
Mid-Term report
”Establishing bonds for the advancement of the

Rescue League”

Iván Riaño1 and Arnoud Visser2

1 Universidad Distrital Francisco José de Caldas, Colombia
2 Universiteit van Amsterdam, Science Park 904, Amsterdam, The Netherlands

Abstract. The RoboCup Rescue Simulation League aims to benchmark
the intelligence of software agents and robots on their capabilities to
make autonomously the right decisions in a disaster response scenario.
The UvA Rescue and Distribot team have come together to work co-
operatively to support this aim in two ways. One aspect is to advance
the popularity of this League by presenting the background of the scien-
tific challenges outside the direct RoboCup community. Another aspect
is to build the code base which allows to include state-of-the-art ma-
chine learning techniques, such as reinforcement learning, evolutionary
computing and Markov decision processes. 3

1 Introduction

The challenge for multi-agent decision as posed by the RoboCup Rescue Sim-
ulation League is nicely described by Jennings [1]. The number of tasks to be
performed outnumbers the resources of the emergency responders. Further, the
time needed to finish the task is not constant, but differs based on the circum-
stances. In addition, the number of tasks to be performed is not constant; tasks
can become obsolete and new tasks can appear which means that the decision
making has to be performed online. It is also a real multi-agent problem, the
agent do not have the same capabilities and have to cooperate to be successful.
Yet, the article is also quite critical:

”Unfortunately, the problems posed by the simulator and solutions to
these have rarely, if at all, been defined, formalized and solved.”

Although the RoboCup Federation sponsored short-visit does not have the
ambition to define, formalize and solve all problems posed by the RoboCup
Rescue simulator, we like to demonstrate how several state-of-the-art machine
learning techniques, such as reinforcement learning, evolutionary computing and
Markov decision processes, could be used to make optimal decisions for emer-
gency responders.

3 This is a progress report of a short-time visit sponsored by the RoboCup Federation



1.1 Explore, Extinguish and Refill

The fire brigades are responsible for extinguishing the fires that are spread in the
disaster space. Selecting the fire zones is a prediction problem; the fire brigades
must estimate the fire propagation, taking into account the properties of the
building on fire, and the surrounding buildings, properties such as the construc-
tion method and the specifications of how much it is burning.

Every cycle the agent take decision and act, they can move, explore the disas-
ter space, sense information of surroundings and receive information broadcasted
by their teammates. The resultant behavior is the key to success when trying to
reduce the human and material losses that may be caused by a disaster.

If one looks at the possible situations that may arise during a disaster, one
finds that some events must be addressed before others. For instance, if a burning
building has people inside, this place ought to be attended before a burning
empty building. Depending on the situation a different priority value must be
assigned, this value is decisive in determining the behavior of the agents. Just
looking the possible set cases is clear that determining priority values is not an
easy work.

As answer to the problem presented in the previous paragraphs of this doc-
ument will be worked out in the following sections. First you will find the Con-
trolled Actions and his expected impact on the agents behavior, next is presented
the modified functional structure of the fire brigade agent, the next section in-
cludes two approaches for this multi-agent optimization problem; a Differential
Evolution Algorithm and a Reinforcement Learning method. It would be in-
teresting to see the difference in performance of those two methods, yet this
comparison will be made in the final report.

1.2 Control actions

The priority assignment problem defines the mayor agent states, and based on
this priority the fire brigade can chose one building and decide if will explore
from outside, extinguish, explore from inside or refill his thank. The refill action
is only possible if a refuge was chosen. So combining actions with buildings
results in a big set of possible behaviors, which makes for instance the learning
process difficult.

1.3 Agents Structure

In order to the control actions could govern the agent, the normal structure of
the fire brigade was modified and divided in 5 basic sequential blocks; Sense,
Identify, Decide, Action and Communicate, as illustrated in Fig. 1.

The Sense block is responsible of receiving the new environment disaster
space information and pre-process it to allow his use in following stages.

On the Identify block the previous received information is used to update
the agent model of world and for instance the path planning algorithm (was



Fig. 1. Agents Structure

implemented a simple greedy algorithm to reduce the computational load) and
blocked roads map.

