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Summary. This article investigates the scenario where a small team of robots needs
to explore a hypothetical disaster site. The challenge faced by the robot-team is to
coordinate their actions such that they efficiently explore the environment in their
search for victims.

A popular paradigm for the exploration problem is based on the notion of fron-
tiers: the boundaries of the current map from where robots can enter yet unexplored
area. Coordinating multiple robots is then about intelligently assigning frontiers to
robots. Typically, the assignment of a particular frontier to a particular robot is
governed by a cost measure, e.g. the movement costs for the robot to reach the
frontier. In more recent approaches these costs are traded off with the potential gain
in information if the frontier would be explored by the robot.

In this paper we will further investigate the effect of balancing movement costs
with information gains while assigning frontiers to robots. In our experiments we
will illustrate how various choices for this balance can have a significant impact on
the exploratory behavior exposed by the robot team.

1.1 Introduction

This paper will investigate a multi-robot exploration approach that was de-
signed with the disaster sites of the RoboCup Rescue Competitions in mind.
These scenarios can be simulated in the real world [7] or virtually within the
USARSim simulator [2]. In either case, the team of robots is challenged to
explore the site and locate victims in a constrained amount of time. After-
wards, the efforts of the robot team are evaluated on the amount of covered
area, the quality of the produced map and most importantly the number of
located victims. See [1] for a more detailed discussion on this scoring process.

The exploratory efforts exposed by our robots have so far been governed
by strictly reactive behavior (2006) and tele-operation (2007). Although the

avisser1
Typewritten Text
This is the author's final version. The original publication is available at www.springerlink.com.

http://link.springer.com/chapter/10.1007%2F978-3-540-78317-6_5


2 Arnoud Visser, Bayu Slamet

autonomous behavior has demonstrated good robustness and obstacle avoid-
ance, any seemingly ’intelligent’ autonomous exploration effort was due to
randomizations that were inherent to the behavior control design [11].

A well-known paradigm to address the multi-robot exploration challenge
in a more intelligent fashion is frontier -based exploration. The frontiers are
typically defined as the boundaries of the currently mapped free area where
the robot can enter yet unexplored area [14]. Collaborating robots can use
these frontiers to coordinate their actions [3, 14, 15], i.e.: assign robots to
frontiers such that the robots simultaneously explore multiple yet unexplored
parts of the environment. This shifts the exploration problem to a frontier
assignment problem.

Most approaches use a cost measure to evaluate the utility of a frontier.
The anticipated traveling distance to reach a frontier or the associated motion
costs are examples of such cost measures. In [6] and [13] however, frontier
evaluation approaches were presented that focus on the opposite measure: the
information gain that can be expected if the frontier would be explored. This
gain is expressed as an estimate for the amount of area that lies beyond the
frontier. While [6] uses a sampling method that extrapolates the current map
to estimate the information gain, the approach of [13] directly measures the
expected gain from the current map.

This paper will look more carefully at the balance between the cost and
the gain. In the following Section we will present our multi-robot exploration
strategy. Subsequently, the balance between information gain and movement
costs is varied in a number of the experiments in Section 1.3. This will lead
to the conclusions in Section 1.4.

1.2 Multi-Robot Rescue Site Exploration

Exploration addresses the challenge of directing a robot through an environ-
ment such that its knowledge about the environment is maximized [12]. A
mobile robot typically maintains its knowledge about the external world in
a map m. Increasing the knowledge represented by m is achieved by either
reducing the uncertainty about current information, or by inserting new in-
formation. The latter occurs when the map coverage is extended as the robot
visits areas in the external world not yet covered by m before.

The approach in [11] was to passively acquire the information to store in
the map, i.e. while the robot was wandering around pursuing other objectives
like finding victims. In this work however, the focus is on active exploration: to
explicitly plan the next exploration action a which will increase the knowledge
about the world the most. In this paradigm victim finding becomes the side-
effect of efficient exploration.

Occupancy grids [8] are a convenient representation for m in order to ad-
dress the exploration challenge as they lend themselves excellently for storing
probabilistic information about past observations. Each cell x corresponds
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to a region in the external world and holds the value p(x) that denotes the
aggregated probability that this region in the real world is ’occupied’, i.e. is
(part of) an obstacle. The objective of active exploration can then be seen as
to minimize the information entropy H(m) [5] of the probability distribution
defined over all x ∈ m:

H(m) = −
∑
x∈m

p(x)log(p(x)) (1.1)

Initially each grid cell has unknown occupancy, so p(x) = 0.5 for all x ∈ m
and the entropy of the map H(m) is maximum. For exploration purposes the
absolute value of H(m) is not of interest, what is relevant is the difference in
entropy before H(m) and after H(m|a) a particular exploration action a: the
information gain ∆I(a) [9, 10].

