
ManifoldSLAM : a Multi-Agent Simultaneous

Localization and Mapping System for the RoboCup

Rescue Virtual Robots Competition

MSc Thesis (Afstudeerscriptie)

written by

Bayu Slamet Max Pfingsthorn
(born 17. Feb. 1982 in Gouda, The Netherlands) (born 30. Oct. 1981 in Hannover, Germany)

under the supervision of Nikos Vlassis and Arnoud Visser, and submitted to the
Board of Examiners in partial fulfillment of the requirements for the degree of

Master in Artificial Intelligence

at the Universiteit van Amsterdam.

Date of the public defense: Members of the Thesis Committee:
December 11, 2006 Nikos Vlassis

Arnoud Visser
Leo Dorst
Wouter Jansweijer
Zoran Zivkovic

Abstract

This thesis presents ManifoldSLAM, an award-winning multi-robot system that provides
simultaneous localization, mapping and exploration functionality. It enables a team of robots
to be placed in an unknown environment, to explore it autonomously, and afterwards to
produce a detailed map of the explored areas.

The design of our system focuses on the sophisticated Manifold data structure that was
published by Howard et al. [27]. The Manifold is a layered data structure that employs a
graph organization which decomposes the global map into small-scale local metric maps.
This classifies ManifoldSLAM as a hybrid SLAM approach that attempts to merge the indi-
vidual strengths of metrical and topological representations similar to approaches proposed
by Bosse et al. [7] and Lisien et al. [31].

While Howard et al. [27] refer to the IDC scan matcher by Lu and Milios [34], in Mani-
foldSLAM we base the SLAM-related functionality on the Weighted Scan Matcher (WSM)
published by Pfister et al. [44]. The superior performance of WSM in our domain is demon-
strated in an extensive set of experiments specific to our setting that also included MbICP
by Minguez et al. [36] and the Normal Distribution Transform by Biber and Straßer [5].
The high speed and accuracy of WSM in our domain enables a light-weight implementation
of the parts of the loop-closing and island-merging processes that are executed online. This
significantly improves our system’s online performance, which finally allowed ManifoldSLAM
to demonstrate a scalability up to at least 8 robots at the RoboCup Rescue of 2006.

Using ManifoldSLAM we have successfully competed in the Virtual Robots league of
RoboCup Rescue [9, 10, 1]. During the 2006 RoboCup World Championships we have
acquired third place. The accuracy of our maps, the good exploration exposed by our robot
team, and the fully autonomous and robust behavior control were key to our achievements.
Moreover, the maps that we produced preserved an amount of detail that was unmatched
by other competitors in the league. Therefore, we also won the Best Mapping Award.

In additional experiments we also illustrate that ManifoldSLAM can be applied on real-
world data as our system has been demonstrated to deliver equally accurate and detailed
maps from raw laser range data that suffers from real-world odometric error and sensor
noise.

This thesis contributes a hybrid SLAM approach that advances the current state of the
art. We show that by combining the Manifold concept with WSM an efficient multi-robot
SLAM system can be implemented, which has been proven successful at RoboCup Rescue.

i

Acknowledgements

First of all we thank our supervisors Arnoud Visser and Nikos Vlassis, they have been indis-
pensable for our work. We want to thank Nikos for supporting us on this great project and
for steering us in the right directions at critical moments. Arnoud has been of tremendous
value especially during the RoboCup competitions. His experience, opinions and detailed
advice have been vital to our achievements there.

Also we would like to thank Sam Pfister and Stergios Roumeliotis from the California
Institute of Technology, Javier Minguez from the University of Zaragoza and Peter Biber
from the University of Tübingen for providing us with sample implementations of their scan
matching algorithms and their additional support.

The two persons that have most helped us to put the best of ourselves in this project are
undoubtedly our lovely wife and girlfriend, Joanna and Marloes. Their continuous patience,
endurance and support were implicit and came without asking. We are extremely grateful
for that.

On a final note, we would like to express that this graduation project has been a highly
enjoyable experience. It has truly been a team effort. Our seamless cooperation has made
this project a great pleasure to both of us and was a constant factor throughout this ad-
venture. Especially under pressure our teamwork excelled which has been the key to our
success.

This research was partly funded by the AUV Alumni Fonds of the University of Amsterdam.

iii

Table of Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Research Goals . 3

1.3 Thesis Organization . 3

1.4 Authorship Designations . 4

2 The Challenge: RoboCup Rescue 5

2.1 RoboCup . 5

2.1.1 Rescue . 6

2.1.2 Rescue Virtual Robots . 7

2.2 The USARSim Simulator . 9

2.2.1 Overview . 9

2.2.2 Related Projects . 10

2.3 Designing A Successful Approach . 11

3 Simultaneous Localization and Mapping 15

3.1 Introduction . 15

3.2 The SLAM Challenge . 19

3.2.1 Sensor Limitations and Measurement Noise 20

3.2.2 Inaccurate Movement and Odometric Error 20

3.2.3 Error Accumulation . 21

3.2.4 Data Dimensionality . 22

3.2.5 Data Association . 22

3.2.6 Dynamic Environments and Obstacles 22

3.2.7 Exploring the Unknown . 23

3.3 Approaches . 23

3.3.1 Feature-Based Maps: Kalman Filters 23

3.3.2 Metric Maps: Occupancy Grids . 27

v

vi TABLE OF CONTENTS

3.3.3 Topological Maps: Graphs and Voronoi Diagrams 29

3.3.4 Hybrid Maps: The Optimal Combination 31

3.4 Current State of the Art . 33

3.4.1 FastSLAM . 33

3.4.2 Atlas . 34

3.5 Conclusion . 37

4 Scan Matching 39

4.1 Overview . 39

4.2 Approaches . 42

4.2.1 Point-Correspondence Methods . 42

4.2.2 Function Optimization Methods . 44

4.3 Specific Algorithms . 44

4.3.1 Normal Distribution Transform . 45

4.3.2 Iterative Dual Correspondence (IDC) 47

4.3.3 Metric-based Iterative Closest Point (MbICP) 49

4.3.4 Weighted Scan Matching . 50

4.4 Conclusion . 52

5 Our Approach: ManifoldSLAM 55

5.1 Introduction . 55

5.2 Design Essentials . 56

5.3 Data Structure Details . 58

5.3.1 Patches . 59

5.3.2 Relations . 60

5.3.3 Local Sub-Maps . 61

5.4 Localization and Mapping . 64

5.4.1 Weighted Scan Matching . 64

5.4.2 Incremental Localization and Mapping 64

5.4.3 Loop Closing . 67

5.4.4 Island Merging . 69

5.5 Multi Agent Support . 71

5.6 Visualization . 74

6 Implementation 77

6.1 Overview . 77

6.2 USARSim Technical Details . 78

TABLE OF CONTENTS vii

6.2.1 Protocol . 78

6.2.2 Robots, Sensors and Actuators . 79

6.2.3 Organization . 82

6.3 Architecture . 83

6.3.1 Agent Organization . 83

6.3.2 Mapping Server Organization . 86

6.4 Details . 86

6.4.1 Qt Cross-Platform API . 87

6.4.2 Networking . 88

6.5 SLAM Module . 89

6.6 Autonomous Behavior and Motion Module 91

6.6.1 Sensor Input . 92

6.6.2 Motion Control . 93

6.6.3 Behavior Control . 94

7 Experiments and Results 97

7.1 Scanmatcher Evaluation . 97

7.1.1 Introduction . 97

7.1.2 Experimental Setup . 98

7.1.3 Results . 99

7.1.4 Implications . 104

7.2 ManifoldSLAM Evaluation . 104

7.2.1 RoboCup 2006 Results . 104

7.2.2 Cogniron Results . 112

8 Related Work 117

8.1 Comparison to the State of the Art . 117

8.2 Competitors at the RoboCup . 119

9 Conclusions and Future Work 121

9.1 Concluding Remarks . 121

9.2 Future Work . 123

Chapter 1

Introduction

Urban Search and Rescue (USAR) involves the location, extrication, and initial medical
stabilization of victims trapped in confined spaces. Structural collapse is most often the
cause of victims being trapped, but victims may also be trapped in transportation accidents,
mines or collapsed trenches. Human USAR teams do their life-saving work in emergency
situations throughout the world. Man-made disasters like the London terrorist attacks or
natural disasters as the hurricane Katrina that hit New Orleans and the Asian Tsunami are
just some recent examples.

Traditionally, the main actors in an emergency response scenario have been human first
responders. However, the current realization is that in a number of situations intelligent
robots are a better fit for the job at hand or can provide additional support in a cooperative
fashion. Robots can have a physical advantage because their size or specific design enables
them to get to otherwise unreachable places, or because they can better sustain conditions
like fire, lack of oxygen, radioactivity or toxic chemicals. Also, robots can have a sensory
advantage as they can be equipped with sensors and appropriate software that give them
capabilities that surpass the human senses. Perhaps the most important aspect of robots in
the USAR context is that although they may be expensive, in essence they are replaceable,
whereas the lives of a human rescuers and victims are not. Thus, a robot could already start
exploring an emergency site ahead of the first responders while the site is still considered
unsafe for entrance by human rescuers, e.g. due to a release of toxic gases or radioactive
radiation.

The RoboCup Rescue project was initiated after the Great Hanshi-Awaji earthquake hit
Kobe City (Japan) on the 17th of January 1995 and caused more than 6500 casualties. As
of 2002, the RoboCup Rescue Competitions are held as part of the annual RoboCup World
Championships. It is the purpose of RoboCup Rescue to promote research and development
in this socially significant domain in order to ultimately acquire solutions that can be used

1

2 Chapter 1. Introduction

by USAR teams under real emergency circumstances.

In June 2006, the RoboCup World Championships were held in Bremen, Germany. This
year was the first time that RoboCup Rescue held competitions in the new Virtual Robots
League. In this new league, participants compete using virtual robots that are reproduced
in a high-fidelity simulator. This relieves the teams from the realities of physical robots like
the high entry costs and hardware details and enables them to focus on capable software
algorithms such as multi-robot collaboration, localization, mapping, coordinated exploration
and autonomous behavior control.

In this thesis we present ManifoldSLAM, a software system that was built from scratch
and with which we have successfully participated in the RoboCup Rescue Virtual Robots
League. ManifoldSLAM is a simultaneous localization and mapping (SLAM) system that
enables a team of robots to be placed in an unknown environment, to explore and to find
victims in this environment fully autonomously, and later to deliver a detailed map of the
environment which reports and visualizes the findings of the robot team.

1.1 Motivation

Our research interest lies in several topics that have been at the center of probabilistic
robotics research for the last years. Specifically, we are very much interested in simultane-
ous localization and mapping (SLAM), multi-agent exploration and autonomous behavior
control.

These specific topics are at the core of modern robotics systems. Any robot or team of
robots which is supposed to achieve any reasonably complex task in the real world needs
to incorporate all of them in its control software. Maps are needed to plan on a global
scale. Localization is needed to monitor progress and to follow plans. Exploration aims to
extend the map and thus to generate even better plans. Planning in general, be it purely
reactive or with more consideration, is addressed in the autonomous behavior. Multiple
robots working in a team will generally be more robust to unexpected challenges posed by
the environment or diverse errors inherent in either hardware or the previously mentioned
software mechanisms.

The main efforts in current probabilistic robotics research are directed at least at one of
these aspects. We aim to combine these in a comprehensive robotics system and show how
they can efficiently act together.

1.2. Research Goals 3

1.2 Research Goals

We set out to design and implement a complete robotics system that supports multi-agent
localization, mapping and exploration using fully autonomous behavior control.

Specific to the setting in the Virtual Robots League, a team of virtual robots should be
able to be deployed in the simulator. The team should be able to autonomously explore
and to find victims in the simulated emergency site. Finally, the system should be able
to produce an accurate and detailed map of the environment as well as the other required
deliverables listed in the competition rules. Naturally, it was our primary intent to excel in
this league using our software.

In a broader sense we intended that our system would be able to produce accurate and
highly detailed maps, both under simulated conditions as well as from sensor data that was
acquired with real sensors that would be mounted on real robots and therefore suffer from
real-world odometric error and sensor noise.

To meet these goals, the system of our design had to be based on the current state of the
art in relevant areas of research and should incorporate the best available solutions published
to date. We identified the following areas that fall under the umbrella of probabilistic
robotics research and pertain to our goals: simultaneous localization and mapping (SLAM),
and scan matching.

1.3 Thesis Organization

In Chapter 2, we first outline the challenge we faced in the RoboCup Rescue Virtual Robots
League in further detail. The two subsequent chapters review the current state of the art
in the relevant areas of research: Chapter 3 discusses SLAM and Chapter 4 deals with scan
matching. Both chapters give an in-depth review of the general approaches that have been
applied to date to address the specific challenges and also highlight details of several current
implementations.

Subsequently, we use this knowledge to design ManifoldSLAM in Chapter 5, where we try
to combine the strengths of several individual SLAM approaches in a hybrid data structure
and use the best available scan matcher we found for our domain. The implementation
details of our software are discussed in Chapter 6. Then in Chapter 7, we present the results
of our extensive scan matcher experiments, the details of our achievements at the RoboCup
and we show results obtained from real-world data-sets.

In Chapter 8, we relate our approach to the current state of the art and to the systems
that were employed by our competitors at the RoboCup. We end in Chapter 9 with several
concluding remarks and directions for future research.

4 Chapter 1. Introduction

1.4 Authorship Designations

As part of the fulfillment of the requirements for the Master of Artificial Intelligence degree,
the authors of the specific chapters and sections have to be stated. The following list
describes the individual writing done by the two authors.

Max Pfingsthorn wrote the following chapters and sections: Ch. 2 (except Section 2.3),
Section 3.4, Ch. 4, Ch. 6 (except Section 6.6), Section 7.1.

Bayu Slamet wrote the following chapters and sections: Ch. 1, Section 2.3, Ch. 3 (except
3.4), Ch. 5, Section 6.6, Section 7.2, Ch. 8, Ch. 9.

Chapter 2

The Challenge: RoboCup

Rescue

2.1 RoboCup

There are many projects in the world that promote research in robotics and AI, one of them
is RoboCup. Annual world championships are held to let researchers from around the world
compare their implementations in many different leagues and disciplines. RoboCup consists
of multiple soccer leagues with real robots and with simulated players. RoboCup Rescue, as
further detailed in the following section, deals with the more significant Urban Search and
Rescue setting. Also, RoboCup incorporates leagues for kids with dancing robots as well as
soccer playing robots.

Many different areas of robotics research have to be incorporated to successfully par-
ticipate in RoboCup competitions and eventually achieve this mission. Such areas include
mechanical design, sensor fusion, online decision making, strategic planning, and multi-agent
coordination and collaboration.

The annual international competitions facilitate research and development tremendously
as it is not only an institution for international comparison, but also for the exchange of ideas,
approaches, and implementations. Additionally, regional competitions are held during the
year in various parts of the world. Each RoboCup event is usually accompanied by a larger
technology fair for robotics and related research institutes and companies. This shows how
important RoboCup has become as a research facility and proving ground for new robotics
technology.

5

6 Chapter 2. The Challenge: RoboCup Rescue

2.1.1 Rescue

Our specific field of interest is in a recent RoboCup discipline called Rescue, which deals
with the topic of Urban Search and Rescue. Inspired by the devastation caused in the 1995
earthquake in Kobe City, Japan, RoboCup includes this new discipline in both international
and national competitions. It was first incorporated in the RoboCup World Championships
in 2002. The discipline consists of a league which employs real robots to explore, map and
search buildings and other places after disasters, such as earthquakes or gas accidents. Also,
two leagues using simulations exist, one which concerns coordinating emergency workers
(police, firefighters, etc.) during a city-wide disaster. The other, which we participated in,
simulates the real robot league in software.

The American National Institute of Standards (NIST) Autonomous Systems Devision
collaborates closely with the RoboCup Rescue effort. In order to representatively recreate
disaster areas for the real robot league, NIST has designed and developed the rules and
guidelines for RoboCup Rescue. Their main effort is directed at producing usable solutions
for real human rescue workers.

The NIST has designed three different stages of destruction representative for gas leaks
or chemical accidents, gas explosions, and earthquakes or collapsed buildings respectively.
They are called Yellow, Orange, and Red Arenas.Fig. 2. Some robots in USARSim

Fig. 3. The real and simulated USAR arenas

ements to quickly develop alternate USAR layouts in much the same way the
arenas are reconfigured during USAR contests.

