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Abstract
In an international robot competition known asRoboCup, mainly concerned with football
playing robots, several leagues exist. One of these uses theSONY aiBo. In this league,
special tasks or challenges are held as well. Once, one of these was theBlindfold Challenge.
The main part of this thesis, is dedicated to this challenge.First I shall introduce the reader
into the matter more extensively. Then I shall provide some background, before proceeding
with the challenge itself.

At a certain moment during my project, I deemed it necessary,or at least useful, to
also do something about head motions used withaiBos for searching the field. In a separate
chapter, a new approach to head motions is discussed.

In the appendix, the reader will find the achievements of the Universiteit van Ams-
terdam in RoboCup-competitions throughout the years.
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Chapter 1

Introduction

1.1 RoboCup

RoboCup is an international competition for academic teamsof robot programmers and, in
some leagues, robot designers, to test their programmes (and robots). Most of the leagues
play a football tournament1. Their ultimate goal is to have a team of humanoid robots beat
the human world football champion in the year 2050.

1.2 The Four-Legged League

Scientifically the most productive league, called theFour-Legged League, uses a standard
robot known as the SONYaiBo, a small, dog-shaped robot.2 These robots play on a field
measuring 6 by 4 metres in total, or 5.4 by 3.6 metres within the outer lines. The goals, as
used for the last time in 2006, consist of three panes, one back pane and two side panes,
that are white on the outside and either yellow or sky-blue onthe inside. The back pane is
80 cm wide, the side panes are 30 cm wide and all three are 30 cm high. The goal area is
1,3 m wide and 65 cm deep. For ease of self-localization, fourbeacons are used, standing
just outside the lines half-way each field half, i.e. on 1,35 mfrom the centre line and 15
cm outside the outer lines. The beacons have an outer diameter of 10.3 cm and a height
of 40 cm in total, the coloured parts measuring 10 cm each. Seen from the bottom of the
field shown in figure1.1, the upper colour of the close beacons is pink, the lower colour is
that of the nearest goal. For the beacons on the other side, the order is reversed: the lower
colour is pink and the upper colour is that of the nearest goal. TheaiBos are dressed in blue
(darker than sky-blue) or red.

1.3 TheaiBo

The aiBos thatDutch Aibo Teamuse are white ones of type ERS-7 (see the picture on
the cover). This type has three joints in each leg. The head isconnected to the body by
three joints: one below the neck and one in the head to tilt thehead (the first between 3°
backward and 80° forward, the second between 20° up and 50° down) and one to pan the
head (between -93° and 93°). The head contains the colour camera, which has a resolution
of 208 by 160 pixels. The opening angles of the camera are 56.9° horizontally and 45.2°
vertically. The image frame rate is 30 Hz. The shutter speed,gain and white balance can be
set to one of three (unspecified) values each. One motion cycle takes 8 milliseconds.3

1. A few others execute a (fictitious) rescue, whether or not virtual.
2. Because SONY stopped developing robots (esp. theaiBo), the league is now renamed toStandard Platform
Leagueand will gradually switch to another standard robot.
3. The values mentioned in this section come from the specifications by SONY (for the opening angles of the
camera, some people found values different from SONY’s, butalso different from each other’s).

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: The field used in the RoboCup Four-Legged League, with goals (version of
2006 and before), beacons andaiBos.
(RoboCup Four-Legged League Rule Book, 2006, Fig. 4)

1.4 The Blindfold Challenge

Besides the football tournament, some special tasks, called ‘challenges’, are executed. One
of the proposed challenges once was the Blindfold Challenge. In 2006,Microsoft Hell-
houndswon the Technical Challenge with this.

With the Blindfold Challenge, a robot must walk across the field from one goal to the
other, wearing a blindfold but with the aid of three other robots that can use their cameras
freely. The ‘blindfold’ of the first robot is in fact a piece ofopaque tape covering its camera.



Chapter 2

Background

The challenge involves two general problems: localization(both self-localization by the
blindfolded robot and localization of the blindfolded robot by the other robots) and shared
world model.

2.1 Self-localization

For the process of self-localization, several techniques can be used. In 2004, by far the
most popular one was Monte Carlo localization, used by e.g.Röfer et al.(2004); Arai et al.
(2004); Inoue et al.(2004). Some other teams combine it with a Kalman filter in some way.

2.1.1 Monte-Carlo Particle Filter

In the code used byDutch Aibo Teamand based on the code created byGermanTeam
(Röfer et al., 2004, §3.3), robots self-locate using a Markov-localization method with the
Monte-Carlo approach. This approach is probabilistic, modelling the current robot location
as the density of a set of particles (see figure2.1). These particles are formed by the position
and the rotation of the robot:0� x

y
θ

1A
(the coordinates are in millimetres,θ is in radians). For the method to work, two models,
an observation model and a motion model are needed. The former concerns the probabil-
ity that a particular measurement is taken at a particular location. The latter concerns the
probability that a particular action moves the robot into a particular pose.

Figure 2.1: A set of particles with two positions of the robot: the real position (bright blue)
and the estimated position (darker blue).
(Röfer et al., 2004, Fig. 3.17a)

3



4 CHAPTER 2. BACKGROUND

In the localization process, first the particles are moved inthe way that follows from
the motion model of the previous action taken by the robot. Next, for all particles, the
probabilities are calculated, based on the observation model for the data in the latest cam-
era image. The resampling that takes place after that, basedon these probabilities, moves
particles to locations of highly probable samples. Then theprobability distribution is aver-
aged, giving the current robot pose that is most likely. The process now iterates.

Motion Model

For each sample, a new pose is calculated as

posenew= poseold+∆odometry+∆error; (2.1)

where∆odometryis the odometry offset since the last localization from the odometry value,
which represents the effects of the actions on the robot pose. ∆error is a random error,
defined as

∆error =0� 0:1d � random(�1::1)
0:02d � random(�1::1)(0:002d+0:2α) � random(�1::1)1A ; (2.2)

whered is the length of the odometry offset (the distance the robot walked) andα the angle
by which the robot turned (Röfer et al., 2004, §3.3.1).

Observation Model

The data used are the directions to the vertical edges of the flags and the goals and points
on edges between the field and the field lines, the field wall andthe goals.

