
Validation of the dynamics of an humanoid robot
in USARSim

Sander van Noort
Intelligent Systems Lab Amsterdam

Science Park 904
1098 XH Amsterdam, NL

+31205257460
Alexander.vanNoort@student.uva.nl

Arnoud Visser
Intelligent Systems Lab Amsterdam

P.O. Box 94323
1090 GH Amsterdam, NL

+31205257532
A.Visser@uva.nl

ABSTRACT
This paper describes a model to replicate the dynamics of
a walking robot inside USARSim. USARSim is an existing
3D simulator based on the Unreal Engine, which provides
facilities for good quality rendering, physics simulation, net-
working, a highly versatile scripting language and a powerful
visual editor. To model the dynamics of a walking robot the
balance of the robot in relation with the contact points of
the body with the environment has to be calculated. To
guarantee a fast frame rate several approximations in this
calculation have to be tried, and the performance (both in
dynamics and computational effort) is evaluated in a num-
ber of experiments. This extension is made and validated
for the humanoid robot Nao. On this basis many other ap-
plications become possible. A validated simulation allows
us to develop and to experiment with typical robotic tasks
before they are tested on a real robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Kinematics and
dynamics; I.3.5 [Artificial Intelligence]: Computational
Geometry and Object Modeling—Physically based modeling ;
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis

General Terms
Design, Verification, Performance

Keywords
simulation, NAO, dynamics, collisions

1. INTRODUCTION
Robotic simulation is essential in developing control and

perception algorithms for robotics applications. Simulation
creates the environment with known circumstances, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PerMIS’12 March 20-22, 2012, College Park, MD, USA.
Copyright 2012 ACM ACM 978-1-4503-1126-7-3/22/12 ...$10.00.

allows rapid prototyping of applications, behaviors, scenar-
ios, and many other high-level tasks. Robot simulators have
been always used in developing complex applications, and
the choice of a simulator depends on the specific tasks we
are interested in simulating. Yet, the level of realism of a
simulator is also important in this choice.

A 3D simulator for mobile robots must also correctly sim-
ulate the dynamics of the robots and of the objects in the
environment, thus allowing for a correct evaluation of robot
behaviors in the environment. Moreover, real-time simula-
tion is important in order to correctly model interactions
among the robots and between the robots and the envi-
ronment. Since simulation accuracy is computationally de-
manding, it is often necessarily an approximation to obtain
real-time performance.

In this paper the focus is on the humanoid Nao robot,
which is selected by the RoboCup organization as the stan-
dard platform for the Soccer competition. This robot (see
Fig. 1) is widely used in many research institutes around the
globe.

Figure 1: Schematic overview of the Nao (Courtesy
of Aldebaran Robotics).

A model is described to replicate the dynamics of the Nao
robot in USARSim[2]; an existing 3D simulator based on the
Unreal Engine. Inside USARSim robots are simulated on the
sensor and actuator level, making a transparent migration of
code between real robots and their simulated counterparts
possible. USARSim is an open source project, available on

sourceforge1. It includes a powerful editor to create worlds
and allows experiments, benchmarks and competition sce-
narios to be set up easily.

2. RELATED WORK
There are many robotic simulator platforms available. The

simulators listed here are selected because they provide sup-
port for the Nao robot (shown in Fig. 2).

2.1 NaoSim
NaoSim is the official 3D simulator supported by Alde-

baran. The simulator is based on the game development
framework Unity2 and is developed by Cogmation Robotics3.
NaoSim is closed source and uses Nvidia PhysX as a physics
engine.

The Nao is controlled using the NaoQi framework, which
is the native interface of the Nao. This means that the
same code can be used for both the real and simulated Nao.
Furthermore the user can manipulate the Nao (move, rotate,
etc) and add basic primitives (cubes, spheres, triangles, etc).

A downside is that, currently, it is not possible to cre-
ate custom environments or simulate more than one Nao in
NaoSim. Another potential downside is that the simulator
is specifically developed for the Nao robot and as a result
no heterogeneous teams of robots can be simulated.

