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Abstract— A classical experiment is the sequence of papers
based on the Radish dataset published by Steffen Gutmann.
These papers were the basis of the Markov and Gaussian
Localization chapter of the textbook ’Probabilistic Robotics’.
The same dataset can be used for simultaneous localization and
mapping, when the locations of the landmarks are not longer
given. This gives a nice benchmark, with a very manageable set
of landmarks (six) and realistic noise for both the movement
and observation model of the Aibo robot. This paper describes
a comparison of a number of well known simultaneous local-
ization and mapping algorithms, including the details to get
these algorithms working for this dataset.

I. INTRODUCTION
Localization and mapping are essential capabilities of a

mobile robot. After a classical survey [1], several algorithms
were described in the textbook ’Probabilistic Robotics’ [2].
Localization with an Extended Kalman Filter plays a central
role in the textbook. This is partly because it is a textbook;
the problem can be easily described with this algorithm.
On the other hand, the Extended Kalman Filter is also
a very robust and efficient algorithm; which allows it to
be implemented on embedded processors with moderate
resources.

Inside the textbook the example is used of a RoboCup
soccer field, with several colored landmarks surrounding
the field. This example was studied by one of the authors
of the textbook; Dieter Fox [3]. The dataset was archived
by Steffen Gutmann at the robotics data set repository
Radish1. In this study a comparison was made between four
localization methods: Markov-Kalman Localization, Sensor
Resetting Localization, Mixture Monte Carlo Localization
and Adaptive Monte Carlo Localization. This comparison
(based on the same dataset) was later extended [4] with Multi
Hypothesis Localization (also described in [2]).

Also inside the RoboCup this comparison and this dataset
is often used. In the RoboCup competition efficiency and
robustness are important capabilities. In addition, the rules of
RoboCup allow a limited number of landmarks with a clear
signature to be present around the field. A major limitation
for Kalman Filters is the scaling of algorithm with respect
to the number of landmarks, but the handful of landmarks
around the field is easy to manage. Examples of teams who
refer to this work are UChile [5], Cerberus [6], MetroBots
[7] and the UW Huskies[8].

The RoboCup soccer field is a natural testbed for local-
ization experiments. Mapping experiments seem to be a bit
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artificial in this setting, because the location of the landmarks
is clearly stated in the rules. Dellaert is the first to experiment
with landmark-based SLAM and Aibos [9], although they
directly complicated the scenario by using 32 landmarks and
10 robots. In this paper the original scenario is used, with
only 6 landmarks and a single robot. The apriori knowledge
about the location of the 6 landmarks is forgotten and only
used in the evaluation of the different mapping algorithms.
In this way an ideal testbed is created, which could be used
for rapid prototyping. Adapting a mapping algorithm to this
scenario seems simple, but requires the correct setting of both
the motion and observation model. If a mapping algorithm
fails for this simple scenario, the assumptions on the motion
and observation should be adjusted. Although the scenario is
simple, the dataset is challenging enough, with many artifacts
in both the movements of the Aibo and the observations of
the landmarks with the camera in the nose of the robot.

II. RELATED WORK

Peralta-Cabezas et. al [5] made a quite extensive compari-
son of Bayesian prediction techniques for localization in the
RoboCup Small Size League. Their conclusion was that a
classical Extended Kalman Filter and Particle Filter yielded
as accurate results as more advanced algorithms with signif-
icantly less computational effort. Another observation was
that the inclusion of an Improbabibility Filter [10] allowed
for significant prediction improvements for all filters. This
is in accordance with the analysis of Kristensen et. al [4],
which report major improvements when using a validation
gate [11], [12]. This validation gate is based on the same
Mahalanobis distance criterion [13] as the Improbabibility
Filter.

In contrast with localization experiments, mapping exper-
iments with legged Aibo robots and a limited number of
landmarks with known signature are not often performed. A
nice experiment is performed by Dellaert et. al [9], where a
hallway of colored cylinders is build on a 5x5m field. There
were 32 cylinders, each cylinder with a unique color-coding.
Multiple robots were present in the hallway (each walking
3m back and forth). A map of the environment was built in
a distributed way, not by exchanging observations, but by
exchanging updates of a clique tree. Yet, Dellaert’s article
describes only a single method. To the best of our knowledge
no experimental comparison of mapping algorithms for the
same scenario has been made.



III. SIMULTANEOUS LOCALIZATION AND
MAPPING METHODS

Three classical Simultaneous Localization and Mapping
(SLAM) algorithms are compared:

A. SLAM with a Extended Kalman Filter

First implementations of EKF-SLAM were due to Moutar-
lier et. al [14] and Leonard et. al [15]. In this paper, the
notation from the textbook [2] is followed. Simultaneous
Localization and Mapping can be done by calculating an es-
timate of the posterior p(xt,m|z1:t, u1:t) for both the current
position xt and the map m when the previous observations
z1:t and motion updates u1:t are given. A Kalman Filter
maintains a belief ȳt of a state space yt with an estimate
of the mean vector µ̄t and a covariance matrix Σ̄t. In this
case the state space yt = (xtm)T ; the combination of the
robot pose xt and the map m. The map m is represented
with the location mi,x,mi,y and signature si of each of the
landmarks. In this experiment the number of landmarks is
six, so the dimension of the state vector is 3 + 6 ∗ 3 = 21
elements long.

