
Constructing A Hybrid Algorithm for

Tracking and Following People using a

Robotic Dog

Martijn Liem

Supervisors:
prof. dr. ir. F.C.A. Groen

dr. A. Visser

April 29, 2008

Constructing A Hybrid Algorithm for Tracking and
Following People using a Robotic Dog

Master’s thesis in Artificial Intelligence

M.C. Liem

mliem@science.uva.nl

martijn@liem.nu

Student nr.: 0117455

Supervisors:

prof. dr. ir. F.C.A. Groen dr. A. Visser

April, 2008

Instituut voor Informatica
Intelligent Autonomous Systems group

Kruislaan 403 1098SJ Amsterdam
The Netherlands

mliem@science.uva.nl
martijn@liem.nu

Abstract

In order to create a social robot, able to interact with people in a natural
way, one of the things it should be able to do is to follow a person around an
area. This master’s research is aimed at enabling a Sony AIBO robot dog to
watch people closely and follow them around the house. This is done using
the visual data provided by the robot’s nose-mounted camera. By analysing
the data with respect to colour distributions and salient features, a tracker
is conceived that is able to track and follow a person in the robot’s field of
view. By interfacing the tracker with a motion feedback system, the tracker
can guide the robot around the house. This can even be done considering
the erratic movement pattern of an AIBO robot dog walking around.

To gain a robust object tracker, a fusion algorithm is created which uses
background estimation as its initialisation method. Tracking is done using a
combination of an Expectation Maximization (EM)-based colour histogram
tracker and the Kanade-Lucas-Tomasi feature point tracker. This hybrid
algorithm returns an ellipsoidal tracking kernel which is an estimate of the
current position and shape of the person being followed.

By using the tracking kernel’s position in the current frame perceived by
the robot, the real-world location of the person relative to the robot can
be roughly estimated. When the robot is controlled to keep the kernel in
the centre of its field of view using head motion, the head position can be
used to estimate whether the distance between the person and the robot is
above or below a certain threshold. Together with the robot’s behaviour to
turn when the person approaches the edge of its field of view, this will result
in direct interaction with the person being tracked. As soon as the person
starts moving away from the robot for example, the centre of the tracking
kernel will be shifted towards the bottom of the robot’s view. This results
in the robot lowering its head, which activates the robot’s behaviour to start
moving forward.

i

ii

Acknowledgements

Before I start the first chapter of this thesis, I would like to thank the people
without whom this master’s research would not have been possible. I would
like to thank my supervisors Frans Groen and Arnoud Visser, who have
supported me during the 17 months of my research.

Arnoud has been a great support, being prepared to discuss the latest results,
read new parts of my thesis or discuss improvements on the system at any
time, no matter how busy he himself was writing his PhD thesis, or how
tight his deadlines were. Not only his technical support and experience in
the field of robotics has been of great value, but also his ability to start a
discussion or chat about just any subject helped to create a great working
atmosphere.

Also the periodically scheduled meetings with Frans, during which we dis-
cussed ways to tackle the problems at hand and evaluated the project’s
progress have been very helpful. Although the meetings were short, Frans
gave a lot of support by coming up with interesting and novel ways to make
the system work, and taking the time to critically read the chapters of my
thesis and making comments on improving them.

Finally, I would like to thank Zoran Zivkovic. Zoran provided me with
implementations of two of the three algorithms I used to create my fusion
algorithm. Without his help, it is likely I would not have been able to reach
the results I have now.

iii

iv

Contents

1 Introduction 1
1.1 Following People . 2
1.2 Focus of this Thesis . 4
1.3 Thesis Overview . 5

2 Tracking People 7
2.1 Related Work . 7
2.2 Selected Algorithms . 11
2.3 Background Subtraction . 11

2.3.1 Background Estimation 12
2.3.2 Implementation . 15

2.4 Colour Histogram Tracking 18
2.4.1 Mean-shift . 18
2.4.2 EM -shift . 19
2.4.3 Integration . 23

2.5 Feature Point Tracking . 26
2.5.1 Kanade-Lucas-Tomasi Tracker 26
2.5.2 Good Features . 30
2.5.3 Monitoring Features 31
2.5.4 Tracking Large Distances using Image Pyramids . . . 32
2.5.5 Integration . 33

2.6 Summary . 35

3 Fusing the Algorithms 37
3.1 The Hybrid Algorithm . 38
3.2 Person Following . 44

3.2.1 Controlling Head Movement 45
3.2.2 Moving the Robot . 45

v

CONTENTS

4 Results 49
4.1 Experimental Setup . 49
4.2 Experimental Results . 52
4.3 Discussion . 63

5 Conclusions and Future Research 65
5.1 Conclusions . 65
5.2 Future Research . 68

Bibliography 71

Appendices

A Computation of the Main KLT Tracking Function 77

vi

Chapter 1

Introduction

In a society with a rapidly growing number of automated processes, more and
more consumers want to profit from the extra comfort offered by automa-
tion as well. This can for example be reached by installing advanced home
entertainment systems, but standard domestic appliances also get more ad-
vanced. Furthermore, automating certain processes around the house can
result in cost reduction. This is for example done by installing automated
home security systems or using an automated lawnmower instead of a gar-
dener.

At this moment, several electronics companies like iRobot and Electrolux
are already selling robotic vacuum cleaners able to clean around the house
all by themselves. It is even possible to buy a fully automated gutter cleaner.
Furthermore, several companies are developing robots that could some time
be walking around your own house, offering a helping hand in everyday
tasks (e.g. Honda’s ASIMO). Besides housekeeping robots, entertainment
robots are introduced to the market. Both Lego and Meccano for example,
have developed products which introduce robotics to the general public in
a playful way. A couple of consumer robots and prototypes are depicted in
figure 1.1.

With the introduction of robots in the domestic environment, research to
equip robots with more social behaviour becomes interesting. Multiple tasks
for which robots could be deployed require some social skills. They could
for example be used as servants or to guide people around.

To enable a robot to do this kind of tasks, more intelligent behaviour should
be created, providing the robot with ways to locate people and interact with
them. This requires a severe upgrade in intelligence with respect to the
current standards in domestic robotics. One interesting addition to robot
intelligence would be the ability to autonomously find and follow people.
This kind of behaviour is useful for many different applications in social
robotics, around the house as well as in public areas like museums, shops or
healthcare institutions.

1

Chapter 1

Figure 1.1: Several robots developed for the consumer market.
From the top left, going clockwise: iRobot Roomba vacuum
cleaner, Honda ASIMO humanoid robot, Meccano Spykee spy
robot, iRobot Looj gutter cleaning robot and Sony AIBO enter-
tainment robot.

This chapter will provide a brief introduction to the subject of automated
people following, as well as a presentation of the goals of this project. In
the last section, an overview of the rest of this thesis will be given.

1.1 Following People

In domestic environments a human following robot could be used to assist
people while they move around the house, for example carrying serving trays.
More socially relevant applications could be found in elderly care. Since the
number of elderly people is growing rapidly, the need for nursing personnel
is bound breaking. It could be a great improvement when people needing

2

Introduction

intensive care could be monitored without a human constantly checking the
current status of the person. The same could be done using a wearable alarm
button or camera surveillance, but as people forget to wear the buttons
and dislike the idea of being watched all the time, these methods are not
optimal. It would be much better when the monitoring could be done using
unobtrusive methods.

Multiple applications of intelligent systems for elderly care have been pro-
posed. Some of these systems are used for watching people and warning the
nursing personnel when something goes wrong [Sixsmith and Johnson, 2004],
while other systems are aimed at supporting the people that are helping the
elderly person [Consolvo et al., 2004]. More multi-purpose systems combine
keeping an eye on people with other tasks like giving them reminders, pro-
viding them with information or guiding them around [Bahadori et al., 2003,
Pineau et al., 2003]. When a mobile system is used, care should be taken
that it is not obtrusive and it is able to follow a person without causing any
hindrance.

Such an unobtrusive method is offered by the Sony AIBO robot dog (fig-
ure 1.2)1. It can be seen as a multi-sensor platform embedding, among
other sensors, a camera, stereo microphones and infra-red distance sensors
in a dog-like four legged robot. Because of the looks and the behaviour of
the robot, people tend to regard it much more like a toy dog puppy than a
camera surveillance system [Friedman et al., 2003]. Furthermore, as long as
the robot can work autonomously and no actual person is needed to watch
the video streams all day, using this kind of monitoring device will bring
fewer privacy issues with it.

Figure 1.2: Sony AIBO robot dog in a domestic environment.

While finding and following people is very easy to the human eye, it is quite
a challenge for a robot. The process consists of several parts. First, the
person to be tracked should be located in an image and unique properties
should be extracted which can be used to identify the person in subsequent

1Picture published by the courtesy of the AIBO Research Team (Hogeschool voor de
Kunsten Utrecht / Telematica Instituut Enschede), http://aibo.telin.nl/.

3

http://aibo.telin.nl/

Chapter 1

video frames. Second, these properties should be used to track the person
throughout a video sequence. Typical properties used for tracking are colour
information [Comaniciu et al., 2000], object shapes [Gavrila and Philomin,
1999] and local features like corners or edges [Shi and Tomasi, 1994]. To
achieve real-time following behaviour, the visual tracking result should be
used to guide the robot towards the person and keep following them as long
as possible. A more extensive overview of different methods to accomplish
tracking and following will be given in chapter 2.1.

1.2 Focus of this Thesis

The aim of this master’s thesis is to develop an algorithm enabling a Sony
AIBO robot dog to locate, track and follow a person moving through a
room. It should operate fully autonomously and be guided solely by the
images taken with the robot’s nose mounted camera. Furthermore, the robot
should be able to keep tracking a person regardless of changes in lighting
conditions and partial occlusion by furniture.

To achieve this goal, three algorithms are selected and fused into a hybrid
algorithm in which the strong points of the algorithms compensate for the
weaker points of the others. Algorithms are selected based on the way they
perform tracking and the task they should fulfil in the hybrid algorithm.
Because the project’s main goal is to develop an efficient combination of the
algorithms and to put them in a feedback loop together with the robot, the
implementation of all used methods from scratch is considered to be out of
the scope of this project. Therefore, algorithms are selected based on their
specific qualities and on the circumstances in which they work best, as well
as on the availability of implementations.

Based on these criteria, three algorithms are selected to be part of the fusion
algorithm. Two algorithms have the purpose of tracking the person and by
doing that, guiding the robot, while one algorithm is selected for initialising
the other two. The initialisation process exists of doing the initial person
detection and segmentation, and is done using the Gaussian Mixture Model
Background Subtraction algorithm by [Zivkovic and van der Heijden, 2006].
Next, the EM -shift colour histogram tracker from [Zivkovic and Kröse, 2004]
is chosen for doing colour based tracking. Finally, the Kanade-Lucas-Tomasi
feature point tracker by [Lucas and Kanade, 1981, Shi and Tomasi, 1994,
Tomasi and Kanade, 1991], implemented by [Birchfield, 1997], is selected
for tracking based on local feature information. These methods will all be
described in-depth in chapter 2.

The fusion algorithm built out of these methods is used for controlling the
motion of the robot. By guiding the robot towards the perceived position

4

Introduction

of the person, following behaviour is obtained. Since all robot motion is
directly noticeable in the robots perception, the feedback loop between the
fusion algorithm and robot motion provides the fusion algorithm with a
better view of the person being tracked. Especially at moments where the
person gets to the edge of the camera image, the feedback loop causes the
robot to turn its camera towards the person, causing him to reappear right
in the centre of the image. This process improves the quality of the tracker.

Finally, part of this thesis will be presented at the 3rd ACM/IEEE Interna-
tional Conference on Human-Robot Interaction [Liem et al., 2008].

1.3 Thesis Overview

In the second chapter of this thesis, an overview of research related to visual
person tracking is given. From the methods described in this overview, three
algorithms are selected to be part of the fusion algorithm. Furthermore, the
reasons for selecting these specific algorithms will be highlighted, after which
detailed information on the theoretical background of the selected algorithms
is given.

When the theory behind all three algorithms is made clear, the third chapter
is used to describe the fusion of the three algorithms into a hybrid tracking
algorithm. The three algorithms should be interfaced in such a way that
they boost each others performance. The final step of creating the hybrid
algorithm will then be the integration of the vision based person tracker
with the robot’s controls so the robot is enabled to follow people. This will
be done by directly feeding the persons position obtained from the tracker
into the robot control interface.

After having described the complete system, the fourth chapter is used to
describe the extensive experiments used for testing the algorithms, as well
as the gathered results. Multiple experiments are done to determine the
specific strengths and weaknesses of the fusion algorithm, relative to the
separate algorithms it is built of. Furthermore, a small discussion on the
results will be provided.

The fifth and final chapter will be used to draw conclusions from the results
gathered in the previous chapter. The results found will be discussed and
the degree to which the research questions can be answered using the fusion
algorithm is determined. Furthermore, an assessment of the quality of the
fusion algorithm will be made. To conclude, some interesting possibilities
for future research will be discussed.

5

Chapter 1

6

Chapter 2

Tracking People

To create a tracker which is robust and not merely dependent on one type of
features, multiple algorithms were combined into one fusion algorithm. The
selection of the algorithms was based on the type of features used to perform
tracking and the classes of problems which they work well for. Considering
these points, three criteria are defined for selecting the algorithms. These
criteria are as follows:

1. Selected algorithms should either be able to track a person over a
longer period of time, or locate a person in the scene from scratch.

2. Tracking algorithms should be robust to camera motion.

3. The selected collection of algorithms should make use of multiple types
of features. (The selected trackers should for example not all work
based on colour properties.)

The fusion was created hoping that the combined algorithms could comple-
ment each others’ qualities in such a way that the whole is greater than the
sum of its parts.

In this chapter, the algorithms chosen to be part of the fusion algorithm
will be introduced. First, a brief overview of the research area considering
object localisation and tracking will be given in the next section. After this
overview, the selected algorithms will be briefly discussed. The last three
sections will be dedicated to the in-depth details of each of the three selected
algorithms.

2.1 Related Work

Visually following or tracking people has been a very active area of research
within image processing. Many algorithms for finding and keeping track of

7

Chapter 2

people walking around have been proposed, but most are based on static
(surveillance) cameras [Comaniciu et al., 2000, Forsyth and Fleck, 1997,
Gavrila and Philomin, 1999, Haritaoglu et al., 2000, Stauffer and Grimson,
1999].

Some of the researched methods are directly related to the specific object
that needs to be tracked. Examples of these methods are template matching
[Gavrila, 2000, Lipton et al., 1998], shape fitting [Baumberg and Hogg, 1994]
and human modelling [Zhao, 2001]. These methods rely on the recognition
of a human form in an image to detect and possibly track a person through
a scene. Furthermore, these methods need a general understanding of the
shape or composition of a human body.

Many object tracking methods rely on the segmentation of the object or
person from the image. Segmentation methods like simple background sub-
traction [Stauffer and Grimson, 1999, Withagen, 2005, Zivkovic and van der
Heijden, 2006] or more advanced C-means clustering [Chen et al., 2002,
Pham and Prince, 1998] should be used to extract the objects before clas-
sification can be performed. Because people are neither uniformly coloured
nor textured, C-means clustering will presumably result in multiple clusters
representing one person. In this case, it will be very cumbersome to find
out which parts together make up a person, which makes it impractical to
utilize when a complete person should be tracked.

One frequently used method for locating people in a scene and segmenting
them from that scene is background estimation and subtraction [Stauffer
and Grimson, 1999, Withagen, 2005, Zivkovic and van der Heijden, 2006].
This type of segmentation method, like many algorithms and systems for
segmentation and tracking, relies on a static camera like those used in most
surveillance situations. The method is based on comparing or subtracting
two subsequent frames and estimating the rigid background of a scene by
searching for unchanged pixel values. Because these methods depend on a
static background scene, they will not be useful on a moving robot. Such
a method could be useful to initialise other tracking algorithms by using
background estimation to segment objects from the scene and to provide
data on these objects to other methods. Taking into account a short period
in which the robot needs to stand still will not necessarily pose a problem.

Object displacement can also be detected with the usage of salient points
[Shi and Tomasi, 1994, Zajdel et al., 2005, Kadir and Brady, 2001]. Salient
points are features in an image that can easily be tracked due to their struc-
ture. Selected points could be corners, edges or more complex textures like
triangles or salt-and-pepper figures. A collection of feature points is located
in the image and tracked to the next frame. Based on those tracks, displace-
ments in that part of the image can be estimated. A method for doing this
is described in [Lucas and Kanade, 1981]. Because the tracking of image

8

Tracking People

features from one position to another is independent of further scene move-
ment, a method like this could be used to find and track persons using a
mobile camera. It could also be used to get the features for initialising an-
other tracking method, as suggested in [Zajdel et al., 2005], or to estimate
the new position of a known object.

An application using feature points in object tracking can be found in
[Kölsch and Turk, 2004]. This paper describes a way to use ‘flocks of features’
for tracking a hand in front of a mobile camera, making use of the Kanade-
Lucas-Tomasi (KLT) feature point tracker. The tracker is initialised using
skin colour segmentation. Tracking is done by making use of the spatial re-
lationship between the features found. A disadvantage of the method is that
it makes use of pre-initialised thresholds determining the size of the hand.
This is not a problem as long as the maximum distance between the object
to be tracked and the camera is kept small, which is achieved by mounting
the camera on the person. In our case, the distance between camera and
person is more flexible which will result in many more fluctuations in relative
object size.

