together to form one movement. Blending is applied for various purposes, such as blending face
animations with body movement; Instead of creating numerous walking animations with different
facial expressions, each facial expression is animated and blend with the movement desired.
Additionally, one could create an animation of throwing a snowball and blend it with a walking
animation, in order to create an animation used for throwing a snowball while moving.

The Unreal Engine calculates the angle of every joint and bone angle per active animation, and blends
it together to form one movement, which is roughly the average of each animation. It is possible to tell
the Engine at the ratio of the blending animations, granting the developer high precision tools for
animating their desired movement. Two blending nodes will be described for a better understanding:
The AnimNodeBlendDirectional and the UDKAnimBlendByIdle.

The AnimNodeBlendDirectional blends its branches into one animation, depending on the direction
the pawn (victim in our case) is moving, it has 1 branch for each direction (forward, backward, left
and right). When the pawn is moving 0 degree’s, straight forward, it will prioritize the branch forward,
when the pawn is moving diagonal, however, the forward and left or right branch are combined with
different rates depending on the actual direction: a direction 10 degrees would result in a different
blend ratio than that of 45 degrees direction. In the last case the two branches are equally strongly
blended.

Whereas some blending nodes combine their branches into a single animation, other nodes
differentiate between their branches by forming a threshold: One branch is active, the others are not.
UDKAnimBlendByIdle, for instance, either actives the Idle branch (the pawn is not moving), or
actives the Moving branch (the pawn is moving). It does not combine these branches depending on
how fast a pawn is moving or not.

Whereas UDKAnimBlendByIdle is used to determine whether a character is moving,
AnimNodeBlendDirectional is mostly used for walking, running, flying or any other kind of moving

17

animations. An animation tree fit for a character that either moves or stand still, would contain the
UDKAnimBlendByIdle at the start of the train, with its branches an idle animation (at the Idle
branch) and the AnimNodeBlendDirectional (at the Moving branch). With an animation tree as
described above, it is possible to create a moving victim in USARSim by adding just a few settings.

Moving victims
UDK already has got features for moving pawns around the environment: The node called Move to
Actor (Action => AI => Move to Actor) is especially made for these kinds of actions. In order to
move a pawn from a certain point towards an actor, an event must be created and the event must be
connected to a node. After that the pawn in the environment must be selected and assigned it Target in
Kismet. The same must be done for destination and Look At. An option is to tell UDK what to do after
the move is finished by connecting Finished with the next node.

The UDK is capable of finding its own paths through the environment. Sometimes however, the editor
may require some help. Whenever a pawn is not capable of find a path on its own, it is required to add
pathnodes. Pathnode is a class derived from Actor, and whenever the editor is told to build paths, it
will look at all pathnodes and make paths between them. After setting this up any normal pawn in the
UDK will be able to move from and to these nodes.

However, for victims in USARSim two settings must be altered before this will work. These two
settings reside in the Victimpawn class: modify or add “bStatic=false” and “bMovable=true” in the
default properties (figure 10), without these properties, the victim will not move.

Figure 10. Settings in Victimpawn.uc necessarily for creating a moving victim

If the animation tree is configured correctly, the victim will now respond to the Kismet commands,
which implies that victims are capable of moving around the environment. As mentioned before, it
would be desirable to not only be able to move a victim, but also to be able to tell UDK what
animation to perform. In order to achieve this, a deeper look in unrealscript is required.

In the next section the communication between kismet and unrealscript will be explained. If
developers have the possibility of instructing victims explicit to show an animation, further
development of victim-behaviour is possible.

Calling custom animations
The animation tree provides numerous ways of controlling your pawns animations, nevertheless
sometimes a developer might want to simply control what animation a certain pawn must perform. In

18

the case of victims, one might want several pawns to either move around or stand idle, while one pawn
is lying on the ground. An animation tree is, unless different victim classes are made, it is impossible
to have different animations for victims in the same state. Telling a particular victim to perform a
custom animation is typically done using Kismet. In order to do is, one has to create a new Kismet
Action, “play animation” for example.

Making a Kismet function is done by creating a new file, make it extend the SequenceAction class
and add your own properties and variables (figure 11). In order to create a function that will call an
Animation, firstly two variables are necessarily: The name of the animation, and the duration you want
the animation to be played, these variables should be initiated.

Figure 11. An example of a kismet action code

Secondly Kismet requires the VariableLinks and the name and category of the action. The category
means what kind of action it is; in this case the category is “Anim” for the purpose of structure within
Kismet. The VariableLinks are the variables that are adjustable through kismet, the name and
duration of the animation. Lastly it is a handlername should be set, any function with the same name
as the handlername will be called in the target, the victim pawn. The Kismet Action is available
through Kismet=>Action=>Category=>Name (figure 12), however, it will not perform any action. The
victim will not react to this Action until it is programmed to do so.

19

Figure 12. A custom kismet action

Before adding this functionality to the victim, creating the possibility to actually make the victim
perform an animation other than the one defined in its animation tree is required. In order to do so, a
node called AnimNodeSlot must be added at the base of tree (figure 13). With this node it is either
possible to blend the animation in the three with another undefined source, or take over the animation
with another source. Controlling whether it will overtake the animation tree or it will blend with the
animation tree is decided in the internal settings.

20

Figure 13. Animnodeslot node in animation tree.

Creating an animation start function to the victim is done by editing the VictimPawn class by adding
a function with the same name as the handlername of the Kismet object. In order to play an
animation, the PlayCustomAnimByDuration function of the class AnimNodeSlot, is used. The
variables determined in the Kismet object can be called, and by passing the correct parameters to the
pre-programmed function, an animation will be played, successfully overtaking the original animation
tree.

Sound
Playing a sound can be done by connecting an event with the animation node called play sound in the
category action =>sound. In order to do so, an event (for example: event => Level Loaded) and the
play sound (action => play sound) node should be created, these two nodes should be connected from
Loaded and Visible (Level Loaded node) to Play (Play sound node), then the only thing left is telling
Kismet which sound to play (figure 14), by filling in the sound name given by the content browser.
There are multiple options available to further enhance your action. Kismet can be instructed what to
do while or after this sound is played.

21

Figure 14. How to start a sound

22

	Table of content
	Introduction
	RoboCup
	Simulation
	Problem definition

	Related Work
	Human behaviour in post-disaster situations
	Human detection

	Software
	UDK and USARSim
	Unrealscript and Kismet

	Method
	Description scenario
	Validation
	Introduction functionalities

	Results
	Conclusion & Discussion
	Conclusion
	Problems
	Future research

	References
	Appendix
	A - Victim package
	B - Programming with UDK
	Animations
	Calling custom animations
	Sound