For the calculation of the bearings on the left and right edges of a flag, besides the
straightforward calculation of the one on the centre, the distance between the assumed
camera pose and the centre of the flag,distanceflag, and the radius of the flag,rflag are used
as follows:

bearingleft=right = bearingflag�sin�1
rflag

distanceflag
(2.3)

For the probabilities, the measured angles are compared with the expected angles,
leading to a similaritys. For a measured angleωmeasuredand an expected angleωexpectedfor
a certain pose, the similarity is determined as follows:

s(ωmeasured;ωexpected) =�e�50d2
if d < 1

e�50(2�d)2 otherwise
(2.4)

with d = jωmeasured�ωexpectedj
π . The probabilityqlandmarksof a certain particle is calculated thus:

qlandmarks= ∏
ωmeasured

s(ωmeasured;ωexpected) (2.5)

For edge points, the similaritys is calculated from the measured angleωseen, the
expected angleωexp and a constantσ :

s(ωseen;ωexp;σ) = e�σ (ωseen�ωexp)2 (2.6)

Let αseenandαexp be vertical angles andβseenandβexp horizontal angles, then the overall
similarity of a sample for a certain edge type becomes:

qedgetype= s(αseen;βseen;αexp;βexp)= s(αseen;αexp;10�9
jvj
200

) �s(βseen;βexp;100) (2.7)



2.1. SELF-LOCALIZATION 5

The filtered probabilityq0 for a certain type is updated for each measurement of that type
as follows:

q0
new=8<:q0

old+∆up if q> q0
old+∆up

q0
old�∆down if q< q0

old�∆down
q otherwise

(2.8)

The value of(∆up;∆down) is equal to(0:1; 0:05) for landmarks and to(0:01; 0:005) for edge
points.

The overall probabilityp of a certain particle is the product of the probabilities for
bearings on landmarks and edges of field lines, the field wall and goals:

p= q0
landmarks�q0

field lines�q0
field walls�q0

goals (2.9)

(Röfer et al., 2004, §3.3.2).

Resampling

Three methods for calculating possible robot positions were implemented and used to fill a
template buffer:

• Using a short term memory for the bearings on the three flags seen most recently.
• Employing only the current percepts.
• Drawing of candidate positions from all locations from which a particular measure-

ment could have been made.
A sample j is replaced by a candidate position if its probability is lower than the
average of all samples, that is, ifrnd

n ∑n
i pi > p j , wherernd stands for a random

number from the interval[0; 1℄.
The probability of a sample in the distribution that is replaced by a posture from the tem-
plate buffer is 1� p0

i. Every template is inserted once into the distribution. Random samples
are used if not enough templates were calculated.

Depending on its probability, a sample may be moved locally:it is moved less if its
probability is higher. The equation used is this:

posenew= poseold+0�100(1� p0)� random(�1::1)
100(1� p0)� random(�1::1)
0:5(1� p0)� random(�1::1)1A (2.10)

(Röfer et al., 2004, §3.3.3).

Robot Pose Estimation

To calculate the robot pose from the sample distribution, first the largest cluster is determ-
ined, for which all samples are assigned to a grid of 10�10�10 cells, one dimension for
each of the two coordinates and the rotation. From this grid,the 2�2�2 subcube contain-
ing the most samples is used. The pose is then calculated as the average of all samples in
that cluster. For the average value ofθrobot, the following formula is used:

θrobot = tan�1 ∑i sinθi

∑i cosθi
(2.11)

The value ofθrobot is adapted to fall in the range[�π ; π ℄.
The validity or certaintyc of the position estimate is the average probability of alln

samples:

c= 1
n ∑

i
p0

i (2.12)

(Röfer et al., 2004, §3.3.4).
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2.1.2 Improvements

Sturm et al.(2005) describe several improvements over the code created byGermanTeam,
added byDutch Aibo Team(Sturm et al., 2005, §2.3):

• Decreasing the localization error by using the estimated distance to a landmark in
the observation model.

• Increasing the convergence rate by using multiple subsequent landmark percepts in
the resampling stage.

• Increasing the precision by checking the final pose estimate against the odometry,
which would prevent sudden jumps.

Distances to Landmarks

The estimated distances to the landmarks were included in the observation model by using
a Gaussian similarity formula to calculate the qualityqmeasured:

qmeasured= s(distancemeasured;bearingmeasured;distanceexpected;bearingexpected)= exp�25(1�b)2d2
(2.13)

In this equation,d= 1+ jdistanceexpected�distancemeasured
distanceexpected

j andb= j jbearingexpected�bearingmeasuredj�π
π j.

For d = 1:4, this equation is the same as equation 3.29 in (Röfer et al., 2004, §3.3.2.4).
The qualityqmeasuredof each landmark observation is used to update the running estimate
qualitylandmarkswith equation 3.33 in (Röfer et al., 2004, §3.3.2.5). The probabilitypi of
a particlei, which represents a hypothesis of the posterior robot pose,is calculated by
multiplying four independent quality estimates as follows:

pi = qi
field lines�qi

border�qi
goal lines�qi

landmarks (2.14)

This time,qborder represents the measurement quality of the border outside the field, instead
of that of the white wall that was used before.

Landmark Buffer

When it is difficult to see everything clearly, e.g. caused bybad colour calibration or during
a game, it takes a long time for the particle filter to convergeto the right position. This is
caused by the stochastic nature of particle filtering, whereupon detection of a landmark,
unlikely particles are removed and likely particles are duplicated. If there are no subsequent
landmark percepts within a few seconds, the position will get lost again. As a solution, seen
landmarks are stored and their reliabilities are decreasedin a few seconds. The parameter
is adjusted such that roughly every landmark is used twice. For each type of landmark, a
small buffer is maintained that contains theN most recent observationsyf and their time

framesf . Eachyf has a probabilityp(t; f ) = PerceptChange�Perceptt�f
Decay, which is used to

update the running estimateqlandmarks. By using the constantPerceptChange= 0:15, recent
observations that are not subsequent will not dominate the running estimate. The constant
PerceptDecay= 0:99 causes an observation to be forgotten after a few hundred frames.