At the Decide block was implemented the priority assignment algorithm and
the actions decision algorithm; together define the next action commands to the
kernel.

Inside the Action Block the priority list and the action is chosen and trans-
lated in action messages for the Kernel.

Finally the new environment information and the task on going is share on
the Communication block. Note that the communication’s structure follows an
all-to-all broadcast scheme.

2 Differential evolution

The decisions are modeled with a Fuzzy Basis Function Expansion model [2].
The fuzzy membership function is a Mixture of Gaussian whose means, variances
and weights were tuned using a differential evolution algorithm, as illustrated in
Fig. 2. The differential evolution algorithm was chosen due to its advantages in
performance and operation in optimization problems [3] compared to classical



evolution algorithms [4,5]. The main characteristic of a Differential Evolution
Algorithm is that the new generation is generated thanks to the parameters of
the best individual and the difference in chromosome of two random individuals.

Fig. 2. Flowchart of the implemented differential evolution algorithm.

The Mutation number is the relation that determine the probability that
have any individual to start the mutation process in which his chromosome
could change, the Crossing number is a relation that determine the probability
that have any part of the chromosome of an individual to change thanks to the
characteristic of the best individual of the current generation and two others
random individuals. These and other main characteristics are shown in Table 1
and Table 2 and described in the following sections.



population size 10

Generations 50

Mutation rate 0,4

Crossing probability 0,4

Fitness function Score
Table 1. Differential evolution algorithm characteristics.

Fuzzy Functions Gaussian

Inputs 7

Individuals 10

Outputs 7
Table 2. Fuzzy system characteristics.

2.1 Chromosome

Chromosome contains the characteristics of each individual, it is divided in two
parts one for each evaluation (priority, and action) and each part into three
sections: means, deviations and centers. Means and deviations are equal length
to the product between the number of rules and the number of inputs. The
center section is equal length to the number of rules. The parameters of the
chromosome are represented with real numbers which are randomly initialized
between 0 and 1, this in order to cover the whole spectrum of solutions.

2.2 Mutation

The mutation vector is generated from three individuals of the current gener-
ation, one of them is the best individual of the previous generation and the
other two are randomly selected, all selected individuals are different in order to
propagate the characteristics of all vectors [3].

2.3 Recombination

The recombination is performed individual by individual and is only possible if
the fitness function of the mutated individual is better than the current individ-
ual.

2.4 Input Parameters

The input parameters are normalized representations of the environment and
the agent characteristics, were selected taking into account the importance of
the environment information that poses and previous experiments:

Tank Level: Quantity of water on board.
Buildings Area: Ground area of the buildings.



Distance: Euclidean distance between the agent and the building.
Temperature: Reported temperature of the building
Fieriness: State of the building that represent the fire state
Neighbors Fire energy: Fire energy of the adjacent buildings

The latter four parameters depend of the moment when the observation of
the burning building was done. The latter two parameters to find the biggest fire
in the map depend on a relation of the characteristics of each building involved.

3 Reinforcement learning

Reinforcement learning makes it possible to learn the optimal policy by a sim-
ple ”trail-and-error” [6]. Yet, to apply such leaning process to the real world a
method is necessary which reduces the number of trails required to learn over
the way. A good example of such method is TEXPLORE [7].

Inspired by the TEXPLORE method, the Distribot team has divided its ac-
tion selection algorithm in two phases: an exploration and an exploitation phase.
The choice between exploration and exploitation is made randomly. During the
exploration a search is started for the optimal parameters θ of the action se-
lection function Eθ(bi, p). The action selection function Eθ(b) calculates a score
for all nearby buildings bi, which can be sorted to find the next building to be
extinguished. The parameters θj are in the range [−1,+1] and one of this param-
eters is incremented or decremented with a value of 0.2, which is remembered
as a step in the parameter space ∆θk. The score function is also of the input
parameters pj defined in section 2.4, which have a value in the range [0, 1]. The
score function used in the action selection algorithm is defined as follows:

Eθ(bi, pj) =

j<=6∑
j=1

θjpj(bi) (1)

Note that the first input parameter p1(bi) is only a function of the agent,
not the building bi which could be selected, so this gives only an offset to the
action selection function Eθ(bi, p). The other input parameters pj(bi) are strongly
depended on the building bi. The action selection function Eθ(bi, p) is applied
and an extinguish action is applied on building bi. The simulator score after the
action is interpreted as the reward and is stored for the combination (θj , ∆θk).
The trace of steps of ∆θk is also stored, which allows to trace back to all previous
parameter combinations θj and the same reward is stored there (if the new
reward is bigger than the old reward).

