
Application of Traversability Maps in the Virtual Rescue competition

Maarten van der Velden Wouter Josemans Bram Huijten Arnoud Visser

Abstract— This paper describes an exploration behavior
which has been designed to explore large indoor areas. While
exploring, traversability information is saved onto a layer in
the map. This information is used in an A* algorithm has been
implemented and is used for path planning. This approach
allows the robot to learn from its experience and to find in
the long run the “ideal line” to driving through the indoor
environment.

I. INTRODUCTION

Something that robots have to deal with continuously
while they move around is the terrain they drive on or walk
over. Some types of terrain are very accommodating to a
robot, while others impede the robots in its tasks or can even
prove to be hazardous to move on. Usually, most sensors are
dedicated to detecting obstacles. This means that they usually
“watch” for obstacles at some height in a line parallel to
the ground. Only in some cases are sensors used to look
at the terrain itself. An example of such use is found in
the autonomous vehicle Stanley [1], which uses laser range
finders to analyze the terrain ahead.

It would be ideal; however, if robots that have not been
equipped specifically for the purpose of measuring terrain
quality could provide some kind of indication of how well
the terrain can be traversed. These robots could contribute to
building a map of the terrain, which could then be used to
plan a path from one point on the terrain to the next. This
path can then be safely followed by the robot, and hopefully
it will allow the robot to reach its goal faster than it would
by using traditional path planning.

What we would like to research is: does using a
traversability map improve the efficiency in which a robot
can complete its tasks? We hypothesize that this is the case.
The robot should be able to avoid terrain that would slow it
down significantly and the robot should be able to find some
kind of “ideal line” when driving through e.g. a corridor. This
ideal line should then minimize the loss in driving speed due
to directional changes.

This study is performed in the USARSim simulator [2], the
environment used in the RoboCup Rescue Simulation League
virtual robot competition1. This simulation environment is a
research framework used to simulate robots and sensors on
a physical realistic level. In Fig. 1 a screenshot of a world in
this simulation environment is given. There are several types
of robots the user can pick for his simulation. In this study
a P2AT robot and the DM-Mobility 250 map were used.

Intelligent Systems Laboratory Amsterdam, Universiteit van Amsterdam,
Science Park 105, 1098 XH Amsterdam, The Netherlands

1USARSim can be downloaded from http://sourceforge.net/projects/
usarsim

Fig. 1: Screenshot of one of USARSim’s competition worlds.

Advantages of the USARSim environment are:
• Physics simulation: the framework makes sure that

robots fall down when they drive over a cliff.
• Realistic simulation: the robots and their sensor in the

simulation are just as imperfect as real life robots; their
sensors contain noise and their movements are often
an approximation of the requested movements due to
friction between wheels and ground.

• Real-time, realistic visual feedback: you can follow the
robot visually as it drives around the map, or you
can float around the map at your leisure to plan a
challenging route for the robot.

• Reproducible results: the framework allows the devel-
opment of robot control algorithms under controlled
circumstances.

II. RELATED WORK

Howard et. al [3] already used traversability maps for a
P2AT, yet the terrain was the JPL Mars Yard with many small
obstacles. The traversability was not based on experience,
but on extracted from characteristics extracted from visual
imagery data. The traversability map was converted into
gradient fields, which was used in a path-planning algorithm
to select both the optimal path and speed.

Ye and Borenstein [4] estimated the traversability by
converting an elevation map, obtained by a laser scanner.
Each terrain patch was analyzed both on roughness and
slope. The traversability information was directly used inside
steering and speed control. No path-planning was performed.

Seraji [5] estimates traversability information both from
experience and long range sensors. This information is stored
in two different maps (local and global). The robot is
controlled by path-planning, but integration of multiple turn-



and drive-behaviors. The applicability of the approach is
tested in a 2D-simulation environment.

Traversability maps are not only used in space applica-
tions. A recent application was by Crane et. al [6], who
used traversability grids to navigate their vehicle during the
DARPA challenge. They were able to use a detailed grid
while maintaining real-time performance.

III. METHOD

This section is divided into three parts.

A. Exploring traversability

The problem with determining traversability in an un-
known environment is that the robot does not know on what
underground it is moving. In the context of this study we do
not consider options to determine the quality and type of the
terrain ahead of the robot. So the robot can only determine
the traversability on terrain where it has actually driven.

Because many environments made for humans consist of
rooms, and robots will often be used in environments created
for humans, we have developed a behavior that is optimized
for large, room-like structures: the first thing the robot does
is drive straight ahead until it encounters an obstacle, it then
stops and turns until the way ahead is clear. It then drives
again until it encounters another obstacle. If no strange things
are encountered, this will result in a completed quadrilateral.
The robot will know that a quadrilateral has been completed
when it encounters a place where it has already stored
traversability on the map.