The algorithm described by [Lucas and Kanade, 1981], belongs to the collec-
tion of optical flow methods [Horn and Schunck, 1981, Barron et al., 1994].
These methods can be used to combine displacements of multiple regions
or features to estimate directions of movement in a sequence. Using this
kind of methods, it is also possible to describe a dense motion field in which
the displacement of each separate pixel is estimated on a frame to frame
basis. In this case, all pixels can be seen as features of which the motion
is estimated. They can be used to estimate the movement model of the
background of a scene. Regions in the image where the movement deviates
from that model can be indicated as objects and segmented from the back-
ground. A difficulty of using dense motion fields on a more erratic moving
camera is that multiple fields can be identified. Not only the background
and the person will be separated, but objects at different distances from the
camera will be identified by different flow fields, and even different parts of
the person will show different directions of motion.

An efficient method for tracking complete objects is by using the colour
histogram of the object. A well known example of such method is the
mean-shift algorithm described in [Comaniciu et al., 2000]. An extension of
this method described in [Zivkovic and Kröse, 2004] introduces an adaptive
version which enables to adjust the search window. The algorithm allows
to grow or shrink a Gaussian kernel around the object to be tracked. Fur-
thermore, the orientation of the object can be estimated, which allows this
method to detect, for instance, whether a person being tracked is standing
up or lying down. Another advantage is that the method is robust to camera
movement, including rotations.

9

Chapter 2

Class of algorithms 1 2 3 4 5
Specialized object trackers (e.g. template matching) + - + - shape
Feature clustering (e.g. C-means clustering) - - + + colour
Background subtraction + - - + colour
Feature point trackers - + + + salient features
Colour histogram trackers - + + + colour
Dense motion fields - - + + motion

Table 2.1: Overview of specific algorithm properties. 1. Able to
detect a complete person in a scene. 2. Able to track a person for
a longer period of time. (The ability to detect a person in each
new frame, without relating the detection to the previous frame, is
not considered to be tracking.) 3. Robust to camera movement. 4.
No a priori knowledge about the object to track required. (This is
not a hard criterion, but considered to be a pro for an algorithm.)
5. Type of features used for detection/tracking.

In [Withagen, 2005], another method for colour histogram tracking is pre-
sented. This method uses a blob representation of the person instead of a
kernel estimation. It is also robust to deformable object shapes due to the
distinction between the object centre and a deformable boundary around
this centre. The usage of an object blob segmented from the background
would be a disadvantage in our situation. As discussed before, in the case
of a moving camera it is difficult to segment a complete person. While it is
possible to track multiple segments of a person separately, clustering could
result in many different objects (shoes, pants, shirt, arms, hands, head, hair)
and tracking all these object would be very resource intensive.

In table 2.1, a brief summary is given of the most important properties of
the main methods described. The methods have been graded on their ability
to detect a complete person at once, their ability to track the same person
through a sequence, the robustness of the method to camera movement and
the need of the method for any a priori knowledge about the object to
track. This last property is added because we prefer a method which does
not need any ‘hard coded’ object properties on forehand when possible. As
a last property, the type of features used by the method for localisation or
tracking is listed. Based on this table, and considering the criteria for the
methods to use listed earlier, a more accurate decision of the methods to
use can be made.

Finally, several projects have also aimed to find ways to follow people using
a mobile robot. In [Schulz et al., 2003], multiple people are tracked using
a laser-range scanner mounted on a robot. Data about people’s positions
gathered this way can easily be used for person following or avoidance. In
[Sidenbladh et al., 1999], [Schlegel et al., 1998] and [Fritsch et al., 2004],
mobile robots are used to locate and follow people using various vision- as

10

Tracking People

well as audio-based algorithms. All of these projects use advanced robots
equipped with high quality cameras or laser-range scanners. Furthermore,
wheeled, child-high robots are used for all experiments.

At those points, the experiments largely differ from the ones presented here;
since the AIBO can be regarded as a much more low-end, low-profile robot
which furthermore is propelled using four legs instead of wheels. This results
in much less stable sensor data as soon as the robot starts moving. These
factors request a robust method which uses as much information from the
provided data as possible.

2.2 Selected Algorithms

Three algorithms were selected using the criteria described in the introduc-
tion of this chapter. For tracking a person based on colour information, the
Expectation Maximization (EM)-shift colour histogram tracker by [Zivkovic
and Kröse, 2004] was selected. EM -shift performs well on tracking colour
distributions through image sequences and is robust to camera movement.
Because of its mere reliance on colour distributions the algorithm lacks ro-
bustness when similar colours are found in background and foreground ob-
jects. To compensate for this, the Kanade-Lucas-Tomasi (KLT) feature
point tracker by [Lucas and Kanade, 1981], [Shi and Tomasi, 1994] and
[Tomasi and Kanade, 1991] was used.

This tracker is based on more abstract image features which can be found
by analysing the first order derivatives of the image. Because of the great
difference in feature types used by EM -shift and KLT , these two methods
are very capable of complementing each other when fused into one algo-
rithm. Since both methods need an initial estimate of the person’s initial
position, an algorithm for segmenting the person from the image needed to
be combined with the object trackers.

For this purpose, the Gaussian Mixture Model (GMM) Background Sub-
traction algorithm by [Zivkovic and van der Heijden, 2006] was selected.
This method performs well in segmenting moving objects (people) from an
image sequence, but is unable to perform tracking on a mobile system by
itself. The GMM Background Subtraction method was used for initialising
the object trackers and performing occasional support during tracking.

2.3 Background Subtraction

Background subtraction is one of the most straightforward methods avail-
able for doing image segmentation. By subtracting an image of the static

11

Chapter 2

background of a scene from the current video frame, only objects that are
not part of that background will remain. From this result an image mask
can be created which can be used for quick segmentation of any moving
objects in the field of view of the camera.

A problem with this kind of background subtraction occurs when the as-
sumed static scene is not completely static. Movement of the sun throughout
the day can for example cause displacement of shadows or changes in colour
in the scene. When a fixed background image is used, all these changes will
appear as objects in the segmented image.

To prevent this, the representation of the background can gradually be
adapted to include changes over time. This can be done by using an av-
erage of the estimated background over a certain timespan. By doing this,
all objects keeping still for a given period of time will eventually be included
in the background. This adaptation period should be chosen carefully be-
cause objects being tracked should not be included in the background. A
trade-off has to be made between the robustness of the method to gradual
changes and its flexibility in allowing objects to keep still without becoming
background. Methods that try to estimate the background of a given scene
like this are also called background estimation methods.

2.3.1 Background Estimation

Most methods for estimating the rigid background of a scene depend on
a probabilistic, pixel level estimation of the background. All image pixels
are processed separately and the recent colour history of a pixel is used to
estimate whether it should be labelled as part of the foreground or the back-
ground of the scene. The background model will be built using a temporal
average of the pixel’s history. The spatial correlation between neighbouring
pixels is not taken into account.

One way to do background estimation is by using a Gaussian Mixture Model
(GMM) approach as introduced by [Friedman and Russell, 1997] and further
improved by [Stauffer and Grimson, 1999]. Both approaches assign a GMM
to each pixel, representing the colour distribution of this pixel through time.
Each Gaussian represents a group of colours, formed by collecting pixel
values over time, and can either be classified as background or foreground.
By using multiple Gaussians, a multi-hypothesis system is created for the
background model. A change in pixel value will only influence one of these
hypotheses. This makes it possible to adapt more quickly to changes in the
scene and allows for faster modelling of new objects. Using a GMM has an
advantage over standard averaging the pixel’s history because a change in
pixel value does not cause an irreversible change to the complete background
model.

12

Tracking People

The major problem of a GMM based model is to determine the number of
Gaussians used to distinguish between foreground and background objects.
In most cases a fixed number of Gaussians is selected. In [Zivkovic and
van der Heijden, 2006] an adaptation to the method from [Stauffer and
Grimson, 1999] is described which allows for real-time updating the number
of Gaussians used. This adds more flexibility to the model and allows it to
fully adapt itself to the scene automatically. This model is described next.

Using a Gaussian Mixture Model

Let the colour value of a pixel at time t (for example in RGB) be denoted
by the vector v(t). The static background (BG) of the scene can now be
represented by a background model p(v(t)|BG). This model is estimated
from a training set Vt.

When a time adaptation period T is used for the model, the training set
for the background model at time t will be Vt = {v(t), ...,v(t−T)}. For each
new sample v(t+1) the training set Vt is updated and a new estimate for the
background is computed.

Because the samples might contain values belonging to foreground objects
(FG), the density estimate should be denoted as p̂(v(t)|Vt, BG+ FG). Us-
ing a Gaussian Mixture Model (GMM) with M Gaussian components, the
function to compute this density is:

p̂(v(t)|Vt, BG+ FG) =
M∑
m=1

π̂mN (v(t); µ̂m, σ̂2
m1), (2.1)

where µ̂m and σ̂2
m are the estimates of the mean and variance that describe

the mth Gaussian component. For the estimated mixing weights π̂m, the
assumptions that π̂m ≥ 0 and

∑M
m=1 π̂m = 1 are used. To simplify compu-

tations, the covariance matrices used are kept isotropic by using the variance
estimates multiplied by an identity matrix 1 of the proper size.

When a new data sample v(t) is given, the parameters from (2.1) are updated
recursively as follows [Zivkovic and van der Heijden, 2006]:

π̂m ← (1− α)π̂m + α(o(t)
m − ct), (2.2)

µ̂m ← (1− αo
(t)
m

π̂m
)µ̂m + α

o
(t)
m

π̂m
v(t), (2.3)

σ̂2
m ← (1− αo

(t)
m

π̂m
)σ̂2
m + α

o
(t)
m

π̂m
(δTmδm). (2.4)

13

Chapter 2

In these functions, δm = v(t) − µ̂m while α = 1/T is used to exponentially
decrease the influence of older data samples. The binary ownership param-
eter o(t)

m states whether data sample v(t) is part of Gaussian component m
or not. Parameter ct in (2.2) represents the number of samples that belong
to a class a priori, relative to T . By giving it a negative weight, a class
should be well supported by data before π̂m becomes larger than 0 and its
existence is accepted. When for example at least 0.01T data samples should
support a component before it is accepted, ct = 0.01 should be used. After
each update, π̂ should be normalised so its elements add up to one.

The distance between samples and the Gaussian components is computed
using the Mahalanobis distance: the squared distance for the mth Gaus-
sian component is computed using D2

m(v(t)) = δTmδm/σ̂
2
m. This number is

compared to a threshold to determine whether the sample is ‘close’ to the
component or not. For each new sample, the ownership parameter o(t)

m is
set to 1 for the ‘close’ component m currently having the largest weight π̂m,
and to 0 for all other m. When no ‘close’ component can be found, a new
component is created with weight π̂m+1 = α, mean µ̂m+1 = v(t) and variance
σ̂m+1 = σ0 where σ0 is an appropriate initial variance.

Using equations (2.2)-(2.4), only the Gaussian components most represen-
tative for the new data (o(t)

m = 1) are updated, while the mixing weights
π̂m for the other kernels are decreased. When the mixing weight becomes
negative, the corresponding component m is discarded. Together with the
automatic generation of new Gaussians when no component ‘close’ to the
new data can be found, this ensures an automatic selection of the compo-
nents used. Furthermore, when the number of components reaches a certain
maximum, the component with the smallest weight is discarded. This will
prevent limitless growth of the number of Gaussian components used.

Because the kernels will represent foreground as well as background ob-
jects, as stated in (2.1), a sub-selection of clusters representing only the
background should be made. Foreground objects will be represented by ad-
ditional clusters having small weights π̂m. When a new object enters the
scene, a new cluster will be created. While the object remains static, the
weight will keep increasing. At some point, the weight will be large enough
to add the new object to the background model. This point can be repre-
sented by a threshold value cf . This value is a measure of the maximum
portion of the data that can belong to foreground objects without influenc-
ing the background model. According to [Zivkovic and van der Heijden,
2006], an object should be static for log(1− cf)/ log(1− α) frames before it
becomes part of the background model. When the components are sorted
to have descending weights, the following function can be used to compute
the number of components B that represent the background:

14

Tracking People

B = arg min
b

(
b∑

m=1

π̂m > (1− cf)

)
. (2.5)

When the B largest clusters are used in (2.1), the current background model
can be computed using:

p̂(v(t)|Vt, BG) ∼
B∑

m=1

π̂mN (v(t); µ̂m, σ̂2
m1). (2.6)

This function is compared to a threshold cthr to decide if the sample v(t)

belongs to the background. An image mask containing all non-static ob-
jects can now be gained by marking all positions in the image for which
p̂(v(t)|Vt, BG) > cthr is true as 0.

Using functions (2.5) and (2.6) to determine the number of components and
the update functions defined earlier, the final algorithm can now be derived
and is shown in algorithm 1.

Algorithm 1: GMM background estimation algorithm
Input: Consecutive frames from a movie sequence
Output: Image mask marking foreground objects

foreach pixel in the current frame do
Get colour value v(t) of current pixel;
if p̂(v(t)|Vt, BG) > cthr (2.6) then

Set image mask at position of v(t) to 0;
else

Set image mask at position of v(t) to 1;
foreach Gaussian component m ∈M do

Update the FG/BG model by computing π̂m, µ̂m and σ̂2
m using

(2.2), (2.3) and (2.4);
Compute the number of components B to use for the background model
using (2.5);

2.3.2 Implementation

An example of the results of the GMM background subtraction method can
be seen in figure 2.1. This figure is created at about five frames per second,
using a learning rate α = 0.04 and a Mahalanobis distance Dm(v(t)) ≤ 3
for determining whether a pixel is ‘close’ to component m. To make the
algorithm more computationally efficient, instead of computing the complete
density estimate each time, the Mahalanobis distance is also used to classify

15

Chapter 2

a new pixel as background. This means that instead of comparing (2.6)
to cthr, Dm is compared to a threshold cb which represents the maximum
number of standard deviations a value v(t) can be from a component and
still be classified as background. A pixel will now be classified as background
when Dm < cb and m ≤ B. For the images in figure 2.1, cb = 8 was used.
Higher values for cb will result in allowing larger differences between the
known distribution of background colours and the current colour while still
classifying it as a background pixel. On the other hand, smaller values for
cb result in higher noise sensitivity.

Figure 2.1: GMM background subtraction using a static camera
(first six frames)

As can be seen in figure 2.1, the algorithm needs about four frames to
stabilize and give a good segmentation. This means that with a frame rate
of about five frames per second, the algorithm will take a little bit less than
a second to segment the image. This will work fine as long as the camera
stays at a static position and the person keeps moving. As can be expected,
a problem occurs when the object being tracked stands still for a short while.
The algorithm will slowly start adapting the background model to include
the object. This can be prevented by lowering the learning rate, which has

16

Tracking People

the drawback that the algorithm needs more time before a segmentation can
be made. Therefore, the importance of a good choice for α is evident. A
useful value for α should be chosen with respect to the problem at hand,
depending on how fast objects should be detected and how long they should
stay separate from the background.

Figure 2.2: GMM background subtraction using a moving camera
(first six frames)

As mentioned before, a weakness of the algorithm is its sensitivity to moving
cameras. When the camera is not static, like on a mobile robot, the algo-
rithm will be unable to make a clear segmentation since the whole world is
moving relative to the camera. This results in a segmentation similar to the
one shown in figure 2.2. These images clearly show that the moving camera
causes the detection of objects at every edge in the image which results in
an edge image-like segmentation.

For this reason, background estimation should not be used as a tracking
method but only as an initialisation method. When it is assumed the robot
will always be initialised standing still, background estimation is a nice and
easy method to segment moving objects like people from a video sequence.

17

Chapter 2

Because the method does not need any properties of the object to be known
a priori, it can always be used to produce an object mask within a few
frames. This mask can then be used to initialise other, more advanced
object trackers like the ones described in the following sections.

2.4 Colour Histogram Tracking

One frequently used method for tracking objects in video sequences is track-
ing based on colour information. In most cases, this is done by analysing
the colour distribution of the object to be tracked using a colour histogram.
The object histogram will then be compared to the colour histograms at
multiple locations in a new frame.

To get the histogram at the position of the object, a region of interest is
defined representing the object to be tracked. In many cases, such a re-
gion is defined by a Gaussian-like kernel. Using such a kernel for tracking,
the central area of the region, in which the object will most likely be lo-
cated, will be weighted higher than the boundaries. This reduces the risk of
background pixels, likely to be located at the kernel boundaries, influencing
the histogram. From this kernel, a weighted histogram will be generated
containing the object’s colour distribution (section 2.4.2).

Algorithms used for tracking based on colour distribution iteratively shift the
position of the tracking kernel from which the histogram is taken, until an
optimal similarity between the histogram of the object and the histogram
at the current location is found. The search radius of the tracker will in
most cases be limited to within the boundaries of the tracking kernel. This
prevents the algorithm from having to search the whole scene, but limits the
maximum movement of the object being tracked.

2.4.1 Mean-shift

A method often used for colour histogram tracking [Chen and Meer, 2002,
Comaniciu et al., 2000, Comaniciu and Meer, 2002] is the mean-shift algo-
rithm [Fukunaga and Hostetler, 1975]. This algorithm adapts the mean of
the tracker kernel to get the best match between the current colour distri-
bution in the kernel and the colour distribution of the reference object to
be tracked.