2.3 Sensor models

Sensors are a critical part of the simulation because they both provide the basis
for simulating automation and link the operator to the remote environment.
USARSim simulates sensors by programmatically manipulating objects in the
Unreal Engine. For example, sonar and laser sensors can be modeled by querying
the engine for the distance given the sensor’s position and orientation to the first
object encountered. To achieve high fidelity simulation, noise and data distortion
are added to the sensor models by introducing random error and tailoring the
data using a distortion curve. Three kinds of sensors are simulated in USARSim.

Figure 2.1: Real Rescue Arenas, from [9]

The Yellow Arena contains a relatively simple single level office layout which had been
minimally damaged. Since it is supposed to represent a gas leak or chemical accident,
no structural damage is included. The only damage that is represented would be caused
when people collapse due to the nature of the accident. This includes overturned chairs,
cupboards, and small tables. Paper is present on the floors, possibly after falling off the
tables.

The Orange Arena consists of a simple two-story layout and represents gas explosions
or similar accidents. Usual damage from such accidents includes relatively small structural
damage, but a lot of mess in terms of litter on the floor, broken glass, overturned beds, etc.
This kind of rubble makes it difficult to navigate the environment. Another challenge in this

2.1. RoboCup 7

arena is getting to the second level. A ramp as well as stairs exist for this purpose.

The final and most difficult Red Arena represents the effects of an earthquake. It displays
heavy structural damage and a very unstructured environment as a result. This arena is the
most difficult as navigating the rubble is very hard and victims, which might be trapped
underneath fallen floors, are very hard to detect.

2.1.2 Rescue Virtual Robots

The Virtual Robots league, as briefly introduced before, involves a detailed high-fidelity
simulation of the real robot rescue league [9]. In a virtual environment, a single or multiple
robots move, sense and act as they would in a real environment. This particular league
eliminates the need for physical robot hardware, and therefore takes any related issues out
of the development loop. Implementing working solutions needs significantly less time in
this hardware-less setting. Therefore, the main focus of this league lies in the autonomous
aspect of the robot software.

Another difference is that the simulated areas can be much larger and more diverse than
the rather small test arenas in the real robot rescue league. While separate arenas are rarely
larger than 10 by 10 meters in the real league, the areas used in this years Virtual Robots
competition were close to 100 by 100 meters large. The environment covered wide outdoor
areas with streets, sidewalks, and a park as well as extensive, multi-level indoor areas, which
featured a very detailed office building. Additionally, due to the larger environment and
negligible hardware cost, larger teams of robots can be deployed in the virtual world.

(a) Yellow arena. (b) Orange arena. (c) Red arena.

Figure 2.2: Three test arenas.

The underlying simulator is called USARSim [9, 10, 1, 62, 63, 64, 65] and is based on
the game Unreal Tournament 2004TM . This software is discussed in detail in Section 2.2.
Programs communicate directly with the simulator server, and each robot has corresponding
simulated hardware in the simulator.

Since the simulator provides many of the features that a real system needs in the first
place to operate at all, all participants focus on robot control. Also, only a small range of

8 Chapter 2. The Challenge: RoboCup Rescue

robot designs are implemented in the simulator. This means that there are no hardware
differences between competitors. The control of the robots is the only distinguishing factor.

According to the slightly different nature of the Virtual Robots league to the real robot
league, the original RoboCup Rescue rules have to be adjusted slightly as well. This scoring
function uses several performance measurements, which are acquired in one trial run in the
competition. Below, the scoring function that was used during the competitions in 2006 is
shown:

Score =
V ictimScore + ExplorationScore + MapScore

(1 + Operators)2

With:
V ictimScore =

∑
ScorePerV ictim−

∑
BumpPenalty

MapScore = MetricMapQuality ∗ TopologicalMapQuality

The separate factors are computed as follows:

• ↑ ScorePerV ictim is computed by rewarding 20 points for every victim that was re-
ported with a status (e.g. “screaming” or “cut on forehead”). For every detected
victim with no status report, 10 points are rewarded. Each piece of additional infor-
mation, such as pictures of the victims, earns a 10 points bonus. An addition was
decided on during the competition: Additional 10 points are awarded for locating the
victim with an accuracy of up to one meter.

• ↑ ExplorationScore is a value between 0 and 50 based on the total area explored by
all deployed robots.

• ↑ MetricMapQuality is a multiplier between 0 and 1 based on the positioning accuracy
of special features added to the virtual environment for this purpose.

• ↑ TopologicalMapQuality is assessed manually by a jury based on how accurate topo-
logical features such as walls, corridors, etc. are represented in the produced map.
The final score is set between 0 and 50 points.

• ↓ BumpPenalty, a penalty of 5 points is deducted for every robot that bumped into
a victim. A maximum of one penalty for every robot-victim pair can be applied.

• ↓ Operators is the number of people that actively participate in the creation of material
used for scoring, such as map merging or guidance of the robots.

Already a brief examination of the scoring function clearly shows that autonomous ap-
proaches are strongly encouraged. Even a total of only one operator introduces a denomi-
nator of four.

2.2. The USARSim Simulator 9

In addition to this function, the league organization provided several test arenas prior to
the competition, depicted in Figure 2.2. One of these, the Orange Arena, was a multi-floor
building with two different levels connected by stairs and a ramp. The test arenas were
supposed to be representative of what the robots would encounter during the competition
as far as the obstacles, victim models and physics were concerned. However, the teams were
advised to be prepared for much more challenging arenas during the competition caused by
drastic changes in size and layout.

Two simulated sensors deserve a special introduction at this point. The RFID Sensor
can detect the special landmarks used for computing the MetricMapQuality. These are
called single-shot RFID Tags as they can only be observed once per robot. Also, they are
detected without noise so their localization accuracy only depends on the accuracy of the
map built by the robot. The Victim Sensor allows to identify victims in the simulated world
without having to do image processing of simulated camera feeds. It works similarly to the
RFID Sensor, however, every victim can be noisily detected multiple times. At the end
of each trial run, a list of victims with additional information as well as a list of detected
single-shot RFID Tags had to be reported for use in the scoring function above.

2.2 The USARSim Simulator

2.2.1 Overview

USARSim [9, 10, 1, 62, 63, 64, 65] is the simulator used in the RoboCup Rescue Virtual
Robots league. It is implemented as a modification to the popular game Unreal Tournament
2004TM (UT). The complete simulator uses UT’s scripting framework and no extra software.

Unreal Tournament was chosen as a base platform because it already provides some key
features needed for a high-fidelity simulator: A complete physics engine used to simulate
vehicle dynamics, a high-performance graphics engine to visualize large worlds and to simu-
late cameras, a simple access to the logical representation of the world in order to implement
sensors easily, and an efficient synchronization protocol to facilitate parallel rendering of the
simulated world. All additional needed functionality is implemented within the scripting
framework.

The simulator specific additions include a kinetic model for a differential drive robot. All
implemented platforms are derived from this model. The forward kinematics of the generic
model have been tested thoroughly, and also allow for dynamic physics such as falling down
stairs and platforms.

All interactions with the simulator, with one exception, are achieved via a text-based
protocol. This makes it very easy to connect to and communicate with the simulator server.
The protocol is very structured, so it is easy to write a general parser which can read any

10 Chapter 2. The Challenge: RoboCup Rescue

message sent by the server. Commands sent to the server correspond to the same structure.
The protocol is explained in Section 6.2.

The simulator, while very extensive, does not include every aspect. Specifically, there
are no provisions for robot-to-robot communication. This still has to happen outside the
simulator via conventional network connections. However, plans exist to include simulated
wireless communication with proper signal degradation and similar error sources in the
simulator.

Further technical details of the USARSim implementation are discussed in Section 6.2.

2.2.2 Related Projects

There are very few comparable projects currently available. One major open source robotics
simulator which is widely used is Player/Stage. Actually, the Player component of the
software is a device server which either runs on a real robot or in a simulator (the Stage
component). Programs using the architecture connect to the Player server to receive sensor
data and send commands to actuators via a standard binary protocol. The protocol is imple-
mented with XDR, or eXternal Data Representation, which is a very common representation
for serializing typed data for network transmission under Unix. Stage is a high-performance,
2D simulator, which is frequently used for large experiments with many robots. It has a
high-fidelity, 3D counterpart called Gazebo, which also simulates physics and more complex
environments. In general, Gazebo would be used to create a high-quality simulation of very
few robots. A depiction of a sample interface and a running Gazebo instance is shown in
Figure 2.3.

Figure 2.3: A screenshot of Player/Gazebo with a sample interface (from
http://playerstage.sf.net/).

2.3. Designing A Successful Approach 11

Microsoft c© has recently released a similar toolkit entitled “Microsoft Robotics Studio”.
It is written in Microsoft’s own .NET framework, and thus only runs on Windows. This is in
heavy contrast to Player/Stage, which only runs on Unix, like Linux or Mac OS XTM . MS
Robotics Studio is based on SOAP and the REST interaction model. This means all com-
munication in the system is text based and robots and their individual sensors are referenced
using URIs (Uniform Resource Identifiers). This allows for a wide range of implementations
and is easily extensible. The complete product is very similar to Player/Stage in the respect
that it allows control over both real and simulated hardware via a unified interface. Its sim-
ulator uses a state-of-the-art commercial physics simulation engine and models the virtual
world in 3D. Two views of the visualizer are shown in Figure 2.4.

(a) MS Robotics Studio Interface (b) MS Robotics Studio 3D visualization

Figure 2.4: Microsoft Robotics Studio’s interface showing the physics models, and the 3D
visualization of three Pioneer P2DX robots with laser scanners and a LEGO Mindstorms
NXT robot.

Microsoft’s product is currently free, however it is a Community Technology Review
version, meaning a public beta test. It is also very immature piece of software when compared
to the seasoned Player/Stage package.

2.3 Designing A Successful Approach

The underlying goal of all leagues in the RoboCup Rescue competitions is to work towards
intelligent systems that can be applied by rescue workers during real disasters. In the
Virtual Robotics League described above, this goal is reflected in the scoring function that
is used exclusively to assess the performance of participants. Therefore, our strategy was to
maximize each one of the rewards and minimize all penalties of this function.

Note that the scoring function presented above has several rewards that are bounded
above to 50 points. However, the victim score grows linearly with the number of victims
found and that each victim yields a maximum of 40 points. Thus, this scoring function leaves

12 Chapter 2. The Challenge: RoboCup Rescue

the possibility to develop a strategy which focuses exclusively on detecting as many victims
as possible and provide as many localization-independent details per victim as possible.
However, we felt that this would bypass the fundamental goals of the Rescue competitions.
An extensive report on victims is of minor use to a human rescue worker when the victims
are not depicted on a map or when this map is of poor quality. Therefore we only considered
a complete solution that aims to optimally address all aspects of the challenge.

The scoring function suggests several design guidelines for such a complete system. The
most important factor was the number of operators. As noted above, a single operator
already increased the denominator in the scoring function from one to four. This implies
that an operator should only be considered in the case where his or her presence would mean
that more than four times the number of victims can be detected than without an operator.
We considered this unlikely, so our primary aim was to develop a fully autonomous solution.
The generated map should contain very highly detailed information about the geometry
of the environment to optimize MetricMapQuality, and to potentially facilitate autonomous
behavior. Furthermore, a high degree of map detail would increase the TopologicalMapScore.
In addition, a multi-agent solution would lead to more exploration, which would benefit the
ExplorationScore and also increase the chances for a higher VictimScore.

One consequence of choosing a multi-agent solution is that the robots need to be able to
share information by jointly constructing a single map. When all robots start from the same
position, this reduces to initializing a shared map. The map is then used by every robot for
localization. It is also extended and updated by every robot as they explore the environment.
However, in the urban search and rescue setting of our league, robots sometimes enter the
environment at different locations. This complicates the map-sharing, as then the relative
positioning of the robots is not initially known. In that case, each robot needs to start by
constructing an individual map until the relative position of other robots can be determined
and the individual maps can be merged into a joint map. A typical event that triggers map
merging is the identification of a landmark by a robot that was previously observed by one
of the other robots.

As described above, the league organizers warned us that we should expect more com-
plex environments as the three test arenas shown in Figure 2.2. Therefore, we added the
capability to deal with complex multi-floor arenas as another design guideline.

Based on the analysis so far, the following design guidelines emerge:

• the system should be able to coordinate multiple agents

• the system should work fully autonomously

• the system should use a map representation that is capable of:

– providing highly detailed information about the environment’s geometric proper-

2.3. Designing A Successful Approach 13

ties

– representing complex and potentially multi-floor environments

– merging multiple maps into one

In order to meet the previous guidelines, we aim for a team of robots. There are several
factors to take into account when designing a team of robots. Small robots can, on the
one hand, reach places larger robots can not fit into. On the other hand, larger robots
typically can carry many more sensors. They are also less susceptible to small obstacles
and debris. Covering both these strengths could be attempted in a heterogeneous team of
robots. However, creating such a team implies a significant amount of additional develop-
ment effort. Different robot models possibly employing different sensor setups have different
characteristics and therefore may require specific adaptations to the software.

Chapter 3

Simultaneous Localization and

Mapping

3.1 Introduction

It is near impossible to imagine an autonomous mobile robot that was not programmed
with some tasks in mind. Researchers have put forward mobile robots in an extremely
wide range of applications which were to be executed under an equally daunting range of
circumstances. To date, autonomous robots have been reported to explore environments
from regular-shaped office buildings [8, 23] to difficult terrains like the surface of Mars [35]
and even underwater, where robots have inspected the Great Barrier Reef [66]. Some robots
operated alone [56], others in moderate-sized teams [16] and some robots have worked in
teams up to a hundred robots [26, 30]. The range of tasks assigned to these robots has proven
to be equally challenging. Robots were programmed to assist or entertain elderly people [45],
to act as a museum tour-guide [54], to help locating victims in collapsed buildings [6] and
also to complete the very challenging task of traversing several miles of desert road fully
autonomously [57].

One factor that brings these different implementations together is that all robots have a
need for maps. The majority of tasks that robots have been designed to fulfill are location-
based, in one way or another. Soccer-playing, terrain exploration, underwater inspection
and many other tasks require the robots involved to know their whereabouts. The internal
representation and the amount of retained information about the environment differs from
application to application. Regardless of the specific setting, however, a map facilitates
the localization of robots. This localization, in turn, is a prerequisite to a meaningful
interpretation of current observations, evaluation of executed motions, analysis of action

15

16 Chapter 3. Simultaneous Localization and Mapping

(a) (b) (c) (d) (e) (f)

Figure 3.1: Some interesting robots. a) Pearl, robot of Nursebot project [45]. b) Mine
exploration robot, courtesy of [19]. c) A rescue robot seen at a demonstration during the
RoboCup World Championship 2006 in Bremen, Germany. d) Mars Exploration Rover
(MER) [35]. e) Underwater robot, courtesy of [66]. f) Minerva, the museum tour-guide
robot [54].

plans, etc. In short, maps provide a spatial context that enables much more elaborate
intelligent behavior. From a different perspective, maps enable robots to reach beyond the
limitations of purely reactive behavior.

Accurate maps of environments could be provided to robots beforehand. However, in
reality this only applies to a small range of applications. Existing blueprints or detailed CAD
(Computer Aided Design) drawings might give an accurate description of a building’s walls,
stairways and doors, for example. Nonetheless, they typically lack information about other
objects which are definitely obstacles to robots as well, like furniture, debris, low-hanging
lamps or steps. In other scenarios it is simply impossible to provide a map beforehand. For
instance, rescue robots search collapsed buildings and exploration robots navigate on Mars
or deep underground in mines, where they navigate through environments that are simply
unknown.

Therefore, in most applications the robot is designed to acquire a map by itself. The
robot is then equipped with a number of sensors as appropriate which enable the robot
to observe its environment and make a map of it. Mapping algorithms address exactly
this challenge as they analyze a robot’s sensor readings and translate these into a map
while the robot explores the environment. Assuming perfect information about the robot’s
exact current location, mapping is about acquiring the most accurate description of the
relevant properties of the physical reality based on sensor readings, despite the associated
measurement noise.

In realistic settings such an external source for exact position information is, of course,
not available. GPS (Global Positioning System) is sometimes used, but it is not very ac-
curate and only useful outdoors. Therefore, a mapping algorithm is typically paired with
an appropriate localization algorithm, which brings us to the topic of simultaneous localiza-

tion and mapping (SLAM). Given a map, localization entails finding the most likely current
robot’s location and orientation on that map. This is determined by finding the pose that
best explains the current sensor readings after comparing these against the information
that is stored in the map. In this sense, localization is a global search problem. In most

3.1. Introduction 17

(a) (b) (c) (d) (e)

Figure 3.2: Some interesting maps. a) Map of an office environment [26]. b) Minerva uses
a ceiling map for localization in the Smithsonian museum, Washington, courtesy of [53]. c)
The Intel Research Lab, Seattle, courtesy of [25]. d) Map generated by ManifoldSLAM,
described in Chapter 5. e) A volumetric map, courtesy of [55].

implementations however, a global search is not feasible without jeopardizing real-time per-
formance. Therefore, in online SLAM, localization is usually done incrementally. Each time
the localization routine is invoked, it is initialized with the last known robot pose and the
motions executed since then. Using this information, a first estimate for the current location
can be obtained. Due to noise in the robot’s actuators and sensor readings, this is indeed
just an initial estimate for the pose. Thus a search for the optimal explanation is still in
order, but now only on a local scale.