A Kalman Filter needs two models to update its beliefs;
a motion model p(xt|ut, xt−1) and a measurement model
p(xt|zt).

For the Aibo legged robot Gutmann et al. [3] used a
motion model which was purely probabilistic; they combined
three error sources: correct displacement with Gaussian
noise, a uniform distribution due to obstructions and a
random displacement due to kidnapping. Here, a motion
model is used equivalent with the velocity model described
in [2]:
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where the new pose xt = (x′ y′ θ′)T is the result of

applying the motion update ut = (v ω)T at the previous
pose xt−1 = (x y θ)T . Here Rt is the uncertainty in the
motion model, which is represented as the covariance of
the Gaussian distribution N . Such a motion model with a
longitudinal speed v and turning speed ω seems impropriate
for a walking robot, but actually the interface to the Aibo
consists of walk and turn commands which fit very well with
this motion model.

The observation model is based on a model of landmark
observations zt consisting of a range ri

t, a bearing φi
t and

a signature si
t of a landmark i relative to the robot’s local

coordinate frame. The landmarks in this case are six color
coded tubes, surrounding the field (See Fig. 1).

The landmarks are recognized by processing the images
in the nose of the Aibo robot. The camera of the Aibo robot
has a limited field of view, so in most cases only a single
landmark is seen. The robot constantly scans the horizon
with its head, what means that even when the robot remains
long enough at the same location, a number of landmarks

Fig. 1: The setup of the field, including six landmarks and
the turning points on the field (Courtesy Gutmann[3]).

can be seen sequentially. The position of the robots head is
already included in the range and bearing observation. This
results in the following measurement model:ri
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with δj
x = µ̄j,x − x′ and δj

y = µ̄j,y − y′ the x,y-
components of the difference between the current position of
the robot (x′, y′)T and the current estimate of the location
(µ̄j,x, µ̄j,y)T of landmark j. In this model a Gaussian noise
model N (0, Qt) is included with standard deviation of 15%
for the measured range (σr)and 10 deg for the bearing (σφ).
Further note that for the mapping case the location of
landmark j is not known (as in the localization case), but
estimated.

Equation 1 and 2 define respectively the state transi-
tion function g(ut, xt−1) and the measurement function
h(xt, j,m) of an Extended Kalman Filter. This non-linear
functions can be linearized by calculating their first order
partial derivatives; the Jacobian matrices G and H .

A remaining issue is need for a validation gate on the
observations (as suggested by Kristensen et. al [4]). The
validation gate is based on the innovation vector zt − z̄t,
which is converted to a measure for the Mahalanobis distance
with aid of the overall measurement prediction uncertainty
St = HtΣ̄tH

T
t + Qt, a combination of the state uncertainty

Σ̄t and the measurement uncertainty Qt. The Mahalanobis
distance is thresholded on a fixed value γ:

(zt − z̄t)S−
t 1(zt − z̄t)T < γ (3)

In the result section an indication of the sensitivity analysis
on the actual value of γ will be given.

B. FASTSLAM 1.0

The FastSLAM algorithm was originally developed by
Montemerlo et al.[16]. The FastSLAM algorithm is a particle
filter, where each particle represents an estimate of the path



the robot has driven and an estimate of a location of each
landmark. The FastSLAM algorithm maintains the landmark
location estimates with a Extended Kalman Filter, with the
same observation model as described in the previous section.
The motion model defines a proposal distribution for the next
robot location for each particle k:

µ[k]
xt

∼ N (xt, g(x[k]
t−1, ut), Rt) (4)

From this distribution position are sampled. The pro-
posed positions are checked against how probable there
are according to the observation model, which determines
the particle weight. The particles are resampled according
to this weight. The estimates of landmark locations are
independently updated, without direct correlation, although
there is an indirect correlation via the robot path [17].

C. FASTSLAM 2.0

The FastSLAM 2.0 is an efficient version of the original
algorithm [18]. The main improvement of FastSLAM is in
shape of the initial distribution. For FastSLAM 1.0 the initial
distribution was only determined by the motion model. If this
distribution doesn’t correspond with the observation model,
many samples are rejected, which makes the algorithm ineffi-
cient. By including the observation model via the innovation
vector zt − ẑ

[k]
t into the initial distribution, this distribution

resembles the target distribution much better, which means
that less samples have to be rejected.
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Now the initial distribution is sampled with a Gaussian
with covariance Σ[k]
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the distribution with a factor K[k]
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−1
. This

factor K has a role equivalent with the Kalman gain K
in the observation model. Updating the Extended Kalman
Filters for the landmarks and the resampling are performed
equivalent with FastSLAM 1.0 [2].