The robot also stores the information on the points where
it has turned so when it knows a quadrilateral has been
completed, it knows the corners of the quadrilateral. Let
us name these corners with digits: 1, 2, 3 and 4. 1 is
the point where the robot currently is and the rest of the
points are numbered counter-clockwise. The robot can easily
calculate the points on the middle of each of the sides of the
quadrilateral. Let us name these points with letters A, B, C
and D. Point A lies between 1 and 2, point B lies between 2
and 3, point C lies between 3 and 4 and point D lies between
4 and 1. The robot will now start to explore the space inside
the quadrilateral by following a path between these points in
the following order:

1(start)-3-A-4-B-1-C-2-D-3(end).
This results in the pattern indicated in Fig. 2:
Because we will interpolate the measured traversability

data on the map, this will be sufficient for all but the largest
spaces. For small quadrilaterals a few traverses are sufficient.
We therefore calculate the number of traverses to be made by
dividing the distance between 1 and 3 by a constant factor.
In our test environment this factor was 2500, but this can
be tweaked to prefer more thorough exploration. In our test
environment the medium sized square is traversed 4 times
before considering the terrain sufficiently explored.

Another option for exploring the inside of the square was
also considered: starting in the center and then creating a
search spiral, as often used in outdoor search and rescue
missions.

Fig. 2: Search pattern for an ideal square environment.

This would result for our ground robot a path with many
sharp turn and because the turning speed of the robot was
very low, the time penalty compared to the current behavior
would be severe, and this was therefore not implemented.

In the behavior we developed, the robot switches to
frontier exploration when the last traversal has been made.
Frontier exploration for these robots is not implemented in
the classical way [7], but with the beyond frontier algorithm
[8]. In this algorithm a selection is between a small number
of frontiers, based on the distance to those frontiers and
the information gain available beyond those frontiers. This
will result in the robot planning a path exiting the room and
entering the hallway. If it enters another large room, it should
switch back and restart exploring using the method described
above.

B. Measuring and mapping

The goal of the exploration behavior is of course to
gain information considering the traversability of the terrain
explored. In this study the goal was to collect this data
without using visual imaging data. We made an estimate of
the traversability of a location by comparing the forward
speed the robot is commanded to make (by the motion
algorithm currently running), with an estimation of the actual
speed the robot makes using location sensors (which can be
any one of odometry, GPS, etc.).

The formula used to define the relation between both
speeds and the traversability is:

T (x) =
vREAL(x)
vGIV EN (x)

(1)

where T (x) is the traversability at location x, vREAL is the
estimated real speed and vGIV EN is the given speed of the
robot at location x.

The estimation of the traversability could be enhanced by
using more parameters, such as data from the robot’s inertia
sensors, but for the course of this study this enhancement
was out of scope.



Using the formula above, the robot will slowly aggregating
traversability data. This information is stored as a function
of the location on the map. An important design decision is
the granularity of this storage. With a high level of detail
represents only the trajectory driven by the robot.

It would be better to extend this information and to make
an estimation of the traversability of nearby unvisited places.
It is important to spread this information not too far. A logical
boundary is to stop the spread at obstacles visible to the
robot. These obstacles can be accurately detected by a laser-
range scanner.

Making estimations of unvisited terrain in between the
robot and the known obstacles involves a more sensible
representation of traversability with two layers. Before, the
traversability value was indicated as a number between 0 and
255 in the red channel of the map. Additionally, storage is
needed to indicate the certainty of the estimate. The green
channel was used to indicate certainty of the traversability
value.

Following this new approach, the traversability values
generated at the locations where the robot really has been
get a certainty value of 255 (maximum), while the certainty
of the 0 traversability values of obstacles is set at 40%. In
this way measuring errors in the laser-range scanner or in the
simulation environment won’t be overestimated, only when
an obstacle is ’sighted’ a couple of times the certainty will
be 100%.

Now the estimation of traversability of unvisited terrain.
On default, all locations we don’t have any data on will have
a certainty of 0 and will therefore not be calculated. All area
that becomes within range of the laser-range scanner (except
of the obstacles) and the locations already known will get a
certainty and a traversability of 50% both. These values are
not changed with more scans, because you don’t know more
when you see ’no obstacle’ (because that’s exactly what the
laser-range scanner ’sees’) twice instead of once, when it’s
still far off.

The information, together with the obstacles is saved to a
layer in the map (note that the actual trajectory of the robot
was is saved in another layer).