Essentially, SLAM is about having a robot autonomously acquire an adequate answer
to the question ’Where am I?’. However, the question about the whereabouts of a robot is
hardly ever posed just for its own sake. Rather the contrary, the two pieces of information
that are put forward by SLAM, the map and the robot pose, are a key building block
towards many intelligent behaviors. For example, they are a prerequisite to many navigation
and path-planning algorithms and they can facilitate more elaborate behavior and motion
planning. In general they provide a natural context to relate observations, decisions and
actions over time. Only by employing SLAM techniques it becomes possible to place an
autonomous robot at an unknown location in an unknown environment and then have it
autonomously complete location-based tasks successfully. As SLAM alleviates the need for
a priori knowledge of the environment, SLAM is sometimes considered the ’Holy Grail’ of
truly autonomous intelligent systems.

Considering the intelligent behaviors that depend on SLAM, it is arguably the primary
task of SLAM to capture the robot’s whereabouts in representations that best facilitate

subsequent algorithms. Different representations of the map will have different mapping
capabilities and limitations, as well as different practical ramifications in terms of update
performance and memory allocation. But perhaps more importantly, some representations
are better supported by subsequent algorithms than others. It could even be that partic-
ular representations simply enable or disable particular usage scenarios. The choice for a
particular representation is a delicate one, and must be considered in a broad context that
at least includes the algorithms that will actually make use of the map. Most current ap-
proaches represent the acquired information in planar, hence inherently two-dimensional,

18 Chapter 3. Simultaneous Localization and Mapping

data structures. Some applications though require all spatial dimensions to be incorporated
and need volumetric maps. Path planning algorithms often work on graph structures and
are therefore best served with a topological representation of the map which outlines the
connectedness of explored areas. Navigation and obstacle avoidance algorithms on the other
hand are not really in need of topologically organized information. They are rather provided
with high-resolution information about the local geometry of the environment, which are
best encapsulated in an occupancy grid that outlines obstacles at an arbitrary level of detail.
These different map types are shown in Figure 3.4.

Regarding the representation of the robot pose, it is sufficient for most scenarios to
maintain the pose in 2D. In that case, the robot pose can be fully represented by three
variables: An (x, y)-coordinate that denotes the location, and an angle (θ) that denotes
the orientation. In 3D, a complete description of the robot pose requires 6 variables: an
(x, y, z)-coordinate to denote the location, and a rotation around each of the axes to denote
the robot’s orientation. These rotations are commonly known as yaw (rotation around z-
axis), pitch (rotation around y-axis) and roll (rotation around x-axis). In robotics, the
common convention for the coordinate system is to have the x-axis pointing forward, with
the y-axis pointing sideways and the z-axis pointing upwards or downwards.

(a) pose in 2D (b) pose in 3D

Figure 3.3: Pose representations.

The choice for a particular SLAM approach is governed by the choice for a particular map
representation and whether poses should be maintained in 2D or 3D. As the capability to
serve subsequent algorithms is optimized, SLAM approaches become increasingly biased to
particular application contexts. This implies that no single optimal SLAM approach exists.
Given a particular use case, different approaches should be compared and contrasted in a
search for the optimal solution. To enable the evaluation and discussion of different SLAM
approaches on a higher level a generalization that is commonly used in SLAM research will
be adopted here as well. A distinction between four families of SLAM approaches is made,
which is based primarily on the type of map representation:

3.2. The SLAM Challenge 19

• SLAM approaches that employ Kalman filters on feature-based maps;

• SLAM approaches that provide occupancy grid maps;

• SLAM approaches that use topologically organized maps;

• SLAM approaches that use maps with hybrid data structures.

(a) features (b) grid (c) Voronoi diagram (d) Hybrid

Figure 3.4: Different map representations.

The former three families could be seen as the elementary SLAM approaches. They stick
to a specific map representation and therefore exhibit the typical characteristics that belong
to that map representation. During the discussion of these elementary approaches, their
strengths, weaknesses and practical ramifications will be outlined. ManifoldSLAM though
belongs to the fourth family of SLAM approaches. Like most current state-of-the-art SLAM
approaches, it mixes elements of the former three representations in a hybrid data structure
in an attempt to acquire the optimal solution.

The remainder of this chapter will discuss the the details of these four families of SLAM
approaches and several current state-of-the-art implementations. The next section, how-
ever, first outlines the details of the challenge that SLAM approaches need to address.
This provides the parameters based on which different approaches can then be evaluated in
subsequent sections.

3.2 The SLAM Challenge

Before discussing the details of SLAM algorithms, the challenge that SLAM has to address
and the complicating aspects are presented in full detail. Some of these aspects that make up
the SLAM challenge are typical for any system that deals with real-life realities like sensor
noise and odometric error. Several other aspects are typical to SLAM, like the bi-directional
dependency between map accuracy and pose uncertainty.

The following are some of the key aspects that make up the SLAM challenge:

• sensor limitations and measurement noise;

• inaccurate motions and actuator noise;

20 Chapter 3. Simultaneous Localization and Mapping

• error accumulation due to the orchestration of online SLAM;

• data dimensionality;

• data association;

• dynamic environments and obstacles;

• exploring the unknown;

3.2.1 Sensor Limitations and Measurement Noise

To acquire a spatial model of the physical environment a robot needs to be able to perceive
the world. Sensors commonly brought to bear for this task in robotics include GPS, com-
passes, range finders using laser, sonar or infrared technology, audio sensors, tactile sensors
and cameras. All these sensors are subject to measurement errors and limitations. For
example, most of these sensors cannot penetrate walls or have a otherwise limited range,
some of them fail to observe obstacles that are transparent or have difficulty sensing objects
with particular kinds of surfaces. GPS works excellently in the outdoors but hardly indoors
and cameras are often highly sensitive to lighting conditions. In addition to these and other
limitations, all of the sensors are bound to be affected by noise in their measurements.

3.2.2 Inaccurate Movement and Odometric Error

To explore an environment, a robot has to navigate through it. This involves some motion
commands to be sent to one or more of the robot’s motion actuators (e.g. wheels or tracks).
This gives rise to its own particular type of problems often referred to as odometric errors:
a mismatch between the desired movement as specified by the motion command and the
actually achieved movement by the actuator. The difference between the true movement
and the desired movement can be the effect of any or all of the following: inaccuracy in
the actuator, slippery or uneven surfaces, bumps into or over obstacles or other unforeseen
challenges yielded by the physics of the environment.

(a) the ideal case (b) unequal movement (c) obstacle (d) carpet

Figure 3.5: Causes for odometric error, images courtesy of Thrun.

3.2. The SLAM Challenge 21

3.2.3 Error Accumulation

Clearly the aforementioned noise in measurements and movements pose their challenges
on generating accurate interpretations of sensor observations. If these observations were
independent then the error would be canceled out as the number of observations increases.
In that case acquiring more accurate maps would be just a matter of processing more
observations. Unfortunately, with simultaneous localization and mapping we have no such
independence, rather the contrary.

The knowledge about robot poses provided by localization serves as the reference frame
for mapping to interpret and localize sensor observations and build a map from these. Lo-
calization on the other hand, uses the map to compare current observations in order to
estimate the current pose of the robot. Thus, localization and mapping each use the other
algorithm’s output and in turn serve as the other algorithm’s input, they are interdependent.

Initially both the map and the current pose are unknown. Typically the pose is initialized
to zero and from there on, sensor readings are positioned and interpreted to form a map and
estimate pose updates. Errors in pose update estimates cause errors in the map resulting in
degrading map quality. This in turn has its negative effects on subsequent pose estimates.
This is a vicious circle and is referred to as error accumulation.

Figure 3.6: Error accumulation. The robot started on the right, moved to the left using
the corridor above, then moved downward the the bottom-left corner and returned to its
starting position using the corridor underneath. The map clearly shows the effects of error
accumulation. The observations near the end of the robot’s trail are estimated at a signifi-
cantly different position from the observations that were acquired near the beginning of the
trail. See also the ’ghosting’ of the walls in the upper-right and near the center and the
curved wall at the bottom.

In figure 3.6, the accumulation of error is clearly visible. Near the end of the robot’s
path, several parts of the environment are observed again but obviously misplaced with

22 Chapter 3. Simultaneous Localization and Mapping

respect to their earlier observations. See also the ’ghosting’ in the highlighted regions.

3.2.4 Data Dimensionality

Another challenge that is posed to SLAM algorithms is dealing with data dimensionality.
Consider how much data it would take to describe a particular environment up to a certain
amount of detail. To preserve memory, one could resort to just a topological description of
the major features, for example the logical positioning of rooms and a description of which
of those are connected by doors and corridors. However, such a description lacks precision
and is of use only in particular scenarios. As more precision is desired, for example when
acquiring a two-dimensional floor plan with a resolution of 5 centimeters per pixel or perhaps
even a three-dimensional model of an underwater coastline, more and more details about
the environment need to be stored. From an algorithmic point of view, every additional
piece of data adds to the dimensionality of the mapping and localization algorithms, their
memory allocation requirements and their processing and maintenance time complexities.

3.2.5 Data Association

As a robot navigates through its environment it potentially visits the same physical location
multiple times. This means that different observations taken at different points in time
correspond to the same feature in reality. This is an invaluable piece of information that
can be of great benefit towards acquiring accurate maps and pose estimates. The knowledge
that a later observation and a prior observation correspond to the same feature in reality
enables the SLAM algorithm to detect and correct its accumulated error.

However, to associate two observations also incurs a high risk. Imagine the possibly
devastating results when two observations are falsely considered to match to the same thing
in the physical environment. Another complicating factor is that as more of the environment
has been explored, the number of possible matches grows progressively.

3.2.6 Dynamic Environments and Obstacles

In many real-life circumstances, agents cannot assume past or even current observations
to still be representative of current the state of the world. Consider parked cars or pieces
of furniture that were observed in the past but have moved in the meantime. Similarly,
consider changes that also effect the topological organization of the world like a door that
was open before but is closed now. Especially problematic are observations of objects that
move already, like people, vehicles or other agents.

All of these circumstances add to the dynamics of the environment and currently there
exists no general solution to dealing with these adequately [59]. Mostly agents explore an

3.3. Approaches 23

environment for a constrained period of time, during which the world is simply assumed to
be static.

3.2.7 Exploring the Unknown

As it is typically not fully known what challenges will be provided by the environment, the
robot should be equipped with robust behavior that enables it to deal with unanticipated
situations. There can be unexpected kinds of obstacles, like pits to fall into, or other kinds
of environmental aspects not accounted for.

The challenge is then to supply the robot with some adaptive strategies so that despite
these unexpected contingencies it still does a proper job of mapping the environment or at
least degrade gracefully.

3.3 Approaches

Having outlined the aspects of the challenge to address in the previous section, we will now
turn to the general approaches that have been put forward by SLAM researchers to date
and discuss how these address the challenges described.

3.3.1 Feature-Based Maps: Kalman Filters

Historically, Kalman filter-based SLAM is the earliest, and arguably the most influential,
approach to address the SLAM challenge. The Kalman filter is named after its inventor
and was first introduced in [28]. Research to the application of Kalman filters to the SLAM
problem traces back to a series of influential papers by Smith, Self and Cheeseman [47, 48].
Based on their initial work, numerous researchers have further developed Kalman SLAM
[11, 15, 17, 50] into one of the most popular SLAM approaches currently used.

In essence, Kalman SLAM refers to the application of a Kalman filter to the online SLAM
problem. Since Kalman filters are recursive estimators by nature, they lend themselves very
well for incremental use as in online SLAM. Maps in Kalman SLAM are typically limited to
just the current robot pose and landmark position estimates, hence the name feature-based

maps. The basic idea is to describe the map, hence the joint space of the current robot pose
and all landmark positions, as a Gaussian distribution. The map is therefore transformed
into a state-vector µ that holds all the relevant variables and which then constitutes the
mean of this Gaussian distribution. This state-vector typically has a length of (3 + 2N), 3
entries to describe the robot pose in 2D (x, y, θ), and 2 entries for every landmark position
(x, y), with N denoting the number of landmarks. The covariance of this Gaussian represents
the uncertainty over this joint space of robot pose and landmarks. The recursive estimation

24 Chapter 3. Simultaneous Localization and Mapping

then entails finding and updating this Gaussian distribution, i.e. finding the most probable
map.

(a) (b)

Figure 3.7: A typical feature-based map of the Victoria Park, Sydney. a) Kalman SLAM
typically only retains landmark positions and the robot path. b) A similar map overlaid on
a satellite image. Images courtesy of [42] and [40].

Initially, in online SLAM, the algorithm begins with a map with no landmarks. The
map then only consists of the current robot pose and a covariance matrix that represents
the pose uncertainty. As new landmarks are observed, the state vector (mean) and covariance
matrix are extended appropriately to incorporate the new landmark in the map. The initial
estimate for the location of a new landmark is simply the projection of the relative distance
measurement on a chosen global coordinate frame. The initial covariance values for the newly
detected landmark follow from the measurement uncertainty and the pose uncertainty. Note
that new landmarks are initially only correlated to the robot pose. These correlations ’spread
out’ only when the map is re-estimated in subsequent updates to correlate landmarks to each
other as well.

A single map update in the Kalman SLAM algorithm involves several steps. First, the
robot pose estimate is updated according to a linear motion model that describes how the
robot motion actuators (e.g. wheels or tracks) effect the robot pose between the previous
time step and the current one. When a landmark is observed, this can involve the detection
of a new one, or the re-detection of one that was also detected previously. New landmarks
will just be incorporated in the map. And, as long as no landmark re-detections occur,
the pose estimate will become less and less accurate due to the actuator uncertainty. As
depicted in Figure 3.8, the accumulation of this error is reflected in the covariance matrix
by increasing values for the robot pose, and through the pose-landmark correlations also on
all landmark location estimates. This continues until a landmark is re-detected. Typically,
the re-detection of a landmark results in a significant drop in pose uncertainty, which then

3.3. Approaches 25

Figure 3.8: Typical rise and drop of map uncertainty with Kalman SLAM. Consecutive robot
position estimates are indicated with shaded ellipses and landmark position estimates with
unshaded ellipses. On the left: landmark uncertainty increases as robot pose uncertainty
increases. On the right: after the re-detection of a landmark the robot pose uncertainty
drops significantly, and through the information propagation this affects also all landmark
estimates. Images courtesy of [38].

propagates towards increased certainty on all the landmark locations. This jagged pattern
of slow rises followed by sudden drops in map uncertainty is typical for Kalman SLAM.

Data: Previous map estimate µt−1 and Σt−1

Result: Updated map estimate µt and Σt

µt = µt−1 + But1

Σt = Σt−1 + Σactuator2

Kt = ΣtC
T (CΣtC

T + Σmeasure)−1
3

µt = µt + Kt(zt − Cµt)4

Σt = (I −KtCt)Σt5

Algorithm 3.1: Kalman SLAM

Above, the standard Kalman update routine is summarized in compact form. For a more
extensive outline see [59]. On lines 1 and 2, the map estimate is updated according to the
linear motion model B, where ut holds the current motion command and Σactuator denotes
the associated uncertainty. Note that this update only affects the robot pose estimate, the
equations stated above will leave all landmark position estimates untouched. This is because
in most applications the landmarks are either fixed or at least assumed to be static within
the robot’s operating time. However, it is very well possible to accommodate for dynamic
landmarks. In that case, a similar model can be designed which updates the landmark
positions in the map at every update as well. Subsequently, on line 3, the Kalman gain Kt

is computed, which incorporates the measurement uncertainty Σmeasure that is associated
with the current observation zt. The Kalman gain matrix has a size of 3 by the length
of the state-vector, and usually this matrix is not sparse. In effect this is the matrix that
propagates changes in pose certainty throughout the map estimate, as the information gain

26 Chapter 3. Simultaneous Localization and Mapping

is folded back into the robot’s belief at lines 4 and 5. Note that the matrix C is just a
convenience matrix that describes a mapping from the state-vector µ to an observation z.