Tracking is done by mapping the value of each bin in the object histogram
onto the current frame. This way, each pixel value is replaced with the value
of the histogram bin to which the pixel value belongs. Projecting the bin
values onto image positions like this is called backprojection. The result
is a colour clustering where colours with a high occurrence in the reference

18

Tracking People

object get high values in the backprojection image, while less frequent object
colours result in low values. Guiding the tracker to the new object position
can now be done using this image. The new tracker mean is computed over
all image positions within the tracking kernel, weighted with their values in
the backprojection image.

Object tracking using this method is very robust to object motion as well
as camera motion. As long as the colours of the object do not change,
changing the position of the tracking kernel is sufficient to get an estimate
of the current position of the object.

A disadvantage of this method is that it only tracks one point in the ob-
ject. When the distance between the object and the camera changes or the
object’s shape gets modified, for example due to a change in the object’s
orientation, the kernel used for tracking will cover more or less pixels than
covered by the object. When the object is larger than the kernel, this will
cause the tracker to move around on the object, making it hard to get a good
estimate of the object’s position in the frame. When the object is smaller
than the kernel, the kernel has a high chance of snapping on to an other,
similarly coloured object in its neighbourhood. In some cases the kernel
remains fixed in the same position because no object movement is detected
any longer.

2.4.2 EM -shift

In [Zivkovic and Kröse, 2004] a method is described which does not only
update the mean θ of the kernel, but also adapts the kernel’s variance V
and therefore its shape. This is done by interpreting mean-shift as an Ex-
pectation Maximization (EM)-like algorithm [Dempster et al., 1977]. Like
the mean-shift algorithm, it tries to find the optimum match between the
reference histogram of the object and the histogram of the pixels in the new
image captured in the current kernel. The similarity is optimised by chang-
ing the mean as well as the covariance of the kernel until the difference
between both histograms is minimized. An example of the difference be-
tween mean-shift and this new EM -shift method can be found in figure 2.3.

Creating Histograms

Let xi denote a pixel location. The position of the object to be tracked is
represented by the location of its centre θ0 while its shape is approximated
by its covariance matrix V0:

V0 =
∑

all object pixels

(xi − θ0)(xi − θ0)T . (2.7)

19

Chapter 2

(a) Initial kernel position

Initial position

Final solution

(b) mean-shift iterations

Initial position

Final solution

(c) EM -shift iterations

Figure 2.3: Difference in tracking between mean-shift and EM -
shift. (a) the first frame with the initial kernel. (b) the kernel in
the second frame after 60 mean-shift iterations. (c) the kernel in
the second frame after 60 EM -shift iterations.

These values should be computed from an initial selection of the object
pixels in the first frame of the sequence. This selection could be made by
hand or by using some other object segmentation algorithm like background
subtraction.

The reference histogram for the object h0 = [h0
1, ..., h

0
s]T with S being the

number of bins in the histogram, can now be created bin-by-bin using:

h0
s =

OV0∑
i=1

N (xi; θ0, V0)δ[b(vi)− s]. (2.8)

In this function, δ is the Kronecker delta function. The function b(vi) maps
the colour value vi of a pixel at location xi to its corresponding bin and the
Gaussian kernel N is used to give a higher weight to pixels in the centre of
the kernel than to pixels on the less reliable boundaries. It also normalises
the histogram so

∑S
s=1 h

0
s = 1. Only the OV0 pixels from a fixed region

around the kernel are used in computing the histogram. Pixels further away
than 21

2 -sigma (confidence interval of 99%) are not taken into account.

When a new frame is acquired from the image sequence, an ellipsoidal region
in the image is defined by its position θ and covariance matrix V . This region
represents the newly estimated position of the object. Its colour histogram
h(θ, V) is calculated analogous to h0 using:

hs(θ, V) =
OV∑
i=1

N (xi; θ, V)δ[b(vi)− s]. (2.9)

20

Tracking People

Comparing Histograms

Now that we have two colour histograms representing the original colour
distribution of the object and the colour distribution at the newly estimated
object position, both histograms can be compared to get an indication on
how well the new location represents the object to be tracked. Using this
comparison, the location and shape of the kernel in the current frame should
gradually be adapted to better match the position of the object in this image.

The comparison is made using the Bhattacharyya coefficient, like done in
[Comaniciu et al., 2000]. This measurement is based on computing the
overlap between two functions. Since we are using histograms as an object
representation, the overlap between them gives a good estimate of their
similarity.

The Bhattacharyya coefficient is computed as follows:

ρ[h(θ, V),h0] =
S∑
s=1

√
hs(θ, V)

√
h0
s. (2.10)

Since both histograms are normalised, the following holds:

hs(θ, V) ≤ 1 and h0
s ≤ 1. (2.11)

Taking this into account, complete similarity of both histograms will result
in (2.10) being equal to 1. When the values of both histograms at bin
s differ, (2.11) makes sure the range of

√
hs(θ, V)

√
h0
s will always be in

between hs(θ, V) and h0
s, with a bias towards the lowest value. Because of

this, unequal values for bins n in the two histograms will result in a value
of ρ[h(θ, V),h0] < 1.

Executing EM

Because an EM algorithm for a mixture of Gaussians [Bishop, 2006], [Ver-
beek, 2004] will be used to estimate the new values for θ and V , the function
representing the data clusters defined by these variables should be of the
form

f(θ, V) =
O∑
i=1

ωiN (xi; θ, V). (2.12)

Let us assume that the current estimates for the parameters are denoted by
θ(k) and V (k). Using a first order Taylor approximation of (2.10) around

21

Chapter 2

hs(θ(k), V (k)), the function can be rewritten as:

ρ[h(θ, V),h0] ≈ c1 + c2

OV∑
i=1

ωiN (xi; θ, V), (2.13)

where c1 and c2 are constants and

ωi =
S∑
s=1

√
h0
s

hs(θ(k), V (k))
δ[b(vi)− s]. (2.14)

This function selects the weight ωi to be used for the pixel located at
xi. Since the histograms have been normalised, ωi ≥ 1 as long as h0

s ≥
hs(θ(k), V (k)). This results in larger weights ωi for pixels in bins more rep-
resentative for the object.

The similarity between the structures of the last term of (2.13) and (2.12)
makes it possible to use the EM algorithm to find the local maximum for
(2.13). This is done in an Expectation (E) and a Maximization (M) step
which are repeated until the algorithm converges [Bishop, 2006].

First an E step is done in which weights qi are computed for each data point
(pixel xi). For these weights it holds that

∑O
i=1 qi = 1 and qi ≥ 0. At this

point θ(k) and V (k) are kept fixed. Computing the weights is done using the
function

qi =
ωiN (xi; θ(k), V (k))∑O
i=1 ωiN (xi; θ(k), V (k))

. (2.15)

As can be seen, qi is directly influenced by ωi. This means that during
the M step, more weight will be attached to points representing the object,
which will bias the updated θ(k+1) and V (k+1) towards the object’s location
in the image.

In the M step, the qi are kept constant while we compute the new θ(k+1)

and V (k+1). This is done using the following equations:

θ(k+1) =
O∑
i=1

qixi =
∑O

i=1 xiωiN (xi; θ(k), V (k))∑O
i=1 ωiN (xi; θ(k), V (k))

(2.16)

V (k+1) = β
O∑
i=1

qi(xi − θ(k+1))(xi − θ(k+1))T , (2.17)

in which β is a scaling constant to compensate for the finite region of the ker-
nel from which pixels are taken. In our implementation with the boundary
at 21

2 -sigma, β is set at 1.2 [Zivkovic and Kröse, 2004].

22

Tracking People

The general idea is that the pixel locations xi are all modified by their own
weight qi and the new mean and covariance are computed over this weighted
data. After this has been done, the result is evaluated using (2.14). When
the value of

∑OV
i=1 ωi no longer increases, a local optimum for θ and V has

been found.

The schematic representation of the resulting algorithm is shown in algo-
rithm 2.

Algorithm 2: The EM -shift algorithm
Input: Estimate of object position and shape in previous frame
Output: Estimate of object position and shape in current frame

Initialise k = 0;
Set θ(k) and V (k) to their estimates from the previous frame;
Compute the colour histogram of the current region defined by θ(k) and
V (k) in the current frame using (2.9);
Compute initial ρ(k) from (2.13);
repeat

k ← k + 1;
Calculate weights ωi using (2.14);
Calculate qi’s using (2.15);
Calculate the new position estimate θ(k) using (2.16);
Calculate the new variance estimate V (k) using (2.17);
Update the colour histogram of the current region using (2.9);

until ρ(k) ≤ ρ(k−1) ;
θ(k−1) and V (k−1) are the new estimates for the object’s position and shape;

2.4.3 Integration

Since the EM -shift method is only dependent on the colour distributions in
the current frame for finding the object, it is quite robust to camera motion.
Moving the camera does not directly change the colour distributions of either
the object or the background. Therefore, the EM -shift algorithm will have
no problem when using a moving camera, as long as the displacement of
the object between two frames is not larger than the search radius of the
algorithm. Because moving the camera can severely increase the object’s
displacement relative to its previous position, the risk of losing the object
does become higher however.

The result of tracking an object using EM -shift and a moving camera is
shown in figure 2.4. It is clearly visible how the shape of the tracking kernel
is adapted to make a tight fit around the object. In figure 2.4(b) the kernel
temporarily has a larger variance. This happens because the displacement
of the tracked person is quite large and the tracker cannot adapt quickly
enough to keep the person in focus. Since the displacements between the

23

Chapter 2

(a) frame 2 (b) frame 3 (c) frame 4 (d) frame 10

(e) frame 15 (f) frame 20 (g) frame 25 (h) frame 30

Figure 2.4: Tracking a blue pullover using EM -Shift on a moving
camera.

rest of the frames are much smaller, the tracker is able to catch up and refit
the kernel onto the object in the next frame.

In spite of the fact that background estimation by itself is insufficient to per-
form proper tracking when using a mobile camera (section 2.3), the method
can very well be used to support the EM -shift algorithm. As noted in
section 2.4.2, there should be an initial selection of the object to use as
a reference and to initialise the EM -shift algorithm with. This segmen-
tation can excellently be performed by the background estimation method
described in section 2.3.1.

By initialising the mobile camera from a stationary position, it can use the
first few frames to perform a background estimation and segment the person
to track from the image. This will result in a mask containing an accurate
representation of the person, and therefore the person’s colour distribution.
When this mask is known, it is easy to compute the initial mean θ0 and
covariance V0 (2.7) of the person. Figure 2.5 shows an example of an EM -
shift track initialised by background estimation. The figure shows how the
person is tracked correctly for about thirty frames, after which the algorithm
starts losing the object.

While the sole use of colour distributions for tracking has the advantage
of being robust to camera movement, it can also be a drawback. It can
be hard to track an object using this method when the background of the
scene contains objects having colour distributions similar to the one being
tracked. This can cause the tracker to snap onto these background objects
when the tracked object passes them. This is shown in figure 2.5.

Another problem can be the algorithm’s sensitivity to changing lighting
conditions, since they can cause large changes in colour. This can partly be

24

Tracking People

(a) frame 12 (b) frame 12 (c) frame 12 (d) frame 14

(e) frame 26 (f) frame 32 (g) frame 44 (h) frame 65

Figure 2.5: Tracking a complete person using EM -Shift, initialised
by background estimation. (a) to (c) show how the background
estimation from frame 12 is used to initialise the EM -shift kernel.
Tracking is successful for about 30 frames. After that, the tracker
starts to drift away. In frame 65 the tracker lost the object. Notice
how the furniture in the background which the kernel covers has
similar colours to the person.

solved by using a lighting invariant colour space like hue, saturation, value
(HSV), but changes in lighting will still have an influence on the colour
perception. Another option is to use an adaptive histogram. While the
algorithm tracks the object, the reference histogram could constantly be
updated with the colour distribution within the current kernel. By only
using the centre of the kernel for histogram updates, the risk of including
too many background pixels in the object histogram because of an inaccurate
match of the kernel on the object is minimized.

In our fusion algorithm, this type of histogram updates is not used. However,
something similar is done by intermediate reinitialisation using background
estimation. As soon as the reference histogram differs from the current
histogram to a certain degree, background estimation is used to update
the reference histogram with the current colour distribution of the person
being tracked. This provides the algorithm with the most up-to-date colour
representation of the person, which ensures more accurate object tracking in
the following frames. Comparable reinitialisation methods were for example
used by [Raja et al., 1998, Zhang et al., 2005].

Unfortunately, adding this feature introduces the risk of continuous reini-
tialisation because of an inaccurate track. To prevent the algorithm from
doing continuous reinitialisation and make sure the kernel does not snap to
background objects, a third algorithm should be used to provide more stable

25

Chapter 2

tracking without needing reinitialisation.

2.5 Feature Point Tracking

The third type of method is an independent algorithm, not depending on
image colours or object movement. It uses the optical flow of salient features
which can be found in the image. This feature point tracker, or salient point
tracker, is used to find and track features which are robust to displacement
and transformation in an image and can therefore be tracked throughout
multiple frames.

These features are often based on object edges or corners that can be found in
the image. Because this kind of features is, unlike for example pixel colour,
no explicit property of an image, the problem of tracking these features
consists of two parts. First, the features should be identified, after which
they should be tracked to the next frame.

In 1981, Lucas and Kanade [Lucas and Kanade, 1981] introduced a way
to compute the displacement of an object in an image by looking at the
gradients of the image and comparing them to the difference between two
frames. This measure results in an estimation of the object’s displacement.
The method was developed further by [Tomasi and Kanade, 1991] and ex-
plained clearly in [Shi and Tomasi, 1993]. In this last paper, a way to select
features which can be tracked well by the Kanade-Lucas-Tomasi tracker, in
short KLT tracker, is described as well.

This section will start with the explanation of the KLT tracker, after which
the feature detection as defined in [Shi and Tomasi, 1993] will be explained.
After that, a method for determining the stability of the selected features
when tracked through multiple frames is explained, as well as how to track
large feature displacements. Finally, the integration of the algorithm with
background subtraction and EM -shift is explained.

2.5.1 Kanade-Lucas-Tomasi Tracker

Movement of an object between two frames can be described using an affine
motion model. In such a model, displacement as well as transformations of
the object are mathematically described so the movement of objects from
one frame to another can be estimated.

Let’s assume that p = [px py]t is a pixel position in an intensity image I
and I(p) is the intensity of that pixel in the image. Image J is a new frame
after object and camera motion. Furthermore, let W be a feature window
in I with its centre at p. The motion u of a feature from image I to image

26

Tracking People

J can be modelled by using an affine motion field, which is computed as
follows:

u = Dp + d. (2.18)

In this function,

D =
[
dxx dxy
dyx dyy

]
is a deformation matrix and d =

[
dx dy

]t is the translation of the feature
window’s centre. The new position p′ of a point p in a new image J can
be computed using p′ = p + u. This results in the following function for
computing the new feature position:

p′ = p + u = Ap + d, (2.19)

where A = 1 + D and 1 is the 2 × 2 identity matrix. When this function
is used for computing the new feature positions, the following affine motion
model can be used for relating intensities from two images:

J(Ap + d) = I(p). (2.20)

If the image motion from (2.18) can be assumed to be small, the term
J(Ap + d) can be approximated by its first order Taylor expansion around
p:

J(Ap + d) = J(p) + gtu, (2.21)

where g =
[
gx gy

]t =
[
∂J
∂px

∂J
∂py

]t
.

Because of noise and because the affine motion model is not perfect, equa-
tion (2.20) is in general not satisfied exactly. The problem of determining
the motion parameters of the image object can be defined as finding the
values for A and d that minimize the dissimilarity ε(A,d):

ε(A,d) =
∑
p∈W

[J(Ap + d)− I(p)]2w(p) (2.22)

where W is a given feature window and w(p) is a weighting function. In most
cases w(p) = 1, but it could also be a Gaussian-like function to emphasise
the central area of the window.

In order to minimize the dissimilarity, function (2.22) should be differen-
tiated with respect to the unknown parameters in the deformation matrix
D and displacement vector d. The result should then be set to zero. Af-
ter combining (2.21) with (2.22), the following two equations result from
differentiation:

27

Chapter 2

1
2
∂ε

∂D
=
∑
p∈W

[J(p) + gtu− I(p)]gptw = 0 (2.23)

1
2
∂ε

∂d
=
∑
p∈W

[J(p) + gtu− I(p)]gw = 0. (2.24)

These functions can be rewritten in the form:

∑
p∈W

gpt(gtu)w =
∑
p∈W

[I(p)− J(p)]gptw (2.25)

∑
p∈W

g(gtu)w =
∑
p∈W

[I(p)− J(p)]gw. (2.26)

Because of the linearisation of (2.21), these equations are only approximately
satisfied and only hold for very small displacements. When the displacement
of the window gets larger, the linear approximation of the change in intensity
between window positions no longer holds.

By factoring out D and d and combining (2.25) and (2.26) by merging the
resulting matrices into one, the following 6× 6 linear system is gained:

Tz = a, (2.27)

where

T =
∑

[px py]t∈W

p2
xg

2
x p2

xgxgy pxpyg
2
x pxpygxgy pxg

2
x pxgxgy

p2
xgxgy p2

xg
2
y pxpygxgy pxpyg

2
y pxgxgy pxg

2
y

pxpyg
2
x pxpygxgy p2

yg
2
x p2

ygxgy pyg
2
x pygxgy

pxpygxgy pxpyg
2
y p2

ygxgy p2
yg

2
y pygxgy pyg

2
y

pxg
2
x pxgxgy pyg

2
x pygxgy g2

x gxgy
pxgxgy pxg

2
y pygxgy pyg

2
y gxgy g2

y

w

is the 6× 6 Hessian matrix that can be computed from one image,

z =

dxx
dyx
dxy
dyy
dx
dy

28

Tracking People

is a vector that collects the unknown entries of the deformation D and
displacement d, and

a =
∑

[px py]t∈W

[I(px, py)− J(px, py)]

pxgx
pxgy
pygx
pygy
gx
gy

w.