2.2 SimSpark
SimSpark4 is the official 3D RoboCup simulator and is pri-

marily made for this goal. SimSpark is used as the official
simulator in the RoboCup 3D Soccer Simulation League.
The simulator is open source and freely available. It uses
a client-server architecture, where agents (i.e. robot con-
trollers) are the clients that communicate with the simu-
lation server. Several robots (including the Nao) are sup-
ported and SimSpark makes it easy to add new robots with
rsg files that describe the physical representation of a robot.

SimSpark always starts a football simulation, including a
soccer field, game states and referee. The robots are con-
trolled using a custom protocol, not the native interface of
the Nao.

Noteworthy is the abstraction of the physics layer, which is
supposed to make it easy to switch between different physic
engines[5]. Currently SimSpark only supports Open Dynam-
ics Engine (ODE) as physics engine.

2.3 Webots
Webots5 is a commercial closed source robot simulator for

educational purposes[7]. It uses the ODE physics engine for
the simulation of the dynamics of the robots.

A Webots simulation is composed of a world, one or sev-
eral controllers and optional physics plugins to modify the
regular physics of Webots. A world describes the environ-
ment and the properties of the robots. Using the included
world editor new environments can be made.

Controllers are programs to control the robots in those
worlds. These controllers are started as separate processes
and have limited privileges in terms of interacting with the

1http://usarsim.sourceforge.net
2http://unity3d.com/
3http://www.cogmation.com/naosim.html
4http://simspark.sourceforge.net
5http://www.cyberbotics.com/

simulation. Multiple robots and controllers can be used at
the same time in Webots.

Webots also includes a controller that allows us to connect
with the simulated Nao robot using the NaoQi framework.

2.4 SimRobot
SimRobot is a free open source general robot simulation

and uses ODE as physics engine6. SimRobot consist of sev-
eral modules linked to a single application, which differs
from the commonly chosen client/server based approach.
This approach offers the possibility of halting or stepwise
executing the whole simulation without any concurrency.

The specification of the robots and the environment (sim-
ulation scene) is modeled via an external XML file and
loaded at runtime. This xml file uses the specification lan-
guage RoSiML (Robot Simulation Markup Language), which
was developed in an effort to create a common interface for
robot simulations.

Controllers allow us to command the robots and imple-
ments a sense-think-act cycle and is called each step by the
core component of the simulation to read the commands for
the robot it controls.

SimRobot is an initiative of a team from the RoboCup
Standard Platform League, B-Human, and they provide more
information in their Team Report and Code Release[8].

Figure 2: Screenshots of the different simulators in
action: NaoSim (top left), SimSpark (top right),
Webots (bottom left), SimRobot (bottom right)

3. SIMULATION MODEL
The RoboCup version of the Nao (H21 model) has 21

joints, resulting in 21 degrees of freedom (DOF). There is
also an academic version with 25 degrees of freedom, which
has 2 additional DOF in each hand. See Fig. 1 for a complete
schematic overview of the Nao robot.

The movement of each joint can be described by a rigid
body equation[1]. The first step is to definition of uncon-
strained motion as described in equation (1). This equation

6http://www.informatik.uni-bremen.de/simrobot/

contains four vectors, it takes both the spatial information
x(t), R(t) and the linear and angular momentum P (t), L(t)
into account. F (t) and τ(t) are external forces and the input
to solve this equation. The linear and angular speed v(t),
ω(t) can be derived from the linear and angular momentum
when the total mass M and the inertia tensor I(t) of a rigid
body is known.

d

dt
Y (t) =

d

dt

2664
x(t)
R(t)
P (t)
L(t)

3775 =

2664
v(t)

ω(t)∗R(t)
F (t)
τ(t)

3775 (1)

The inertia tensor I(t) is time dependent, but can be cal-
culated from the inertia tensor Ibody in body space, which is
a fixed property, by taking the orientation of the body into
account I(t) = R(t)IbodyR(t)T .

ˆ
v(t) = P (t)

M
, ω(t) = I(t)L(t)

˜T
(2)

The next step is to take contacts into account. When the
rigid body encounters a contact it imposes a constraint on
the movement.

Two different types of contacts can be distinguished. The
first is a contact caused by bumping into another rigid body
or into the world. The other type of contact is caused by
having a joint defined between two rigid bodies.