One of the key characteristics that distinguishes Kalman SLAM from other SLAM ap-
proaches is that it estimates the full joint posterior over the map in an online fashion. This
implies that at all times during online construction, the full uncertainty is maintained in
the map. Consequently, it is possible, e.g. for navigation algorithms, to adapt to the cur-
rent uncertainty in robot pose and landmark locations online. In addition, through the full
posterior, Kalman SLAM has been proven to converge [15]. However, convergence is only
guaranteed in the limit, hence when landmarks are observed infinitely often. Therefore, it
is not really feasible in practice. Nevertheless, Kalman SLAM currently remains the SLAM
approach with the strongest convergence properties.

Another characteristic of Kalman filters is that they assume all noise to be governed
by Gaussian distributions. In the context of SLAM, this translates to assuming Gaussian
sensor noise, actuator noise and data association error. This imposes a severe limitation of
Kalman SLAM. Although sensor noise is often best approximated by a zero-mean Gaussian,
odometry is typically governed by trigonometric functions. Furthermore, data association
uncertainty is far from a Gaussian function. Consider a particular landmark that is poten-
tially mistaken for another one close by. In such a case, the resulting distribution of potential
robot poses is obviously not best approximated by the bell-shaped Gaussian distribution.

The potential data association error as well as the frequently applied means to avoid
these, give rise to another common issue with Kalman SLAM. Correct landmark identifi-
cations are the sole driving force of the Kalman filter. As outlined in the description of
the algorithmic details, landmark re-detections are the only triggers towards higher map
accuracy. For the sake of these positive landmark identifications, most Kalman SLAM im-
plementations are tuned to enforce a relatively sparse placement of landmarks. This is simply
because a sparser placement of landmarks makes them better distinguishable already just by
their location. In addition, it decreases the chance of mistakes due to co-occurrences. How-
ever, a sparser landmark placement also creates a sparser set of reference points in the map
to ground other map-features or sensor readings to. The less information actually stored in
the map, the less geometric properties the map can represent in high detail. Often, a map
with high accuracy and high geometric detail is desired. Unfortunately, when employing
Kalman SLAM, a trade-off between the the two is unavoidable.

Two other issues that pertain to this dilemma are the problems of localizing the robot
and the quadratic update costs. As indicated, in Kalman SLAM the map is restricted to
representing landmarks. Therefore, localizing becomes harder and less accurate as there are
fewer landmarks to be involved in the localization process. As localization degrades, data
association in turn becomes harder since larger pose uncertainties have to be overcome.
A degrading data association performance negatively influences map accuracy again, and

3.3. Approaches 27

so this vicious circle of degradation continues. The issue of update performance on the
other hand directly relates to the size of the covariance matrix. As every update in standard
Kalman SLAM typically involves updating the whole covariance matrix through the Kalman
gain, maps are often limited in the number of landmarks they will maintain (according to [52]
a limit of approximately 1000 landmarks is not unreasonable). When too many landmarks
need to be maintained, updating the covariance matrix can become so slow that the SLAM
algorithm is no longer able to operate in real-time.

In summary, Kalman SLAM is a complete solution towards SLAM with an incremental
algorithm at its heart that makes it applicable to online use. In addition, it has several
interesting properties and it is relatively easy to understand and implement. However, some
of the Gaussian assumptions that underly Kalman filters are clearly invalid. Also, the ap-
proach poses some significant challenges to overcome before it can be applied successfully.
The primary challenge involves the significant effort that should be put into the engineering
of feature detectors. Another challenge lies in the careful fine-tuning of the landmark place-
ment convention towards a robust balance between the number and sparsity of landmarks
and the desired properties of the map.

3.3.2 Metric Maps: Occupancy Grids

Elfes [18] and Moravec [41] were the first to use occupancy grids for mapping purposes.
Occupancy grids provide an intuitive representation of the geometry of a robot’s physical
environment. An occupancy grid is made up of evenly spaced cells, each of which holds
a single value that describes if the corresponding region in the environment is occupied.
In its simplest form, each cell holds a binary value indicating whether or not an obstacle
was detected at the corresponding region in the physical world (see also Figure 3.9, image
on the left). It is trivial to implement a simple extension in order to accommodate for
the value ’unknown’ to also distinguish yet unobserved or unexplored areas in the map.
Another popular representation uses floating point values instead of binary values. In that
case values between zero and one are used as an indicator of the belief about whether an
area is occupied or not (see Figure 3.9, image on the right).

Occupancy grids have several benefits over other representations. The most important
one is that grid-based representations of a robot’s physical environment can be used directly
by most navigation, obstacle-avoidance and learning algorithms. Another key benefit of
occupancy grids is that the resolution can be tuned to represent the environment’s geometric
properties at any desired amount of detail. In theory, this is bounded above only by the
level of detail originally captured by the sensors. This property of occupancy grids makes
them the ideal metric representation for maps that should contain a high amount of detail,
a feature that most other map representations lack.

28 Chapter 3. Simultaneous Localization and Mapping

Figure 3.9: Two representations of the same occupancy grid map, the red indicates the
robot’s trail and the black indicates obstacles. On the left, using binary cells the map
cannot distinguish unexplored area’s from free-space. On the right, after ray-casting the
obstacles the map becomes much more informative.

In its simplest implementation, the construction of an occupancy grid based on sensor
readings is straightforward and uses a simple ray-casting technique. The occupancy of cells
is then determined by counting hits and misses for every cell. These counters are initialized
to zero and are updated by ray-casting all obstacle measurements as obtained from the
sensors involved. Every imaginary ray is drawn from the respective robot pose towards the
detected obstacles. For example, if an obstacle is detected at some relative distance, then
rays can be cast from the cell at the current position of the robot towards every cell that
coincides with the detected obstacle. For all the cells that then intersect with the cast rays
before the rays hit on the obstacle the misses counter is incremented. Likewise, for the cells
that intersect with the detected obstacle the hits counter is incremented. Afterwards, the
occupancy of every grid cell can be determined by thresholding the ratio of the number of
hits over the sum of hits and misses together. In case a notion of ’unexplored’ regions is to
be maintained, these would be all the cells with zero hits and misses. Similarly, when the
cells hold floating point values instead of binary values, the threshold is not necessary and
the ratio of hits versus the sum of hits and misses can be stored in the grid directly.

The greatest drawback of using occupancy grids is that their space and time complexities
grow exponentially with the grid resolution. Therefore, they are not really well-suited to
facilitate online SLAM, especially in large-scale environments. Another issue with occupancy
grids is that although they are easily constructed, they are not so easily updated. This is
because of the inherent data aggregation in occupancy grid cells. The problem concentrates
on the fact that there is no trivial way to undo or alter past grid modifications, i.e. ray-
castings, without storing a lot of additional information. As an example, consider the

3.3. Approaches 29

situation where, due to the re-detection of a particular landmark, a large accumulated error
in the robot pose estimate is exposed. Naturally, the SLAM algorithm would want to correct
for this error and update the map accordingly. This typically involves revised estimates for
the poses that contributed to the accumulated error. Updating these implies that also
the obstacle detections that are associated with these pose estimates are repositioned. To
reflect these changes on the occupancy grid, this would require the repositioned obstacle
observations to be redrawn. In other words, the current ray-casting should be undone and
then redone based on the updated pose estimate. As an occupancy grid integrates over
all plotted information, it does not directly allow for undoing the ray-casting of a single
obstacle or observation. This could be made possible by storing additional information for
every observation that is plotted in the grid, but then this would lead to excessive memory
usage. In addition, the computational complexity of un-casting and re-casting a potentially
large number of past observations could preclude the online usage.

In practice the backwards editing of occupancy grids is considered not desirable during
online usage. Therefore, pose estimates have to remain fixed once determined. This has
led to the situation where approaches employing occupancy grids are often equipped with
a means to accommodate for this inflexibility, like particle filters where multiple possible
pose sequences are maintained concurrently [25, 22]. See also Chapter 4 for details about
scan-matching, which is the de-facto standard online technique for minimizing the influence
of odometric errors in the pose estimates.

Another way in which occupancy grids are often employed is as a post-processing step
after the main SLAM algorithm has finished [59, 58]. In this scenario, occupancy grid map-
ping is not used for SLAM itself, but merely facilitates subsequent algorithms or the visual
reporting of maps. Some SLAM approaches internally make use of a map representation that
is not directly suitable for subsequent use by other methods, for example obstacle avoidance
or learning algorithms. In other scenarios the map representation that is used by the SLAM
algorithm does not easily allow for visual rendering on screen or print. In these situations
occupancy grid mapping can be used to transform the information that is stored in the map
into a more usable representation.

3.3.3 Topological Maps: Graphs and Voronoi Diagrams

This section discusses a family of SLAM approaches which are based on topologically or-
ganized maps. The two types of map organizations mainly used in topological SLAM are
graphs, where the nodes and links outline the environment’s connectedness, and Voronoi
diagrams, that divide a map into non-overlapping regions based on obstacle detections.
Both representations, as all topological representations in general, put a strong emphasis
on providing a compact description of the free-space regions in the environment and their
interconnectedness.

30 Chapter 3. Simultaneous Localization and Mapping

(a) A graph representation of the traversed path-
ways, courtesy of [7].

(b) A Voronoi diagram that infers the safest paths
from obstacle estimates which are indicated with
the shaded polygons, courtesy of [12].

Figure 3.10: Topological maps.

The first key motivation behind employing topological map representations is their su-
perb support for path planning algorithms. Autonomous robots need to to get from place
to place in order to complete their designated tasks. Consider the task of exploration that
almost all robots will need to follow in order to acquire a map in the first place. It is con-
ceivable that at some point the robot will reach a dead-end of the environment and might
therefore wish to continue exploration in another area. Before it can do so, the robot has
to get to the other location first. By nature, topological maps facilitate these kinds of tasks
excellently. The nodes and links in graphs and Voronoi diagrams tell any path planning
algorithm precisely how to get around the explored areas safely.

The second key motivation for using topological map representations is their compact-

ness. They are capable of representing huge environments in a very compact way. Whereas
the size of occupancy grids and feature-based maps grow exponentially with the size of
the environment or the number of detected features, topological maps typically only grow
linearly in size as nodes and links are added to denote newly explored areas.

Graph maps are designed to literally capture the navigability of the environment. Along
the robot’s trajectory, all estimated poses are turned into nodes. Subsequently, links indicate
the path the robot has traversed between consecutive poses. By employing a conservative
method that refrains from implicit inferences and only adds links whenever a robot actually
traversed the path between two locations indicated by nodes, a consistent graph is ensured
[27]. Topological consistency means that the graph does not indicate connectedness that is
not actually in the environment.

Voronoi diagrams are in certain ways the opposite of graphs. While Voronoi diagrams also
use nodes and links to outline the estimated navigable free-space, the nodes are positioned
using a different methodology. In Voronoi diagrams nodes are positioned at equidistant

3.3. Approaches 31

points, which are those points that are exactly the same distance away from all near obsta-
cles. For placing these nodes only those obstacles are considered, for which there is no other
node at a closer distance then the current one. This procedure allows for the links between
any pair of connected nodes to indicate the safest paths between obstacles. The path is a
straight line between two nodes that is equally far away from the obstacles on both sides of
the link. Hence, like graphs, Voronoi diagrams lend themselves excellently for path planning
purposes [31].

The main differences between graphs and Voronoi diagrams follow from the way links
are treated. In graphs, links are only constructed for actually traversed paths, whereas in
Voronoi diagrams they are estimated and their positioning is determined by the positioning
of obstacles. Therefore, graphs can be seen as staying true to the actually traversed paths,
which will ensure their consistency. On the other hand, Voronoi diagrams are capable to
generalize beyond the actually traversed pathways as they infer the safest pathways based
on the obstacle estimates. It is important to note that this feature of Voronoi diagrams
imposes a bias towards planar environments, unless of course the obstacles and poses are
modeled and maintained in all three spatial dimensions. But this would incur other negative
side-effects on the performance and memory consumption of SLAM.

Shortcomings of topological map representations are mostly due to the lack of low-level
information in these maps. Localization on a topological map often reduces to localizing
to the nearest node, as more detailed information is simply not available. In addition,
although the links provide safety paths for navigation, they do not provide the low-level
geometric details to actually get the robot safely from one node to the next. Reactive
obstacle avoidance is necessary to overcome this. However, as noted in [31], this does not
necessarily need to be considered as a drawback, as not relying on map information might
make the robot more robust to dynamic environments.

3.3.4 Hybrid Maps: The Optimal Combination

As illustrated in the previous sections, each elementary approach towards representing a
map has several positive and negative sides:

• feature-based maps optimize landmark position estimates and pursue a global optimum
but also impose a trade-off between geometric detail and map accuracy and the amount
of features it can deal with is limited;

• occupancy grids are great for obstacle avoidance, preserving geometric detail and visu-
alization purposes, but memory consumption makes them not well-suited for mapping
large environments and they do not lend themselves very well for revisions and updates;

• and topological maps are great for navigation and path-planning purposes and are

32 Chapter 3. Simultaneous Localization and Mapping

capable of mapping large environments, but they typically lack detail.

Based on this it should come as no surprise that many researchers have attempted to
acquire better solutions where the strengths of multiple elementary map representations
are combined in hybrid data structures. Hybrid approaches are categorized into ones that
integrate multiple representations in a single layer and ones that use a data structure with
multiple layers where usually a topological layer at the top is used to decompose the lower
layer into small-scale feature or grid maps.

In [51], topological and metric (i.e. occupancy grid) map representations are integrated
in order to provide a versatile data structure that can serve the map information in multiple
forms. The key advantage is that for example a path-planning algorithm can generate an
action plan based on the topological data structure, which can subsequently be translated
into its grid-based equivalent. This can then be used by a navigation algorithm in order to
translate the action plan into a low-level motion plan that will deal with all the obstacle
avoidance details.

An example of a hybrid approach that uses a divide-and-conquer strategy, i.e. map
decomposition, can be found in the ’Hierarchical Atlas’ presented by Lisien et al. [31]. A
Voronoi diagram is used to describe the environment on the global level. Locally, on every
link in this diagram, so-called ’edge maps’ are stored. An edge-map is in fact an occupancy
grid that stores the geometric properties of the environment as encountered when traversing
the particular edge. As all information on an edge map is stored with respect to a local
coordinate frame, the equidistant points and hence the links can be kept dynamic without
compromising the validity of the information stored on the edge-maps. This yields two
advantages: first, by using grid-maps on a small scale the limitations due to their static
nature are avoided and second, grid-maps are only constructed to cover the extent of the
actually explored area instead of having them grow on a global scale whenever the boundaries
are explored.

ManifoldSLAM, like many current state-of-the-art SLAM approaches (see also Section
3.4), also employs a hybrid data-structure. It uses a graph organization at the global level
that decomposes the map in many small-scale grid maps. This yields similar benefits to
those observed by Lisien et al. [31]. But since we use a graph instead of a Voronoi diagram
at the global level, we have been able to realize an additional significant feature: unlike
many other algorithms ManifoldSLAM is not biased to planar environments and is thus
capable of mapping multi-floor environments.

3.4. Current State of the Art 33

3.4 Current State of the Art

3.4.1 FastSLAM

FastSLAM by Montemerlo et al. [38, 40] is one of the most efficient SLAM algorithms which
has been used on real robots. The main advantage of FastSLAM is the insight that all
landmark observations in Kalman SLAM are statistically independent if the robot path is
known.

Traditional SLAM estimates p(st,Θ|zt, ut), meaning the robot path (i.e. all poses s up
to time t) and all landmark locations Θ given all observations z and actions u from the
beginning to time t. Kalman filters estimate this joint probability completely as a mean and
a covariance matrix. Therefore, it demonstrates an update complexity of O(N2), where N

is the number of landmarks in the map.

FastSLAM uses a factored representation of this joint probability:

p(st,Θ|zt, ut) = p(st|zt, ut)
∏
k

p(Θk|st, zt, ut)

which means that there are n + 1 separate estimation problems, where n is the number
of landmarks in the map. Intuitively: If we know the path the robot followed through
the environment, it is enough to estimate each landmark separately. Interestingly, this
factorization is correct since the landmark observations are really conditionally independent
given the robot poses. Figure 3.11 shows a graphical model of the SLAM problem showing
this property.

The basic implementation of FastSLAM models these two kinds of probabilities in two
separate ways. Each landmark is estimated by a 2D Kalman filter. A particle filter represents
the posterior over all possible robot paths. This directly corresponds to the factorization
given above. This naive implementation would have a complexity of O(MN). Here, N is
the number of landmarks in the map. The particle filter which estimates the posterior of
the robot pose contains M particles.