Check against Odometry

Probably another effect of the stochastic nature of the particle filter and of wrong percep-
tions is that sometimes the particle filter diverges and suddenly jumps around across the
field. Although most of the time the robot finds its position back within a second, this may
cause undesired behaviour. Moreover, it is easy to detect such outliers by the extremely low
validity of the position. Despite the possibility that the robot may have been kidnapped,
it may be better to reject the strange value for the moment, until a good position (one
with high validity) is found again, either (close to) the last good position or indeed further
away, in case of a real kidnap. For the calculation of the position validity, equation 3.38 in
(Röfer et al., 2004, §3.3.4.3) is used (where it is called ‘certainty’). When the validity of
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the filter using pure odometry data drops below that of the particle filter, the robot pose and
validity of the particle filter are used to reinitialize the pure odometry filter. In other cases,
the previous values are reused, but the validity will drop tozero within a few seconds. The
filter producing the robot pose with the highest validity is chosen to provide the robot pose
for the current frame.

Results

The average localization error achieved by the original module byGermanTeamwas 21.3
cm and 8.27°. Recovering from kidnap on average took 4.97 s, with a standard deviation of
4.45 s.

The first modification byDutch Aibo Team, using the distances to landmarks, resul-
ted in an average error of 14.3 cm and a kidnap recovery time of2.16 s.

Only using the second modification, with multiple subsequent landmark percepts,
led to a kidnap recovery time of 2.09 s and an average positionerror of 17.3 cm.

The sole use of the third modification, concerning odometry filtering, gave an aver-
age position error of 12.8 cm and 4.64°.

Using all modifications together did not further increase performance. The results
obtained were an average error of 13.5 cm and 5.02°. The higher error in comparison with
the error from the third modification alone was due to occasional noise in the measurement
procedure. Repeating the measurements several times will lead to more reliable results.
The kidnap recovery time was 2.14 s on average with a standarddeviation equal to 0.71 s.
This indicates that the modifications led to a stable self-localization, but not at the cost of
reaction time or kidnap recovery time.

2.1.3 Settings

In the code as I used it (and I did not change anything with respect to this1), the odometry
filter was used, as well as the bearings to landmarks, but the landmark buffer and the dis-
tances to landmarks were not. A maximal number of 100 sampleswas used, which is not
explicitly stated in (Röfer et al., 2004) as beingthe number of samples, but as anexample
value (Röfer et al., 2004, §3.3.2.3, §3.3.5).

2.2 Blindfolded Robot Localization

2.2.1 Player Localization

Currently, team-mates do not actually locate one another, but they use the data they re-
ceive from one another. Opponents only are seen as obstacles. There is a module for locat-
ing players, though, but it is not robust enough: asSchallaböckpoints out, there are many
factors that worsen the quality of the localization, such asthe colour of the tricot (esp. blue),
a low detection rate beyond a certain visual range, the narrow field of view and the asso-
ciation problem caused by the fact that the robots in one teamlook identical (Schallaböck,
2006, p. 1).Mahdi et al.used the module in their project and found that it works best if the
distance is at most 1.1 m. Above that, team-mates can no longer be perceived and recog-
nized (Mahdi et al., 2006, §4.1).Hebbel et al.found, that even under ideal conditions, red
robots close to an observing robot were detected only 50% of the time, while, if more than
a metre away, they would typically not be detected at all and for blue robots, things were
even worse (Hebbel et al., 2006, §3.3). In my experience, red pixels often are classified as
pink or orange and blue pixels tend to be classified as sky-blue or black. I used the method
for some time, the blindfolded robot being dressed in red, and I often was confronted with
such or other errors, leading to something like ‘ghost robots’.

The method considers the number of pixels on a vertical imageline that have one of
the colours used for the tricots, being red and blue. If the number exceeds some threshold

1. I actually did not inspect that part of the code until afterthe experiments.
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Figure 2.2: Effects of odometry on self-localization errors.(Sturm, 2006, Fig. A.3)

value, meaning the robot may be close, the distance is calculated from the intersection of
the line through the upper tricot-coloured pixel and the camera with a horizontal plane on
the height of where the robot tricot is to be expected. With a number not too far below the
threshold (very small numbers are ignored), meaning a probably larger distance, the image
line is followed downwards until a field-coloured (i.e., green) pixel is found. The distance
to the robot is then calculated from the intersection of the line through the pixel and the
camera with the field plane. In this case, the shortest distance in the cluster composed of
the distances calculated from all vertical scan lines is used (Röfer et al., 2004, §3.2.8).

The positions of the detected robots, relative to that of theobserving robot, are con-
verted into absolute ones and, if outside the field, projected onto the field border. When at
a certain location in the discretization of the field the number of perceived robots exceeds
a threshold, that location is taken to really be the locationof a robot. From this location an
absolute field position is calculated. If a player has communicated its position, that position
replaces the calculated one, unless it is too old. Otherwise, the calculated position is used,
but, to avoid a team-mate being represented twice, it must have some minimal distance to
all received positions (Röfer et al., 2004, §3.7).

2.2.2 Object Tracking

As noted above, one of the difficulties for a blindfolded (or blind) individual (robot or
human (or (almost) any animal, for that matter.)), is to find out where it is. Probably the
most likely method is to ask others about it, but, if the starting position is known, either by
asking or by hard-coding it and carefully applying it, it is also possible to rely on odometry
data for calculating the other positions. This is unreliable, because it is very sensitive to
situations when the robot is moved by other means than walking (e.g. by hand) and, more
often, to slippage and other noise in the mechanical system (e.g. when the robot is stuck).

Related to the latter source of problems is a test described by Sturm. In this test, a
robot tried to walk forward along a straight line for two metres, turn 90° clockwise, walk
sideways to the left for two metres and turn 90° anti-clockwise (which should make it turn
back to its original position and orientation), using only its odometry data. With this test it
was possible to evaluate forward and sideways walking as well as turning in both directions.
As figure2.2shows, walking straight forward works fine, but turning and sideways walking
result in large errors growing worse and worse the longer thewalking types are continued
(Sturm, 2006, §A.3).

In the method developed bySchallaböck(2006), multiple particle filters are used
at the same time. Each instance of a particle filter models theposition of one robot. In
the update procedure, for every percepti and filter j a degree of associationDi; j is calcu-
lated. If the sum of all degrees of association is below some threshold, the perceived robot
is assumed to be new and a new filter is instantiated that represents that robot. Whether
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Figure 2.3: Ball percept with scan lines.(Röfer et al., 2004, Fig. 3.10a)

the existing filters update their measurements depends onDi; j . The new weightwnew of a
particle is based on the old weightwold and the weight calculated from the perceptwcalc
through the equation

wnew= Di; j �wcalc+(1�Di; j) �wold (2.15)

With very high degrees of association, the measurement update very strongly depends on
the new weight, but with very low degrees of association, thenew percept only hardly af-
fects the particle filter. Filters whose particles share practically the same space are merged,
assuming that they model the same robot. A filter whose particles have drifted very far apart
because of a lack of percepts are considered to be lost and aredeleted.