3.1 PhysX Dynamics
Nvidia PhysX is the underlying physics engine of Unreal

and USARSim. A physics engine gives an approximate sim-
ulation of rigid body dynamics (or any other physical related
system). In PhysX a simulation is executed within a scene.
A scene is basically a container for actors, joints and effec-
tors. It allows the user to simulate multiple scenes in parallel
without objects influencing each other over large distances.

The simulation of a scene is advanced one time step at a
time. Advancing a time step means the properties of the ob-
jects in the simulation change (i.e. the position and velocity
of the objects). The choice of the time-step settings is im-
portant for the stability of the simulation. In general longer
time steps lead to poor stability in the simulation, while
shorter time steps can lead to poor system performance.

The motion of a rigid body can either be constraint by
contacts (with the static world or other rigid bodies) or
joints. The PhysX constraint solver limits the motion of
rigid bodies (and satisfies the constraints) by reiterating the
constraints a number of times.

The following three important aspects of PhysX are high-
lighted: actors, materials and joints. Collision detection is
described in Section 3.3.

3.1.1 Actors
Actors define objects that are capable of interacting with

the world and other objects. In PhysX actors can have two
roles: static objects (fixed in the world reference frame), or
dynamic rigid objects. Importantly, actors can have a shape
assigned, which is used for collision detection. Static objects
(like the environment) always have a shape assigned, since
they are only used for collision detection. Rigid objects on
the other hand do not always need to have a shape. In this
case they represent an abstract point mass (can serve as
connections between joints) and the properties of the rigid
body must be assigned manually.

An object is represented by an inertia tensor Ibody and by
a point of mass M located at the center of mass. The inertia
tensor describes the rigid bodies’ mass distribution. For
our simulated Nao robot, care has been taken so that each
body part has the actual mass as specified in Aldebaran’s
documentation7.

3.1.2 Materials
Materials describe the surface properties of actors. These

properties are used when two actors collide. The result of a
collision will influence the simulation and result in the actors
bouncing, sliding, etc.

3.1.3 Joints
Joints connect two rigid bodies and limit the movement

between those two bodies. How the movement is limited
is specified by the type of joint. PhysX supports a large
number of different joints including Revolute, Prismatic and
6 Degrees of Freedom Joint (which can again be configured
to any of the earlier joints).

3.2 Joint definition and convention
As said in the previous section, a joint connects two rigid

bodies and limits the movement in some way. The type of
movement limitation results in different types of joints, like
a rotational joint, translational joint (also called prismatic
joint), spherical joint, screw joint, etc.

A rotational joint, also called revolute joint, is as the name
suggests capable of rotating around an axis. This type of
joint allows one degree of freedom (DOF) between the two
rigid bodies, namely the range of motion around the speci-
fied axis. In case of this type of joint the motion is usually
also limited to a specified range around the axis.

It is important how the relative position and orientation of
the frames is characterized. A commonly used convention
to describe this is the Denavit Hartenberg (DH) notation.
This convention uses homogeneous transformation matrices
to describe the relative positions of the frames (coordinate
systems). This convention is used in USARSim. A full de-
scription can found in the book Robotics, chapter 2.2.10, by
K.S Fu et al.[4].

3.3 Collision Detection
The Unreal Engine is designed to build multi-user games,

which means that they apply an approach called the gener-
alized client-server model. The task of networking is to keep
the world state synchronized between the different users. In
the case of generalized client-server model there is a server
that is authoritative over the evolution of the world state and
only the server knows the true state of the world. Clients
maintain an accurate local subset of the world state and pre-
dict change of the world state by executing the same code
as the server. Servers then need to send information about
the world state to the client to correct the client world state,
which is smaller than when the server would need to send
full updates. The problem of approximating the world state
between server and client is called replication by Unreal En-
gine.

This networking model implies the physics simulation runs
on both the server and client, where the physics simulation
on the server represents the true state of the simulation. The

7http://users.aldebaran-robotics.com/docs/site en/
reddoc/hardware/masses 3.3.html

server will send updates about the rigid body states to the
client. In the case of the Unreal Engine such a state con-
sists of the position, orientation, linear velocity and angular
velocity.

Each client has its own scene, which contains actors, joints
and effectors. Actors are world related objects which can
interact with the world and other actors. Actors are ticked
once per frame. During such a tick they can update their
logic, including their physics.