IV. RESULTS

Gutmann et al. [3] recorded an extensive dataset with their
Aibo ERS 2100 system. The dataset consists of 58 minutes of
walking between five positions on the field. Each time such
a marked position was reached, the button on the head of the
Aibo was touched, with gave a ”mark” in the logfile. For our
analysis, we concentrated on the path between the first three
marks. The path to the first mark (N=758) is illustrated in
Fig. 2 in green, the path to the second mark (N=1159) is red
and the path to third mark (N=1434) is blue. As can be seen
from Fig. 2, the marks are not always correctly synchronized
(the mark between the first and second part of the dataset
seems quite late). Further note the path consists of a number
of rather short turns.

Each landmark has been given a unique signature, as
indicated in the legend of Fig. 2. For instance, landmark1
is the landmark in the lower right corner, indicated with

Fig. 2: The reference path between the first three marks, as
calculated with the sensor resetting localization method [19].

a red marker, although the actual color coding of the tube
(illustrated in Fig. 1) is the combination magneta/cyan. In
the next figure the same marker color is used to show
the observations made along the reference path. As can be
seen, the observations have a wide spread. The bearing is
sometimes 10 degrees off. The largest outliers can be found
at the bottom, the red observations are nearly 45 degrees off.

Fig. 3: The observations of the landmarks along the reference
path.

Note that experiments of Gutmann et al. [3] were lo-
calization experiments; the location of the landmarks was
precisely known. The same dataset can be used for mapping
experiments, by not using this apriori information. The result
can be seen in Fig. 4. This figure has been generated with the
Extended Kalman Filter method described in section III-A

Note that the whole map is rotated a few degrees and
shifted to the right, indicating that the location of the
landmarks was not known. The only apriori data is the
start pose of the Aibo. Also note that the covariance of the
green upper left landmark is large, because this landmark is



Fig. 4: The simultaneous localization and mapping result
with EKF-SLAM for the first dateset (N=758).

not sufficiently observed when the robot is walking towards
the lower right corner. Also note the ellipses around the
estimated path of the robot. These ellipses indicate the
confidence in the position. The uncertainty ellipses indicate
the area with a probability of 0.68. The latest uncertainty
estimates are green, older estimates become purple.

Fig. 5: The simultaneous localization and mapping result
with EKF-SLAM for the second dataset (N=1159).

As can be seen in Fig. 5, the covariance of the green
upper left landmark is reduced when the Aibo walks back.
Also note that covariance around he position of the robot
grows when the robot makes many turns, but shrinks again
when the robot is walking along a straight line. The same
conclusion can be drawn from Fig. 6.

These figures are the results of a sensitivity study on the
parameter γ. The threshold of the validation gate γ has been
varied in the range [1,5]. The value of 1.5 gives the best
results. Also the noise parameters in the observation model
have been varied. The variance in the range (σ2

r ) and the
bearing (σ2

φ) have been varied in the range [0.01,0.4]. The

Fig. 6: The simultaneous localization and mapping result
with EKF-SLAM for the third dataset (N=1432).

optimal results were found for the values σ2
r = 0.17 and

σ2
φ = 0.38.

A. FASTSLAM 1.0 & 2.0

For FastSLAM the results of a larger dataset were used
(N=4000). The results of the EKF-SLAM algorithm are used
as reference. The experiments are performed for both variants
of FastSLAM: FastSLAM 1.0 and FastSLAM 2.0. For both
variants also the result with stratified resampling is given.
All variants shown in Fig. 7 use 100 particles. As expected
outperforms FastSLAM 2.0 FastSLAM 1.0. Stratified resam-
pling doesn’t resample each timestep, but uses a measure for
when to resample is the sample variance[12]. This technique
makes the solution more stable, but has downside that the
solution can slowly drift off. It is also clear that for this small
number of landmarks the classical EKF-SLAM algorithm
cannot be beaten.

Fig. 7: A comparison of different SLAM algorithms. The
measure is the distance between the estimated location of
each landmark against the apriori location of each landmark.

An animation of the localization and mapping of the
stratified resampling method is published on YouTube2.

2http://www.youtube.com/watch?v=1fv9w53XlcQ



V. CONCLUSION

The dataset provided by Gutmann et al. [3] is an ideal
benchmark to test different SLAM algorithms against each
other. The map consists of only 6 landmarks, which prevents
any scaling problems. The noise in both the motions and
observations of the Aibo are challenging enough for state-
of-the art algorithms as FastSLAM [17]. Although the dataset
is easy to manage, still all aspects of the motion model, ob-
servation model, corresponding noise models, validation gate
and resampling methods have to be carefully implemented
before more complex SLAM problems can be solved.
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