Because one 2N-dimensional filter effectively is replaced byN two-dimensional fil-
ters, far less time is needed for computations, despite someadditional complexity caused
by the larger number of filters. Also, when there is a lack of input data for a subset of
the filters, their particles are not pulled towards other robots, but drift apart in a Gaussian
manner. This effectively increases the uncertainty of the affected filters.

To locate the blind robot, models that probably describe other team-mates are filtered
out, although better results are obtained when the observers have a different colour or no
colour at all. The position is stabilized further by using the median of some number of
previously modelled positions.

For the rotation angle of the blind robot, the expected position, calculated from the
odometry data, is compared to the perceived position. However, because the model is not
accurate enough, the angle is not reliable, which at presentmakes it necessary that the robot
is started with a known rotation.

In the Open Challenge, where this algorithm was tested, success was limited to about
one third of the cases (Hebbel et al., 2006, §6.3.4).

2.2.3 Ball Detection

Following a suggestion made by Arnoud Visser, I finally decided to use the better detectable
(orange) ball instead of the tricot for tracking the blindfolded robot more reliably. I did not
conduct a quantitative experiment on the maximum distance from which the ball could
still be detected, but based on the findings from a few simple tests I think it is somewhere
around 4 m. The ball was mounted onto the front of the robot, hanging loosely between its
front feet.

For the detection of the ball (Röfer et al., 2004, §3.2.5), the camera image is scanned
in eight directions from the centre pixel in the longest run of orange pixels, being horizont-
ally, vertically and diagonally (between top-left and bottom-right and between top-right and
bottom-left), until in all directions the pixel does not resemble (true) orange or the image
border is reached. This is shown in figure2.3. In the latter case, the search continues along
two lines parallel to the image border.

If the majority of the pixels that were scanned are classifiedas orange and the ma-
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jority of the end pixels on the scan lines are not yellow, an attempt is made to calculate
the centre and the radius. The first attempt is to use edge pixels lying next to a green pixel.
In case there are not at least three of those or not all possible edge pixels are covered by
the resulting circle, other possible edge pixels not lying on the image border are added,
starting with all high-contrast pixels and if necessary continuing with the other pixels. If
still unsuccessful, even the possible edge pixels on the image border are used.

2.3 Shared World Model

In order to maintain a good knowledge of the situation on the field, it often is useful to
share some information with team-mates. Most teams includein their shared world models
at least the position of, or with respect to, the ball (Veloso et al., 2005, §3;LeBlanc et al.,
2004, §8; Röfer et al., 2004, §3.4.3, §3.7;TecRams, 2004, §1.1.2;Ruiz-del-Solar et al.,
2004, §3; Stone et al., 2004, §2.1). In some cases, the positions of the robots themselves
are shared, too (Veloso et al., 2005; Röfer et al., 2004; Stone et al., 2004).



Chapter 3

My Approach

3.1 Shared World Model

The seeing robots do not share additional information amongthemselves, but some special
challenge data are sent to or received from the blindfolded robot.

At first, I considered having the seeing robots calculate thepositions of and propose
the actions for the blindfolded robot. The blindfolded robot then would have had to choose
between the proposed actions, based on, e.g., the distancesto the team-mates, because a
shorter distance might imply a better judgement of its position. Another method would
have had the seeing robots fuse in some way their positions ofand action proposals for the
blindfolded robot into one position and one action, which would have been known by all
seeing robots.

As a third and definitive method, I decided that the blindfolded robot might as well
itself fuse the position estimates and decide by itself on anaction. In this case, with a
proper fusion method, it is easier to choose between seeing robots and get to an action (first
method) and only one robot (the blindfolded robot) does the work done in threefold by
three (seeing) robots (second method). For the calculationof the position, see §3.4; for the
action selection, see §3.6.

3.2 Blindfolded Robot Identification

For the identification of the blindfolded robot, I use the validities of the robot positions and
their player numbers. When the validity of one robot’s position does not reach 0.11 within
the four first seconds of self-localization, it is assumed that the robot is the blindfolded
robot. It then sends a special message to its team-mates. Thefirst time they receive that
message, the team-mates store the player number of the sending robot and use it where
necessary to identify that robot as the blindfolded robot.

The only case where this might go wrong, is when another robothas such very ser-
ious problems with self-localization that the validity of its position will not exceed 0.1 in
time. This would lead to more than one robot believing to be blindfolded. In the experi-
ments, described in chapter4, this situation did not occur.

In practice it can never happen that the real blindfolded robot will not conclude
thus, as one should always verify that the ‘blindfold’ stillcovers the camera. If some light
(colour) reaches the camera, some pixels in the image can lead to the false detection of a
landmark and thus to the calculation of a (false) position. If the amount of light is too large,
the validity may become higher than 0.1.

1. Remember from §2.1.1that the validity is a probability, hence from the interval [0, 1].

11
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3.3 Searching for the Blindfolded Robot

When a seeing robot has not seen the blindfolded robot (i.e.,the ball) for one second, it
starts searching for it. At first, it pans its head for 2.5 s. Ifthat is not enough, it advances 1
dm (in 1 s) and repeats the pan. If that still does not help, it turns 90° (in 1 s). The sequence
of pan-walk-pan-turn is now repeated as much as necessary. If the robot has turned around
completely (360°) without success, it gives up searching, which it expresses by looking
down. If, at any moment, the blindfolded robot is seen again,the searching process is reset.

When a seeing robot has not seen the blindfolded robot recently and is too far from
the blindfolded robot, as computed from the estimate(s) done by the seeing robot(s) (be-
lieving to be) standing close enough to the blindfolded robot, the far robot does not even
try searching, as it most probably will not succeed. This requires that, at the start of an
experiment, every seeing robot be positioned so, that, if itis not too far away, it can see the
blindfolded robot without turning its body.