The deduction of these matrices can be found in [Shi and Tomasi, 1993] as
well as in appendix A.

Since we will be tracking only small motion in between frames considering
the constraints caused by (2.21), the deformation matrix D is likely to be
small. Therefore, tracking in between frames can be done solely based on
the displacement d and with the deformation matrix set to zero. When the
goal is to find the feature’s displacement, this method is even likely to give
better results than tracking using the full affine motion system (2.27), since
due to the construction of matrix T , D and d interact with each other which
will make any errors in D cause errors in d. When tracking is done over
a large number of frames however, the cumulative feature deformation will
get too large to make an accurate estimation of the feature’s new position
using only displacement. Therefore, the features should be monitored using
the deformation matrix as well, as described in section 2.5.3.

For this section, we will only concentrate on frame-to-frame tracking, for
which only d needs to be estimated. In this case, the following system
should be solved instead of (2.27):

Zd = e. (2.28)

In this function,

Z =
∑
W

[
g2
x gxgy

gxgy g2
y

]
w

is the 2× 2 Hessian matrix in the lower right corner of matrix T , while

e =
∑
p∈W

[I(p)− J(p)]
[
gx
gy

]
w

collects the last two entries of vector a.

29

Chapter 2

2.5.2 Good Features

Now that a method is defined for tracking features from one frame to an-
other, the type of feature to be tracked should be defined. In contradiction
to most trackers, which use intuitive features that are not directly related to
the way the tracker works, [Shi and Tomasi, 1993] provide feature selection
criteria directly based on the way the KLT tracker works.

One of the problems when defining features to track is the so-called aper-
ture problem. This problem states that it is impossible to estimate every
direction of motion from every kind of feature. For example, only vertical
motion can be estimated from a horizontal intensity edge. To overcome this
problem, most methods are based on the selection of corners or corner-like
features. Because these features are defined a priori and independent from
the tracking method, they are not guaranteed to give good tracking results.

Since the selection of a good feature is necessary for the main tracking equa-
tion (2.28) to be solved reliably, the choice of features should be based on
the workings of this function. Considering that the displacement is com-
puted using d = Z−1e, Z should be both well above the image noise level
and well-conditioned. For Z to meet the noise requirement, both eigenval-
ues of the matrix should be large, while the conditioning requirement states
that they should not differ more than several orders of magnitude. When
both eigenvalues are small, the intensity profile within the window will be
roughly constant. One large and one small eigenvalue correspond to a uni-
directional texture pattern. When both eigenvalues are large however, the
window contains corners, salt-and-pepper textures or any other pattern that
can be tracked well [Shi and Tomasi, 1993].

Because maximum pixel values in an image are limited, so are the values of
its gradients and thus the eigenvalues of Z. Because the maximum eigenvalue
λmax as well as the minimum eigenvalue λmin will in the limit go to the same
global maximum, selecting higher minimal eigenvalues will also lead to the
selection of points with better conditioned matrices Z. Therefore, when
λmin is large enough to meet the noise criterion, matrix Z is usually also
well conditioned.

When the constraint is used that a certain number of features should be
found in each image, the threshold λτ on λmin could be found by computing
the eigenvalues of the Hessian for all pixels in the image and selecting the
maximum minimal eigenvalue. The threshold λτ should then be set to a
percentage γ of this maximum resulting in [Bouguet, 2001]:

λτ = γmax
x

(λmin(x)). (2.29)

The result of this process can be seen in figure 2.6(a). In this figure, a

30

Tracking People

(a) Selected feature centres (b) Filtered features

Figure 2.6: Selection of features based on maximum minimal eigen-
value thresholding (a) and proximity filtering (b)

5×5 pixel window and a value of γ = 0.5 were used. At this point, the local
maximum for λmin can be selected to retain the most optimal centre point for
each feature. When the constraint is used that the minimum space between
two feature centres should be five pixels, a result similar to figure 2.6(b) will
be gained.

2.5.3 Monitoring Features

While a feature with a high confidence measure is a good feature considering
object displacement, it can still be a bad feature to track full motion. Some
features detected as good features in an image’s 2D projection of a 3D scene
could in fact be a combination of multiple real-world objects interacting and
therefore be unstable. Furthermore, features could be occluded or deformed
during tracking. For these reasons, a good image feature is not necessarily
a good feature to track real-world objects.

To measure the quality of the feature after it has been tracked, the dissim-
ilarity measure as defined in (2.22) can be used. Using this measure, the
current feature location can be compared to the original feature from the
first frame. If the dissimilarity gets too high, the feature is bad and should
be discarded. Since the feature could be tracked through a large number of
frames, a purely translational model will not be sufficient to compute the
dissimilarity. While displacement is sufficient to track a feature within a
short time window, when the window gets larger, many more deformations
like scaling and rotation can occur.

Instead of using equation (2.28) for monitoring features through a large

31

Chapter 2

sequence, the complete affine system from equation (2.27) should now be
solved for z. This allows for more stable feature monitoring which is robust
to feature deformations like scaling and rotation. Features changing because
they are based on multiple objects moving relative to each other will still be
classified as bad.

When comparing the dissimilarities of all tracked features as is done in [Shi
and Tomasi, 1993], the bad features can easily be detected and discarded.
These features have a significantly higher dissimilarity, so features can be
selected using their quality relative to each other.

The implementation of the KLT tracker by [Birchfield, 1997], used in this
research has the ability to enable affine feature monitoring. Many other
KLT implementations like the one from Intel’s OpenCV library [Bouguet,
2001] do not contain the affine consistency check.

2.5.4 Tracking Large Distances using Image Pyramids

As mentioned in section 2.5.1, the KLT tracking algorithm is limited to
tracking very small displacements only. When the displacement gets larger
than a few pixels, the algorithm will be unable to make a good estimation
of the object’s direction of movement. One reason for this is the way the
vector e is computed in (2.28). By comparing the difference between two
consecutive frames to the gradient image from one of these frames, mean-
ingful results will only be gained when there is some similarity between the
gradient and dissimilarity image, implying that the object’s displacement is
very small.

Because it can not be assumed that in real-world tracking displacements
will always be sufficiently small, a way has to be found to circumvent this
problem. A frequently used solution can be found in using Gaussian image
pyramids [Burt and Adelson, 1983], which can also be found in the KLT
implementations by [Bouguet, 2001] and [Birchfield, 1997]. By subsampling
and smoothing the image multiple times, pyramidal levels are created for
which each new level has half the resolution and thus size of the previous
level.

Tracking can now be initiated at a high level, at which objects and therefore
displacements are small and can be tracked well using the KLT algorithm.
When tracking at this level is successful, the result is propagated to the next
level, which results in a slightly displaced tracking window in the higher
resolution image. Because of this initial window displacement, the object’s
translation at this resolution is again relatively small and can therefore be
tracked well using KLT . This process is repeated until the original image
size is reached.

32

Tracking People

When the original image is placed at pyramid level L0 and the pyramid
height is set at Lm, the maximum displacement dmax final that can be tracked
will be:

dmax final = (2Lm+1 − 1)dmax

where dmax is the maximum pixel displacement that can be tracked using
KLT at only one resolution.

Due to the exponential nature of this function with respect to the number
of pyramidal levels, only a few levels are needed to be able to track features
over large distances. Furthermore, the size of the feature window W is
kept constant throughout all pyramid levels. This means that the size of
the window will be relatively larger at higher levels, which also enables the
tracking of larger displacements.

2.5.5 Integration

The final algorithm can now be described as in algorithm 3. Because the
results of the algorithm are independent of object movement or image colour,
it is a good addition to the two algorithms described earlier. Its dependence
on small object motion is well compensated by using image pyramids and
the features are likely to be robust due to the way they have been selected.

Experiments on our training set show that, on average, 60% of all features se-
lected in the first frame are tracked to the next one. The remaining features
are discarded because they disappeared or could not be tracked reliably. Of
this 60%, about 90% is tracked correctly from one object in the first frame
to the same object in the new frame. When sufficient features are selected
in the original frame (150 were used in our experiments), discarding features
does not degrade the system. Therefore, a result with 90% of the features
tracked correctly means that only 6% of all features are tracked incorrectly.
This clearly shows the robustness of the system. To compensate for the lost
features, additional ones should be located in each new frame.

A problem with the KLT algorithm is that it does not result in an estimate
of complete objects, but only estimates separate, abstract feature positions.
As mentioned earlier, the selected features do not necessarily correspond to
real-world features. They are purely based on specific properties of the 2D
image at a certain image location and do not represent anything else than
the abstract notion of a feature. Therefore, using only these features and
their motion will not be sufficient to identify real-world objects and estimate
their movement. When for example multiple features are found on the head
as well as the hands of a person, it is very well possible that the motion

33

Chapter 2

Algorithm 3: The KLT algorithm
Input: Feature locations in the current frame I
Output: Feature locations mapped to the next frame J

Select features in frame I using the method from section 2.5.2;
Set location of window W in frame J to location of features in I;
Build pyramid representations of frames I and J ;
for L = Lm to 0 do

Compute gradient images for frame I at level L (Il);
foreach feature F do

Compute location of F in frame Il;
Compute location of W in frame J at level L (Jl);
Compute Z from equation (2.28) for F in Il;
while d > threshold do

Compute e from equation (2.28);
Compute d from equation (2.28);
Move feature window W in frame Jl with displacement d;

foreach feature F do
Check affine consistency from first occurrence of F to J ;
if track fails then

Discard F from feature list;

Location of F in frame J now equals the position of window W in J ;

of those features from one frame to the next is completely different. This
makes it hard to decide whether two features belong to the same object.

In figure 2.7 an example of feature tracking is given. The middle two images
show all features found and the ones that could be tracked to the next frame.
A collection of 150 features and a feature window of 7× 7 pixels were used.
The bottom two images show how in this specific case 70% of the features
can be tracked when a manual selection of the features located on the person
is made in the first frame. All of these features are tracked correctly.

When trying to use KLT results to find real-world objects, one option is
to cluster the optical flow direction of all features to distinguish between
objects. Unfortunately, this still only results in clusters of unidentified ob-
jects while the problem with multiple directions of motion in one object
still exists. Detection of objects in an image purely based on the relative
optical flow of features will therefore be unreliable. Another method should
be used to segment objects from the scene, after which features found on
these objects can be tracked using KLT . The combination of background
subtraction and EM -shift will be a good method to segment objects from
the scene and allow KLT to only track features positioned on the object or
person that needs to be tracked. This fusion algorithm is the subject of the
next chapter.

34

Tracking People

2.6 Summary

In this chapter, we introduced the algorithms which will form the basis of the
fusion algorithm. The algorithms were selected based on the task they can
perform (either locating or tracking a person), their ability to function on a
moving camera and the types of features they use for tracking or detection.
Using these criteria, Gaussian Mixture Model Background Subtraction was
selected as the initialisation algorithm, while the EM -shift colour histogram
tracker and the Kanade-Lucas-Tomasi (KLT) feature point tracker were
selected for tracking a person through a movie sequence.

In section 2.3, we have shown how the background estimation method is
able to swiftly separate background and foreground objects, based on scene
movement. By keeping multiple hypotheses, it is easy to adapt to changes in
the background, while foreground objects can still be found easily as long as
they move around. This makes the method a good choice for initialising the
fusion algorithm, using the properties of the segmented person as features.

Section 2.4 and 2.5 describe two object trackers that are both robust to
camera motion. Because they make use of different feature types for track-
ing, EM -shift and KLT complement each other to a large degree. While
the first algorithm makes use of the similarity between colour histograms
to track an object, the second algorithm uses salient features to estimate in
which direction the object moves. The adaptive abilities of the EM -shift
method make it possible to relocate a complete person in a new image, re-
gardless of changes in size or shape. This allows for a good estimation of
the area in the scene covered by the person, but because the tracker can be
influenced by similarly coloured objects in the neighbourhood of the target,
there can be discrepancies in the estimated position.

The KLT algorithm offers a robust method for relocating known salient
features of the person, which results in a good estimation of the person’s new
location. Because the features used largely differ from the colour histograms
used by EM -shift, the algorithm can give a good additional estimation of
the person’s position, which is often more precise then that of the colour
histogram tracker.

In the next chapter, the combination of the three methods into the fusion
algorithm is described.

35

Chapter 2

Figure 2.7: Tracking 150 features using the KLT algorithm. Top:
the original images. Middle: all features selected in the first image
and the remaining ones after tracking (63%). Bottom: manual se-
lection of features on person. 70% of them are tracked, all correctly.

36

Chapter 3

Fusing the Algorithms

As described in the previous chapter, the three selected algorithms have
their own specific circumstances for which they work optimally.

While background subtraction provides a fast and robust way to estimate
the static background of a scene and to segment moving objects from the
scene, the algorithm will not be able to provide useful object detection when
used on a moving camera. Camera movement will immediately distort the
background which makes good segmentation impossible. Therefore, this
algorithm is most suitable for initialisation purposes on a static robot.

Colour histogram based tracking is a likely candidate for doing object track-
ing using a mobile camera. When initialised with a good colour histogram of
the object to track, the EM -shift algorithm offers a strong colour histogram
based tracker which is able to estimate the position as well as the size and
shape of the object. Because only the colour distribution in the image is
taken into account, camera movement does not hinder the outcome of the
algorithm since it does not change the local colour distribution of objects.
Furthermore, the algorithm works quite fast and gives reliable results as long
as the reference histogram used is specific to the object. When the back-
ground of the scene contains colours similar to the distribution of the object
however, the algorithm can not distinguish between object and background
and could lose track of the object. Furthermore, the algorithm is sensitive
to changing lighting conditions and swift object movements. This last point
could probably be solved by adding the Gaussian image pyramids used for
the KLT tracker to the EM -shift algorithm. A disadvantage of this solution
would be the increased risk of encountering background colours similar to
the object histogram in the neighbourhood of the tracking kernel.

Feature point tracking is the third method described. This method is, like
EM -shift, robust to camera motion. Because of the type of features tracked
it is less sensitive to similar features found in the background and foreground.
Most features will have a unique pattern which makes it easy to distinguish
between different features. Because of the addition of image pyramids, fea-

37

Chapter 3

tures can be tracked over large distances which makes the method less sen-
sitive to swift object movement. As described in section 2.5.5, experiments
show that a large number of the selected features is successfully tracked to
the same object in the next frame. This makes the method ideal for in-
dicating the displacement of an object in an image sequence. A drawback
of the method is that it does not provide an indication of the position of
real-world objects. It only estimates the displacement of separate features,
without relating them to the movement of the objects they belong to.

It should be clear that the three methods are quite different considering their
strengths and weaknesses and have the ability to compensate for each oth-
ers weaknesses to quite some length. In this chapter, the hybrid algorithm
combining the three algorithms into a feedback system is presented. Fur-
thermore, the feedback loop between the vision algorithm and the control
of the robot will be discussed in depth.

3.1 The Hybrid Algorithm

As mentioned in section 2.4.3, background subtraction (BS) will do well as
an initialisation algorithm. It can be used to select objects in the scene, after
which the selections can be used to retrieve specific object properties like
position, shape and colour distribution. To initialise the hybrid algorithm
with background subtraction, a fixed number of frames I1 . . . Ii is used to
establish a good segmentation of the objects in the scene. Of the segmented
objects, the largest one is assumed to be the person.

This segmentation can be used to initialise the EM -shift tracker and build
the object’s reference histogram h0 from the image (see section 2.4.2). Fur-
thermore, the position θi and shape Vi of the segmented object can be used
as an initial estimate of the position θ0 and shape V0 of the tracking kernel
when starting EM -shift. This still leaves the problems considering colour
based tracking, since background subtraction can not continuously be used
for support after the initial segmentation is made.

To compensate for the problems considering pure colour based tracking, the
KLT algorithm is used to boost EM -shift and is included in a feedback
loop to support the tracking. Just like EM -shift, the KLT algorithm can
be initialised with the help of background subtraction. First, the complete
image Ii is scanned for features as described in 2.5.2 and using (2.29). Of
all features found, the ones located inside the mask provided by background
subtraction Pi are selected and tracked to the next frame Ii+1.

Algorithm 4 shows the final initialisation algorithm built up from the BS
algorithm executed for several frames, the creation of the colour histogram

38

Fusing the Algorithms

h0 for the EM -shift algorithm and the selection of the feature set Pi for the
KLT algorithm.