The implementation by Montemerlo et al. [38] has an update complexity of O(M log N).
This makes FastSLAM significantly more efficient than any Kalman based SLAM algorithms.
Montemerlo et al. [40] prove that FastSLAM with one particle converges in the limit, which
makes it the most efficient provably converging algorithm to date. Keeping track of multiple
particles should only increase the convergence rate.

FastSLAM has been successfully used in many settings, including real world applications.
Nieto et al. [42] and Montemerlo and Thrun [37] extend the basic FastSLAM algorithm
to unknown landmark associations, which is important for generating occupancy grid or
metric maps. Hähnel et al. [25] show its application to large scale mapping problems and

34 Chapter 3. Simultaneous Localization and Mapping

s1 s2 st
u2 ut

!2

!1 z1

z2

s3
u3

z3

zt

. . .

Figure 3: The SLAM problem: The robot moves from pose s1 through a sequence of controls, u1, u2, As it moves, it
measures nearby landmarks. At time t = 1, it observes landmark θ1 out of two landmarks, {θ1, θ2}. The measurement is
denoted z1 (range and bearing). At time t = 1, it observes the other landmark, θ2, and at time t = 3, it observes θ1 again. The

SLAM problem is concerned with estimating the locations of the landmarks and the robot’s path from the controls ut and the

measurements zt. The gray shading illustrates a conditional independence relation.

over feature locations p(θn | st, nt, zt) conditioned on the path estimate, one for each n = 1, . . . , N .
The product of these probabilities represent the desired posterior in a factored way. This factored repre-

sentation is exact, not just an approximation. It is a generic property of the SLAM problem.

To illustrate the correctness of this factorization, Figure 3 depicts the data acquisition process graphi-

cally, in form of a dynamic Bayesian network [24]. As this graph suggests, each measurement z1, . . . , zt

is a functions of the position of the corresponding feature, along with the robot pose at the time the mea-

surement was taken. Knowledge of the robot path “d-separates” [58] the individual feature estimation

problems and renders them independent of each other. Knowledge of the exact location of one feature

will therefore tell us nothing about the locations of other features.

The same observation is easily derived mathematically. The stated independence is given by the

following product form:

p(Θ | st, nt, zt) =
N∏

n=1

p(θn | st, nt, zt) (12)

Notice that all probabilities are conditioned on the robot path st. Our derivation of (12) requires the

distinction of two possible cases, depending on whether or not the feature θn was observed in the most

recent measurement. In particular, if nt != n, the most recent measurement zt has no effect on the

posterior, and neither has the robot pose st or the correspondence nt. Thus, we obtain:

p(θn | st, nt, zt) = p(θn | st−1, nt−1, zt−1) (13)

If nt = n, that is, if θn = θnt was observed by the most recent measurement zt, the situation calls for

applying Bayes rule, followed by some standard simplifi cations:

p(θnt | st, nt, zt) =
p(zt | θnt , s

t, nt, zt−1) p(θnt | st, nt, zt−1)
p(zt | st, nt, zt−1)

=
p(zt | st, θnt , nt) p(θnt | st−1, nt−1, zt−1)

p(zt | st, nt, zt−1)
(14)

This gives us the following expression for the probability p(θnt | st−1, nt−1, zt−1):

p(θnt | st−1, nt−1, zt−1) =
p(θnt | st, nt, zt) p(zt | st, nt, zt−1)

p(zt | st, θnt , nt)
(15)

7

Figure 3.11: A graphical representation of the SLAM problem showing conditional indepen-
dence of landmark observations θi given the robot path si. From [38]

the implementation of metric maps using FastSLAM.

3.4.2 Atlas

Another interesting existing approach to SLAM is the Atlas framework proposed by Bosse
et al. [7, 8]. Very similar to the SLAM approach developed later in this thesis, it utilizes a
graph structure of local maps to represent the complete global map.

In general, each node in the Atlas graph is a map of limited extend, build using a
conventional SLAM algorithm. Each such local map is limited by some parameter (e.g.
number of features in case of a feature-based map). Edges in the graph describe coordinate
frame transformations between the two local maps they connect.

An important feature of Atlas is that errors are not bound to only one frame of refer-
ence, like in monolithic approaches like FastSLAM. By splitting up the map into sub-maps,
estimation errors do not propagate between sub-maps. New sub-maps are seeded with zero
uncertainty when they are added to the graph. The only way uncertainty is maintained
between sub-maps is via the edges of the graph. Intuitively, correcting these coordinate
frame transformations can be done in various ways (global optimization via map fitting,
constraint optimization when loops are present, etc). The important point is that estimates
within one sub-map do not have to be recomputed.

Another interesting property of this approach is the potential constant time update
complexity. Many possible choices for the mapping algorithm on the local level achieve

3.4. Current State of the Art 35

constant time updates when the maximum size of a local map is bounded. Instead of
extending the same map by more and more observations, Atlas generates a new local map
in its graph structure when the current local map gets too complex (or too uncertain,
corresponding to the argument in the previous paragraph). Global localization potentially
becomes linear in the number of local maps.

Loop closing, while implicit in algorithms like FastSLAM, has to be dealt with explicitly
in Atlas. To this end, the authors develop a generic map matching technique. Two maps are
compared by features extracted from them which do not depend on the specific translation
and orientation of the coordinate system in the map.

1+2

1 2

1 2

3
4

1 2

3
4

1 2

3
4

1 2

3
4

1 2

3
4

1 2

3
4

1 2

3
A

B

C

D

2+3

3+4

1+2

1+2 2+3

3+4

4+2

1+2 2+3

4+2

3+4 1+4

Map1 Map2 Map3 Map4

Mapframe
Juvenile

Hypothesis

Mature

Hypothesis

State

Prior Posterior

Topology

Figure 7: The spatial and topological evolution of an Atlas. This set of diagrams highlights key aspects of the
Atlas framework. The environment depicted is fictional and the robot path is construed to be illustrative. The
right hand column of this diagram uses shading to indicate the map-frames which successfully represent the local
region. Note that contrary to that suggested by the shading, the maps do in fact overlap. This intersection is
denoted by labeled brackets on the spatial diagrams. Note also that the extent of a map-frames is not defined or
bounded by area covered but by the set of mapped features within it.
A Genesis: The vehicle has built two maps (1,2). Map 1 no longer explains the surroundings and is inactive.
Map 2 is “full” and so the genesis of Map 3 occurs. An edge is built between 2 and 3. Map 3 immediately
becomes the dominant hypothesis.
B Map matching: Mature hypotheses are running in both maps 3 and 4. The Dijkstra projection suggests
that map 4 may be “close” to map 2. The map matching algorithm confirms this conjecture and a new link is
created between 4 and 2. This is loop closure. Map-frame 2 is now adjacent to a mature frame (4) and so shortly
after the edge creation a juvenile hypothesis is attached to it.
C Hypothesis cull: The robot has recently traversed into map 2 (from 4) which has also become dominant.
Juvenile hypothesis have been installed in the adjacent frames 1 and 3. A short time later the juvenile hypothesis
in map 3 has been terminated - it cannot adequately explain the central corridor. The previously mature
hypothesis in map 4 has also been culled for the same reasons. The juvenile hypothesis in map 1 however has
been promoted to mature status. At this point the estimate of the transformation between frames 1 and 4 can
be updated using an observation constructed from the fact that the vehicle is simultaneously in map 1 and 4.
D Loop closure: Initially only one mature hypothesis exists (in map1). Unlike in case A genesis is not
imminent (low vehicle uncertainty and map is not full). Instead the map matching algorithm conjectures that
maps 1 and 4 may be adjacent. The map matching algorithm confirms this and another new link is created.
This completes the topological and spatial description of the environment.

19

Figure 3.12: Sequential evolution of an Atlas map showing sub-maps and their linking edges.
From [8].

Figure 3.12 shows a usual Atlas map being generated. The diagram clearly shows the
key aspects of Atlas. New sub-maps are added when the current sub-map becomes too
uncertain or too big (A and B). Loops are closed by recognizing similar structures (B and

36 Chapter 3. Simultaneous Localization and Mapping

C). Sub-maps can be extended later on if possible (D).

Lisien et al. [31] introduced the Hierarchical Atlas. In this case, hierarchical means
exploiting the information in the graph for higher level reasoning tasks. More specifically,
the topological graph is a Generalized Voronoi Graph (GVG). In a plane, all points on a
GVG are equidistant to the nearest two obstacles. See Figure 3.13 for an example.

474 IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 3, JUNE 2005

grid-based methods also grow in complexity with the size of the envi-
ronment, in a manner which precludes them from scaling well to large
environments and higher dimensions.

Our approach is to combine the strengths of a topological map with
those of a feature-based map. We use a topological map to decompose
the space into regions, within which we can build a feature-based map
of moderate computational size to allow arbitrary localization. This
frees us from having to perform a complex mapping algorithm in a
large, global map. Our contribution is a new hierarchical map where
the generalized Voronoi graph (GVG) [1], [2] serves as our high-level
topological map, organizing a collection of feature-based maps at the
lower level. We term this hybrid map the hierarchical atlas.

By choosing the GVG as the basis for our topology, we inherit all
of its well-documented properties. In addition to segmenting the envi-
ronment into manageable feature regions, the GVG offers the ability to
plan paths and safely navigate in the presence of obstacles, a charac-
teristic which most feature-based maps lack. Moreover, the GVG em-
bodies an exploration strategy with which we can autonomously and
completely chart an environment. The feature-based maps encode the
necessary information with which we can localize arbitrarily while nav-
igating, as well as provide detailed descriptions of areas which we can
use to disambiguate regions.

II. PRIOR WORK

SLAM [3] is the process of building a map of an unknown environ-
ment, while at the same time using that map to maintain an accurate es-
timate of the pose of the robot within the environment. The hierarchical
atlas was originally developed to address the problems of autonomous
exploration and SLAM in large-scale environments [4], and so we will
discuss other maps in this context.

A. Feature-Based Maps

Conventional SLAM techniques have generally built feature-based
maps. This process involves fusing observations of features or land-
marks with dead-reckoning information to track the location of the
robot in the environment and build a map of landmark locations. The
numerous implementations typically include variations on the Kalman
filter [5]–[9] or particle filters [10], [11]. The extended Kalman filter
(EKF) [6], [9] uses a linear approximation of the system to maintain
a state vector containing the locations of the robot and landmarks, as
well as an approximation of correlated uncertainty in the form of a co-
variance matrix. One well-known weakness of the EKF is the growth of
complexity due to the update step which requires computational time
proportional to the square of the number of landmarks. This becomes
prohibitive in large environments.

Each of these feature-based methods has its advantages and disad-
vantages. Yet, common to all is the increase in computational com-
plexity with the size of the environment and number of landmarks. A
number of techniques have been proposed to alleviate this problem,
such as the extended information filter [12], [13], the unscented Kalman
filter [7], and fastSLAM [11], but growth of complexity is inherent in
maintaining a global map. Also, these methods do not provide a com-
plete or structured means to direct exploration.

B. Submapping Strategies

Since the complexity of the global map cannot be avoided, some re-
searchers have proposed dividing the global map into submaps, within
which the complexity can be bounded. Connections between submaps

Fig. 1. In the plane, the GVG is the set of points equidistant to two obstacles.

are represented by an ad hoc topology consisting solely of their inter-
connection. Chong and Kleeman [14] introduced a topology of mul-
tiple, connected local maps where a new map is started when the vari-
ance in robot position becomes too large. These locally accurate maps
are linked through coordinate transformations between their origins.

Bosse et al. [15] introduced the term atlas to refer to a collection of
submaps built with a similar method of creating a new map when the
uncertainty of the robot location grows above some limit. Simhon and
Dudek [16] proposed a strategy to create new maps in the presence of
feature-rich regions or islands of reliability. On a related note, Thrun
[17] uses a topological map to segment a grid-based map into submaps
as a postprocessing step.

C. Topological Maps

Kuipers and Byun [18] developed a three-level hierarchy of con-
trol, topology, and geometry, with which they simulated an exploration
and mapping strategy. The control level determined distinctive places,
the topological level tied these distinctive places together, and the geo-
metric level built metric maps around this framework. The authors par-
ticularly like that Kuipers, as well as Mataric [20], impart an underlying
philosophy on how topological maps can be used for task decomposi-
tion. Mataric [20] was among the first researchers to successfully de-
velop a mapping, path planning, and navigation strategy based on a
topological map. In more recent work, Kuipers et al. [19] built detailed
grid maps in the vicinity of nodes to aid in recognizing nodes while
mapping.

Choset and Nagatani [21] use the GVG as the topology for their map.
Nodes of the GVG are either meet points, the set of points equidistant
to three or more obstacles, or boundary points, where the distance be-
tween two obstacles equals zero. These nodes are connected by edges
which are paths of two-way equidistance (Fig. 1). The definition of the
nodes and edges automatically induces well-defined control laws that
allow a robot to trace an edge (either known or unknown a priori) and
home in to a meet point. Exploration is achieved by having a robot
sequentially traverse unexplored edges emanating from meet points. If
the robot encounters a boundary node or a previously visited meet point
(i.e., there is a cycle), the robot follows the partially explored GVG to a
meet point with an unexplored edge associated with it. When there are
no meet points with unexplored edges, exploration is complete. There-
fore, in addition to prescribing low-level control laws, the GVG also

Figure 3.13: An example GVG in a plane. All points on the GVG are equidistant to the
nearest two obstacles. From [31].

The GVG encodes important information for higher level tasks such as safe path planning
and exploration. Path planning is possible with simple shortest path algorithms. Since the
paths on the GVG represent the safest paths in the environment (farthest possible distance
to obstacles), the robot can neglect exact localization until the node closest to the goal
location is reached. Additionally, the remainder of the path from the last node to the final
goal is known to be free because of the GVG property. Similarly, exploration needs to
expand parts of the GVG that do not end at an obstacle.

Lisien et al. [31] and Bosse et al. [8] include some results for data sets collected with
real robots. Dragone et al. [16] show an application of Atlas in dynamic environments and
multi-agent robot soccer.

3.5. Conclusion 37

3.5 Conclusion

This chapter has explained the challenge faced by simultaneous localization and mapping
algorithms in detail. The general solutions to address this challenge have been presented
and their positive sides, negative sides and practical ramifications have been discussed.

During the discussion of the elementary approaches, feature-based, grid-based and topo-
logical, we observed that each has its own strengths and drawbacks. This explains the
current trend to combine individual strengths and overcome the mentioned drawbacks in
so-called hybrid approaches. The details of two such current SLAM approaches, FastSLAM
and Atlas, have been discussed.

ManifoldSLAM follows the current trend towards hybrid approaches and combines a
graph organization with metric representations. The graph is used at the global level to
decompose the map in small-scale metric maps. In Chapter 5 we will further present the
details of our approach.

Chapter 4

Scan Matching

4.1 Overview

When a robot moves in an unknown environment it will potentially encounter obstacles and
other hazards, like slippery or uneven floors. In order to know or learn where the robot
is situated, conventional methods are not sufficient in such an environment. Odometry
tries to extrapolate motion from wheel rotations or acceleration sensors. Both approaches,
which are often combined, have their individual drawbacks. The measurement of wheel
rotations is highly affected by slippery or uneven floors as wheels could turn without actually
moving the robot accordingly. The inherent error in acceleration sensors is amplified by the
double integral necessary to extract motion. While odometry is a valuable tool and can
gather important information on smooth and flat floors, it can be quite erroneous in its
belief about real motion in more unstructured environments. Additionally, since all sensor
measurements are of a completely relative nature, errors will accumulate over time and
impact the robustness of odometry significantly.

A robot needs to sense distances to objects around itself to avoid obstacles. Not only
can this distance information be used to avoid certain hazards but it can also aid motion
estimation. Instead of, or in addition to, conventional methods, the robot would be able to
infer its own motion from changing distances to surrounding objects. See Figure 4.1 for a
visual description. Distance measurements depend only on the real motion of the robot, so
the quality of the floor does not influence it. They also directly relate to motion, much like
the acceleration sensors. Unlike the case of acceleration sensors, however, no integration of
sensor values or similar processing is needed, which reduces the possible error significantly.

One such sensor is a sonar distance sensor. It will measure the distance to the nearest
object in the direction it is pointing. Unfortunately, these kind of distance measurements

39

40 Chapter 4. Scan Matching

(a) (b)

Figure 4.1: Motion from distances to features: a) Measurements taken at two consecutive
poses A and B. b) Motion that caused the measurements to change and is thus computable
from the changes it introduced.

are usually not precise or numerous enough to be used in accurate and efficient algorithms.
Another important sensor is the laser range sensor. Just like the sonar sensor, it measures
the distance in the direction it is pointing, but instead of sound it uses a beam of light. This
makes it much more precise, often up to a couple of millimeters, and measurements can be
taken very rapidly.