3.4 Calculating the Position of the Blindfolded Robot

For every roboti out of N seeing robots, at timet, it is checked whether it has seen the
blindfolded robot at most 0.2 s ago and if so, the position estimateBt;i of the blindfolded
robot, reported by that seeing robot, is used by the blindfolded robot to calculate its position
Pt , weighted by the position validityvt;i of that seeing robot. In that case,vt;i is used also to
calculate the position validityvt of the blindfolded robot, both as the validity itself and as
a weight. It may be clearer to split these two uses and attach the namewt;i to the latter. The
equations then become:

Pt = ∑N�1
i=0 Bt;i �wt;i
∑N�1

i=0 wt;i (3.1)

vt = ∑N�1
i=0 vt;i �wt;i
∑N�1

i=0 wt;i (3.2)

If the distance between the previous positionPt�1 and the current positionPt is more than
5 mm, the orientationθt of the blindfolded robot at timet is calculated as follows:

θt = tan�1 Pt;y�Pt�1;y
Pt;x�Pt�1;x (3.3)

If none of the seeing robots saw the blindfolded robot recently, the difference at
time t between the previous odometry vectorOt�1 and the current odometry vectorOt

(that represent the positions calculated from the joint angles since the robot started) is
considered. If the distance travelled, i.e. the lengthjjOt�1�Ot jj, is more than 1 cm, the
position of the blindfolded robot is calculated simply as follows2:

Pt = Pt�1+Ot �Ot�1 (3.4)

vt is now reduced by 1% andθt is again calculated as in equation3.3.
If the length ofOt�1�Ot has been considered but does not exceed 1 cm, the blind-

folded robot is assumed not to have moved and the previous position Pt�1 and orientation
θt�1 are reused. The validity is reduced by 0.3% (because not moving does not influence
the real position, the reduction can be lower).

3.5 Determining the Destination

In the determination of the destination, provisions are made for the blindfolded robot to
cross the field in they-direction.

2. By mistake, however, the equationPt = Pt�1+Ot�1�Ot was used in the experiments



3.6. PLANNING THE NEXT MOVE 13

The blindfolded robot waits until the validity of its position reaches 0.8. Then the
x-coordinate is compared to thex-coordinateGx of either the own or the opponent’s ground
line, whichever is nearer. They-coordinate is compared to they-coordinateGy of either
the left or the right ground line, whichever is nearer. Ifjx�Gxj< jx�Gyj, the destination
becomes(�Gx� l ; y) if �Gx < 0 or (�Gx+ l ; y) if �Gx > 0, l being the body length of
the robot, to make ‘sure’ the robot will have crossed the far line completely.3 If jx�Gxj �jy�Gyj, the destination becomes(x; �Gy� l) if �Gy < 0 or (x; �Gy+ l) if �Gy > 0.

3.6 Planning the Next Move

If the validity of the position is below 0.5, meaning that theblindfolded robot has not been
seen for quite some time, the robot will not move, waiting forthe other robots to see the
ball again.

In other cases, two aspects are considered: the deviation from the main track (the
signed distance to the line from the starting position and the destination: negative if the
robot is left of it, positive if the robot is right of it) and the orientation w.r.t. the intended
direction. The algorithm goes as follows, with a forward speed of 1 dm s�1 and a turning
speed, where applicable, of ±15° s�1:

if the distance is more than 2 dm
if the relative orientation is at most 15°towards the main tr ack

turn towards the main track
else if the relative orientation is at most 45°towards the ma in track

move straight forward
else

turn away from the main track
else if the distance is more than 1 cm

if the relative orientation is parallel to, or away from, the main track
turn towards it

else if the relative orientation is at most 15°towards the ma in track
move straight forward

else
turn away from it

else
if the relative orientation is more than 7.5°in either direc tion

turn back towards the main track
else

move straight forward

3.7 The Process

I will now describe the full process of the Blindfold Challenge. It is split up into states (see
figure3.1), corresponding with the code. It consists of three parts, ageneral part, one for a
seeing robot and one for the blindfolded robot. Unless stated otherwise, the robot transits
from the state being described ‘here’ to the state describednext.

3.7.1 Common states

wait until teammates present

This state is repeated until the robot is receiving messagesfrom all team-mates. Already in
this state it tries to self-locate.

3. When there is only one seeing robot (mainly for testing), the blindfolded robot will only cross half of the
field, i.e. the destination becomes(�Gx� l ; y), because otherwise the seeing robot would not be able to see the
blindfolded robot at all times.
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Figure 3.1: State graph of the Blindfold Challenge. The states on the left are used by the
blindfolded robot; those on the right are used by the others.
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identify blindfolded robot

The result of self-localization, which is still attempted,is used here to draw a conclusion
about the identity of the robot, seeing or blindfolded, as described in §3.2.

3.7.2 States for a seeing robot

improve self localization

During at most thirty seconds, the robot tries to get its position validity to a minimum of
0.8 over the last 125 frames (which corresponds to one second).

receive request

The robot waits for a help request from one of the other robots, which is hoped (by the
experimenter) to be the blindfolded robot.

locate blindfolded robot

The robot searches for the blindfolded robot, as is described in §3.3.

lead blindfolded robot

If help for the blindfolded robot has not yet been initiated,the process transits to state
initiate help to do so. Otherwise, if a message is received from the blindfolded robot that (it
believes) it has finished, this robot stops (transiting to stateblindfolded robot finished).

initiate help

The robot sends a message (esp. to the blindfolded robot) that it has received a request
for help, as long as it still receives such a request. After that, it transits back to state
lead blindfolded robot.

blindfolded robot finished

The robot has finished its help and expresses this by sitting itself down.

3.7.3 States for the blindfolded robot

ask for help

The robot sends a request for help to its team-mates, until ithas received a reply from all
of them.

determine destination

The robot uses the method described in §3.5to calculate the coordinates of where it wants
to go to.

plan next move

If the robot believes it has finished, it transits to statefinished. Otherwise, using the al-
gorithm described in §3.6, the robot decides what to do next: nothing, turn left, turn right,
or move straight forward.

make next move

If one of the front legs of the robot hits something, it transits to staterecover from collision,
otherwise it makes the move planned in stateplan next move during half a second.

recover from collision

The robot uses the negative values of the speeds set in stateplan next move, i.e. it walks
backward. It does so for two seconds, then transits back to stateplan next move.

finished

The robot expresses its belief that it has finished by sittingitself down.



Chapter 4

Experiments

4.1 Variables

In the experimental stage, I varied three aspects:
• the number of robots (one or three seeing robots),
• the method used for searching for the blindfolded robot and
• the lighting (whether or not using floodlight).