Algorithm 4: Algorithm initialisation
Input: Image Ii containing person
Output: Reference colour histogram of person h0 and features Pi on person

With vj being colour value of pixel xj in image Ii;
X = ∀xj∈Ii : {p̂(vj |Vt, BG) ≤ cthr} (2.6);
θ0 = X̄ ;
V0 = Cov(X);
foreach pixel xj ∈ X do

Compute h0
b(vj)

= h0
b(vj)

+N (xj ; θ0, V0) using (2.8);

Compute Z =
∑

xk∈W

[
g2

x gxgy

gxgy g2
y

]
w using (2.28);

λmin(xj) = min(eig(Z));
Normalise h0;
Pi = ∀xj : {λmin(xj) ≥ γmaxxj (λmin(xj))} is created using (2.29);

After initialisation, the newly found positions of the tracked features Pi in
frame Ii+1 are used to estimate the new position of the object. Because not
all features are guaranteed to be tracked correctly into the new frame, the
set of tracked features should be filtered to contain only those features of
which a correct track is most certain. Brief experimentation has shown that,
considering the resolution of the image and the average area of the scene
covered by the person, a fixed selection of the top 5 most confidently tracked
features gives the best results. The mean θi+1 and variance Vi+1 of the
locations of those features can now be used to estimate the object position
and shape. Since about half of the original features are lost during tracking,
the estimated position and shape are likely to be slightly misaligned with
the object. When the same set of features is used continuously, the number
of features used will gradually shrink. In the end, no features will be left and
the algorithm will fail to be able to track any longer. Therefore, additional
features should be located in each frame to ensure tracking can continue.
The new feature set Pi+1 is constructed using the remaining features from
Pi and the new features found in frame Ii+1:

Pi+1 = ∀xj∈Ii+1 : {λmin(xj) ≥ γmax
xj

(λmin(xj))} ∩ P ′i. (3.1)

Just like the initial features, the new features should all be located on the
person being tracked. Because the new estimate of the person’s position
is likely to be misaligned with the person’s centre and the estimated shape
is likely to be too small, the EM -shift algorithm is used to expand the
currently selected region. The new region can then be used to locate new

39

Chapter 3

feature points.

Normally, EM -shift is initialised using the previous known position of the
tracking kernel, but this makes it hard for the method to adapt to large
object motion. Instead, the initial estimate of the person is based on the
mean θi+1 and covariance Vi+1 of the features tracked by the KLT tracker.
Using this initialisation, the EM -shift algorithm will start to find an optimal
fit regarding the similarity between its reference colour histogram h0 and
the colour histogram of the area below the current kernel h. The EM -shift
kernel will grow and shrink until if finds a good enough match and returns
the newly estimated mean and covariance. This estimation can now be used
as a region in which new feature points can be located, which can then be
tracked to the new frame.

In algorithm 5, pseudo code is shown describing how tracking is done by the
fusion algorithm.

Algorithm 5: Tracking to the next frame
Input: Output of algorithm 4 and new image Ii+1 containing person
Output: New location of the person and feature set Pi+1

foreach feature p ∈ Pi do
Compute d using (2.28);
Track p in image Ii+1 using p′ = p + d (see algorithm 3);
Check consistency of p′ by computing z using (2.27);
if track successful then

Add p′ to set P ′i of tracked features;

θi+1 = P̄ ′i;
Vi+1 = Cov(P ′i);
Compute Gauss kernel G defined by θi+1 and Vi+1, bounded at 21

2 sigma;
Select a region R of image Ii+1 using G;
foreach pixel xj ∈ R do

hb(vj) = hb(vj) +N (xj ; θi+1, Vi+1) (2.9);
Normalise h;
Execute EM -shift algorithm (algorithm 2) to compute θ′i+1 and V ′i+1;
Compute Gauss kernel G′ defined by θ′i+1 and V ′i+1, bounded at 21

2 sigma;
Select a region R′ of image Ii+1 using G′;
foreach pixel xj ∈ R′ do

Z =
∑

xk∈W

[
g2

x gxgy

gxgy g2
y

]
w (2.28);

λmin(xj) = min(eig(Z));
Pi+1 = ∀xj : {λmin(xj) ≥ γmaxxj (λmin(xj))} ∩ P ′i is created using (3.1);

Figure 3.1 shows a diagram of the hybrid algorithm. In this diagram it
is made clear how the three algorithms work together and what kind of
information is exchanged between the algorithms. After the background
subtraction algorithm (BS) provides the segmented objects and initialisation

40

Fusing the Algorithms

BS

Segmented
object

EM-
shift KLT

New object region

Per-frame
object position

In
it
ia
l

ob
je
ct

po
si
ti
on Initial

object
region

Figure 3.1: Interaction between the Background Subtraction (BS),
EM -shift and KLT algorithm.

information is provided to the EM -shift and KLT algorithms, the feedback
loop between EM -shift and KLT is started. The KLT algorithm supports
the EM -shift algorithm by providing a good starting position for searching
the shape with a colour histogram equivalent to the reference histogram. On
the other side the EM -shift algorithm supports the KLT algorithm during
each iteration with an independent estimate of the area where the person
can be found, which allows to compensate for lost feature points.

An abstract tracking example of the hybrid algorithm is shown in figure 3.2.
This figure shows how data points inside the object mask provided by back-
ground subtraction are selected and tracked to the next frame using KLT .
In this frame, the mean θ and variance V of the tracked points are deter-
mined. These values are used to initialise the EM -shift algorithm which
makes the kernel grow to fit around the complete object.

The detailed steps of the algorithm are illustrated in figure 3.3. In this
figure, the segmented object of the background subtraction (BS) algorithm,
the location and shape of the EM -shift algorithm and the feature points
of the KLT algorithm are shown on top of the images that produced those
features.

Figure 3.3.1 displays the original image Ii after the background model is
learned (which typically takes a few frames). In figure 3.3.2, multiple grey-
values are used to display the pixels where image Ii is different from the
background model, representing a moving person. With standard image
processing techniques that image can be segmented, giving a binary mask.
This binary mask can be used to get a reference colour histogram h0, as
illustrated in figure 3.3.3. In this case the colour histogram would contain

41

Chapter 3

Figure 3.2: Tracking using the hybrid algorithm. The data points
inside the mask provided by BS (1) are tracked to the next frame.
In this frame, about half of the points is successfully relocated
(2). The mean θ and variance V of the tracked points are used to
initialise EM -shift and EM -shift iterations are used to map the
kernel onto the new object location (3).

mainly light blue of the trousers and dark blue of the sweater. Notice that
the chairs in the background are also coloured dark blue. In figure 3.3.4
the ellipse indicates the shape of the Gaussian kernel which is found by the
EM -shift algorithm for h0. The binary mask generated from the segmented
object can also be used to generate a set of feature points. In figure 3.3.5,
thirteen white feature points are drawn. Eight of those feature points can
be tracked to the next frame, as illustrated in figure 3.3.6. The average
position of those points is a little bit higher and further to the left than
the previous estimate of the moving person. This position is used to ini-
tialise the search of the EM -shift algorithm, as indicated with the ellipse
in figure 3.3.7. The shape of the Gaussian kernel is adjusted in such a way
that the colour histogram contains nearly the same distribution of colours
as h0. Figure 3.3.8 illustrates the result of this adjustment. The result of
the EM -shift algorithm is used to select a number of new feature points on
the moving person. These new feature points are indicated with white stars
in figure 3.3.9. Finally, the eighteen feature points are tracked to the next
frame, as illustrated in figure 3.3.10.

At some point, the tracker will probably no longer be able to keep track of
the person, due to lost features or colour conflicts. When it is likely that
the object being tracked is not the person, the robot should no longer try
to follow the tracker. Instead, it should try to relocate the person and re-
initialise the tracker. Detection of a lost track can be done by using the
similarity measure (2.10) from the EM -shift algorithm. When the tracker
moves away from the object, it is likely that the maximum similarity that
can be found between the reference histogram and the current histogram is
not as high as when the correct object is tracked. By putting a threshold on
the minimal similarity needed to be certain that the correct object is tracked,

42

Fusing the Algorithms

Figure 3.3: Complete tracking procedure, left to right, top to bot-
tom: 1) the original image, 2) background subtraction, 3) object
segmentation used to get reference colour histogram, 4) object re-
gion estimated by EM -shift, 5) feature points inside the initial
object region, 6) track feature points to the next frame, 7) ini-
tialise EM -shift kernel on mean and covariance of tracked feature
points, 8) execute EM -shift to find new person position, 9) search
for new features on object, 10) track features to next frame.

43

Chapter 3

the system can be signalled when re-initialisation is needed. It is assumed
that erroneous tracking behaviour is detected soon enough to assume the
person is still in the robot’s field of view. Therefore, when a bad track has
been detected, the robot will immediately be halted after which background
estimation is executed. This gives a new segmentation mask which is used
to update the EM -shift reference histogram and to find new feature points.
The reference histogram is updated in such a way that a small amount of
the previous histogram is still left in, which makes the tracker more stable
to changes in object colour.

Sometimes, background estimation can also be used during tracking. At
moments when the robot is standing still and is not moving its head, back-
ground subtraction is done to provide an extra support for the tracker. After
a few frames of background estimation, the largest segmented object is se-
lected and compared to the current tracker location. When at least 25%
of the pixels in the current kernel overlap with the background subtracted
object and the current kernel contains more than 25 pixels, the background
subtraction information is used to adjust the current tracker position.

The final hybrid tracking algorithm is described in algorithm 6. It shows the
fusion algorithm described in this section combined with the robot control
feedback loop which is described in the next section.

3.2 Person Following

Now that the fusion algorithm for person tracking is described, the next step
is to make the robot use the tracking information to follow the person. The
robot should be able to actively follow the person it is tracking and make
sure the person is not lost from sight. To be able to do this, full control over
the robot’s head and body movement is needed. For the implementation of
the complete algorithm, the Sony AIBO ERS-7 entertainment robot is used.
This small, dog-like robot has a low resolution camera in its nose (208×160
pixels) and has large flexibility in controlling its head as well as its body.
The target following behaviour is produced in two stages.

The first stage consists of controlling the head of the robot, making sure
the person is kept in the centre of the camera view, while in the second
stage the body of the robot is controlled to gain active following behaviour.
Pure head movement is used in the first stage because it is much faster than
moving the complete robot. It allows a swift and accurate reaction to person
movement and is better able to keep the person in sight.

44

Fusing the Algorithms

3.2.1 Controlling Head Movement

Keeping the person in the centre of the view is accomplished by controlling
the pan/tilt head movement of the AIBO based on the position of the person
in the image. This position is represented by the kernel centre θ resulting
from the EM -shift iterations in the fusion algorithm. When θ is normalised
by setting the width and the height of the image to 1, the horizontal and
vertical viewing angle of the camera can be used to calculate the necessary
head movement. The degrees of head movement ϕ needed to position the
person in the centre of the camera are calculated by computing

ϕ = (θ̄ −
[
0.5 0.5

]t)
[
βh βv

]
. (3.2)

In this function, θ̄ is the normalised object position while βh and βv are
the horizontal and vertical viewing angle of the camera. Coordinating the
camera is done by subtracting the computed head movement ϕ from the
current head position. To prevent the head from overshooting its destina-
tion, a smoothing factor can be applied to make the head move slightly less
than theoretically needed.

3.2.2 Moving the Robot

To be able to follow the person being tracked, the dimensions of the AIBO
should be taken into account. The AIBO is a small robot. When the robot
is standing straight up, the camera mounted in its nose is about 22 cm above
the floor. Since a correctly placed tracking kernel should be centred on the
person, the centre θ of the kernel will be located at the hips of the person
(about half-way the complete height of a person). Using equation (3.2), the
head of the AIBO is aimed at this kernel centre. In case of a person with a
height of 180 cm, perceived at a distance of 200 cm this results in a head tilt
of 16◦. Considering the camera’s vertical viewing angle of 45.2◦, this results
in a complete view of the person (see figure 3.4).

Because the tracker will be able to get the most detailed information at the
closest distance from which the complete person can be seen, the tilt of the
head can be used to maintain an optimal distance of the robot to the person.
When the distance between the robot and the person changes, the head tilt
of the robot is modified to keep the person’s centre in the centre of the
camera view. This results in a lower head tilt when the distance gets larger,
which can also be estimated from figure 3.4. For controlling the movement
of the AIBO, this principle is used.

To follow a person at a distance of about 2 meters, a head tilt threshold of
16◦ should be used. When the head is tilted less than the threshold, the

45

Chapter 3

2
2

cm

200 cm

1
8
0

cm

9
0

cm
9
0

cm

1
6
.3 ◦

22.6 ◦

6.3◦

45
.2 ◦

Figure 3.4: A person of about 180 cm at a distance of 200 cm can
fully be seen by the AIBO when its head is tilted by 16◦.

distance between the robot and the person is probably larger than 2 meters
and the robot should walk forward until the tilt is within range again. If
the head-tilt is larger, the distance is too small and the robot should walk
backwards.

This method works fine because the robot only has to follow a person. The
precise distance is not really an issue, as long as it is not too close to be
comfortable. Because of the pre-set tilt threshold, shorter people will auto-
matically be followed at a slightly smaller distance than taller people. The
robot will also adjust its distance as soon as the person being followed gets
shorter, for instance by bending their knees.

When considering the most ideal tracking distance, an issue with respect to
the algorithm’s tracking abilities should be considered. Let’s assume that
a person is perceived at a distance of 2 meters. Considering the horizontal
camera viewing angle of the AIBO of 56.9◦, the area covered by one pixel
at this distance is about 1.04 × 1.04 = 1.16 cm2. Because of the number
of pyramidal levels selected for the KLT tracker, the maximum distance
over which a feature can be tracked is 30 pixels. At a distance of 2 meters
from the camera, this relates to 31 cm. At a frame rate of 2 frames per
second, the maximum movement speed of an object being tracked by the
KLT tracker is 62 cm/s = 2.2 km/h. This is about half the standard walking
speed of an average adult. It should be noticed however, that this is the
absolute maximum speed at which a person will be tracked well. A speed

46

Fusing the Algorithms

below 2.2 km/h is preferable. Of course, this maximum speed increases
proportional to the distance at which the person is perceived and the frame
rate at which the images are processed.

The relation between frame rate ϕ (in fps), camera distance η (in meters)
and maximum trackable movement speed ν (in m/s) can be described as
follows:

ν =
2η tan 56.9

2

208
30ϕ.

Besides walking towards a person, the robot should also be able to turn its
body in order to follow a human. This should be done to prevent that the
person moves out of the field of view of the robot. An AIBO can move
its head 186◦ horizontally, so a person will be lost when the head should
be panned more than 93◦ to the left or the right. Since turning the robot
takes about two seconds, starting to turn should be done well before the
head-pan reaches its maximum. Furthermore, in the Universal Real-time
Behaviour Interface (URBI) used for controlling the AIBO, turning is done
in fixed steps of about 35◦. Therefore, when the pan of the head becomes
larger than 35◦, the robot is signalled to turn itself in the direction of the
person. In the event that the person is observed at an angle of 70◦ or more,
the system automatically initiates two sequential turns.

While the robot moves around, it constantly keeps tracking the person and
updating its head position to keep the person centred. Because the move-
ment of the AIBO is very shaky, the head-tilt threshold will often be ex-
ceeded without the robot needing to change its direction of movement. To
prevent unnecessary changes in movement to keep its distance, the head-tilt
will be averaged over the last five frames. This makes sure that extreme
head movement because of the shaky walk will not influence the robot’s
movement. Furthermore, while the robot follows a person it is likely the
panning threshold will be reached as well. When this happens, the robot
is first stopped to get a better estimate of the person’s current position,
after which the turning sequence is started. When the head-pan is within
the threshold boundaries again, the robot is allowed to continue moving
forwards or backwards if needed. The final algorithm showing the fusion
algorithm as well as the robot control is shown in algorithm 6.

During the walking sequence, the shaky head movement makes it hard to
use the head tilt to make an accurate estimation of the distance between
the person and the robot. Therefore, the robot is briefly halted every fifteen
steps to be able to stabilize its view and get a better estimate of the distance
between the person and the robot. This also helps the tracker not to get
lost due to the erratic movement of the camera.

47

Chapter 3

Algorithm 6: The hybrid fusion algorithm
Input: Image sequence containing a person walking through a room
Output: Robot following the person

while true do
Analyse the first images I1 . . . Ii with background subtraction BS;
Learn to separate a large moving object from the background;
Estimate the location θi and shape Vi of that object;
initialise EM -shift by memorizing reference colour histogram h0 of the
object;
initialise KLT by selecting feature points Pi on the object;
while current colour histogram h matches h0 do

Set i← i+ 1;
Track feature points Pi−1 to next frame Ii using KLT ;
Estimate location θi with KLT ;
Estimate shape Vi with EM -shift starting at location θi;
Select extra feature points Pi in the shape Vi;
Adapt head position of AIBO to centre object position in image;
if AIBO head tilt exceed threshold then

Begin moving AIBO;
else if AIBO head pan exceed threshold then

Begin turning AIBO;
else if Head position within limits then

Stop AIBO movement;

Stop all AIBO movement;

48

Chapter 4

Results

In this chapter, the results of extensive experimentation will be presented.
For the experiments done, movies were recorded using the camera in the
nose of the AIBO. These movies show footage of the AIBO tracking and
following a person from the perpective of the robot itself.1 The AIBO shows
different levels of interaction with the person in different movie sequences.
By analysing this kind of movies, a good insight is gained in how and why the
robot performs the way it does. A total of 15 movies was recorded covering
three degrees of interaction. All movies together contain little under 4000
frames. In extent, a sequence from a standard dataset was evaluated to
make it easier to compare the results to other publications.

All movies have been analysed by executing multiple runs of the fusion al-
gorithm as well as the separate algorithms on them. Furthermore, a ground
truth was created for all movies. The next section will explain the experi-
mental setup and how the results were analysed. Following that, the results
from analysing the movies will be discussed. Finally, there will be a small
section containing some discussion on the results.

4.1 Experimental Setup

During the design phase the fusion algorithm has proven to be a robust
algorithm that can maintain tracking while both the subject and the robot
are moving. This section describes the design of an experiment able to
quantify the increase of robustness of the fusion algorithm, relative to the
original EM -shift and KLT algorithms. These experiments are performed
for increasingly challenging movements of the AIBO robot.