The laser range sensor can be used in a rotating setup which will allow the robot to
observe almost its complete surrounding generally as a 2D slice. In the most common case,
it will rotate horizontally. In this case, it could not sense the floor or the ceiling, but it can
easily detect walls. Other setups exist, such as combined horizontal and vertical rotation,
but are less common. In indoor environments, horizontal slices are a very efficient method to
describe the surroundings. Plans like that are often used by humans as well, for example in
architecture. Outdoors, however, more elaborate methods are needed. The main difference
between in- and outdoors is the much fewer number of observable objects outdoors and that
the ground is possibly not as flat. Laser range sensors have a maximum range, above which
readings are unreliable. Outdoors, many distance readings will be unusable for the motion
estimation or mapping methods because not many objects are in range of the sensor. We
will focus on the indoor and simple outdoor case (with relatively many objects) and discuss
methods applicable to those settings.

Laser Range Scanners (or LADAR), as described above, are often the main means of
acquiring spacial maps with mobile robots. This is due to their high resolution and precision.
Laser Range Scanners measure the distance from the sensor to the nearest object at many
different angles, which is also shown in Figure 4.2. Most commonly, such sensors measure
181 distances, one for each degree over a total of 180 degrees. However, there are also Laser
Range Scanners which have a much higher number of beams per degree or that scan a larger
total field of view. These types of sensors have been in use for a long time and the literature

4.1. Overview 41

on their use in mobile robotics is thus quite extensive. [33, 32, 52, 38, 59]

In this chapter, we are concerned with using two or more Laser Range Scanner ob-
servations to estimate the difference in pose between those observations. This problem is
generally phrased as “Laser Scan Registration” or “Laser Scan Matching”. An example of a
successfully completed matching of two scans is shown in Figure 4.2. It is a very important
problem in the scope of mapping and localization.

(a) (b)

Figure 4.2: Two scans A (red) and B (green). a) The second scan B′ at an (erroneously)
estimated location. The failure of alignment is obvious. B shows the true location of the
second scan. In b), the scans have been successfully matched. An integral part of scan
matching is to manipulate the origins of the scans so both scans describe the same geometry
as shown in this figure.

The general problem that Scan Matching tries to solve is to optimize the pose parameters
of a second scan relative to a previous scan such that the two scans describe the same
geometry. While laser scanners produce polar coordinates (an angle and a distance), the
general representation used in these algorithms are so-called “point clouds”, a set of 2D
Euclidean coordinates. This is not only useful in Robotics, but also in Computer Graphics
and Computer Vision. The most important algorithm (see Section 4.2.1) discussed in this
chapter originates from these disciplines.

This chapter will first introduce basic approaches to the Scan Matching problem and
then highlight specific algorithms that were evaluated. Finally, some experimental results
are presented which will motivate the choice for the final implementation discussed later in
Chapter 6.

42 Chapter 4. Scan Matching

4.2 Approaches

4.2.1 Point-Correspondence Methods

Some methods try to estimate corresponding points in the two scans to be matched. The
difference between these methods is the metric they use to find corresponding points. Like
shown in Figure 4.3, it is the rule which finds the “closest”, or corresponding, point which
governs how well the algorithm can recover rotation, translation and how efficient it is at
it. The general point-correspondence method will try to minimize distances between the
corresponding point pairs. This minimization might actually change the points such that
new correspondences emerge or old ones are discarded, see panel (b) in Figure 4.3. Generally,
such methods find local minima only if the initial guess of the displacement is too far away
from the global minimum.

(a) (b)

Figure 4.3: The points of one scan must be associated with points of the other (blue ellipses).
How this is done is different between methods. a) Unaligned scans. b) After alignment.

The most prominent algorithm in this family is the Iterative Closest Point algorithm,
described below. However, it is important to note that there are many algorithms derived
from the above idea. Many try to remedy the inherent difficulties, such as how to find the
“right” corresponding points early in the process to speed up convergence. Another common
problem with this kind of algorithm is that real laser scanners almost never measure the
same point twice, which is one of the assumptions made above. It is easy to see this problem
in the right picture of Figure 4.2. Even though both red and green scans consist of the same
number of points, their laser rays with which they measure the distances do not hit the
wall at exactly the same points. At least light offsets are present and as a result, different

4.2. Approaches 43

distances are reported. It might even happen, that one scan has rays that hit obstacles such
as trees, doors or table legs while the other does not. This introduces a non-trivial error
which makes many algorithms very inaccurate in small indoor environments. For future
reference, we will call this error Correspondence Error, a term borrowed from Pfister et al.
[44].

Iterative Closest Point

This algorithm originated in the Computer Vision and Computer Graphics community [4]
and is rather closely related to the Expectation Maximization (EM) Algorithm of general
Machine Learning. In these disciplines, it is used to combine scans of 3D objects in order
to represent them as 3D computer models.

The Iterative Closest Point (ICP) algorithm is very simple in itself.

We will define a mapping given a pose difference estimate q = (x, y, θ) that projects a
given point p according to q.

q(p) =

(
x + cos(θ)px − sin(θ)py

y + sin(θ)px + cos(θ)py

)
(4.1)

Data: Laser Scans a and b
Result: A pose which describes the transformation from a to b
initialize pose estimate q;1

while fit not good enough do2

for each point bi do3

find the closest point aj to q(bi);4

save relation between points bi and aj as pair (i, j) in set R;5

end6

find pose which minimizes the mean square error7

E(q′) = 1
|R|
∑

R distance(aj , q
′(bi))2;

let q = q′;8

end9

Algorithm 4.1: Iterative Closest Point Algorithm

This algorithm will eventually converge to a good estimate of the pose difference between
the origins of the two laser scans. The main parameters to take into account in this approach
is the distance metric used and any sort of exclusion criteria of relations computed in the for
loop. These might include distance thresholds and other ways of excluding outlying points.
The most important property of this algorithm is that pose updates can be computed in
closed form once the distance metric is known.

Later, we will evaluate three methods that are based on this general algorithm.

44 Chapter 4. Scan Matching

4.2.2 Function Optimization Methods

As it was introduced before, scan matching is nothing but an optimization problem. The
function to be optimized is the “fit” of one scan to another given a transformation. It is
therefore straightforward to phrase scan matching as such a problem. Algorithm 4.2 shows
the most general method using this scheme.

Data: Laser Scans a and b
Result: A pose which describes the transformation from a to b
initialize function fab(q) such that it has a minimum when b and a are aligned using1

transformation q;
q = argminq′fab(q′) ;2

Algorithm 4.2: Scan Matching using Plain Optimization

Following this scheme, there are several different ways to define fab(q). This choice will
significantly impact the optimization algorithm that is to be used in the last step above. In
some cases, an analytical optimization might be possible, however numerical optimization
might be necessary in others.

While not many methods rooted in this paradigm exist, the most recent ones will define
fab(q) =

∑
i fa(q(bi)). In this case, fa(c) describes how well one single point measurement c

would fit the previous scan a. This function is usually a probability distribution, but it can
be anything meaningful. Sometimes, it is also called “Energy Function”. Scan matching is
then done via numerical or analytical optimization over q.

Such energy functions can be derived using Gaussian kernels to estimate the probability
distribution over possible repeated observations in later scans. Other methods to estimate
such distributions exist and the choice of the method lies at the heart of this approach. The
better the distribution, the faster the optimizer will converge.

Not many efficient implementations of this method exist, presumably because of the
complex functions that need to be optimized. Such functions are often not smooth enough for
numerical optimization or give rise to many local minima. Global optimization algorithms,
which are needed to compensate for these kind of problems, are inefficient when compared
to point-correspondence methods for scan matching. In the case of analytical optimizations,
this might still be a problem if the function does not behave well around the global minimum.

4.3 Specific Algorithms

Four distinct algorithms are discussed in this section. We chose exactly these methods
because of their individual qualities:

The Normal Distribution Transform (NDT) is interesting because it would inherently

4.3. Specific Algorithms 45

avoid the Correspondence Error of point-based algorithms. Iterative Dual Correspondence
(IDC) was chosen because of its historical importance and because it still is a very popular
method. An interesting feature of Metric-based Iterative Closest Point (MbICP) is that it
includes rotation in the distance metric of the general ICP algorithm. Finally, the Weighted
Scan Matcher (WSM) is attractive because it explicitly models all possible error sources in
the general point-based case, which apparently aids robustness significantly.

4.3.1 Normal Distribution Transform

Biber and Straßer [5] describe an algorithm using the Function Optimization approach dis-
cussed in the previous section. In order to be able to optimize this function analytically,
the authors decided to approximate the probability distribution as a sum of Gaussians. The
process of generating this probability distribution from the laser range scan is called the
Normal Distribution Transform, or NDT, and is the main contribution in this paper.

The Normal Distribution Transform divides the area the scan covers into a grid. For
each grid cell, it computes the mean and covariance matrix for all points within that cell.
Basically, each grid cell knows how likely it is to measure any point inside itself. To counter-
act descritization effects, the authors choose to four grids instead of one. The extra grids are
shifted by half a grid edge length to the right, down and both right and down, respectively.
That means that each point falls into four grid cells, one from each grid.

This gives rise to a piecewise continuous and differentiable function. An example is
shown in Figure 4.4. It can be seen that the laser range scan is well represented, but the
descritization effects can still be noticed. Clear cutoff lines are present where the grid orga-
nization introduces discontinuities. However, the grid organization also allows to evaluate
less Gaussians, which speeds up the method.

solving the correspondence problem. In [12], Mojaev com-
bines the correlation of local polar occupancy grids with
a probabilistic odometry model for pose determination
(using laser scanner and sonar). Weiss and Puttkammer
[17] used angular histograms to recover the rotation be-
tween two poses. Then x- and y-histograms, which were
calculated after finding the most common direction were
used to recover the translation. This approach can be
extended by using a second main direction [7].

Our work was also inspired by computer vision tech-
niques. If the word probability density is replaced by
image intensity, our approach shares a similar structure
to feature tracking [13] or composing of panoramas [14].
These techniques use the image gradient at each relevant
position to estimate the parameters. Here, derivatives of
normal distributions are used. Opposed to image gradients,
these can be calculated analytically.

III. THE NORMAL DISTRIBUTIONS TRANSFORM

This section describes the Normal Distributions Trans-
form (NDT) of a single laser scan. This is meant to be the
central contribution of the paper. The use of the NDT for
position tracking and SLAM, described in the following
sections, is then relatively straightforward.

The NDT models the distribution of all reconstructed
2D-Points of one laser scan by a collection of local normal
distributions. First, the 2D space around the robot is
subdivided regularly into cells with constant size. Then for
each cell, that contains at least three points, the following
is done:

1) Collect all 2D-Points xi=1..n contained in this box.
2) Calculate the mean q = 1

n

∑
i xi.

3) Calculate the covariance matrix
Σ = 1

n

∑
i(xi − q)(xi − q)t.

The probability of measuring a sample at 2D-point
x contained in this cell is now modeled by the normal
distribution N(q,Σ):

p(x) ∼ exp(− (x − q)tΣ−1(x − q)
2

). (1)

Similar to an occupancy grid, the NDT establishes a
regular subdivision of the plane. But where the occupancy
grid represents the probability of a cell being occupied, the
NDT represents the probability of measuring a sample for
each position within the cell. We use a cell size of 100
cm by 100 cm.

What‘s the use for this representation? We now have a
piecewise continuous and differentiable description of the
2D plane in the form of a probability density. Before we
show an example, we have to note two implementation
details.

To minimize effects of discretization, we decided to use
four overlapping grids. That is, one grid with side length
l of a single cell is placed first, then a second one, shifted

Fig. 1. An example of the NDT: The original laser scan and the resulting
probability density.

by l
2 horizontally, a third one, shifted by l

2 vertically and
finally a fourth one, shifted by l

2 horizontally and verti-
cally. Now each 2D point falls into four cells. This will not
be taken into account for the rest of the paper explicitly
and we will describe our algorithm, as if there were only
one cell per point. So if the probability density of a point
is calculated, it is done with the tacit understanding, that
the densities of all four cells are evaluated and the result
is summed up.

A second issue is, that for a noise free measured world
line, the covariance matrix will get singular and can not be
inverted. In practice, the covariance matrix can sometimes
get near singular. To prevent this effect, we check, whether
the smaller eigenvalue of Σ is at least 0.001 times the
larger eigenvalue. If not, it is set to this value.

Fig. 1 shows an example laser scan and a visualization
of the resulting NDT. The visualization is created by
evaluating the probability density at each point, bright
areas indicate high probability densities. The next section
shows, how this transformation is used to align two laser
scans.

IV. SCAN ALIGNMENT

The spatial mapping T between two robot coordinate
frames is given by

T :
(

x′

y′

)
=

(
cos φ − sinφ
sinφ cosφ

) (
x
y

)
+

(
tx
ty

)
, (2)

where (tx, ty)t describes the translation and φ the
rotation between the two frames. The goal of the scan
alignment is to recover these parameters using the laser
scans taken at two positions. The outline of the proposed
approach, given two scans (the first one and the second
one), is as follows:

1) Build the NDT of the first scan.
2) Initialize the estimate for the parameters (by zero or

by using odometry data).
3) For each sample of the second scan: Map the

reconstructed 2D point into the coordinate frame of
the first scan according to the parameters.

4) Determine the corresponding normal distributions
for each mapped point.

Figure 4.4: The effects of the Normal Distribution Transform. Left: The original laser range
scan. Right: The resulting probability density. From [5].

46 Chapter 4. Scan Matching

The basic algorithm to generate the NDT is shown in Algorithm 4.3.

Let l be the edge length for one cell;1

Let x be the minimum x-coordinate of points in the scan;2

Let y be the minimum y-coordinate of points in the scan;3

while there are still points with an x-coordinate greater than x do4

while there are still points with an y-coordinate greater than y do5

Get all points in the rectangle defined by the points (x, y), (x + l, y + l);6

Compute the mean and covariance matrix given these points;7

Store the mean and covariance matrix together with the rectangle for later8

lookup;
Advance y by l

2 ;9

end10

Let y be the minimum y-coordinate of points in the scan;11

Advance x by l
2 ;12

end13

Algorithm 4.3: The Normal Distribution Transform

Evaluating the match of a scan to another scan’s NDT representation is nothing more
than evaluating that probability distribution at all points of the new scan and summing up
all results. For the complete scan matching process, the resulting function is optimized with
Newton’s algorithm, which requires the first and second derivatives. Given those derivatives,
one step of the optimization will move the parameter estimate towards the minimum. For
the calculation of first and second derivatives, as well as the specifics of Newton’s algorithm,
see [5] and references therein. For sufficiently smooth functions, only a few Newton steps
are usually necessary to find the minimum, which makes this algorithm very efficient. Biber
and Straßer claim to be able to process almost 100 scans per second on a regular desktop
machine.

The main advance of this algorithm is that there is no need for explicit point correspon-
dences as there is for point-correspondence methods. As discussed previously, it is very hard
to find the right corresponding point, if it even exists. Therefore, this method should be
more robust than point-correspondence based ones. Interestingly, Biber and Straßer show
an example result generated by their algorithm which shows that it was very robust to
environmental change such as opening or closing doors.

However, one main disadvantage remains: The numerical properties of the NDT are
not as favorable as desired. It seems that a lot of extra effort must be spent on rejecting
outliers, tuning the cell size, and implementing extensions to the basic Newton algorithm to
achieve the reported efficiency. Such fine-tuning is partly situation-dependent and thus not
acceptable for a general scan matching method.

4.3. Specific Algorithms 47

4.3.2 Iterative Dual Correspondence (IDC)

Lu and Milios were two pioneers in the field of scan matching. Their paper from 1994
introduced one of the first efficient scan matching algorithms [33]. “Iterative Dual Corre-
spondence” (IDC) tries to remedy some of the previously mentioned pitfalls of the classic ICP
algorithm by first defining two different distance metrics for finding point correspondences
and then solving for translation and rotation separately.

The two distance metrics used have two significantly different goals: The first describes
the translation very well, the second can cope especially well with rotation. The first method
is called closest-point rule, which essentially selects two points with the smallest Euclidean
distance as pairs. The second method, called matching-range-point rule, pairs two scan
points if their distance to the scan origin is roughly equal and their angles are at most some
specified number (called Bω in the figure) of degrees apart. This method is illustrated in
Figure 4.5.

Figure 4.5: Lu and Milios’ matching-range-point rule illustrated. Bω is the maximum angle
difference. From [33].