In case of one seeing robot, that robot was positioned such, that it should have been able to
see the blindfolded robot at all times, if necessary by turning, if the latter would walk more
or less in the right direction.

For the second variable, the variation is in the head movements used: either only
panning the head (‘search horizon’), or also raising or lowering it every now and then
(‘search field’). In the latter case, objects closer to and further from the robot can be found,
but, because the head movements are more dynamic, at the costof stability.

The value of the last variable influences the setting of the shutter speed: fast in case
of floodlight, moderate otherwise. Experimenting with different lighting conditions was
done to test the robustness.

4.2 Process Log

To be able to collect the results of the experiments, I made the blindfolded robot record
several data at every moment. These data were written to a logfile on the memory stick of
the robot every 2500 lines or explicitly by a function call.

Each line of the log contains the following data:
• From the blindfolded robot itself:

– thex- andy-coordinates of the current position (mm);
– the current rotation (rad);
– the validity of the current position: negative if the position was calculated using

odometry data, positive otherwise;
– thex- andy-coordinates of the calculated destination (mm);
– the deviation from the main track (mm).

• From each other robot:
– the player number;
– thex- andy-coordinates of the current position (mm);
– the current rotation (rad);
– the validity of the current position;
– thex- andy-coordinates of the most recent estimate of the ball position.

16
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a. The path that the blindfolded robot believes to have taken.
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c. Position validity.

Figure 4.1: Results from experiment 1.

4.3 Results

In the field drawings in this section, the orange spot marks the starting position (i.e., the
position from which the destination was calculated) of the blindfolded robot, the pink spot
with orange ring (on the other end of the thick, dashed orangeline) marks its destination
and the plain pink spot marks its final position. The (black encircled) white and grey spots
mark its other positions, where white is used for the newly calculated positions and grey
for those involving odometry data. The black encircled red,yellow and blue spots mark the
positions of the seeing robots. Red, yellow and blue spots without a black outline (used
in figures4.2band4.3d) mark the positions of the blindfolded robot as estimated bythe
corresponding seeing robot. The red, yellow, blue and whitespots vary in size with the
validity1. These spots and the grey spots in the drawings all belong to aposition with
validity� 0.5.

4.3.1 Experiment 1 — One seeing robot, floodlight, search horizon

Observations

After only about 2 metres in more or less the right direction,the blindfolded robot thinks it
has finished and acts correspondingly (see the description of statefinished).

Analysis

In figure 4.1a, where the white spots in general show the same as what I saw, it looks
very much as if the suddenly very wrong position estimation of the seeing robot itself is
responsible for the misjudgement by the blindfolded robot:the position of the blue spot
near the lower left corner of the field relative to the white and pink spots close to it is very
similar to the other blue positions relative to the last few spots on the right half of the field.

The sudden drop in figure4.1bcorresponds to the points in the lower right corner
of figure4.1a, far outside the field. These are caused by a few erroneous measurements in

1. More precisely, the radius is directly proportional to half the inverse of the squared validity, orr ∝ 0:5
v2 .
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blindfolded robot (i.e., ball) localization by the seeing robot, which themselves are probably
caused by falsely positive detections of orange (the colourof the ball).

4.3.2 Experiment 2 — Three seeing robots, floodlight, searchhorizon

Observations

The blindfolded robot meanders towards the other goal and stops in the penalty area.

Analysis

Most white spots in figure4.2asupport my observations, but note the last positions: some-
where on the right half of the field. As can be seen from the large spread in estimated
positions of the blindfolded robot in figure4.2b, the seeing robots strongly disagree on the
ball positions. However, averaging their estimates leads to quite reasonable results.

On the first part, the blindfolded robot is lead by the ‘red’ and ‘blue’ robots. After
a while, the ‘yellow’ robot joins in and the ‘blue’ robot loses track. Somewhat further on,
the ‘red’ robot loses track as well. Finally, the blindfolded robot is completely lost, as is
indicated by the low position validity (see figure4.2d).

At the point where the blindfolded robot suddenly seems to beon the right half of
the field again, it just switched from the position provided by the seeing ‘yellow’ robot, to
the one provided by the ‘red’ robot. Apparently, the latter just thought it saw the ball again
and the former maybe did not, but the former still had better data and the latter did not. All
seeing robots were approximately right about their own positions, though.

4.3.3 Experiment 3 — Three seeing robots, floodlight, searchfield

Observations

The first four metres the blindfolded robot walks reasonablywell towards the other goal,
but after that it walks into the upper border.

Analysis

The white spots in figure4.3aon average show the same pattern, more or less, as what I
observed. As figure4.3dshows, esp. the ‘blue’ and ‘red’ seeing robots have similar estim-
ates of the ball positions on the right half of the field, but soon after that lose sight of it.
Quite likely this is caused by the fact that all seeing robotswere placed facing the sky-blue
goal and have a maximum head pan of slightly over 90°. The point where at least the ‘red’
robot does not see the ball any longer, marks the situation that the maximum head pan is
no longer sufficient.

The ‘blue’ robot, having turned 90° clockwise and now seeingthe blindfolded robot
from behind, seems to be looking under the blindfolded robot, bringing part of the ball back
into view. The ‘yellow’ robot then takes over, soon losing sight of the ball. The blindfolded
robot, carrying the ball, is walking away from the ‘yellow’ robot, which makes the latter
see the blindfolded robot from behind. If the ‘yellow’ robotthen does not see the blind-
folded robot straight from behind, but a little from the side, the ball becomes practically or
completely invisible.

When the blindfolded robot has walked into the border and the‘red’ robot has turned
90°, that robot can see the ball again near the upper left corner, but it does not help the
blindfolded robot any more. Because of the conditions for recovering from a collision (see
statemake next move), it cannot get out of the situation in which it finds itself.

4.3.4 Experiment 4 — One seeing robot, no floodlight, search horizon

This is basically the same experiment as the one discussed in§4.3.1. The only difference is
that this time the floodlight was not used. As the reader will see soon, that did not influence
the results much.



4.3. RESULTS 19

a. The path that the blindfolded robot believes to have taken.

b. The path of the blindfolded robot, according to the seeing robots; one path for each seeing robot.
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Figure 4.2: Results from experiment 2.
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a. The path that the blindfolded robot believes to have taken.
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Figure 4.3: Results from experiment 3.
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d. The path of the blindfolded robot, according to the seeing robots; one path for each seeing robot.