For the experiments done, a number of movies are recorded with the AIBO
camera mounted in the nose of the robot. These movies are analysed off-
line using the fusion-, EM -shift- and KLT -algorithms. For algorithms that

1Examples of movies can be found at http://liem.nu, graduation project section.

49

http://liem.nu

Chapter 4

are based on random numbers (i.e. EM -shift and fusion), the results are
averaged over 10 runs. The recorded movies can be sorted into three different
categories:

1. Static: movies recorded using a static camera.

2. Driving: movies recorded on a stable moving, wheeled platform.

3. Walking: movies recorded on a dynamic moving, legged platform.

For the first type of movies, an AIBO robot was placed standing still in one
position, facing a person moving around in front of the AIBO. Because no
real-time image processing is done for these movies, it was possible to record
them at the maximum speed of about 15 frames per second.

The movies recorded on the driving platform were created by mounting the
AIBO on top of a wheeled robot. The resulting combined robot moves less
shakily than the walking AIBO, while the specific properties of the AIBO
camera are retained. Partial active vision was used to control only the
robot’s head and not its movement. To prevent the AIBO from walking
off the other robot, its legs were disabled. This results in the fusion algo-
rithm only controlling the head of the robot, keeping the person in its view.
The wheeled robot carrying the AIBO can now be controlled to execute
all further movement. This is achieved by making the AIBO output all its
movement intentions to a computer screen, after which a human controller
uses a joystick to control the wheeled robot according to the commands
given by the AIBO. The result is a stable moving platform, controlled by
the fusion algorithm.

Finally, movies using the walking AIBO were recorded exactly as described
in chapter 3. The AIBO works completely autonomously and the fusion
algorithm is used to make the robot follow a person.

All tests were carried out by putting the AIBO or the driving robot combi-
nation at several positions in the room, after which a person starts moving
around and in front of it. For the static movies, care was taken that the
person would not walk out of the view of the robot, since the robot would
no longer be able to track the person from that point on. For the other two
types of movies, a person would walk in half circles around the robot as well
as towards and away from the robot. Using active vision, the AIBO turns
both its head and its body to track the person and walks back and forth
when a person approaches or leaves.

Five movies were recorded in each category, all using the AIBO camera at its
maximum resolution of 204×160 pixels. The camera is able to record movies
at a maximum framerate of 15 frames per second. For the movies recorded

50

Results

using active vision, image processing is done using a PC equipped with an
AMD Athlon 64 3500+ processor and 2 Gb of memory. The AIBO sends
its recorded images to the PC using a WiFi link. On the PC the images
are processed by the tracking algorithms, consisting of a combination of
C++ and Matlab code, after which the position of the tracking kernel with
respect to the centre of the image is sent back to the AIBO. At that point,
the kernel position is translated to movement commands as described in
section 3.2. For the basic algorithms, implementations from [Zivkovic and
van der Heijden, 2006], [Zivkovic and Kröse, 2004] and [Birchfield, 1997]
were used and adapted to work together. Considering the processing time
needed to track the person and to communicate with the AIBO using WiFi,
the movies were recorded at a speed of about 2 frames per second.

Final results were collected by doing several runs of all three tracking algo-
rithms on the pre-recorded movies. This way, repeatable experiments with
a dynamic system like this are made possible. For the fusion algorithm
as well as the pure EM -shift algorithm, the results are averaged over ten
runs. This is necessary due to a randomized smoothing of the EM -shift
histograms, which results in slightly different performance on each run. Be-
cause this influence does not exist when using pure KLT , these experiments
only need to be run once.

Because the movies recorded using active vision make use of the fusion al-
gorithm for tracking, reinitialisation will take place at certain points in each
movie. To make the results from the different trackers comparable, the reini-
tialisation frames are registered and used for reinitialising the stand-alone
algorithms as well. Since the reinitialisation procedure makes the AIBO
stand still and therefore influences the movie recorded, it is not possible
to execute reinitialisation at other positions in the movie later on. Static
movies do not contain fixed reinitialisation points when recorded. Therefore,
to make the results comparable, one run of the fusion algorithm is done to
determine at which moments reinitialisation should be done in static movies.

To be able to conduct tests using the separate KLT algorithm, it is slightly
extended to work as a stand-alone algorithm. This was done by using the
mean and variance of the newly found positions of the features being tracked
as tracking kernel. After each run, all features falling into the kernel created
around the old points are selected and tracked to the new frame. This can
go on for quite some time, but since feature points are lost each frame, there
is a large chance for the tracker to disappear before reinitialisation can be
done.

Determining the quality of all three trackers is done by comparing them
to a ground-truth. This ground-truth is created by encircling the position
of the person in each recorded movie frame. The result is a list of points
and covariance matrices representing ellipses positioned on the person. It

51

Chapter 4

should be noted that an ellipse is only a rough estimation of the shape and
position of the person, and since the ground truth is created by hand, it
should not be considered as a perfect representation of the person but more
as an indication of the person’s location in the current frame.

An advantage of using ellipses as a ground truth is that they can easily be
compared to the elliptical tracking kernels returned by the tracking algo-
rithms. To determine the quality of each algorithm, the kernels produced
by the algorithms in each frame are matched with the ground truth. By
measuring the overlap between the algorithmic kernel and the ground truth,
a quality measure is obtained. When the area covered by the tracking kernel
is called G and the ellipse representing the ground truth is called Ggt, the
tracking quality Q is computed as follows:

Q =
G ∩Ggt

G
. (4.1)

This measure is chosen to be asymmetrical, because there is a big difference
in usability of the kernel between cases where it fits inside the ground truth
or cases where it grows larger than the ground truth. As long as the kernel
fits inside the ground truth, the position of the kernel gives a good estimation
of the person’s position. When the kernel gets larger than the ground truth,
for instance covering the complete image, the kernel give no information at
all about position or shape of the person. Therefore, the measure is chosen
to return Q = 1 when the tracking kernel matches the ground truth exactly,
or when the current kernel completely fits inside the ground truth. As soon
as the kernel gets larger than the ground truth or is slightly misplaced on
the ground truth, the value of Q drops below 1. All quality measurements
presented in the next section are computed using (4.1).

4.2 Experimental Results

The conducted experiments clearly show the differences between the algo-
rithms when used under varying circumstances. Figure 4.1 shows the average
quality of all three algorithms, executed on the three types of movies. The
quality displayed in this figure is computed over all frames for which the
specific algorithms are used. This means that reinitialisation frames are not
included in the quality measurement, since the background subtraction part
is independent of the rest of the algorithm and always gives a quality of 0
for all algorithms.

The figure shows that the main improvement of the fused algorithm can be
found when it is used with the walking AIBO (3rd set of bars). In this case,
the fusion algorithm performs about 21% better than the KLT algorithm,

52

Results

Q
u
al

it
y

Fusion
EM-shift
KLT

Static Driving Walking
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.1: Average quality of the three algorithms, tested on static
movies, movies taken using the driving robot and movies taken on
the walking AIBO.

and even 37% better than pure EM -shift. Furthermore, it can be seen that
the fusion algorithm outperforms the pure EM -shift algorithm in all cases.
As long as the colour distribution of the person is unique within the directly
surrounding area, the EM -shift algorithm has little trouble tracking the
person. This is reflected in the EM -shift result for static movies shown in
figure 4.1. This bar shows that the average match between the ground truth
and the EM -shift kernel is almost 50%. Tracking becomes harder as soon as
matching colors are found in the scene. Because the color distribution of the
person can not be guaranteed to be unique in a natural setting, and the tests
with the moving robot are performed in the same environment, equivalent
problems are encountered for movies taken with the moving robot. This
algorithm shows about the same quality for static movies as for movies
containing stable motion, but drops down when motion becomes erratic.

The fusion algorithm is only outperformed by the KLT algorithm executed
on the static movies. This happens because the main sensitivity of this algo-
rithm lies within erratic or swift object movement, which is very limited for
the static movies. In this case, the stand alone tracker is able to outperform
both other trackers, which both suffer from colour similarities. The more
movement is introduced, the less reliable KLT can track by itself. Quality
differences with respect to the type of movie are clearly visible. The KLT
algorithm shows a drop in quality each time more motion is introduced in
the movies. Irregular motion clearly is a problem for this method. While
KLT quality is almost 0.65 for static movies, it ends up almost 40% lower
at just below 0.4 when the robot moves around on its legs.

Compared to the stand-alone algorithms, the fusion algorithm shows more

53

Chapter 4

F
u
si

on
q
u
al

it
y

>
so

lo
q
u
al

it
y

(%
)

DrivingStatic Walking
Fuse > EM-shift Fuse > KLT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

Figure 4.2: Average number of frames, relative to the total num-
ber of frames ((re)initialisation frames not included), for which the
fusion algorithm gives better results than the separate algorithms.
Error bars show disputed quality regions where the difference be-
tween qualities is within a 5% boundary. The results are shown for
all recorded movies, partitionned into the three movie types.

stable results. Figure 4.1 clearly shows that the more motion is introduced,
the better the fusion algorithm performs relative to the other methods. As
can be expected, the method shows the largest improvement when using
movies displaying erratic movement. The combination of colour histogram
tracking with feature point tracking makes it possible to track erratic move-
ment considerably better.

A more detailed insight into the gathered results is given in figure 4.2. In-
stead of showing average values over all recorded movies per type, one bar is
shown per recorded movie. These bars show the relative amount of frames for
which the fusion algorithm outperforms both stand-alone algorithms in each
movie. Relative quality is measured over all frames in which the tracking
algorithms are used, so (re)initialisation frames are not taken into account.
As explained in the previous section, values shown are averages over 10 runs
to compensate for fluctuations due to random values used. Therefore, a
boundary of about five percent can be considered for which it is debatable
which method is better. This is shown using error bars. These bars show
the disputed boundary where one method has at most a 5% higher quality
rating.

54

Results

Figure 4.3: Frames form movies 1, 2, 5, 7 and 10 in figure 4.2.

Much variance is visible between the relative quality of the various movie
sequences used for testing. Not only are there big differences between the
first movie and the fifteenth movie, but also between the five movies within
one movie type. The first movie for instance, shows relatively low quality
results for the fusion algorithm. This is mainly because of the scene it was
taken in. For this movie, the AIBO was looking directly at a window which
covered about a quarter of the screen (see also the first image in figure 4.3).
This results in a scene with very bright as well as dark patches which do not
only cause a lot of reinitialisation sequences, but also a lot of wrongly tracked
frames. The KLT algorithm has less difficulty with the variations within the
scene, because features are not too much influenced by the changing scene.
It is interesting to see how EM -shift and the fusion algorithm show about
the same quality. This can mainly be explained because both algorithms
suffer from the difficulty EM -shift has with large changes in colour and
similar foreground/background colours.

In the second movie, a rather different result is shown. Here, the EM -shift
algorithm is outperformed by the fusion algorithm for almost all frames.
Again, this is a result of the scene’s lighting conditions, combined with back-
ground colours. This scene is quite bright, and contains some dark coloured
chairs in the background (second image of figure 4.3). At the start of the
sequence, the EM -shift algorithm snaps onto the chairs, which have colours
similar to the person being tracked, and does not recover. Because the fu-
sion algorithm is backed up by the KLT algorithm, which performs well on
this scene, fusion quality is kept high and no reinitialisation is performed.

The last movie in the static series is the only one in which KLT slightly
underperforms compared to the fusion algorithm. In this movie the per-
son walks towards the robot and away from it, instead of walking circles
in front of the robot like in the other movies (third image of figure 4.3).
When considering the absolute quality measurements, there is not too much
difference between the three algorithms. The EM -shift algorithm performs
slightly better than the other two (quality of 0.70), while the other two al-
gorithms perform about the same (0.66 for the fusion and 0.65 for KLT).
The reason that the results from the fifth movie are as shown in figure 4.2, is
that overall, the quality of the fusion algorithm is slightly higher than that
of KLT . Because the location of the person in this movie is kept about the

55

Chapter 4

Frame nr.

Q
u
al

it
y

358

2401589133 Fusion
EM-shift
KLT

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: Quality measurements for the separate tracking algo-
rithms as well as the fusion algorithm, acquired using a walking
AIBO. Vertical lines are used to show from which frame numbers
key frames are taken. These key frames are shown in figure 4.5

same, all algorithms show similar performance.

A big difference is visible between movies 7 and 10. While KLT outperforms
the fusion algorithm in movie 7, the fusion algorithm performs much better
than KLT in the 10th movie. In the 7th movie, the robot moves closely
behind the person, which results in a large object to track and many features
to use for tracking. For the other movie, the KLT kernel starts shrinking
after initialisation, after which the tracker picks up some features in the
background and gets mispositioned. The good performance of the KLT
algorithm for the 7th movie results in high fusion quality as well. While the
quality pattern of the EM -shift and fusion results are very similar, KLT
causes the fusion quality to stay just above EM -shift. The same holds for
the 10th movie, but because of the lower performance of KLT for this movie,
the difference between EM -shift and fusion is smaller.

Example frames from movies 7 and 10 can be found in the fourth and fifth
image of figure 4.3.

Finally, figure 4.4 shows a plot of the quality of all three algorithms in the
15th movie, as a function of the time (frame number). This plot is acquired
using a fully autonomous walking AIBO. It clearly shows the quality of
the fusion algorithm with respect to the stand-alone algorithms. For most
frames (resp. 72% and 64%), the fusion algorithm’s quality (purple solid
line) rises above the EM -shift and the KLT quality (red dashed-dotted line
and blue dashed line). The points in the graph where all three plots are zero
are the (re)initialisation points of the algorithm. Because the algorithms

56

Results

Figure 4.5: Key frames taken from the movie recorded using the
walking robot, of which the quality graph is shown in figure 4.4.
They show the results of the fusion algorithm (top row), the EM -
shift algorithm (centre row) and the KLT algorithm (bottom row)
at frames 33, 91, 158, 240 and 358. The frames are taken such
that they are all half-way an interval in between two initialisation
sequences.

are not active during these frames, their quality is zero. The plot has been
smoothed using a moving average of five samples. This procedure removes
outliers in the quality measurement, for example caused by the person being
tracked passing by the kernel, without the kernel catching up.

It is clearly visible how the quality of the algorithms slowly degrades towards
a reinitialisation period. For the KLT algorithm (blue dashed line) this
descent is the steepest. In the third and the fifth tracking interval, the
KLT algorithm reaches zero much sooner than the other two algorithms.
During reinitialisation, an initial kernel for the KLT algorithm is generated
with a number of feature points. While tracking, points are constantly lost
which results in a shrinking kernel. Typically, the KLT tracker runs out of
feature points before reinitialisation takes place.

Vertical lines in the graph show the locations of the key frames which are
shown in figure 4.5. These key frames show how the three trackers evolve
over time. A thin black oval in each image shows the ground-truth used
to compute the quality. Furthermore, the dashed circles show the tracking
kernel, while the dots show the feature points used. These images clearly
show how the EM -shift algorithm has the tendency to grow too large and
in the end cover almost the complete image, while the kernel of the KLT
algorithm slowly shrinks. This typical behaviour is combined in the fusion
algorithm to result in medium-sized kernels.

57

Chapter 4

Walking Driving Static
Avg. # of frames 317 313 160

Avg. interval length 12.96% 16.59% 26.74%
Fr. fuse ≥ EM-shift 80.23% 79.11% 66.24%

Fusion/EM-shift 1.4300 1.2155 1.3112
Fr. fuse ≥ KLT 77.06% 67.89% 42.89%

Fusion/KLT 1.1175 1.0733 0.9671

Table 4.1: Statistics on quality measurements. Average number
of frames for each movie type, the average length of each interval
between two reinitialisation moments, the amount of frames for
which the fusion algorithm has equal or higher quality then the
EM -shift algorithm, the average quality of the fusion algorithm
compared to EM -shift, the amount of frames for which the fusion
algorithm has equal or higher quality then the KLT algorithm and
the average quality of the fusion algorithm compared to KLT .

As long as the lighting conditions of the environment in which the person
moves around are constant, EM -shift and KLT , supported by the move-
ment of the robot, are very well able to keep a good track. At the moment a
more severe change in illumination occurs, the difference between the EM -
shift reference histogram and the current histogram gets too large and the
algorithm starts re-initialising. In most cases, the track of the person will
still be quite good, so a temporary stand-still of the robot is unlikely to
allow the person to move outside the field-of-view of the robot. In this case,
re-initialisation can be seen as a mere update of the reference colour his-
togram. This will allow the tracker to maintain a stable track for a longer
period of time later on.

Table 4.1 shows some statistics on the three types of movies. It shows
the amount of frames for which the fusion algorithm performs equal to or
better than the two separate algorithms. Furthermore it shows the quality
improvement and the average length of a tracking interval.

Looking at the table, it can be seen how the fusion algorithm outperforms
the stand-alone algorithms for most cases. When comparing the quality of
the fusion algorithm to the stand-alone algorithms on the movies recorded
using the walking AIBO, the fusion algorithm performs better then the KLT
algorithm for at least 77% of the frames, while the average performance is
improved by a factor 1.12. The EM -shift algorithm is even outperformed
by the fusion algorithm for more than 80% of the frames, with an average
improvement by a factor 1.43.