In the exploitation phase not a random change in the parameters ∆θk is
chosen, but the ∆θk with the highest reward. In this way the optimal set of
parameters for the action selection function Eθ(bi, p) can be learned. The pa-
rameters θj will always be slightly modified, but it could be possible that a stable
state can be found by modifying one parameter every time with a value of +0.2
followed by modification with a value of −0.2.



This approach can be interpreted as a standard Markov Decision Process
(MDP) which is composed by a set of states S, a set of actions A, a reward
function R(s, a), and a transition function P (s, a, s′). The state S corresponds
with the parameters θj of action selection function Eθ(bi, p). The set of actions A
corresponds with the modification of those parameters ∆θk. The reward function
R(s, a) is a lookup table of the combination (θj , ∆θk). The transition function
P (s, a, s′) is a simple jump-table, because all modifications ∆θk are performed
in steps of 0.2. Note that by selecting as action set A the modifications ∆θk,
the set has a fixed number of 12 actions. When instead the action set A′ would
have been chosen which would consist of extinguish the fire in one of the nearby
buildings bi, the MDP would scale with the dynamic number bi (which could
become quite big for large maps).

4 Results

The agents are trained on the small test world which is provided by the simulator
(as illustrated in Fig. 6).

The fuzzy rules were tuned following the parameters of the Differential Evo-
lution (DE) Table 1. These rules allow actions like move, extinguish and rest,
and establish the priority buildings. The tuning process known as learning this
is represented in the Fig. 3 and Fig. 4 where can be seen the score of the best
individual, the worst individual and the average score of every generation.

Fig. 3. Learning process



Fig. 4. Details average learning process

Based on the learning process previously presented were selected the average
individuals of the generations 1, 5, 20, 30 and 50, and the best individual of
the last generation to realize a deeper analysis. In Fig. 5 the score changes of
the aforementioned individuals during a 70 cycles simulation are presented. In
Fig. 6 can be seen screenshots of the simulation realized with the aforementioned
individuals, were selected the simulation cycles 10, 40 and 70 to present more
details of the found solutions.

As can be seen in Fig. 5, initially two-thirds of the buildings is burnt down.
Every 10 generations the performance improves, until at the end the score is
nearly two times as high.

On Fig. 6 examples are shown how the disaster evolves for different gener-
ations. Each column of 6 shows the situation at the time cycles 10, 40 and 70.
Each of rows shows an average individual typically of that generation.

The average individual of generation 1 shows an undesired behavior; all the
fire brigades chose the same building and remained inside during all the simula-
tion time as can be seen in the Fig. 6 (a) (b) (c)

The average individual of the generation 5 exhibit a preference for large
buildings, as can be seen in the Fig. 6 (d), all agents checked and waited in front
of the biggest building of the disaster space, and when fires are perceived, by an
ineffective way the agents start extinguish the big buildings of the disaster space
Fig. 6 (e)(f). Is important to note here that the average agents have learned that
use the extinguish command increase the final Score.

The Fig. 6 (g) shows the disaster space state at time 10 with the average
individual of the generation 20. Here can be seen that the agents have learned
that throwing water to non-fire buildings is a useful preventive action. In Fig. 6



Fig. 5. Score Vs Time of average individuals

(h)(i) can be seen that the preference for large buildings that was observed in
Fig. 6 (d)(e)(f) is still determinant.

For first time in the present tested group, the average individual of generation
30 shows a preference for small area buildings, and the undesired behavior of
throwing water to refugees as can be seen in the Fig. 6 (j). The Fig. 6 (k) shows
the agents extinguish a medium size building that is far of the first efforts to
control the fire expansion, this policy is not good; the area at the right which
was under control in the earlier generation (see Fig. 6 (i)) is now on fire (see
Fig. 6 (l)) and the far extinguished buildings at top catches fire again.