Figure 4.3: Results from experiment 3 (cont.).
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a. The path that the blindfolded robot believes to have taken.
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Figure 4.4: Results from experiment 4.
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Observations

The blindfolded robot walks more or less in the right (x-)direction, but, when it comes close
to the seeing robot, it starts a wide turn around the team-mate. This makes the blindfolded
robot go past the destination too widely.

Analysis

Figure4.4ashows reasonably well what happened in reality, as far as thewhite spots are
considered. Figure4.4c (too) shows that shortly after position 900, the completelyfresh
calculation of a position has become very rare (indicated bythe small number of rises),
meaning that the ball was hardly ever seen any more. This was due to parts of the blind-
folded robot obscuring the ball for the seeing robot.



Chapter 5

Conclusions

In the experiments that I conducted, I demonstrated that a blindfolded robot can be guided
across the field by multiple seeing robots. However, the success depends greatly on the
quality of self-localization and ball localization by the seeing robots. Also the seeing robots
must be positioned in a way that they can see the blindfolded robot without turning their
bodies, if the distance is not too large. Whether or not usingthe floodlight did not appear
to make much difference, provided that the shutter speed be adapted to the actual situation.

Inspection of the recorded data, combined with my observations of the behaviour of
the blindfolded robot, reveals that in many cases a seeing robot has a good position estimate
of the blindfolded robot that is not used, due to the upper limit of 0.2 s, used to decide
between accepting or rejecting a ball observation, on the time since the last perception of the
ball. Therefore, a higher limit may lead to better results. Another point where improvements
can be made, is in the search for the blindfolded robot. Currently, the seeing robots do not
move much and if they turn, they turn in a fixed direction. Theymay be made to move
more, or to turn in the direction which gives the highest probability of finding back the
blindfolded robot, based on the angle where it was lastly seen.

5.1 Future Research

Elaborating on the challenge, one may add the possibility ofobstacle avoidance, or develop
methods to better recognize one particular robot among a number of robots.

24



Chapter 6

New Head Motions

6.1 Motivation

At once, during my work on the Blindfold Challenge, the self-localization did not work
properly any more. Not yet knowing the cause of that1, it made me think about possibilities
for improving the self-localization.

As with the normal head pan the colours tend to be vague, leading to many misclas-
sifications, I first thought of lowering the speed, using an adapted version of the normal
mode, but that did not work well: the fluctuation in the position estimates often was even
larger and the validity lower.

My next idea was to only use images taken at a small number of head pan angles.
These stills would have distinct colours, providing the best possible classification.

6.1.1 Saccades

The approach is based on the way our eyes move when we are reading. They do not move
continuously, as is the case when tracking objects in motion, but jump from one piece of
text to the next insaccades. Once our eyes have come to rest, cognitive processes do their
work (Best, 1992, pp. 353–354).

6.2 Method

In the case of theaiBo, which has only one camera that cannot be moved independently
from the head, the head does not turn back and forth continuously, like in the existing head
control mode used for searching for landmarks. Instead, it has some rest points, between
which it moves fast.

At first, I used one of the normal functions for the head movement, but before I
got that working properly, something happened which drew myattention. When the pro-
cess controlling the motions of the robot did not receive data from another process con-
trolling the cognitive tasks of the robot for more than two seconds, the robot makes some
jerky movements with its body, resulting in a kind of swinging behaviour. As the normal
functions do not make the head turn very fast, I thought the technique behind these jerky
movements might be better, if I could get this working.

6.2.1 Special Actions

The technique is used for many special actions, esp. severalkicking motions and some
entertaining actions, including the swing I mentioned above. It uses special files that can
contain values2 for every joint, to be set at a time. There may be more than one line of
joint values, for complex actions. Other things can be put into such files as well, e.g. PID

1. A wrong setting causing a wrong colour table to be used.
2. Or a wildcard character, for joint values that are not important for the action.

25
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data instead of joint values and transitions to other such files, allowing files to be used in
different combinations for different actions (Röfer et al., 2004, §3.9.2).

Above, I already mentioned that there are (at least) two processes, one for motion and one
for cognition. The main part of the saccadic search method involves the motion process.
The algorithm of that part is as follows:

if the last head control mode was different from this one
in the current pan direction,

calculate the next rest point
if it is one of the outer points

reverse the pan direction for the next time
else

if the current data are newer than the last and the head has been still since
if the head has been still long enough

if one of the outer points is reached
reverse the direction

take the next point
else

wait; reuse the last point
else

wait; reuse the last point
turn to, or stay at, the specified point

In the cognition process, the following algorithm is applied for controlling the image pro-
cessing:

if one of the saccadic search methods is in use
if the current data are not newer than the last

inhibit image processing
else if the head has not moved

allow image processing
else

inhibit image processing
else

allow image processing
Later, I tried some versions with a normal function (the codein fact only differing in the
absence of the special action related statements, as the normal function was already present
to facilitate a good transition to another head control mode), but then too many images were
unstable.

6.3 Experiment

6.3.1 Setting

In the experiments I conducted, I compared four methods:
• the standard, continuous movement
• saccadic movements with seven rest points and a double pause at each rest point
• saccadic movements with seven rest points and a single pause at each rest point
• saccadic movements with six rest points and a double pause at each rest point

Saccadic motion is depicted in figure6.1, with seven rest points in figure6.1aand with
six rest points in figure6.1b. The red dots mark the positions of the camera. The blue
lines indicate the horizontal size and the green lines the vertical size of the field of view. I
included the latter for the horizontal direction because ofthe radial distortion in the camera
images (Röfer et al., 2004, §3.2.3), making the vertical angle more useful for the horizontal
direction than the horizontal angle. The figure shows that, esp. when considering the green
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a. Seven rest points. b. Six rest points.

Figure 6.1: Saccadic motion.

Table 6.1:Positions, orientations and head modes used in the experiment.

x y orient. modes
(mm) (mm) (deg)

2050 650 -135 continuous! saccadic v1! saccadic v2! saccadic v3
0 1800 -90 saccadic v3! continuous! saccadic v2! saccadic v1

-2050 650 -45 saccadic v1! continuous! saccadic v3! saccadic v2
-2050 -650 45 saccadic v2! continuous! saccadic v1! saccadic v3

0 -1800 90 saccadic v3! saccadic v1! continuous! saccadic v2
2050 -650 135 saccadic v2! saccadic v1! saccadic v3! continuous

0 0 0 continuous! saccadic v3! saccadic v2! saccadic v1
0 0 180 saccadic v1! saccadic v2! saccadic v3! continuous
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b. Saccadic motion, version 1.