So there are two layers, but the information stored on
these layers is rather sparse. To improve the usability of
this information an interpolation is made by means of a
convolution with a Gauss of the visited places over the map
with traversability of the area. This results in the following
image:

In this way the area surrounding places already visited
changes color towards the certainty and the mobility of the
location visited. Doing this, a gradient is being made showing
rather detailed what the mobility at a certain location on the
map is and with what certainty it can be stated.

To show the traversability at known places we used the
existing infrastructure in USARSim to make a mobility layer
in the existing manifold map. This makes it rather easy to
make the collected data available for other robots at the same
time in the same environment or to save the information to be
used by robots at a later time. In this way the traversability

Fig. 3: Interpolation outside the driven trajectory by means
of a convolution with a Gauss.

of a map is slowly learned. How robots can benefit from this
information is worked out in the next section.

C. Path Planning

Our path planning approach is based on searching through
a state space represented as a graph. Graph search is a well
known technique, although it is here applied in a realistic
setting. In this setting there are several issues that are not
directly related to graph search, but need to be addressed for
a robust performance.

In order to use the data in the traversability map, we
augment each node in our graph with the corresponding
traversability index. We use this traversability index to de-
termine the cost of passing through the node. A low index
means a high cost and a high index means a low cost.

First, there is the issue of having to plan a path to a
target in terrain that we have not explored yet. In this case,
a portion of the path will always have to be planned with
unknown traversability (however, obstacle detection can be
used). This means that we will not find the most efficient
path in this case. We can, however, add the information
gained from driving over this unknown piece of terrain to
our traversability map, so that the next time we need to find
a path to the target we will have more knowledge about the
terrain.

Another issue would be how to weigh the cost of taking
risks. For instance, look at the situation in Fig. 4:

Fig. 4: Situation where taking a safe route will result in a
detour.

Here, the red area is terrain for which the traversability is
known (the image is not a traversability map, but a binary
form of the confidence level). The robot has to plan a path
from point A to point B.



Obviously, the shortest path between A and B would be
driving in a straight line. The terrain between A and B could
be perfectly safe to drive over. Then again, it might also be
terrain that is completely untraversable. The issue here is
whether to be safe and take the longer route over known
terrain or take the risky shorter path. This issue is similar
to the ”exploration versus exploitation” issue that is often
addressed in the field of reinforcement learning.

In order to incorporate the choice between these two
approaches into our framework, we decided to assign all
unknown terrain some traversability index κ. In order to
choose a reasonable κ, we let its value range between two
extremes. If the robot is performing a task that requires it
to optimize on speed, then κ should be close to 1 (a κ
close to one means that all unknown terrain is assigned a
high degree of traversability). On the other hand, if safety
is the top priority of the robot, then it would make sense
to choose a low κ (unknown terrain will have high cost). In
our implementation, we have given the robot three behavioral
modes; a conservative, a progressive and a balanced mode.
The conservative mode maximizes the exploitation of current
knowledge and prioritizes robot safety. The progressive mode
maximizes robot speed and the balanced mode balances
speed and safety.

Another important aspect is that κ depends on is the
percentage of the terrain that we have explored. If we have
explored only a small fraction of the total terrain, then we
know relatively little about the traversability so we do not
want to rely on this knowledge very much. In this case, we
choose a high κ. On the other hand, if we have explored a
lot of the terrain, then we can say with a great degree of
confidence that our knowledge about the terrain is reliable,
so we should award unknown terrain a lower κ. The fraction
of the total terrain we have explored we will call e, with
0 =< e =< 1. The exact definition of κ, depending on the
mode, is as follows:

κ =

{
1− e

ε , if e < ε;
0.05, if e ≥ ε.

Conservative mode (2)

κ = 1− e
2 Progressive mode (3)

κ = 0.3 Balanced mode (4)

ε in this case is a small constant; the value of this constant
will have to be determined by testing. We have implemented
the A* algorithm to perform graph search. A* assigns a cost
to every node in the graph. This cost f(x) is calculated as
follows:

f(x) = g(x) + h(x) (5)

Where g(x) is the total cost from the start to the current
node and h(x) is the estimated cost of going from the current
node to the goal. This algorithm is implemented by sorting an
priority queue2 with the distance measure f(). A description

2The implementation provided by Rasto Novotny is used. This imple-
mentation is published for download in December 2005 on http://www.
developerfusion.com/code/5052/priority-queue-net/.

of the A* algorithm is shown in below:

Data: the traversability map m, the start point s, the
target point t

Result: the optimal path p from location s to the
location t

closed = EmptyList();
open = EmptyPriorityQueue(s);
while Not IsEmpty(open) do

c = HighestPriority(open);
if h(c, t) < ε then

Return p(c);
end
if Not IsMember(closed,c) then

closed.Add(c);
for each neighbor(c,n) do

dn = g(s, c,m) + h(n, t);
p(n) = p(c) + n;
QueueSortAdd(open,n,dn);

end
end

end
Return EmptyList();

Algorithm 1: The A* algorithm for the path-planning
with the real travel cost g() calculated on the traversabil-
ity map, and the heuristic travel cost h() calculated with
the Euclidian distance.