The PhysX engine is only one component of the Unreal
Collision engine. There are actually various physics modes
which allow actors to move around in the world, where
PhysX is one of them. Most of the other physics modes
involve simplified physics driven by game logic.

These alternative physics modes are implemented by the
Unreal Engine and do not use the collision detection sys-
tem of PhysX. For this reason each actor (with physics) has
two collision representations. One collision representations
is intended for the Unreal Engine and the other one for the
physics engine (PhysX).

The first collision representation is intended for static me-
shes in Unreal Engine. Static meshes are a type of meshes
that are not dynamic. This name does not imply they can-
not move or interact with the world. The advanced option
for static meshes is to check collisions per polygon against
the static mesh 3D model itself and is potentially expensive
to use. There is also a (simplified) collision hull option, but
this option is not used for robots inside USARSim. Addi-
tionally there is a collision representation which is intended
for skeletal meshes in the Unreal Engine. Skeletal meshes
are used for game characters, not for USARSim robots.

Figure 3: The left picture shows the PhysX collision
model, the right picture the Unreal Engine collision
model.

The second collision representation is intended for PhysX
and is created in the same way as the advanced static mesh
version. The PhysX collision model is used in the physics
simulation. However sensors will usually involve collision
detection with the first representation. For example a sim-
ulated sonar sensor uses Unreal Engine tracing to detect
objects in the world, which uses the Unreal Engine collision
model. Care has been taken (as can be seen in Fig. 3) to
keep both representations equivalent for the Nao robot.

PhysX collision detection algorithm.
The first step in collision detection is to find out which

pairs of objects could collide. This stage is usually called

the Broad Phase. In case of PhysX this is the Sweep and
Prune algorithm[3]. This algorithm detects potentially col-
liding pairs by comparing the bounding boxes of rigid bod-
ies. The starts (lower bound) and ends (upper bound) of the
bounding boxes are sorted along a number of arbitrary axes.
When a rigid body moves the bounding box may overlap
with another bounding box of a rigid body (done by com-
paring the starts and ends). If the starts and ends of two of
such bounding boxes overlap in all axes it means a pair of
possible colliding rigid bodies is found.

In the case of simulating large scenes with a huge num-
ber of rigid bodies it is not feasible to check all possible
pairs. If there are n shapes it means this algorithm would
roughly have a complexity of O(n2). Instead PhysX divides
the world in partitions and only checks pairs that are nearby
each other. Once nearby pairs of shapes are identified the
collision detection can move on to the Near Phase algorithm.
In the Near Phase the exact collisions are computed. Details
about the PhysX Near Phase algorithms are not available
because they are part of PhysX’s intellectual property.

4. EXPERIMENTS
The experiments are divided into two categories; experi-

ments which check general properties for constrained rigid
body motion and experiments that are directly related to
the proposed Nao model.

4.1 Basic Experiments
This first experiment section describes preliminary exper-

iments that do not directly involve the Nao robot. Yet, these
experiments on fundamental properties of constrained body
motion need to be performed before more advanced exper-
iments are done, because they can have major influence on
the dynamics of a robot that has to maintain its balance.

In section 4.1.1 the gravity of the simulation is verified.
Gravity is one of the main factors influencing the balance of
the robot. In section 4.1.3 the effects of the frame rate on
the correctness of the simulation is tested.

4.1.1 Gravity
This first experiment is to verify the gravity in USARSim.

The reason for this initial experiment is that changing the
gravity at a later point would affect the way the Nao behaves
due the balance of the robot changing. Another reason for
doing this experiment is because prior USARSim versions
were still using the default Unreal Engine gravity parameter,
contradicting the gravity documentation8 of USARSim.

One real meter is converted to Unreal Engine units by
multiplying the value 250 times. Additionally Unreal Engine
scales the gravity of rigid bodies two times by default (rigid
body gravity scale).

The experiment was performed by dropping a block from a
high distance and measuring the fall distance after a number
of different times. Then using the gravity formulas, the dis-
tance the block was supposed to fall was computed (expected
fall distance). This expected fall distance assumes there is
no force slowing down the falling block. Using the expected
fall distance and fall distance from the experiment the cor-
rection value can be computed. Results were averaged over
ten runs.