∆I(a) = H(m|a) − H(m) (1.2)

Note that the exploration action a could be a complex maneuver, consist-
ing of a number of controls ui and observations zi that spans multiple time
steps i. Hence, for predictions about ∆I(a) that lie multiple timestamps in
the future, the set of possible exploration actions can grow rather fast. In
many current exploration strategies this issue is addressed by evaluating only
a limited set of future states. These approaches consider only the situations
where a robot actually enters yet unexplored area, which are by definition the
locations where open area borders on unknown area: the frontiers [14]. The
borders can be easily derived from the occupancy grid map m; the unknown
area involves all the cells x for which the occupancy p(x) is still at its initial
value p(x) = 0.5 and the open area involves all the cells for which p(x) is
sufficiently close to zero.

1.2.1 Estimating Beyond Frontiers on Occupancy Grids

A good autonomous exploration algorithm should navigate the robot to opti-
mal target observation points. The approach presented in [13] enables a robot
to distinguish these locations using a method that is based on ’safe regions’.
The idea is that the robot simultaneously maintains two occupancy grids: one
based on the maximum sensing range rmax of the range sensing device and
another one based on a more conservative safety distance rsafe. Typical values
for rmax and rsafe are 20 meters and 3 meters respectively. The result is that
the safe region is a subset of the open area. Frontiers can then be extracted
on the boundaries of the safe region where the robot can enter the free space.
Subsequently, the area beyond the frontier can be estimated directly from the
current map by measuring the amount of free space beyond the safe region.

Greedy exploration could continuously focus the robot to the frontier f
with largest area A(f) and which will ultimately lead to a complete coverage
of the environment. More efficient exploration can be expected when also the
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distance d(f) is considered in a utility function U(f) that trades off the costs of
moving to the frontier with the expected information gain. In our experiments
we used the equation:

U(f) = A(f)/dn(f) (1.3)

The parameter n can be tuned to balance the costs against the gains,
simular to the constant λ used in the utility function of [6]:

U(f) = A(f)e−λd(f) (1.4)

1.2.2 Multi-Robot Coordination

After the frontier extraction method illustrated in Section 1.2.1 and the utility
function from Equation (1.3) we are left with the challenge to intelligently
assign frontiers to the members of a multi-robot team.

Given the set of frontiers F = {f} and team of robots R = {r} the full
utility matrix U = [uij ] can be computed that stores the utility uij for all
possible assignment of robots ri ∈ R to frontiers fj ∈ F . This matrix U is
calculated with an Euclidian distance measure deu(f). The Euclidean distance
deu gives a lower bound of the actual distance to be traveled. This means that
the utility values [uij ] are optimistic when n > 1. The actual distance to be
traveled can be calculated by performing a path-planning operation, but this
is typical a computation intensive operation. The efficiency of our algorithm is
optimized by recalculating only a few elements of the matrix; only the highest
utility uij ∈ U is recalculated. Thereafter it is checked if this value is still
the maximum value. Otherwise the new maximum value is recalculated with
a distance measure based on path-planning. When the path-planned value is
the maximum, the frontier fj is assigned to robot ri and the rows and columns
of the utility matrix U are pruned. This process continues until a frontier is
assigned to the current robot rc. The pseudo code of this algorithm is given
in Algorithm 1.

Note that the algorithm makes no assumption about the numbers of fron-
tiers and robots. When this algorithm is applied in real time the computational
consequences of a large number of frontiers and robots have to be studied, but
typically the two step approach described above limits the path-planning op-
eration to one or two frontiers per robot. So, this algorithm scales nearly
linearly with the number of robots. Also, when there are less frontiers than
robots some robots will not be assigned a frontier. However, in our experience
these occasions are rather rare as robots usually find more frontiers than they
can close.

1.2.3 Planning Safe Paths

In the second part of the algorithm a check is made if an obstacle free path
exists to a frontier. The same occupancy grid that was used to extract the
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Data: the identity of the current robot rc ∈ R and the map m as known by
rc.