Figure 6.2: Results from the experiment.

lines, the nearest point of the overlap of the fields of view ismuch further from the camera
in the 6-point method, where the angle between two head positions is 37.2°, than in the
7-point method, with an angle of 31° between two head positions.

The robot was placed on each of the positions in table6.1 in turn, with the corres-
ponding orientations. The robot executed a mode for about one minute until I switched to
another mode or moved it to another position. After such a kidnap and in the first mode on
the first position, it was continuing the same mode for about one and a half minute (at most
half a minute to recover). The order of modes was chosen such that as many combinations
as possible would be used and such that the modes would equally often be the first on a
new position, attempting to prevent the effects of one mode influencing those of another
mode.

6.3.2 Results

Figure6.2 shows the results of the experiment. The orange spots mark the first estimated
position at each location, the pink spots mark the last and the blue spots mark all the other
estimates. A blue line from one point to another indicates a kidnap, except the blue line to
the first point in figure6.2a, when the position was still completely unknown. The validities
of the position estimates depicted are higher than 0.8.
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d. Saccadic motion, version 3.

Figure 6.2: Results from the experiment (cont.).
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6.3.3 Analysis

All modes perform reasonably well on positions 2, 5 and 8. A bit more problematic in all
modes appears to be position 6, where in most cases the spots lie close to one another, but
never really close to the real position. Also a bit problematic is position 7, although when
viewed in the correct order, there seems to be some progression from one image to the next.

The continuous motion performs worse than the others, as canbe derived from the
amounts of blue spots. The effect of the transition from position 6 to position 7 looks
very bad, but because the robot more or less looks towards position 2 from position 6 and
towards the sky-blue goal from position 7, there are but few landmarks that it can see from
both positions: only the sky-blue goal and the flag positioned at (1350; 1950) (i.e., just
outside the middle of the line between the lower left corner and position 2), which may
confuse the robot.

The first version with saccadic movements performs much better. The only real prob-
lems are with positions 3 and 4, but the results at position 3 may be influenced by the trans-
ition from position 2. One might expect that the effect of the‘transition’ from position 7
to position 8 on the self-localization would be even worse than we saw in the continuous
mode, as in this case there are no common landmarks at all. However, such effect does not
appear here, but that may be because only the orientation changed, not the position.

The worst cases with the second saccadic version, but not really bad, are the positions
4 and (already mentioned) 6. Both positions were reached while this mode was active, so
that must be the cause.

The third saccadic mode does not show new problems.

6.4 Conclusions

From the normal continuous mode and the saccadic modes, the third saccadic mode seems
to give the best results. However, the landmarks always wereat a rather large distance.
Close objects may be missed.

On later occasions, when I tried to use one or more of the saccadic modes in the
Blindfold Challenge, it (or they) did not work as well as before. Moreover, the continuous
mode worked even better, judging by the position validities. A possible explanation may be
in the longer time it takes to turn between the outer points than with the continuous mode.
There may very well be a possibility to adapt the related parts to the longer time, although
it may take some time itself.

Using the technique meant for special actions to create saccadic movements is in
general a bad idea. It cannot be combined with normal actions. In the Blindfold Challenge,
I once tried to use it for searching the ball, but when that ledto a case where the robot had
to turn and move its head at the same time, the robot started walking in a wide circle. If
there is another way to reach a high head pan speed, a way thatcanbe combined with other
motion, it may be an improvement to use it. Also, because, while the head is moving, there
is no image processing and everything that follows from it, the cognition process can do
other or more time consuming tasks.

6.4.1 Future Research

To make the analogy with human eye movements stronger, the robot head could be made to
pause at points of interest, like big changes in the colour histogram, instead of using fixed
intervals.



Appendix A

Achievements of the Universiteit van Amsterdam at
RoboCup

In the past years, the Intelligent Autonomous Systems groupof the Universiteit van Ams-
terdam was involved in RoboCup-competitions in several ways. Here is an overview of the
achievements.
1998 – Paris (France):

Emiel Corten won the third prize in the Soccer Simulation League with his team
calledWindmill Wanderers.

2001 – Seattle (U.S.A.):
• Matthijs Spaan and Bas Terwijn participated in the Dutch national teamClockwork

Orangein the Midsize League, reaching the seventh place.
• In the Soccer Simulation League, teamUvA Trilearn (Jelle Kok and Remco de Boer)

became fourth.
2002 – Fukuoka (Japan):

Again, teamUvA Trilearn (now only Jelle Kok) reached the fourth position in the
Soccer Simulation League.

2003 – Padova (Italy):
• Jelle Kok won the competitions in the Soccer Simulation League with teamUvA

Trilearn.
• In the Rescue Agent Simulation League, teamUvA Rescue C2003(Stef Post and

Maurits Fassaert) became sixteenth.
• TeamUvA Zeppelin, consisting of Arnoud Visser and Stijn Oomes, ended in the

Rescue Robot League in the preliminary rounds.
2004 – Lisboa (Portugal):

• In the Soccer Simulation League, teamUvA Trilearn reached the seventh place.
2005 – Osaka (Japan):

• TeamUvA Trilearn (Soccer Simulation League) reached the tenth position.
• Dutch Aibo Teamreached the ninth position in the Four-Legged League. From the

UvA, Jürgen Sturm was present.
2006 – Bremen (Germany):

• In the Four-Legged League,Dutch Aibo Teambecame sixth in the football com-
petitions and won the third prize in the Technical Challenge. The team coach was
Arnoud Visser, Jürgen Sturm was also present.

• Bayu Slamet and Max Pfingsthorn won the third prize and the Mapping award in the
new Rescue Virtual Robot League with teamUvA ResQ.

2007 – Atlanta (U.S.A):
In the Rescue Virtual Robot League, the fourth position was reached by teamUvA
Rescue, with coach (and more) Arnoud Visser and with Tijn Schmits and Bayu Sla-
met as the other members.

(See also (Sturm, 2006, App. D) and the Dutch RoboCup websitewww.robocup.nl.)
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