The basic assumption of the matching-range-point rule is that the translation has already
been solved and finding the rotational component of the target transformation is the main
concern. Since that is the case, comparing polar distances already gives a good indication
of correspondence. The maximum angle difference allowed to make a correspondence will
effectively limit the maximum rotational error the method will be able to correct. However,
it will also prevent false correspondences between two unrelated pairs. Such an important
parameter obviously needs tuning, but Lu and Milios’ experimental results show that the
method is rather insensitive to small variations in this parameter.

For both methods, a least-squares optimizer is used to find the complete transformation.
The transformation is split into two parts, the translational part Ti, and the rotational part
ωi. The final result is assembled as the translation from the method using the first metric

48 Chapter 4. Scan Matching

and the rotation from the method using the second. This is outlined in Algorithm 4.4. Note
the subscripts of T and ω.

Data: Laser Scans A and B
Result: A pose which describes the transformation from A to B
for each point ai in A do1

find a correspondence b′i in B according to the closest-point rule;2

find a correspondence b′′i in B according to the matching-range-point rule;3

end4

Compute the least-squares solution (T1, ω1) from the corresponding pairs (ai, b
′
i)5

(from the closest-point rule);
Compute the least-squares solution (T2, ω2) from the corresponding pairs (ai, b

′′
i)6

(from the matching-range-point rule);
Let p = (T1, ω2);7

Algorithm 4.4: The Iterative Dual Correspondence Algorithm

This “dual” approach combines the two special separate strengths of both correspondence
rules. Also, IDC tries to counteract the previously highlighted flaw of point-based methods,
the Correspondence Error. Contrary to the classic ICP, IDC finds closest points on lines
connecting two points in the first scan with both correspondence rules. This might not
necessarily be an existing point in the previous scan, but a point on an approximated
connection between two existing points. While the assumption of continuous and partially
linear geometry in the environment is rather strong, it does solve the said problem at least
to some extend. Such assumptions are usually violated in small indoor environments, for
example in the case of table legs or open doors.

The IDC algorithm is still a very popular method. It is efficient and achieves reasonably
accurate results. However, it has its weaknesses and the above illustration already highlights
one of the first downsides. The computation of the rotation and translation is decoupled,
which might result in a non-optimal result. Either, the method finds a local minimum or it
might even terminate with an estimate that is not a minimum at all. The authors state that
the closest-point rule is very weak in correcting rotational error and the matching-range-
point rule is exceptionally weak at correcting translational error. That means the discarded
translation and rotation might differ significantly from their counterparts which are used
to construct the final transformation estimate. In such a situation, it is possible that both
solutions approximate the correct transformation insufficiently. A coupled approach can be
computationally more complex but probably generates better results.

Since our main area of interest is the high-resolution indoor environment, this algorithm
is not adequate for our needs as shown later in the experimental section. However, it is
included for completion and as a reference to today’s de-facto standard for the other tested
algorithms.

4.3. Specific Algorithms 49

4.3.3 Metric-based Iterative Closest Point (MbICP)

Minguez et al. [36] introduce a novel distance metric to be used in a regular ICP setup,
as described above. The main motivation behind MbICP is to couple the rotation and
translation estimation process, which was the main flaw in the IDC algorithm. As described
above, the Euclidean distance metric does not perform well in the ICP algorithm to solve
rotational errors. For that reason, a distance metric was designed to address this issue.

This distance metric is given with respect to the transformation from one scan point to
another in the other scan. The Euclidean distance metric would only utilize the translational
component. MbICP’s metric will also include the rotational component of the transforma-
tion.

The norm of a transformation q = (x, y, ω) is

||q|| =
√

x2 + y2 + L2ω2

and the distance metric is then defined as (using the transformation defined in equation
(4.1))

d(ai, bi) = min{||q|| such that q(ai) = bi} (4.2)

L is a parameter which describes how much the rotational component ω should be taken into
account. Contrary to intuition, it will be clear later that when L → ∞, this new distance
metric tends towards the Euclidean metric. This is because of the minimization of the norm
defined above. See Minguez et al. [36] for details of the derivation.

Unfortunately, this particular form from (4.2) is very hard to compute since it implies a
search over all possible transformations which transform ai to bi. In the paper, the authors
already provide an approximation to the above distance function.

d∗(ai, bi) =

√
δ2
x + δ2

y +
(δxaiy − δyaix)2

a2
iy + a2

iy + L2

with δx = bix − aix and similarly for δy. Now it is obvious that when L → ∞, d∗ tends
towards the Euclidean distance. A comparison to Euclidean distance is shown in Figure 4.6.

Figure 4.7 shows how this metric captures the correct correspondences under rotation
quite well. In general, this method converges faster and more reliably than the previously
discussed IDC algorithm [36].

However, this algorithm is still prone to produce incorrect correspondences. In general,
there is no mechanism to interpolate between existing scan points or solve the Correspon-
dence Error in any other way. This means that this method completely relies on the distance
metric and very dense scans to estimate the transformation between the two scans sufficiently
well. Thus, it is very susceptible to local minima when the scans are not dense enough or

50 Chapter 4. Scan MatchingIN SUBMITTED AS A SHORT PAPER TO THE IEEE TRANSACTIONS ON ROBOTICS, 2005 4

!1 !0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
!1

!0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Euclidean

distance = 0.3L

1
v

New

L

distance = 0.3L

X

Y

2
v

Fig. 2. Iso-distance curves of dap
p for two points v1 and v2.

Finally, the approximated distance between p1 and p2 is:

dap
p (p1, p2) =

√

δ2
x + δ2

y −
(δxp1y − δyp1x)2

p2
1y + p2

1x + L2
(6)

So as to better understand the properties of this distance

measure, let us compute the iso-distance curves. Again, we

do not have the exact expression of the iso-distance curves

but, if we use approximation (6), we can prove that the

iso-distance curves relative to dap
p :

{p2 ∈ R2 such that dap
p (p1, p2) = c}

are ellipses centred on p1 with principal axes (p1x, p1y) and

(−p1y, p1x) and lengths c and c
√

1 + ‖p1‖2
L2 (see Figure 2).

Furthermore, their dimensions depend on ||p1|| and the value
of L. In fact, L balances the trade-off between translation

and rotation. Notice that when L → ∞, the new distance

tends to the Euclidean distance (the iso-distance surfaces of

the Euclidean distance are spheres).

The iso-distance curves hold the Euclidean distance in the

(p1x, p1y) axis. However, in the rest of the space, the distance
is smaller than the Euclidean distance, since the latter is the

norm of the translation between p1 and p2 and therefore is

bigger than the minimum norm. Furthermore, the iso-distance

curves become larger but only in the (−p1y, p1x) axis as the
point p1 is further from the sensor location, which captures

the sensor rotation (see Figure 1). This distance is used in

expression (1) in order to establish the correspondences. Figure

1b depicts the associations in the ellipsoid example and some

iso-distance curves over-imposed.

B. Least Square Minimization

The next step is to compute the q that minimizes expression
(2) but in terms of the new distance. Expression (2) with

distance (6) leads to:

Edist(q) =
n∑

i=1

(
δ2
ix + δ2

iy −
(δixpiy − δiypix)2

p2
iy + p2

ix + L2

)
(7)

where

δix = cix − ciyθ + x− pix

δiy = cixθ + ciy + y − piy

(7) is quadratic w.r.t. q:

Edist(q) = qT Aq − 2bT q + c

where c is a constant number, A is a symmetric matrix

A =

a11 a12 a13

a12 a22 a23

a13 a23 a33

a11 =
∑n

i=1 1− p2
iy

ki

a12 =
∑n

i=1
pixpiy

ki

a13 =
∑n

i=1 ciy − piy

ki
(cixpix + ciypiy)

a22 =
∑n

i=1
p2

ix
ki

a23 =
∑n

i=1 cix − pix
ki

(cixpix + ciypiy)

a33 =
∑n

i=1 c2
ix + c2

iy − 1
ki

(cixpix + ciypiy)2

and

b =

∑n

i=1 cix − pix − piy

ki
(cixpiy − ciypix)∑n

i=1 ciy − piy + pix
ki

(cixpiy − ciypix)∑n
i=1[

1
ki

(cixpix + cixpiy)− 1](cixpiy − ciypix)

where ki = p2
ix + p2

iy + L2. The value of q that minimizes
Edist(q) is thus

qmin = A−1b

In summary, we have described in this Section all the

mathematical tools in order to introduce the new metric in

the ICP formalism. We outline next the experimental results.

III. EXPERIMENTAL RESULTS

We tested the method with real data obtained with a Sick

laser scanner mounted on a robotic wheelchair. This sensor

has a field of view of 180◦, a maximum range of 8.1m and

with a frequency of 5Hz it gathers 361 points. We carried out
the computations on a Pentium IV 1.8Ghz.
In order to compare the new method (metric-based ICP,

MbICP in short) with existing scan matching techniques, we

used the standard ICP and the widely known IDC algorithm

[17]. The IDC algorithm uses two types of correspondences

(Euclidean distance and a range rule) and two minimizations

to estimate the translation and rotation of the sensor. In the

IDC implementation, we have been using [3], [5], we reject

outliers using visibility criteria [17] and range criterions [14].

We use a trimmed version of the ICP to manage the corre-

spondences [18] that improves the least squares minimization,

and a smooth criterion of convergence [14]. Furthermore, as

suggested by [17], we interpolate between successive range

points (local structure) to compute the correspondences. We

also implemented these features in the ICP and the MbICP

algorithm (we give the expression of the distance point to

segment in the Appendix to interpolate with the new metric).

In order to show a fair comparison, we used the same values

for common parameters (we used our IDC previous parameters

for the ICP and MbICP). We only tuned the metric length L
in the MbICP (in section IV we discuss how to do it). As

criteria of convergence (Section I), we set a maximum number

of iterations to 500, an error ratio below 10−4 and sensor

displacement qmink < (10−4m, 10−4m, 10−4rd).

Figure 4.6: The contours of the d∗ distance in comparison to Euclidean distance. From [36].

IN SUBMITTED AS A SHORT PAPER TO THE IEEE TRANSACTIONS ON ROBOTICS, 2005 3

Sref
S new

Points of S

Points of S

ref

new

!4 !3 !2 !1 0 1 2 3 4

!3

!2

!1

0

1

2

3

m

m

Sref

Snew

!5 0 5

!3

!2

!1

0

1

2

3

m

m

Sref

Snew

(a) (b)

Fig. 1. (Top) The distance between the same points become larger in
terms of Euclidean distance with a rotation displacement, which makes
difficult the association. (Bottom) An ellipsoid rotated. (a) The associations
using Euclidean distance do not clearly explain the rotational motion, which
would affect convergence. (c) With the new distance this rotational motion is
captured.

Euclidean distance and the other one by a range rule (to

capture the sensor rotation). This strategy ameliorates the

ICP behaviour facing sensor rotations. However, it employs

two parallel minimizations of two different criteria to get

the coordinates of a single variable (translation with one

minimization and rotation with the other). Thus, some minima

could arise due the composition of the coordinates, mainly

affecting the robustness and precision of the method.

Our contribution resides in the definition of a new distance

measure in the sensor configuration space that takes into

account both translation and rotation at the same time. By

only modifying the way to measure in the ICP framework,

translation and rotation are compensated simultaneously in

all the steps of the method. As a consequence, the results

ameliorate previous methods in terms of robustness, precision,

convergence and computational load. An added value of this

research is the strong experimental component carried out to

validate and compare this technique with existing methods.

The paper is distributed as follows: in Section II-B we

describe the metric distance and we express the least square

criterion based on this distance measure. In Section III, we

discuss the experimental results and we compare our method

with existing methods. Finally, we discuss and draw our

conclusions in Section IV.

II. DISTANCE MEASURE AND MINIMIZATION

In this section, we introduce first our distance measure in

the plane and next we describe the minimization.

A. Distance point to point

A rigid body transformation in the plane is defined by a

vector q = (x, y, θ) representing the position and orientation

(−π < θ < π) of the scanner sensor in the plane. We define
the norm of q as :

‖q‖ =
√

x2 + y2 + L2θ2 (3)

where L is a positive real number homogeneous to a length.

Given two points p1 = (p1x, p1y) and p2 = (p2x, p2y) in
R2, we define a distance between p1 and p2 as the minimum

norm among the rigid body transformations that move a point

to another:

dp(p1, p2) = min{‖q‖ such that q(p1) = p2} (4)

where

q(p1) =
(

x + cos θ p1x − sin θ p1y

y + sin θ p1x + cos θ p1y

)
(5)

It can be easily checked that dp is a real distance satisfying

for any p1 and p2:

1) dp(p1, p2) = dp(p2, p1)
2) dp(p1, p2) = 0 implies p1 = p2

3) dp(p1, p3) ≤ dp(p1, p2) + dp(p2, p3)
Unfortunately, there is no closed form expression of the above

distance w.r.t. the coordinates of the points. However, we

can compute a valid approximation when the minimum norm

transformation is small, by linearizing (5) about θ = 0. The
set of rigid-body-transformations satisfying q(p1) = p2 can be

approximated by the set of solutions (x, y, θ) of the following
system:

x + p1x − θ p1y = p2x

y + θ p1x + p1y = p2y

The set of solutions is infinite and can be expressed by:

x = p2x − p1x + θ p1y

y = p2y − p1y − θ p1x

where θ is a parameter for the set of solutions. Let us recall that
according to (4), we need to find the solution that minimizes

the norm of q = (x, y, θ). For a given θ, this norm is given by
the following equation, after substituting the above expressions

of x and y into (3):

‖q‖2 = (δx + θ p1y)2 + (δy − θ p1x)2 + L2θ2

where δx = p2x − p1x and δy = p2y − p1y. Expanding the

above expression, we obtain a polynomial of degree 2 in θ:

‖q‖2 = aθ2 + bθ + c

with a = p2
1y+p2

1x+L2, b = 2(δxp1y−δyp1x) and c = δ2
x+δ2

y .

Notice that a > 0 implies that this expression has a unique
minimum for θ = −b/(2a) and the value of this minimum is

given by

‖q‖2 =
−b2 + 4ac

4a

=
−(δxp1y − δyp1x)2 + (p2

1y + p2
1x + L2)(δ2

x + δ2
y)

p2
1y + p2

1x + L2

= δ2
x + δ2

y −
(δxp1y − δyp1x)2

p2
1y + p2

1x + L2

Figure 4.7: a) Correspondences computed using Euclidean distance between to identical but
rotated simulated scans. b) Correspondences computed with the metric used in MbICP.
The dashed ellipses show contours for each distance metric. From [36].

the environment is too irregular, which would often be the case in unstructured environ-
ments. Some optimizations, like detection and rejection of outliers, can improve robustness
and convergence. Our trials show that these optimizations are in fact necessary for this
algorithm to be of any use at all.

4.3.4 Weighted Scan Matching

The Weighted Scan Matcher (WSM) by Pfister et al. [44] can be considered a hybrid method.
It combines the basic ICP idea with some properties of the Function Optimization approach.
Instead of assuming perfect point correspondences, the WSM algorithm weights the influence
of each point pair by the uncertainty of their correspondence. The background of the WSM
algorithm is firmly grounded in probabilistic models and explicitly includes all possible error

4.3. Specific Algorithms 51

sources in the calculations.

The general error associated with point correspondence scan matching is broken down
into three parts: Correspondence Error, Measurement Error, and Bias Error. We already
introduced the notion of Correspondence Error above. The error between two points ai and
bi from two different scans with a transformation (R, t) (R being the rotation matrix), the
error can be written as

ε = ai −R · bi − t (4.3)

This is easily verified as this equation only states that the general error when matching two
points to each other is the difference in coordinates after the transformation of the second
point.

Assuming Gaussian additive noise for the measurement process, ai and bi are written as

ai = ra,i + δra,i + da,i (4.4)

similarly for bi. In the previous equation, ri is the actual distance from the sensor to the
object, δra,i is the noise in the measurement process itself, and da,i is a bias term which
differs between measurement methods.

Finally, substituting (4.4) into (4.3), we get

ε = (ra,i −R · rb,i − t)︸ ︷︷ ︸
CorrespondenceError

+ (δra,i −R · δrb,i)︸ ︷︷ ︸
MeasurementError

+(da,i −R · db,i)︸ ︷︷ ︸
Bias

(4.5)

From this error model, WSM draws its uncertainty model. This model in turn is used
in a Maximum Likelihood fashion, which is in fact a Function Optimization problem. A
log-likelihood function is defined which has a minimum when pose estimate q correctly
aligns both scans as uncertainty will be zero in that case. This function is then optimized
analytically.