Data: the set of robots ri in R. Each ri consist of the tuple (xri , yri , θri).
Data: the set of frontiers fj in F . Each fj consist of the tuple (xfj , yfj , Afj ).
Result: the pair rc, fc and the path pc to the location (xfc , yfc)
for each robot ri in R do

for each frontier fj in F do

deu =
q

(xfj − xri)
2 + (yfj − yri)

2;

uij = A(fj)/dn
eu;

end

end
umax = max uij ;
repeat

for robot ri and frontier fj of umax do
p=PathPlanning from (xri , yri) to (xfj , yfj ) on map m;
dpp=length of path p;
uij = A(fj)/dn

pp;

end
if max uij = umax then

Assign fj to ri;
Prune U from i and j;

end
umax = max uij ;

until robot rc is Assigned ;
pc=last path p

Algorithm 1: The algorithm for the assignment of frontiers to robots

frontiers can also be used to plan safe paths that avoid obstacles. If paths
would planned on the free-space robots may be guided to locations that are
dangerously close to obstacles. This is a well-studied problem in robotics [4]
and several solutions exist.

Because path-planning has to be performed for several robot-frontier com-
binations, a simple method has been applied that gives fast reasonable path.
The occupancy map is converted into a safety map by convoluting the ob-
stacles with the shape of the robot. When the shape of the robot is non-
holonomic, the convolution can be performed by taking the Minkowski sum.
For holonomic robots, as used in this study, the convolution can be approx-
imated by employing a Gaussian convolution kernel. On this approximated
safety map path-planning is performed with a breath-first algorithm.

This completes the set of tools necessary to enable coordinated frontier-
based exploration by a team of robots. In the subsequent section the method
will be applied to guide robots through to a virtual disaster site from two
start positions.
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1.3 Experiments and Results

Our experiments will be based on the ’Hotel Arena’ that was used extensively
during the RoboCup Rescue competitions of 2006 1. Figure 1.1 shows a blue-
print of this office-like environment. The wide vertical corridor in the center
connects the lobby in the south with several horizontal corridors that go east
and west. Numerous rooms border on all the corridors. For the competition
runs, robots would typically be spawned in the lobby or at the far ends of
corridors, e.g. in the north-east, north-west or south-east corners.

Fig. 1.1. A blue-print of the Hotel Arena, the virtual environment used for our
experiments.

Following the same setup as in the RoboCup competition each experiment
will involve a run of 20 minutes. So the comparisons will focus on the amount
of area that the robots were able to explore in this fixed time-window.

1.3.1 Results based on Coordinated Exploration

These experiments involve multi-robot exploration using the presented ap-
proach. We used two spawn positions which were frequently used in the com-
petitions of 2006. For each set of spawn positions a number of runs with a
team of two collaborating robots were performed, each time with another for-
mula for the utility function U(f) = A(f)/dn(f). In Figure 1.2 and 1.3 the
resulting maps are given, for an inverse linear (n = 1), quadratic (n = 2) and
cubic (n = 3) dependence on the distance d(f).

On the maps the following color-coding is used:

• blue (dark grey) indicates unknown terrain,
• shades between light-blue (light grey) and white indicate the probability

that the area is free from obstacles
1 USARSim simulator, the simulated worlds used in these experiments and doc-

umentation are available on http://www.sourceforge.net/projects/usarsim. The
maps used in 2007 are unfortunately not publicly available yet.
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• black indicates obstacles
• solid grey indicates ’safe region’, as introduced in Section 1.2.1
• red indicates a victim
• light-green (light grey) line inside safe region indicates the path of the

robots

In Figure 1.2 the robots started in the north-east corner. In Figure 2(a) the
first robot (called Hercules) starts exploring the north-east corridor, while the
second robot (called Achilles) explores the first two rooms. Hercules arrives
at the T-junction, and decides to go south in the direction of the lobby. In the
mean time Achilles is ready with the second room, and favors the unexplored
corridors above exploring the nearby third room. The east corridor is chosen,
which is explored till the end. Hercules explores firstly the west side and
secondly the east side of the lobby. When the lobby is well covered, Hercules
continues the exploration in the south-east corridor. This corridor is explored
till the end, and the robot has time enough to enter a last chamber (a maze
called the Yellow arena). This was a very successful run. More area can only be
covered when Achilles would not have explored the first two rooms, but would
instead explore the north-west corridor. Such a decision should be based on
heuristics, because the existence of this corridor can only be known when a
robot arrives at the T-junction. Until that time, the exploration of the nearby
rooms is a good choice.