When comparing the results of the walking robot and the driving robot
in table 4.1, the influence of the AIBO’s erratic movement pattern on the

58

Results

21

3

4

6
5

Figure 4.6: Average position and size of the tracked person in
the view of the robot, computed using the ground truth. The
rectangle represents the 208 × 160 pixel view. On average, the
person is located inside ellipse 3. The standard deviation of the
person’s position is represented by ellipse number 2. These factors
combined result in ellipse 4, which is the convolution of 3 on 2.
When considering the standard deviation of the size of the person,
ellipses 5 and 6 can be drawn, which are ellipse 4 augmented with
the standard deviation of the person’s size. Ellipse 6 represents the
area in which the person can be found for most frames.

tracking quality becomes clear. Beside the fact that movement can cause
the trackers to lose the object to be tracked, movement also has benefits.
Because the robot uses active vision, it can make sure that the object is
always in the centre of the image, which makes tracking easier. On the
more stable moving platform (driving robot), the basic algorithms can also
benefit from the active vision. In this case the difference in quality between
the basic algorithms and the fusion algorithm is less evident (respectively
a factor 1.07 and 1.21). These results show that the strong points of the
fusion algorithm can specifically be found when tracking is done on less
stable moving platforms.

A good illustration of how well active vision is able to keep the person in the
centre of the robot’s view can be found when analysing the ground truths of
the recorded movies. Because the ground truth gives an accurate estimation
of the location of the person in the scene at a certain moment, it can be
used to determine to what degree the robot is able to keep the person in
the centre of its view. The ellipses shown in figure 4.6 are created using the
analysis of the ground truth of all movies recorded on the walking AIBO.
Analysis is done by retrieving the mean and covariance of all ground truths

59

Chapter 4

from the movies. Using the covariances, the width and height of all kernels
is computed. After this, the average value and the standard deviation of the
means, widths and heights of all kernels is computed.

From this statistical data, it can be concluded that the person is kept in
the centre of the robot’s view quite well. The average centre of the ground
truth is located at pixel position (106.7± 28, 82.4± 14.5), which is very well
centred considering the image resolution of 208 × 160 pixels. When relat-
ing the standard deviations to the frame size, they turn out to be about
respectively 13.5% and 9% of the total frame size. The difference between
the horizontal and vertical deviation can be explained by relating it to the
amount of freedom of movement in both directions. While horizontal dis-
placement is caused easily by walking from left to right, vertical movement
is only an indirect result of changing distance between the robot and the
person. Therefore, it is logical that the horizontal positions are more widely
distributed over the scene than the vertical positions. In figure 4.6, the av-
erage and standard deviation of the mean of the ground truth are shown as
the green dot numbered 1 and its surrounding ellipse numbered 2.

The average shape and size of the ground truth, represented by the kernel’s
width and height, are shown in figure 4.6 as the blue ellipse numbered 3.
Average values for the width and height are respectively 32±7.4 and 115.4±
22.3 pixels. Considering these values, the average distance between the robot
and the person can be computed. Taking into account that the person being
tracked is about 180 cm tall, it can be computed that the average height of
the perceived scene is about 250 cm. Using these values and the knowledge
that the AIBO camera has a viewing angle of 45.2◦, together with the fact
that the person is almost centred in the view, the average distance can be
computed to be about 247 ± 48 cm. Furthermore, it can be deducted that
the average angle of the robot’s head tilt is about 15.4◦. Since we stated in
chapter 3.2.2 that the tilt angle of the robot’s head should be about 16.3◦

to keep the average distance between the person and the robot at about
2 meters, the values found here are well within expectations. The results
show that the AIBO, using the proposed control method, is very well able
to follow a person at a steady distance of 2 to 3 meters.

Up to this point, we have shown how our algorithm is able to track a person,
keep them in the field of view of the robot and follow them over short
distances. Our experiments did not yet show following behaviour over larger
distances using a certain route. This is mainly due to the limited area of the
lab in which the experiments took place. It simply does not offer enough
space to create a large enough distance between the robot and the person
to do long-distance following. To compensate for this, we scaled down the
experiment and made a robot follower, controlled by the fusion algorithm,
follow a manually controlled robot. Both robots were put in a maze where

60

Results

Figure 4.7: The maze used for the following experiment.

the robot follower was made to follow the robot guide fully autonomously.

For this experiment, we built a U-shaped maze with a total path length of
about 8 meters. The maze used is shown in figure 4.7. Since the thresholds
on the viewing angles of the AIBO (section 3.2.2) are not changed for this
experiment, the small size of the AIBO guide results in a very small following
distance. In this case, the small distance is not a problem since we want the
AIBO to follow the guide closely because of the scaled down environment.

Using this set-up, it took the AIBO follower about 5.5 minutes to chase
the guide from the start to the end of the maze. Considering the AIBO’s
maximum walking speed of about 0.05 m/s, it would take the robot at least
about 2.7 minutes to travel this distance when moving in a straight line.
Traversing a maze with multiple turns in only twice the time (or at half the
speed) can be considered a very good performance. The extra time taken
can mainly be attributed to the time needed to turn the robot when moving
around corners or aiming the robot at the robot guide. Furthermore, because
the AIBO follower can not follow the guide when it completely disappears
from the robot’s field of view, we made sure the guide moves at such a speed
that the follower is able to catch up.

It is also worth noting that, while the walls of the maze as well as the
guidance robot are coloured white, only nine re-initialisation sequences were
needed during following. This means that during 78% of the frames used for
tracking the fusion algorithm was used, while initialisation only took 22%
of the frames. This low amount of re-initialisation can be attributed to the
way KLT compensates for the colour sensitivity of EM -shift. The results
from this experiment show that an AIBO robot equipped with the fusion
algorithm is able to successfully exhibit following behaviour, enabling it to
be guided from a point A to a point B over a specific path, without the
usage of specific signals or markers.

To be able to compare the results of the fusion algorithm to the results of the

61

Chapter 4

PETS1 quality using backsub init

Frame nr.

Q
u
al

it
y

Fusion
EM-shift
KLT

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.8: Quality measurements done on the PETS1 sequence.
On the left, the object selection using background estimation over
frames 800-815 is shown. The graph shows EM -shift, KLT and
Fusion quality over all 108 frames.

EM -shift algorithm, a test run on the ‘PETS1’ video sequence2 comparable
to the one described by [Zivkovic and Kröse, 2004] was done. The results of
this test are shown in figure 4.8 and 4.9.

Two types of tests were performed in order to get a fair overview of the
performance of all algorithms. One test uses automated initialisation using
background estimation, while the other test uses a manual object selection.
Both tests were performed without the usage of reinitialisation. This was
done to make the tests better comparable to the results shown in [Zivkovic
and Kröse, 2004].

For the first test, frames 800 to 815 are used for automatic initialisation
using background subtraction. After initialisation, the white car is tracked
throughout the sequence up until frame 908. This sequence is shown in
figure 4.8. On the left, the resulting selection of the car using an elliptic
representation of the estimated foreground is shown. This ellipse is larger
than the car itself, because the speed of the moving car causes a ‘ghosting’-
like effect in the estimated foreground object. In the graph on the right,
the results of the three algorithms over the sequence are shown. Because of
the background captured in the reference colour histogram, the EM -shift
algorithm has a hard time tracking the car. After a successful track in the
first few frames, the algorithm sticks onto the background and completely
loses the object.

In comparison, the KLT algorithm shows a completely different picture.
Since the majority of the feature points can be found on the white car, the
algorithm gets a good grip of the car and is able to track it well almost
through the whole scene. In the last few frames, the car gets too small

2The ‘PETS1’ (Performance Evaluation of Tracking and Surveillance) sequence is a
sequence from the standard dataset from www.visualsurveillance.org.

62

www.visualsurveillance.org

Results

Frame nr.

Q
u
al

it
y

PETS1 quality using manual init

Fusion
EM-shift
KLT

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.9: Quality measurements done on the PETS1 sequence.
On the left, the manually created object selection at frame 815 is
shown. The graph shows EM -shift, KLT and Fusion quality over
all 108 frames.

however, and the KLT algorithm is no longer able to relocate the neces-
sary feature points. At last, the fusion algorithm is nicely able to maintain
its position in-between both algorithms. Although it is distracted by the
matching colours of the background, it can keep a better match because of
the supporting features.

For the second test, a manual selection of the car was made, as was done by
[Zivkovic and Kröse, 2004]. This selection is shown on the left hand side of
figure 4.9. The car was selected from frame 15, after which tracking quality
was measured until frame 908. The results gained using manual selection,
shown on the right hand side of figure 4.9, largely differ from the ones gath-
ered using automated selection. This clearly shows that initialisation makes
a huge difference on the obtained results. In this graph, all algorithms have
a very high quality rating. Multiple tests using other frames for initialisation
or slightly different object segmentations give different results.

Because of the more accurate selection of the car, the EM -shift algorithm
is much better able to maintain its track on the car. Due to the smaller
selection of the car, some feature points on the outside of the car are not
used for tracking using KLT , which makes it slightly harder for this algo-
rithm to track the car without being distracted. It is worth noting that the
experiments using an AIBO have all been done using automatic instead of
manual initialisation.

4.3 Discussion

While the fusion algorithm is more stable than the two separate algorithms,
it still is sensitive to the colours of the clothes worn by the person being

63

Chapter 4

tracked. Due to the importance of the colour histogram tracker in the fusion
algorithm, clothes with colours similar to environmental colours will confuse
the system. The algorithm also shows sensitivity to fast moving objects.

Sensitivity to similar background and foreground colours can be ascribed
to the use of the EM algorithm for tracking. Because this algorithm is
sensitive to local maxima, there is a big chance that the algorithm will fit on
a background match when eligible. Using an appropriate goodness function
can help prevent mismatches to some extent. Since the quality of the current
track is determined by optimising (2.13) in a hill climbing method, the
quality measure is not guaranteed to find a global optimum. Quite often, a
kernel only partially filled with the target person already results in a local
optimum, which on the long term can lead to a misplaced kernel. This is
compensated for by the feature points found, but while features are lost after
each iteration, the KLT algorithm will only be able to stabilize the tracker
for a short period of time. Another way of compensating for a mismatched
kernel is by increasing the number of reinitialisations.

Another issue, related to the KLT tracker, has to do with the movement
speed of the person. Due to the construction of the KLT tracker, there is
a maximum speed at which an object can move and still be tracked. This
maximum movement speed can easily be related to the frame rate at which
the algorithm is able to process information. More details on this issue were
discussed in chapter 3.2.2.

A point related to the previous one is the viewing angle of the AIBO camera.
As mentioned before, this angle is 56.9◦. At a distance of 2 meters, this
results in a horizontal viewing distance of just below 2.2 meters. When
tracking a person walking around, this results in very little movement space
before the camera needs turning. Therefore, the narrow camera angle will
result in many necessary camera adjustments to keep the person in the
AIBO’s field of view. Of course it is possible to follow the person at a larger
distance, but at the low camera resolution, many details will be lost and
tracking will be more difficult.

Finally, there is an issue with the system performing less in low-light re-
gions. This is a problem of the AIBO camera and not of the algorithm used
however. While lighting conditions are sufficient for the camera to get a
good look of the scene, tracking will work fine and the following behaviour
exhibited by the AIBO is excellent.

64

Chapter 5

Conclusions and Future
Research

This thesis presents a hybrid tracking algorithm that is able to follow a
person using a small robot. In this chapter, a final evaluation of the system is
made and conclusions will be drawn based on the quality of its performance.
We will start with revisiting the research questions posed in the first chapter,
and will evaluate the resulting hybrid algorithm based on the degree to
which the questions can be answered positively. After drawing the final
conclusions, some notes will be made on possible future work projects related
to the system presented here.

5.1 Conclusions

In the introduction of this thesis, we started out stating the goals of this
project. These research questions were determined to be as follows:

1. Develop an algorithm that enables the Sony AIBO robot to locate,
track and follow a person through a room.

2. Create a fully autonomous operating system, guided by the images
taken by the AIBO camera.

3. Be able to track a person, regardless of changes in lighting conditions
or partial occlusion of the person.

Throughout this section, it will be determined whether or not we have suc-
ceeded in achieving these goals. This will be done by evaluating each of
these questions with respect to the hybrid tracking algorithm.

65

Chapter 5

Locate, Track and Follow

The fusion algorithm developed during this project is able to track a person
while the robot as well as the person are moving around, regardless of the
sometimes erratic movements of the robot. Automated localisation of the
person is achieved by using background estimation to determine the initial
position of the person in the scene. By being able to re-initialise the system
on run time using the same background estimation, the system gains an
extra level of robustness. It enables the system to relocate the person if
the tracker loses them while they are still present in the field of view of the
robot, for example due to unpredictable movement.

Autonomous Behaviour

By using a feedback loop to combine this fusion algorithm with the robot
control system, the robot is enabled to react to things perceived. The tracker
is supported by this active vision feedback loop because the object being
tracked is kept in the centre of the robot’s view, as shown in section 4.2
and figure 4.6. Keeping the object centred compensates for displacements
between frames which would otherwise be too large to track well. By us-
ing head motion of the robot controlled by the position of the tracker in
the image, the robot is able to estimate its proximity to the person being
tracked and adapts its distance accordingly. This way, a stable robot con-
trol mechanism is gained that works well for our purpose. Because of the
feedback loop used, control of the robot is fully autonomous.

Robustness

Re-initialising object histograms using background estimation enables the
system to track a person while the illumination in the environment changes.
This adds a considerable level of robustness to the system, since it is possible
to refit the tracker onto the person whereas the tracker would otherwise
definitely have lost the person.

No specific experiments considering occlusion were done during the testing
phase of the project. During development however, several test sequences
provided situations in which the person was partially occluded from the view
of the robot. Furthermore, on some occasions the person partially walked
out of the view of the robot or came too close to the robot for the robot
to be able to get a complete view of the person. In all of those cases, the
fusion algorithm was fairly well able to keep track of the person. It can
thus be said that, while no explicit tests have been done, the system shows
considerable robustness to the occlusion of the subject being tracked.

66

Conclusions and Future Research

F
u
si

on
q
u
al

it
y

>
so

lo
q
u
al

it
y

(%
)

Fuse > EM-shift

Fuse > KLT

Static Driving Walking
0

10

20

30

40

50

60

70

80

90

100

Figure 5.1: Average number of frames, relative to the total num-
ber of frames ((re)initialisation frames not included), for which the
fusion algorithm gives better results than the separate algorithms.
Error bars show disputed quality regions where the difference be-
tween qualities is within a 5% boundary. The results are shown
for static movies, movies recorded on the driving robot and movies
recorded on the walking AIBO.

Final Conclusion

In chapter 4, we have shown through experiments that the performance of
the proposed algorithm is good. While there is still some room for improve-
ment, the increase in quality when using the algorithm on a walking AIBO
is certainly significant. Figure 5.1 gives a brief summary of figure 4.2, show-
ing the relative performance of the fusion algorithm. The bars show the
relative amount of frames for which the fusion algorithm gives better results
than the stand-alone algorithms, averaged over all movies belonging to one
movie type. A region for which the quality difference between two methods
is smaller than 5% is indicated using error bars on each bar. This graph
clearly shows how the combination of two types of tracking algorithms is
able to improve the overall tracking quality, since almost all bars show val-
ues well above 50%. Furthermore, it is shown that the power of the fusion
algorithm lies within applications on more unstable moving platforms. This
is especially made clear in figure 5.1 by the way the amount of frames for
which KLT is outperformed by the fusion algorithm increases each time
more movement is introduced.

As a final conclusion, it can be said we have been able to develop a system
that can be used to locate, track and follow a person through a room. The
system outperforms the stand-alone methods it is built of to a considerable

67

Chapter 5

degree. While the fusion algorithm already performs 21% better than the
KLT algorithm, the EM -shift algorithm is even outperformed by 37% when
looking at pure quality levels (shown in figure 4.1). With the main power of
the algorithm being within unstable camera footage, many interesting appli-
cation areas for the fusion algorithm on platforms other than the AIBO can
be thought of. Some possible extensions and applications for the algorithm
will be briefly highlighted in the next section.

5.2 Future Research

While the current system already provides good results, there are always
some points at which the system can be improved further. Some of the
weaknesses of the fusion algorithm can probably be solved by adding a little
extra to the current algorithm or making some minor adjustments.

An interesting area of improvement would be in the way the trackers are
initialised. Background estimation works well as long as the person to be
tracked is moving through the scene. If the person is standing still during
(re)initialisation however, background subtraction will not be able to retrieve
the person’s position.

A solution could be found in the additional use of a skin detector like the
one described by [Jones and Rehg, 2002]. This way, a starting point for the
tracker can almost always be found. Additional techniques can be used to
initialise the kernel on the complete person using the known locations of
skin patches. The integration of such a method could easily be done.

Furthermore, the range of methods used for detecting persons could be
broadened. By combining the outputs of multiple detectors in a probabilis-
tic framework, an estimation could be made of the position of the person.
Besides background subtraction and skin detection, methods like template
matching [Gavrila, 2000, Baumberg and Hogg, 1994] and face detection [Vi-
ola and Jones, 2001] could for example be combined to gain a more precise
estimation of the person’s position in the scene. Making a combination of the
outputs of different methods could for example be done by using a particle
filter or similar data association filters [Rasmussen and Hager, 2001].

Another point for further improvement is creating a good measurement to
determine the quality of the current track. Currently, the tracker’s confi-
dence solely relies on the estimation from the colour tracker. While this
method gives a good estimation of the tracking quality, the addition of a
confidence measure from the KLT tracker would improve the general track-
ing quality. It would be useful to compute a combined real-time quality
measurement which can determine the current quality of the track based on
all algorithms and can start reinitialisation when needed. It would also be

68

Conclusions and Future Research

possible to make use of the spatial relationship between features to deter-
mine if they are still on track. This could for example be done similar to
the method presented by [Kölsch and Turk, 2004].