A general issue in A* graph search is finding a good
heuristic h(). In path planning through some space this
heuristic is usually the Euclidean distance between a node
and the goal. In our implementation, we use this heuristic as
well. Our real cost g(), however, is not simply the traversed
distance from the start to the current node but the following:

g(x) =
distance(start, x)
traversability(x)

(6)

As the traversability index is a number between 0 and 1,
the real cost will always be equal to or greater than simply the
distance. This means that our heuristic never overestimates
the cost, and is therefore admissible (A* only finds the
optimal path if the heuristic is admissible.)

IV. RESULTS

In this section the individual parts are demonstrated and
the integrated exploration behavior. The system measures and
stores traversability data and this information is used in the
path planning algorithm. Unfortunately, no explicit compar-
ison of the navigation with and without using traversability
data is performed. We hope others will continue our efforts
to determine the gains to be had when the traversability
information is used in the way we think it should be.

Other challenges yet to be answered could be how well
the traversability is captured and whether more data (from
other sensors) can be used to measure traversability? There
are also a number of constants used in our code for which
the optimal values have yet to be determined. For example



Fig. 5: Resulting search pattern for a square environment.

what is the optimal sigma to be used in the blurring to create
the traversability maps? What are the best values to be used?
Can these be predicted?

Fig. 6: Known traversability saved along the path of the
robot.

Fig. 7: Traversability map after interpolation of known
traversability.

But perhaps most interesting from a ’learning’ perspective
is to extend the implementation by using more robots simul-
taneously to gain information faster, and to make better use
of the information that is already available.

A quite important point we didn’t manage to get to the
bottom of, is how well the USARSim environment simu-
lates the physics needed to be able to correctly determine
traversability, since even on slopes, the robot would return
the same traversability values as on a level surface.

Fig. 8: A path planned using our A* implementation.

V. CONCLUSION

An advantage of this experience based approach is that it
does not require very complex terrain models. In fact, the
robot does not need to know anything about the terrain at
all other than how fast it is moving over it. This means that
this approach should work for any kind of terrain, be it in
water, air, the desert or the red sands of Mars.

Acknowledgements

We want to thank the other members of the Amsterdam
Oxford Joint Rescue Forces3 for providing us with an exten-
sive framework to experiment with.

REFERENCES

[1] S. Thrun et al., “Winning the DARPA Grand Challenge,” Journal of
field Robotics, vol. 23, no. 9, pp. 661–692, September 2006.

[2] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper, “Usarsim:
a robot simulator for research and education,” in Proceedings of the
IEEE Conference on Robotics and Automation (ICRA’07), 2007, pp.
1400–1405.

[3] A. Howard, B. Werger, and H. Seraji, “Integrating Terrain Maps into
a Reactive Navigation Strategy,” in Proceedings IEEE International
Conference on Robotics and Automation, (ICRA ’03), vol. 2, September
2003, pp. 2012 – 2017.

[4] C. Ye and J. Borenstein, “T-transformation: Traversability analysis for
navigation on rugged terrain,” in Proceedings of the SPIE Defense and
Security Symposium, Unmanned Ground Vehicle Technology VI (OR54),
April 2004.

[5] H. Seraji, “New Traversability Indices and Traversability Grid for
Integrated Sensor/Map-Based Navigation,” Journal of Robotic Systems,
vol. 20, no. 3, pp. 121–134, February 2003.

[6] C. D. Crane III et al., “Team CIMAR’s NaviGator: An unmanned
ground vehicle for the 2005 DARPA grand challenge,” Journal of Field
Robotics, vol. 23, no. 8, Augustus 2006.

[7] B. Yamauchi, “A Frontier Based Approach for Autonomous Explo-
ration,” in Proc. of IEEE International Symposium on Computational
Intelligence in Robotics and Automation, July 1997.

[8] A. Visser, Xingrui-Ji, M. van Ittersum, L. A. González Jaime, and L. A.
Stancu, “Beyond frontier exploration,” in RoboCup 2007: Robot Soccer
World Cup XI, ser. Lecture Notes in Artificial Intelligence, vol. 5001.
Springer-Verlag, July 2008, pp. 113–123.

3http://www.jointrescueforces.eu