With an inverse quadratic dependence, the robot behavior is more tuned
to nearby frontiers. As can be seen in Figure 2(b), with n = 2 the first three
rooms are explored (one by Hercules, two by Achilles). Hercules goes again
towards the lobby, while Achilles explores the north-west corridor. Hercules
enters first the Yellow arena, before he continues with the south-east corridor.
Notice in the north-west corridor that the localization is a few degrees off,
because the robot Achilles had a lot of trouble to navigate in a confined space
near the victim in the third room.

With an inverse cubic dependence, even the fifth room along the north-east
corridor is entered (the entrance to the fourth room is blocked by a victim).
Unfortunately, Achilles got stuck at that location, and the exploration has
to be continued by the other robot. Hercules enters the large room west of
the north-south corridor, and finds two victims. Afterwards, the north-south
corridor and even the lobby is explored.

It should be clear from these examples that for a smaller n the robots have
a tendency to stay in the corridors. This is a good strategy to cover a large
area. On the other hand, a larger n can be used to direct the robots into the
rooms. In those rooms victims can be found, but the confined space is more
difficult to navigate, and the chance exists that the robot will not be able to
leave the room anymore.

The experiments from the other start location show that tuning the param-
eter n not always leads to different behavior. For instance, in Figure 1.3(a-c)
it can be seen that Hercules always explores the lobby, enters the south-east
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(a) A(f)/d(f)
(629 m2, 6 victims)

(b) A(f)/d2(f)
(619 m2, 8 victims)

(c) A(f)/d3(f)
(486 m2, 8 victims)

Fig. 1.2. Exploration from the north-east corner with two robots

corridor and part of the Yellow arena. The south-east corridor is a dead-end,
with enough free space to explore. Against the time that one is finished with
this corridor, no time is left for any other choices.

The difference between the maps is mainly due to Achilles. In Figure 3(a)
Achilles enters the north-south corridor and explores the east corridor. At the
end of the corridor (again an dead-end), Achilles turns and goes back to the
north-south corridor. In Figure 3(b) Achilles explores the north-east corridor
and three rooms at the last corridor. In Figure 3(c) Achilles first checks the
south-west corridor, before it heads towards the north-east corridor. Due to
the detour there is only time left to explore a single room at the north-east
corridor, but the area seen in the south-west corridor compensates more than
enough. During its exploration, Achilles mainly encounters large corridors.
Increasing the parameter n resulted in different behavior, because different
corridors are chosen. This illustrates that difference in behavior doesn’t always
have the same effect. In Figure 1.3 an increase of n has as result more area
and fewer victims, but this was mainly due to the particular layout of the
corridors.

(a) A(f)/d(f)
(454 m2, 6 victims)

(b) A(f)/d2(f)
(512 m2, 6 victims)

(c) A(f)/d3(f)
(570 m2, 4 victims)

Fig. 1.3. Exploration from the lobby with two robots
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Notice that the number of victims found by the two robots in the previous
experiments is comparable to the number of victims found in the semi-final by
teams with four to eight robots [1]. Experiments with only two robots are not
enough to make strong claims about the scalability of the algorithm to larger
teams, but detailed analysis of the experiments indicated that in our current
implementation the performance bottleneck is in merging the observations of
multiple robots into a shared map. Planning the exploration on this shared
map goes rather efficiently and is more a function of the length of the resulting
path (e.g. when backtracking from a long dead-end corridor) than the number
of robots or frontiers. Future experiments have back up this claim.

1.4 Conclusions

This paper investigated a frontier-based exploration approach that can be
used to coordinate a team of robots. The approach assigns utilities to frontiers
using a measure of the information gain that can be estimated directly from
the current map. This information gain is balanced by the movement costs.
In a first approximation these movement costs are estimated by the Euclidian
distance. The actual movement costs are checked by performing path-planning
on the map. Subsequently, a frontier with the highest utility is assigned to the
members of a robot team.

The information gain and the movement costs can be balanced by a pa-
rameter. In the presented experiments is shown that tuning this parameter
can change the overall behavior from exploring mainly corridors towards ex-
ploring nearby rooms. This parameter could be further tuned towards the
scoring-function as applied in the RoboCup [1], but before this tuning is ap-
plied, the underlying navigation should be optimized. Currently, corridors
and rooms are explored with the same care and speed. Inside the corridors
the speed can be increased, to allow fast coverage of large areas. Inside the
rooms the care could be increased, to guarantee that a room once entered
could also be leaved.

In our experiments we have shown that this approach leads to efficient res-
cue site coverage. In future work we would like to investigate the possibilities
for multi-robot coordinated exploration with more than two robots, study the
influence of a-priori data, the effect of distributed decision making and the
conditions where only limited communication is possible.
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