Besides adding methods, the implementations of the methods currently used
can be further improved. The current codebase contains fairly rough code
which is far from optimised. Since one of the issues with the fusion algorithm
lies with the maximum speed the algorithm is able to track, improvements
in the code can surely improve the results of the algorithm. Especially the
implementation of the KLT algorithm can use some fine tuning. Further-
more, an implementation of the algorithm working in real-time on the AIBO
would largely improve the system’s performance.

Besides changes on the software side, improvements could also be made to
the AIBO to enable better tracking. As mentioned before, the AIBO is
equipped with a very low-end camera. Light sensitivity as well as the view-
ing angles are very limited. By replacing the camera with a better model, the
tracking capabilities of the AIBO would be much improved. Furthermore,
the way the AIBO moves around can be improved. To enable the robot to
follow people, a movement pattern has been developed very quickly, based
on the standard URBI motion model. This system has issues when switch-
ing from one type of movement to another (e.g. switch from walking to
turning). In those situations, the system occasionally shows hitches causing
large disturbances in the images perceived by the robot. Building a more
smooth movement pattern would mean great improvement in tracking.

Finally, it would be interesting to experiment with our fusion algorithm
applied to different platforms. For a start, it could be interesting to equip a
more high-end robot with our fusion algorithm. This way, the performance
of the system, not limited by hardware specifications can be determined.
Besides using the algorithm on robotic platforms, it could also be used in
other systems which suffer from erratic movement, for example to do object
tracking on a hand-held camera. Because of the quality of the results of
the algorithm on the low quality camera on the AIBO, even object tracking
using a simple mobile phone camera would be feasible.

Another application of this fusion algorithm could be in augmented reality
applications [Comport et al., 2006]. Because these kind of systems often
use wearable cameras to record the environment [Wagner et al., 2005], it is
useful to have a tracking algorithm which is robust to irregular movement
to a considerable degree. The objects being tracked could then be virtually
altered and shown on a mobile display.

69

Chapter 5

70

Bibliography

S. Bahadori, A. Cesta, G. Grisetti, L. Iocchi, R. Leone, D. Nardi, A. Oddi,
F. Pecora, and R. Rasconi. RoboCare: an Integrated Robotic System for
the Domestic Care of the Elderly. In Proceedings of Workshop on Ambient
Intelligence AI*IA-03, 2003.

J. L. Barron, D. J. Fleet, and S. S. Beauchemin. Performance Of Optical
Flow Techniques. International Journal of Computer Vision, 12(1):43–77,
1994.

A. M. Baumberg and D. C. Hogg. Learning Flexible Models from Image
Sequences. In Third European Conference on Computer Vision, volume 1,
pages 299–308, 1994.

S. Birchfield. KLT: An Implementation of the Kanade-Lucas-Tomasi Fea-
ture Tracker, 1997. URL http://vision.stanford.edu/~birch/klt/.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

JY. Bouguet. Pyramidal Implementation of the Lucas Kanade Feature
Tracker. Description of the algorithm. Technical report, Intel Corpo-
ration, Microprocessor Research Labs, 2001.

P. Burt and E. Adelson. The Laplacian Pyramid as a Compact Image Code.
IEEE Transactions on Communication, 31(4):532–540, 1983.

H. Chen and P. Meer. Robust Computer Vision through Kernel Density
Estimation. Proceedings of the 7th European Conference on Computer
Vision-Part I, pages 236–250, 2002.

J. Chen, T. Pappas, A. Mojsilovic, and B. Rogowitz. Adaptive Image Seg-
mentation Based on Color and Texture. ICIP, 2002.

D. Comaniciu and P. Meer. Mean shift: a robust approach toward feature
space analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(5):603–619, May 2002.

71

http://vision.stanford.edu/~birch/klt/

D. Comaniciu, V. Ramesh, and P. Meer. Real-Time Tracking of Non-Rigid
Objects using Mean Shift. Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, 2:142–149, 2000.

A. I. Comport, E. Marchand, M. Pressigout, and F. Chaumette. Real-Time
Markerless Tracking for Augmented Reality: The Virtual Visual Servoing
Framework. IEEE Transactions on Visualization and Computer Graphics,
12(4):615–628, Jul 2006.

S. Consolvo, P. Roessler, B. E. Shelton, A. LaMarca, and B. Schilit. Tech-
nology for Care Networks of Elders. IEEE Pervasive Computing, 3(2):
22–29, Apr-Jun 2004.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM algorithm. Journal of the Royal Statistical
Society, Series B (Methodological), 1(39):1–38, 1977.

D. A. Forsyth and M. M. Fleck. Body Plans. Proceedings of the 1997
Conference on Computer Vision and Pattern Recognition, pages 678–683,
Jun 1997.

B. Friedman, P. H. Kahn Jr., and J. Hagman. Hardware companions?:
what online AIBO discussion forums reveal about the human-robotic re-
lationship. In CHI ’03: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 273–280, 2003.

N. Friedman and S. Russell. Image Segmentation in Video sequences: A
Probabilistic Approach. In Annual Conference on Uncertainty in Artificial
Intelligence, pages 175–181, 1997.

J. Fritsch, M. Kleinehagenbrock, S. Lang, G. Fink, and G. Sagerer. Au-
diovisual person tracking with a mobile robot. In Proc. Int. Conf. on
Intelligent Autonomous Systems, pages 898–906, 2004.

K. Fukunaga and L. D. Hostetler. The estimation of the gradient of a density
function, with applications in pattern recognition. IEEE Transactions on
Information Theory, 21(1):32–40, Jan 1975.

D. M. Gavrila. Pedestrian Detection from a Moving Vehicle. Proc. of Eu-
ropean Conference on Computer Vision, pages 37–49, 2000.

D. M. Gavrila and V. Philomin. Real-time object detection for ”smart”
vehicles. In Proc. of IEEE International Conference on Computer Vision,
volume 1, pages 87–93, 1999.

I. Haritaoglu, D. Harwood, and L. S. Davis. W4: Real-Time Surveillance of
People and Their Activities. IEEE Transactions on pattern analysis and
machine intelligence, 22(8):809–830, Aug 2000.

72

BIBLIOGRAPHY

B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial
Intelligence, 17(1-3):185–203, 1981.

M. J. Jones and J. M. Rehg. Statistical Color Models with Application to
Skin Detection. International Journal of Computer Vision, 46(1):81–96,
Jan 2002.

T. Kadir and M. Brady. Saliency, Scale and Image Description. International
Journal of Computer Vision, 45(2):83–105, 2001.

M. Kölsch and M. Turk. Fast 2D Hand Tracking with Flocks of Features
and Multi-Cue Integration. In 2004 Conference on Computer Vision and
Pattern Recognition Workshop (CVPRW’04), volume 10, page 158, 2004.

M. Liem, A. Visser, and F. Groen. A Hybrid Algorithm for Tracking and
Following People using a Robotic Dog. In HRI ’08: Proceedings of the 3rd
ACM/IEEE international conference on Human robot interaction, pages
185–192, Mar 2008.

A. J. Lipton, H. Fujiyoshi, and R. S. Patil. Moving Target Classification and
Tracking from Real-time Video. In 4th IEEE Workshop on Applications
of Computer Vision (WACV’98), pages 8–14, 1998.

B. D. Lucas and T. Kanade. An Iterative Image Registration Technique
with an Application to Stereo Vision. International Joint Conference on
Artificial Intelligence, pages 674–679, 1981.

D. Pham and J. Prince. An adaptive fuzzy c-means algorithm for image
segmentation in the presence of intensity inhomogeneities. Proc. SPIE
Medical Imaging 1998: Image Processing, 3338(2):555–563, 1998.

J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun. Towards
robotic assistants in nursing homes: Challenges and results. Robotics and
Autonomous Systems, 42(3-4):271–281, Mar 2003.

Y. Raja, S. J. McKenna, and S. Gong. Tracking and Segmenting People in
Varying Lighting Conditions Using Colour. In 3rd. International Confer-
ence on Face & Gesture Recognition, volume 3468, page 228, 1998.

C. Rasmussen and G. D. Hager. Probabilistic Data Association Methods
for Tracking Complex Visual Objects. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(6):560–576, Jun 2001.

C. Schlegel, J. Illmann, H. Jaberg, M. Schuster, and R. Wörz. Vision based
person tracking with a mobile robot. In Ninth British Machine Vision
Conference, pages 418–427, 1998.

73

D. Schulz, W. Burgard, D. Fox, and A. B. Cremers. People tracking with
a mobile robot using sample-based joint probabilistic data association
filters. Int. Journal of Robotics Research, 22(2), Feb 2003.

J. Shi and C. Tomasi. Good features to track. Technical Report TR 93-1399,
Cornell University, 1993.

J. Shi and C. Tomasi. Good features to track. Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition, pages 593–600, 1994.

H. Sidenbladh, D. Kragic, and H. I. Christensen. A person following be-
haviour for a mobile robot. In IEEE International Conference on Robotics
and Automation, pages 670–675, 1999.

A. Sixsmith and N. Johnson. A smart sensor to detect the falls of the elderly.
IEEE Pervasive Computing, 3(2):42–47, Apr 2004.

C. Stauffer and W. E. L. Grimson. Adaptive background mixture models for
real-time tracking. Computer Vision Pattern Recognition, pages 246–252,
1999.

C. Tomasi and T. Kanade. Detection and Tracking of Point Features. Tech-
nical Report CMU-CS-91-132, Carnegie Mellon University, Apr 1991.

J. J. Verbeek. Mixture models for clustering and dimension reduction. PhD
thesis, Universiteit van Amsterdam, Dec 2004.

P. Viola and M. Jones. Rapid Object Detection using a Boosted Cascade
of Simple Features. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 1, page 511, 2001.

D. Wagner, T. Pintaric, F. Ledermann, and D. Schmalstieg. Towards Mas-
sively Multi-user Augmented Reality on Handheld Devices. In Pervasive
Computing, volume 3468, pages 208–219, 2005.

P. J. Withagen. Object detection and segmentation for visual surveillance.
PhD thesis, Universiteit van Amsterdam, 2005.

W. Zajdel, Z. Zivkovic, and B. J. A. Kröse. Keeping track of humans: have
I seen this person before? ICRA 2005, pages 2081–2086, Apr 2005.

Z. Zhang, G. Potamianos, A. Senior, S. Chu, and T. S. Huang. A Joint
System for Person Tracking and Face Detection. In Computer Vision in
Human-Computer Interaction, volume 3766, pages 47–59, 2005.

L. Zhao. Dressed Human Modeling, Detection, and Parts Localization. PhD
thesis, The Robotics Institute, Carnegie Mellon University, Jul 2001.

74

BIBLIOGRAPHY

Z. Zivkovic and B. Kröse. An EM-like algorithm for color-histogram-based
object tracking. IEEE Conference on Computer Vision and Pattern
Recognition, 1:798–803, 2004.

Z. Zivkovic and F. van der Heijden. Efficient adaptive density estimation per
image pixel for the task of background subtraction. Pattern recognition
letters, 27(7):773–780, May 2006.

75

76

Appendix A

Computation of the Main
KLT Tracking Function

In this section it is shown how the main tracking equation Tz = a (2.27)
is deducted from the combination of (2.21) and (2.22). The derivation de-
scribed here is slightly different from the one which can be found in [Shi and
Tomasi, 1993].

First we rewrite (2.18) to state:

J(Ap + d) = J(p +Dp + d).

Taylor expansion of this function around p results in:

J(p) + J ′(p)(p +Dp + d−p) = J(p) + gt(Dp + d) = J(p) + gtDp + gtd,

which combined with (2.22) yields:

ε =
∑
p∈W

[J(p) + gtDp + gtd− I(p)]2w(p)

Of this function, the partial derivatives to D and d can be computed as

1
2
∂ε

∂D
=
∑
p∈W

[J(p)+gtDp+gtd−I(p)]gptw =
∑
p∈W

[J(p)+gtu−I(p)]gptw

and

1
2
∂ε

∂d
=
∑
p∈W

[J(p) + gtDp + gtd− I(p)]gw =
∑
p∈W

[J(p) + gtu− I(p)]gw

These functions are easily rewritten to the functions from (2.25) and (2.26).
The next step is to compute the Hessian matrix T and the transformation
vector z in (2.27).

77

Appendix A

From (2.25) we take the following:

gpt(gtu)w = gpt(gt(Dp + d))w

Writing out all vectors results in[
gx
gy

]
[px py]([gx gy]

([
dxx dyx
dxy dyy

] [
px
py

]
+
[
dx
dy

])
)w.

Factoring out D and d gives[
gx
gy

]
[px py]([gx gy]

[
pxdxx + pydyx + dx
pxdxy + pydyy + dy

]
)w.

The function can further be simplified using[
gx
gy

]
[px py](pxgxdxx + pygxdyx + gxdx + pxgydxy + pygydyy + gydy)w, (A.1)

and[
gx
gy

] [
p2
xgxdxx + pxpygxdyx + pxgxdx + p2

xgydxy + pxpygydyy + pxgydy
pxpygxdxx + p2

ygxdyx + pygxdx + pxpygydxy + p2
ygydyy + ygydy

]t
w.

Computing the last factor and using the result to create a vector with the
elements of the resulting matrix in column-major order, we get:
p2
xg

2
xdxx + pxpyg

2
xdyx + pxg

2
xdx + p2

xgxgydxy + pxpygxgydyy + pxgxgydy
p2
xgxgydxx + pxpygxgydyx + pxgxgydx + p2

xg
2
ydxy + pxpyg

2
ydyy + pxg

2
ydy

pxpyg
2
xdxx + y2g2

xdyx + yg2
xdx + xygxgydxy + y2gxgydyy + ygxgydy

xygxgydxx + y2gxgydyx + ygxgydx + pxpyg
2
ydxy + p2

yg
2
ydyy + pyg

2
ydy

w.
This vector can be split into a matrix and a vector in the following way:

p2
xg

2
x pxpyg

2
x pxg

2
x p2

xgxgy pxpygxgy pxgxgy
p2
xgxgy pxpygxgy pxgxgy p2

xg
2
y pxpyg

2
y pxg

2
y

pxpyg
2
x p2

yg
2
x pyg

2
x pxpygxgy p2

ygxgy pygxgy
pxpygxgy p2

ygxgy pygxgy pxpyg
2
y p2

yg
2
y pyg

2
y

dxx
dyx
dx
dxy
dyy
dy

w
(A.2)

For (2.26) something similar is done. The main difference is the missing
multiplication with vector p.

From (2.26) we take:

g(gtu)w = g(gt(Dx + d))w

78

Computation of the Main KLT Tracking Function

The deduction is the same as the one above, until the multiplication with p
in (A.1). Equation (A.1) now becomes:[

gx
gy

]
(pxgxdxx + pygxdyx + gxdx + pxgydxy + pygydyy + gydy)w,

which is reduced to[
pxg

2
xdxx + pyg

2
xdyx + g2

xdx + pxgxgydxy + pygxgydyy + gxgydy
pxgxgydxx + pygxgydyx + gxgydx + pxg

2
ydxy + pyg

2
ydyy + g2

ydy

]
w,

after which the vector can again be split into a matrix and a vector as
follows:

[
pxg

2
x pyg

2
x g2

x pxgxgy pygxgy gxgy
pxgxgy pygxgy gxgy pxg

2
y pyg

2
y g2

y

]

dxx
dyx
dx
dxy
dyy
dy

w. (A.3)

It is now easy to see that by merging the matrices from (A.2) and (A.3),
both equations can be combined into the following:

T =

p2
xg

2
x pxpyg

2
x pxg

2
x p2

xgxgy pxpygxgy pxgxgy
p2
xgxgy pxpygxgy pxgxgy p2

xg
2
y pxpyg

2
y pxg

2
y

pxpyg
2
x p2

yg
2
x pyg

2
x pxpygxgy p2

ygxgy pygxgy
pxpygxgy p2

ygxgy pygxgy pxpyg
2
y p2

yg
2
y pyg

2
y

pxg
2
x pyg

2
x g2

x pxgxgy pygxgy gxgy
pxgxgy pygxgy gxgy pxg

2
y pyg

2
y g2

y

w

z =

dxx
dyx
dx
dxy
dyy
dy

 .

Finally we compute

a = [I(px, py)− J(px, py)]

pxgx
pxgy
pygx
pygy
gx
gy

w

from [I(p)− J(p)]gptw in (2.25) and [I(p)− J(p)]gw in (2.26).

79

	Introduction
	Following People
	Focus of this Thesis
	Thesis Overview

	Tracking People
	Related Work
	Selected Algorithms
	Background Subtraction
	Background Estimation
	Implementation

	Colour Histogram Tracking
	Mean-shift
	EM-shift
	Integration

	Feature Point Tracking
	Kanade-Lucas-Tomasi Tracker
	Good Features
	Monitoring Features
	Tracking Large Distances using Image Pyramids
	Integration

	Summary

	Fusing the Algorithms
	The Hybrid Algorithm
	Person Following
	Controlling Head Movement
	Moving the Robot

	Results
	Experimental Setup
	Experimental Results
	Discussion

	Conclusions and Future Research
	Conclusions
	Future Research

	Bibliography
	Computation of the Main KLT Tracking Function