8http://usarsim.sourceforge.net/wiki/index.php/Gravity
Documentation

Figure 4: Experiment setup for testing gravity fall
distances.

The default setting of the Unreal Engine is -520uu with the
rigid body gravity scale set to 2.0. This setting results in the
block not falling far enough; the result has to be corrected
with a factor of 2.5. Next we used a more realistic gravity
setting based on g; the standard acceleration due to free
fall of an object in vacuum. Near the surface of the Earth
this constant is 9.8m/s2 which corresponds for the Unreal
Engine gravity parameter value of −250uu×9.8 = −2450uu
and the rigid body gravity scale set to 1.0. With those values
the object falls the expected distance.

The result of this experiment shows -2450uu is a realistic
and correct gravity setting and the physics engine behaves
as expected with regard to the gravity.

4.1.2 Simulation Timing
The second experiment is to investigate how the simula-

tion timing settings affects the simulation. Considering the
complexity of the simulation (21 DOF robot) the default
simulation timing in the Unreal Engine might not be suffi-
cient for a correct simulation.

The PhysX simulation is updated by calling the simula-
tion function with the ’elapsed time’. This function runs a
number of TimeSteps to synchronize the physics behavior
with the rendered frame rate. Longer time steps lead to
poor stability in the simulation.

For this experiment a test setup was made with several
rigid bodies connected through joints. Of these joints only
one is movable. The experiment consists of setting the one
movable joint to a specified angle and measuring the error
between the desired target angle and measured angle. In this
position the gravity will push the blocks down to the ground,
while the joints will have to try to satisfy the constraints.
This real angle is measured by taking the rotation between
the bottom and next block in the chain.

The experiment was executed for twenty different time
steps. Because we have a number of rigid bodies connected
we also added four different solver iteration count settings.
For each timestep and solver iteration count setting the ex-
periment was repeated five times. The measured error was
averaged. The setup of this experiment is similar to the rigid
bodies chained in, for example, the leg of the Nao.

In figure 5 the results are shown. The average errors for
these tests vary between 2 and 3 degrees for the default
timestep in UDK (1

50
second with solver iteration count set

to 8). Although such an error may seem small, the error ac-
cumulates through the chained joints. Making the timestep
smaller and the solver iteration higher results in a lower av-

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

Timestep (seconds)

A
ve

ra
ge

 E
rr

or
 (

de
gr

ee
s)

Iter 8
Iter 16
Iter 24
Iter 32

Figure 5: PhysX Time Step experiment results

erage error. Based on the results we used a default physics
timestep of 1

200
second, combined with a solver iteration

count of 32.

4.1.3 Frame rate and simulation correctness
Another important aspect of a simulator is how well it

runs on different machines. This might not seem so trivial
because USARSim uses UDK, which is primarily intended
as games development kit. The main issue this choice causes
is that the update logic is tied to the frame rate at which the
games engine is running. In other words actors are ticked
once per frame and during this tick they update their logic.
The primarily logic that is affected by the frame rate can be
summed up as follows:

1. USARSim can only receive commands from the exter-
nal control at most once per frame. These command
updates include the updated joint parameters for the
Nao, which must be sent at a high rate to execute the
correct movement. Sending more than one command
per frame will result in the commands to be processed
all at once in a frame, making all commands except
the last received one useless.

2. USARSim only sends status updates at most once per
frame. These status updates include the current joint
angles for the Nao.

3. PhysX only simulates the physics at most once per
frame. Although it always executes the same number
of time steps within a physics simulation call, it still
means it is not possible to update the joint parameters
between frames.

To find out the effects of the frame rate on the correctness
of the simulation a simple experiment was performed. The
HeadYaw joint of the Nao performed an angle interpolation
at different fixed frame rates and the sensor HeadYaw an-
gle values were measured by the controller. For reference
the HeadYaw trajectory of a real Nao was also added. The
results are plotted in Fig. 6.