The average individual of the generation 50 exhibit that the exploratory
behavior is prioritized over the actions to extinguish small fires as can be seen
on Fig (m), where instead a small fire was detected the fires brigades continue
the disaster space exploration. in the Fig (n)(o) can be seen that the individual
is choosing the bigger buildings that are close to the actual position.

The Fig. 6 (p)(q)(r) shows the best individual of the generation 50, even
though that present the best final score this individual have the undesirable
behavior of throwing water to refuges (as can be seen in Fig. 6 (j)). The Fig.
6(q) shows preferences to buildings on fire with small area and close to the
current location, the advantages of this politics can be seen in fig. 6 (r) that
shows a bigger controlled fire area.



5 Outreach

During the short-time visit Iván Riaño gave one colloquium presentation and
attended colloquia from visiting machine learning researchers:

– Iván David Riaño Salamanca, “A Differential Evolution Algorithm for tuning
Rescue Agents”, Intelligent Autonomous Agent Colloqium, Universiteit van
Amsterdam, June 10, 2014

– Ethem Alpaydin, ”Design and Analysis of Machine Learning Experiments”,
Informatics Institute colloquium, Universiteit van Amsterdam, June 10, 2014.

– Bert Kappen, ”A statistical physics perspective of control theory”, Intelligent
Systems Laboratory Amsterdam Colloqium, Universiteit van Amsterdam,
June 24, 2014.

In October 2014 Arnoud Visser will visit Colombia during the Robotics week.
At this event he will give a keynote speech and a tutorial.

6 Conclusion

The exchange of researchers from Columbia and The Netherlands has been suc-
cessful in making the RoboCup Rescue Simulation League more visible in both
countries. The visit has been used to exchange ideas about how state-of-the-art
machine learning techniques could be used to learn to take the right decisions.
The potential of this approach have been demonstrated with an evolutionary
algorithm, which demonstrated that the efficiency of the policies could be im-
proved by nearly a factor two for a small testing world.

Acknowledgment

We like to thank the RoboCup Federation for making this exchange visit possible.

References

1. Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decentralized co-
ordination in robocup rescue. The Computer Journal (2010) bxq022

2. Yin, T.K., Lee, C.G.: Fuzzy model-reference adaptive control. Systems, Man and
Cybernetics, IEEE Transactions on 25 (1995) 1606–1615

3. Villate, A., Rincon, D.E., Melgarejo, M.: Sintonización de sistemas difusos utilizando
evolución diferencial. Laboratorio de Automática, Microelectrónica e Inteligencia
Computacional, LAMIC (2011)

4. Price, K., Storn, R., Lampinen, J.: Differential Evolution a Practical Approach to
Global Optimization. Natural Computing Series. Springer (2005)

5. Moraglio, A., Togelius, J.: Geometric differential evolution. In: Proceedings of the
11th Annual conference on Genetic and evolutionary computation (GECCO ’09),
ACM (2009) 1705–1712



6. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Adaptive
Computation and Machine Learning. MIT press (1998)

7. Hester, T., Stone, P.: The open-source texplore code release for reinforcement learn-
ing on robots. In Behnke, S., Visser, A., Xiong, R., Veloso, M., eds.: RoboCup-2013:
Robot Soccer World Cup XVII. Lecture Notes in Artificial Intelligence. Springer
Verlag, Berlin (2013)



(a) Gen 1, Time 10 (b) Gen 1, Time 40 (c) Gen 1, Time 70

(d) Gen 5, Time 10 (e) Gen 5, Time 40 (f) Gen 5, Time 70

(g) Gen 20, Time 10 (h) Gen 20, Time 40 (i) Gen 20, Time 70

(j) Gen 30, Time 10 (k) Gen 30, Time 40 (l) Gen 30, Time 70

(m) Gen 50, Time 10 (n) Gen 50, Time 40 (o) Gen 50, Time 70

(p) Best individual, Time 10 (q) Best individual, Time 40 (r) Best individual, Time 70

Fig. 6. Simulation of selected individuals learning process