The blue line shows the desired HeadYaw angle sent to
the Nao. The red line shows the trajectory of the HeadYaw
angle for a real Nao. At 5 and 2 frames per second (FPS)
the effects of a low frame rate become clearly visible. The
trajectories become jagged and there is a delay between the
desired and real angles. At 25 and 50 FPS (the yellow and
green line respectively) effects of a lower frame rate are al-
most fully gone. When looking closer at both results it is

0 2 4 6 8 10
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Seconds

R
ad

ia
ns

Command
Real Nao
FPS 50
FPS 25
FPS 5
FPS 2

Figure 6: The effects of a lower frame rate become
visible as jagged lines and a delay between the de-
sired trajectories appears.

still possible to note differences between 50 and 25 FPS in
terms of smoothness, although the measured angle is a very
acceptable representation of the simulated angle.

4.2 Advanced Experiments
In this section experiments are done with the simulated

and real Nao. The results of these experiments are compared
to see how close they resemble each other. The experiments
all consist of the combined movement of multiple joints. A
more simple version of this experiment would be the move-
ment of a single joint (for instance turning the head). Such
simple experiments are performed and show close correspon-
dence. The more advanced experiments are more interest-
ing in the sense that they show sometimes unexpected re-
sults due to the interaction of the constraints in between
joints. Alternative advanced experiments would be kicking
the ball and collisions between two robots, as demonstrated
by Zaratti et al.[11] for the four legged Aibo robot.

In section 4.2.1 a fixed motion is executed by both the
real and simulated Nao. The center of mass is visualized
and the joint angles are recorded for several runs, averaged
and compared. Section 4.2.2 includes several walking exper-
iments. The walking behavior of the real and simulated Nao
are compared by looking at the walk distances, joint angles
and walk trajectories.

4.2.1 Tai Chi Chuan
In this experiment the real and simulated Nao were set to

perform the Tai Chi Chuan dance. (i.e. play a sequential
set of commands). During this animation the Nao first bal-
ances on one leg by stretching the other leg and keeping the
arms in a specific position to keep balance. The animation
repeats this motion for the other leg. Playing this dance is
interesting for several reasons.

First is to perform the animation correctly the simulated
Nao must maintain balance. The balance of the Nao is
largely determined by the center of mass. An incorrect cen-
ter of mass during movements can cause the Nao to be un-
able to maintain balance and as a result fall down to the
ground. To correctly perform this in the simulation the cen-
ter of mass must be above the supporting leg to ensure bal-
ance (visualized as the green sphere in Fig. 7).

Figure 7: Nao performing the Tai Chi Chuan dance.
The center of mass of the Nao is visualized as the
green sphere.

Second because the motion is a fixed animation the exper-
iment can be repeated for several runs, so the results over
several runs can be averaged and compared against the joint
angles between the simulated and real Nao. Finally, this
animation is used by the manufacturer Aldebaran as diag-
nostic behavior; as long as a Nao is able to execute the Tai
Chi Chuan no major malfunction in the motors and gears is
expected.

0 10 20 30 40 50

0

10

20

30

40

Seconds

D
eg

re
es

Real
Simulated
Difference

Figure 8: Joint angles and standard deviation of
the RAnkleRoll joint while executing the Tai Chi
Chuan dance. Results were averaged over ten runs.
The red line shows the angles trajectory of the real
Nao, while the green line shows the same for the
simulated Nao. The blue line shows the difference
between the two angles trajectories.

Fig. 8 shows the average joint angles for the RAnkleRoll
joint. This joint is interesting because it shows a difference
in the angles trajectories of the real and simulated Nao.

The command angle around 22 seconds is about 45 de-
grees. The real Nao joint is unable to follow the command
angles. Most likely this is caused by the movement of other
joints, resulting in a force being put on the parts around the
joint. When sufficient force is put on the joint it will be un-
able to maintain the correct position (due to the motor not
putting enough force in maintaining that position). In the
case of the simulated Nao RAnkleRoll joint there is either
not enough force pushing on the joint or the force of the
joint used to maintain the position is too high.

4.2.2 Walking
Realistic walking comparable to the walking behavior of

the real Nao is crucial in a robot simulation. During a
RoboCup match a robot will have to walk a large part of
the time.

For this experiment several walking and turning tests were
done for the simulated and real Nao using the included walk
engine of the Nao provided by Aldebaran. This walk engine
uses a simple dynamic model inspired by work of Kajita et
al.[6] and is solved using Quadratic programming[10]. When
walking at full speed it can reach a velocity of 9.52cm/s and
42deg/s when turning.

In the first test the Nao was set to do a single full step
with the left leg. The joint angles of the real and simulated
Nao were recorded and compared.

Fig. 9 shows the average joint angles of the LKneePitch
joint (i.e. the left knee) with standard deviation over ten
recordings of the real and simulated Nao. In contrast to
section 4.2.1 the standard deviation for the real Nao is lower
than the simulated Nao. The same behavior is also seen for
the standard deviations of the other joints.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

10

20

30

40

50

60

Seconds

D
eg

re
es

Real
Simulated
Difference

Figure 9: Average joint angles with standard devia-
tion of the LKneePitch joint while executing a single
step. Joint angles were averaged over ten runs for
the real (red) and simulated (green) Nao. The blue
line shows the difference between the joint angles
trajectories.

For both the real as simulated Nao the forward walking
was recorded ten times. The real Naos all walked around
the expected distance (0.48 meter), while the simulated Naos
only reached about 0.37 meter. This result for the simulated
Naos could be tweaked (for instance by enlarging the motor
force), but this makes the robot less stable.

In the third test the Nao was set to turn at full speed for
five seconds. This means the Nao should turn about 210
degrees. This test was again executed ten times for the real
and simulated Nao. During this test the real Nao reached
the full 210 degrees turning, while the simulated Nao only
reached about half.

In the last experiment the Nao was set to walk in a circle.
Commands were generated by making one real Nao walk in
a circle with a radius of 60cm. These commands were then
replayed by the real and simulated Naos. Fig. 11 and 10
shows the path trajectories of three different real Naos and
a simulated Nao walking in a circle using the same walking
commands. Each real Nao executed the walk five times,
while the simulated Nao was set to repeat the walk ten times.

Most of the real Naos successfully walked a circle like
shaped path when replaying the commands, although there

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

Pixels

P
ix

el
s

Figure 10: Trajectory of the simulated Nao walking
in a circle with the same diameter as the white circle,
repeated ten times for each Nao.

is a lot of variation in the paths.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

Pixels

P
ix

el
s

BugsBunny GT
BugsBunny
Duncan
Henk

Figure 11: Trajectory of three different Naos walk-
ing in a circle, repeated five times for each Nao
(recording using camera ground-truth).

On the other hand none of the simulated Naos were able
to complete the circle. Considering the results of the forward
walking and turning of the simulated Naos this is not totally
unexpected.

5. FULL APPLICATION EXPERIMENT
To test how well the performance is for real applications,

the source code of the Dutch Nao Team[9] has been tested
with USARSim.

This application not only involves walking around, but
also perception and dedicated behaviors like kicks and stand-
ing up.

To test real applications an intermediate program has
been created, UsarNaoQi, which works as a proxy server,
converting NaoQi messages in USARSim messages and vice
versa. NaoQi is the framework provided by Aldebaran and
allows the user to control the Nao in various programming

languages (C++, Python, C# or Urbi).
The source code of the Dutch Nao Team is written in

Python, and could be directly applied. The code was fully
functional, the robots could standup, position themselves
on the field, locate the ball and kick the ball. The only
observed difference is in the approach of the ball; the Dutch
Nao Team code makes a number of small steps to get in a
good position behind the ball. In simulation those steps are
too small; the Nao needs too much time to position itself.

The experiment was performed by putting a number of
Nao robots in the simulated RoboCup environment. The av-
erage frames per second (FPS) was recorded for two different
scenarios. In the first scenario the Nao is simply standing
and doing nothing. In the second scenario we executed the
Nao with robot controller from the Dutch Nao Team. The
controller was set in play mode. In this mode the Naos will
walk around scanning for the ball.

The experiment was performed on a computer with an
Intel iCore 7 920 processor and an AMD Radeon HD 6850
graphics card. USARSim was used in combination with the
UDK December build 2011. UsarNaoQi was set to use a time
step of 10ms; the Naos in USARSim sent status updates at
a rate of 100 times per seconds (joint angle updates).

Table 1 shows the frame rate of the simulation with dif-
ferent numbers of Naos. The base FPS shows the frame rate
when the Naos are standing on the ground doing nothing,
while FPS DNT shows the Naos in the play state of the
game.

Number of Naos base FPS FPS DNT
0 320 320
1 120 110
2 100 55
3 65 30
4 50 10

Table 1: Frame rate results with UsarNaoQi time
step of 10ms

Without any Naos the scene is rendered at a FPS of 320.
With one and two Naos the FPS drops to around 110 and
55 respectively, which is enough for running a decent sim-
ulation. With three Naos the FPS drops to 30, which is
still acceptable (see section 4.1.3). With four Naos the sim-
ulation frame rate drops to 10 FPS, resulting in incorrect
movements.

To find the performance bottlenecks in the simulation var-
ious profiler tools provided by UDK are used (PhysX statis-
tics and UnrealScript code profiler). Using these tools re-
veals that when simulating four Naos half of the frame time
is spent in the physics. The remaining part of the time goes
to the sonar sensor (tracing), receiving and processing mes-
sages in the bot connection with the controller, sending the
current status to the controller (joint angles) and updating
the current joint angles.

6. CONCLUSION
In this paper we demonstrated that the simulation of the

Nao in USARSim resembles reality quite closely. Our cur-
rent model is usable in practice on the condition that one
keeps in mind the limits of the method; like the walking
behavior and the scaling issues with the number of Naos.
The combination of Unreal/USARSim provides several ad-

vantages over other robot simulators. The simulation is at
such a level that transparant migration of code between real
robots and their simulated counterparts is possible. In this
paper this is demonstrated with an intermediate program,
UsarNaoQi, which enables access to the simulated robot
with its native interface. Using this interface several experi-
ments have been performed with both the real and simulated
robot. The experiments consisted of movements where most
of the 21 DOF were needed to maintain balance, which al-
lowed us to monitor unexpected correllation between joints.
The model developed for this humanoid robot demonstrates
that robots with complex dynamics could be realistically
modeled inside USARSim, which could be the basis of the
introduction of other models of complex robots into USAR-
Sim like two-arm manipulators and/or service robots.

7. ACKNOWLEDGMENTS
The authors like to thank Hayley Hung for proofreading

the manuscript. Part of the research is funded by the Dutch
IIP Cooperation Challenge ’Sensor Intelligence for Mobility
Systems’.

8. REFERENCES
[1] D. Baraff. An introduction to physically based

modeling: rigid body simulation I - unconstrained
rigid body dynamics. SIGGRAPH Course Notes, 1997.

[2] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and
C. Scrapper. Usarsim: a robot simulator for research
and education. In Proceedings of the International
Conference on Robotics and Automation (ICRA’07),
pages 1400–1405, 2007.

[3] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi.
I-collide: An interactive and exact collision detection
system for large-scale environments. In Proceedings of
the Symposium on Interactive 3D graphics, pages
189–196. ACM, 1995.

[4] K. Fu, R. Gonzalez, and C. Lee. Robotics: control,
sensing, vision, and intelligence. McGraw-Hill, 1987.

[5] A. Held. Creating an abstract physics layer for
simspark. Studienarbeit im Studiengang Informatik,
Universität Koblenz-Landau, November 2010.

[6] S. Kajita and K. Tani. Experimental study of biped
dynamic walking. Control Systems Magazine, IEEE,
16(1):13–19, 1996.

[7] O. Michel. Cyberbotis ltd - webotsTM: Professional
mobile robot simulation. International Journal of
Advanced Robotic Systems, 1(1):39–42, March 2004.

[8] T. Röfer et al. B-human team report and code release
2011. Published online, November 2011.

[9] C. Verschoor et al. Dutch nao team - code release 2011
and technical report 2011. Published online,
Universiteit van Amsterdam, October 2011.

[10] P. Wieber. Trajectory free linear model predictive
control for stable walking in the presence of strong
perturbations. In Proceedings of the International
Conference on Humanoid Robots, pages 137–142, 2006.

[11] M. Zaratti, M. Fratarcangeli, and L. Iocchi. A 3D
simulator of multiple legged robots based on
USARSim. In Robocup 2006: Robot Soccer World Cup
X, volume 4434 of Lecture Notes in Artificial
Intelligence, pages 13–24. Springer, 2007.