An example of the correspondence uncertainty is shown in Figure 4.8. It shows how well
this probabilistic approach allows for errors in correspondences, something previous meth-
ods did not consider at all. Such explicit modeling makes the WSM algorithm as robust to
Correspondence Error as any point-correspondence method can be. As numerous experi-
ments in [44] show, this algorithm achieves great accuracy. Even after matching a sequence
of scans one by one, the accumulated error is very small. Also, the results presented there
show that this algorithm performs significantly better than the IDC algorithm described
above.

In addition to the estimated pose difference between two scans, this algorithm also re-
ports a covariance matrix. This is a key advantage over all other scan matching techniques
discussed in this section. Not only can we compute which pose is the most likely one, but we

52 Chapter 4. Scan Matching2

in the direction denoted by θi
k, where θi

k is the angle made by
the kth measuring ray with respect to the x-axis of the body
fixed reference frame (see Fig. 1).

Our main goal is to accurately estimate the robot’s dis-
placement between poses by matching range data obtained in
sequential poses. This displacement estimate can be used as
the basis for a form of odometry, or fused with conventional
odometry and/or inertial measurements to obtain better relative
robot pose estimates. These estimates in turn can support
localization and mapping procedures. First, assume that the
range scans at poses i and j have a sufficient number of
corresponding points to be successfully matched (see Section
IV). Let {"ui

k, "uj
k} for k = 1, . . . , nij be the set of corre-

sponding matched scan point pairs, where nij is the number
of corresponding pairs. From these pairs we first want to
estimate the relative displacement between poses i and j:
gij = g−1

i gj = (Rij , pij) where

Rij =

[
cosφij − sinφij

sin φij cosφij

]
"pij =

[
xij

yij

]
(2)

i.e., the displacement between poses i and j is described by a
translation (xij , yij) and a rotation, φij .

We next wish to estimate the covariance, P ij , of the dis-
placement estimate. This covariance has two main uses. First,
it reflects the quality of the displacement estimates. Large
diagonal elements of the covariance matrix indicate increased
uncertainty. Any localization process should be aware of the
level of confidence in its computed pose estimates. Second,
the covariance is also needed when combining displacement
estimates with measurements provided by other sensors. More
accurate and realistic estimates of the contributing covariances
lead to more accurate overall estimates in a sensor fusion
algorithm, such as a Kalman filter.

Our approach differs from prior work in that the contri-
bution of each scan point to the final displacement estimate
is individually weighted according to that point’s specific
uncertainty. The scan point uncertainties are estimated using
sensor measurement noise models as well as models of specific
geometric issues within the matching process itself. To better
understand these issues, examine Fig.s 1 and 2. Fig. 1 depicts
the situation when a range sensor (e.g., a laser range finder)
samples points on a nearby wall. The boundary points sampled
in pose i are indicated by circles, and labeled by "ui

k−1, "ui
k,

and "ui
k+1. The nearby boundary points sampled in pose j are

indicated by X’s and are labeled by "uj
k−1, "uj

k, and "uj
k+1. Prior

range matching methods (e.g., [11], [12], [13]) have made
the simplifying assumption that the range scans of different
poses sample the environment’s boundary at exactly the same
points—i.e., point "ui

k is assumed to be exactly the same point
as "uj

k, etc. This assumption is generally not true. In this paper,
we model this correspondence error and incorporate this effect
into our matching algorithm.

As described in Sections III-A and III-C, the range mea-
surements are corrupted by noise and possibly a bias term
that is a function of the range sensing direction, θi

k, and
the sensor beam’s incidence angle, αi

k (Fig. 1). Figure 2
shows the 95% confidence level ellipses associated with the
covariance estimates (calculated using the methods that we

−6000 −4000 −2000 0 2000 4000
(mm)

Robot Pose

Scan Points
Selected Scan Points
100 x Point Covariance (3σ)

Fig. 2. Representation of the uncertainty of selected range scan points

will introduce later) of selected data points from an actual
laser range scan. Clearly, the wide variation in uncertainties
seen in Fig. 2 strongly suggests that not all range data points
are of equal precision. Hence, this potentially large variability
should be taken into account in the estimation process. While
the existence of these uncertainty sources has previously been
suggested [14], [8], [13], [15], [16], our algorithm is the first
to explicitly model and account for their effects within the
estimation process. Some prior works have no explicit noise
modeling (e.g. [11]), or apply a uniform uncertainty to all
contributing points. The most complete existing methods [14]
and [17] employ statistical methods to calculate displacement
estimate uncertainty. These methods do not take sensor un-
certainty models into account in the displacement estimation
process and use an unweighted assumption for the contributing
points. Also [14] and [17] do not use any specific sensor
noise characteristics as a basis for calculating uncertainty but
instead use a numerical sample of perturbations to extract an
estimate of covariance. We are able to demonstrate significant
improvements over previous unweighted methods by devel-
oping physically based uncertainty models for each individual
point and incorporating these models in both our displacement
estimation process and our covariance calculation.

The basic principle behind our approach generally applies
to any case of dense range data, such as sonars, infrareds,
cameras, radars etc. The basic weighted matching formulation
and its solution given in Section II are independent of any
sensor specifics. To use the general results, specific models
of sensor uncertainty are needed. We develop these detailed
sensor models in Section III. Since some of the assumptions
underlying these sensor models are best suited to laser range
scanners, the application of our detailed sensor model formulas
is best suited to the use of laser scanners in indoor environ-
ments, though they can be extended to structured outdoor envi-
ronments. However, the general approach of Section II should
work for other range sensors and other operating environments
with reasonable modifications to the sensor models.

This paper is structured as follows. Section II describes
a general weighted point feature matching problem and its
solution. Section III develops correspondence and range mea-
surement error models. Sections IV and V summarize the

Figure 4.8: Correspondence uncertainty in the WSM algorithm, from [44].

also know how certain we are of this estimate. This is especially useful for situations where
the output of scan matching is used for SLAM. More detailed uncertainty information can
only help methods like FastSLAM (described in Section 3.4.1). The benefit is very visible
in Figure 4.9. Not only does the WSM algorithm on average converge to an estimate much
closer to the real pose, but it does so very consistently and well within its own uncertainty
estimate.

4.4 Conclusion

From the respective authors’ experiments and results, we can already see that the Weighted
Scan Matcher (WSM) algorithm by Pfister et al. [44] will be a very suitable candidate for
use in the Robocup Rescue Virtual Robot league. The robots encounter smalls spaces in
indoor environments in that setting, so the presumably high accuracy of WSM will be of
great benefit.

We received MATLAB implementations for all presented algorithms and were thus able
to verify the actual quality of each algorithm. Our detailed experiments conducted with
these implementations are described in Section 7.1.

4.4. Conclusion 53

10

−6000 −5000 −4000 −3000 −2000 −1000 0 1000 2000 3000 4000
(mm)

Table at Laser Height

Moving Person
Pose 1

Pose 2

A

Pose 1 Scan Points
Pose 2 Scan Points
Perturbed Initial Displacements

−110 −105 −100 −95 −90 −85 −80
(mm)

Pose 2

 Closeup : Pose 2 B

476 estimates (31.2%)
converge to within 3σ
of the true displacement

Unweighted

1456 estimates (95.5%)
converge to within 3σ
of the true displacement

Weighted

Initially
unperturbed
unweighted
estimate

Initially
unperturbed
weighted
estimate

True Pose 2 Displacement
Unweighted Displacement Estimates
Weighted Displacement Estimates
Pose 2 Measurement Covariance (3σ)
Unweighted Covariance (3σ)
Weighted Covariance (3σ)

Fig. 5. A) Experiments with initial displacement perturbations in a non-static
environment. B) Closeup of Pose 2 with results.

position and orientation displacements of 683mm and 0.467
radians. Fig. 4A shows the robot poses and scans under consid-
eration, as well as the initial perturbed displacement guesses.
Fig. 4B shows the results obtained by starting the algorithms
from the 1525 different initial displacement perturbations.
Our algorithm successfully converged in 82.0% of the cases
while the UWLS algorithm was successful in 56.9% of the
cases. The average error for successful weighted estimates
was 1.8mm and 0.00067 radians while the average error for
successful UWLS algorithm estimates was 6.0mm and 0.0026
radians. The error for the case when the initial displacement
guess is unperturbed is 1.5mm and 0.00043 radians for our
weighted algorithm and 3.6mm and 0.0014 for the UWLS
algorithm.

Two Pose Test With IntraScan Changes in the Environment:
Fig. 5 shows the results of the same type of testing performed
on a pair of scans in which the environment changed between
scans. Note that the horizontal double wall on the lower left
side of the figure is actually a table at almost exactly laser
height. The first scan sampled the wall behind the table while
the second scan sampled the front edge of the table due
to small changes in floor geometry. The additional nearby
obstruction to the left of the robot was caused by a person who
moved between the two scans. The range points associated
with these non-repeating objects represent 29.2% of the total
number of scan points. For the 1525 trials with different initial
displacement perturbations, our algorithm was successful in
95.5% of the cases, while the UWLS algorithm was successful

−1000 0 1000
(mm)

Pose 1

Pose 2

A

Pose 1 Scan Points

Pose 2 Scan Points

Perturbed Initial Displacements

174 176 178 180 182 184
(mm)

Pose 2

 Closeup : Pose 2 B

46 estimates (3.0%)
converge to within 3σ
of true displacement

Unweighted

1145 estimates (75.1%)
converge to within 3σ
of true displacement

Weighted

Initially
unperturbed
unweighted
estimate

Initially
unperturbed
weighted
estimate

True Pose 2 Displacement
Unweighted Displacement Estimates
Weighted Displacement Estimates
Pose 2 Measurement Covariance (3σ)
Unweighted Covariance (3σ)
Weighted Covariance (3σ)

Fig. 6. A) Experiments with initial displacement perturbations in a hallway
environment. B) Closeup of Pose 2 with results.

in 31.2% of the cases. The average error for successful
weighted estimates was 2.5mm and 0.00057 radians while
the average error for successful UWLS algorithm estimates
was 11.1mm and 0.016 radians. The error for the case when
the initial displacement guess is unperturbed is 2.5mm and
0.00057 radians for our weighted algorithm and 9.8mm and
0.016 for the UWLS algorithm. These results show that our
method’s emphasis on weighting each scan point results in
superior robustness to the presence of a significant number of
non-corresponding range points.

Two Pose Test In a Hallway: Fig. 6 shows the results of
analogous testing done in a nearly symmetrical hallway. In
a perfectly symmetrical hallway with no discernible details
along the walls, no scan-based algorithm can effectively
correct initial displacement errors in the direction along the
hallway’s main axis. In this test, a single door is open at a
slight angle on the left side of the hallway. The presence of
this feature allows for possible scan matching convergence.
For the set of 1525 initial displacement perturbations, our
algorithm successfully converged in 75.1% of the cases while
the UWLS algorithm was successful in only 3.0% of the cases.

Figure 4.9: Visualization of the reported covariance matrix and comparison to the IDC
algorithm (referred to as “Unweighted” in the legend). Notice how the blue ellipse repre-
senting WSM’s final estimated covariance matrix is mainly uncertain along the direction of
the corridor. From [44].

Chapter 5

Our Approach: ManifoldSLAM

5.1 Introduction

Our main aim for this project was to successfully compete and achieve a high ranking in
the RoboCup 2006 championships held in Bremen, specifically the Virtual Robots League
of RoboCup Rescue. As described in Chapter 2, this league focuses on two aspects of
performance for scoring: the ability to explore and map an urban search and rescue scene,
and the number of detected victims as well as the amount of detailed information that is
reported per victim.

In the two earlier chapters, the current state of the art in SLAM and scan matching
research has been summarized. In addition, various dimensions enabling the comparison and
evaluation of different approaches have been mentioned. This chapter describes a complete
SLAM solution to the Robocup 2006 urban search and rescue challenge based on that
evaluation of different approaches. The nature of the challenge gives higher importance to
certain aspects of the approaches over others. Therefore, these aspects of interest will be
the focus of the approach described in this chapter.

It is important to note that hardly any SLAM implementation is ready for immediate
use. Although some implementations can be found online, their efficient usage depends to a
large extent on a detailed understanding of their configuration. Thus, in order to arrive at
a solution that addresses all the specific aspects of the challenge, a considerable amount of
time must be spent on fine-tuning parameters and optimizing modifications or extensions. In
addition, since all available implementations come without support or guarantees, it should
not come as a surprise that debugging would be very time consuming.

We reviewed all the current state-of-the-art SLAM algorithms discussed in Chapter 3. In
the few cases where source code was available, some basic tests were conducted. However,

55

56 Chapter 5. Our Approach: ManifoldSLAM

no single existing SLAM algorithm turned out to be adequate for our case. Therefore, we
designed a new method, drawing inspiration from the individual advantages and trying to
avoid the disadvantages of the reviewed algorithms. Our new hybrid approach is based
on a map that employs a graph organization, which is similar to Howard’s Manifold data
structure [27] and the organization used in Atlas [7]: ManifoldSLAM.

5.2 Design Essentials

Following Howard’s initial descriptions [27, 26], we have designed a sophisticated data struc-
ture that meets all map-related requirements. As in many other hybrid SLAM approaches
[51, 60, 7], we aim to cover the strengths of both topological and metric representations.
Similarly to [31] and [60], the representation incorporates a layered data structure with a
topological organization at the global level and detailed metric maps at the local level.

Globally, the Manifold relies on a graph structure that grows with the amount of explored
area. Nodes are added to the graph to represent local properties of newly explored areas.
Links represent traversable paths from one node to the next. One key design aspect is that
the Manifold data structure does not assume a planar environment. When a robot navigates
in a circle and this fact is represented by different parts of the graph that start to overlap,
no correspondences between the overlapping sections are assumed and a spiral structure
emerges. This design was inspired by Howard [27] and is key to several features exhibited
by the Manifold. The most important feature that follows from this design is that it enables
the Manifold to map an environment with multiple overlapping levels.

Figure 5.1: Multiple floors in the Orange arena.

While other map structures suffer from the cross-over problem when faced with multiple
overlapping levels in an environment, the Manifold handles this gracefully. For example,
consider a two story office-like building like the Orange Arena depicted in Figure 5.1 and a
robot which first explores the lower level and subsequently the upper level. Figure 5.2(a)
outlines the typical problem that planar maps suffer from as soon as the robot navigates over

5.2. Design Essentials 57

a location in the upper level which is directly above a previously mapped other location on
the lower level. As planar map representations fail to distinguish between the different floors,
it will assume that the observations should correspond to the same place in the physical
environment. It is not hard to imagine how this cross-over problem leads to distorted,
inconsistent or otherwise degraded maps when it is not accounted for. Figure 5.2(b) shows
how the Manifold handles cross-over gracefully.

(a) (b)

Figure 5.2: Cross-over. Images courtesy of [27]

Another aspect of the Manifold design that makes it so successful is that the same
landmark may be stored multiple times on different nodes. Consider a robot that traverses an
environment and observes the same landmark twice. Also assume that the second detection
occurs on a different node from the first. Upon the second detection, a graph structure will
have been built up that depicts the area explored so far. It makes sense now to conclude that
the current node should correspond to the one that holds the previous landmark observation
and that the closing of a loop is in order. Essentially this would mean to add a link to
the graph that connects these two nodes in order to represent the landmark identification.
However, Chapter 3 showed that data association is one of the toughest challenges to deal
with and is prone to false positives. In case of an incorrect correspondence identification,
the erroneous addition of this link will degrade the graph’s consistency significantly and
thereby might have severe negative impact on planning, navigation or any other algorithms
that build on the Manifold. Thus, in order to preserve the Manifold’s consistency, great care
must be taken when inferring links between nodes which were not actually traversed by the

robot. As the Manifold does not assume a planar environment, the graph structure is free
to grow without requiring loops to be closed prematurely. Therefore, as multiple nodes can
hold observations of potentially the same landmark, loop-closing can be delayed until more
certainty is acquired through additional observations.

The landmarks that are stored on different nodes also play an important role when the
Manifold is shared between multiple agents. Different agents possibly enter the environment
at different locations or at different points in time. The Manifold’s data structure easily
facilitates this by having each agent start on its own new node. The particular robot
will develop this node into a disconnected component of the graph, also called an island.

58 Chapter 5. Our Approach: ManifoldSLAM

Initially this will result in as many islands as there are agents. This exactly represents
the fact that the relative positioning of the robots is unknown at that time. Hence, the
Manifold’s consistency is preserved. Certain events can then trigger the merging of two
islands into one. A typical example for such an event is the detection of the same landmark
by two different robots. At that moment, the relative positioning of the two robots can be
determined and subsequently their islands can be merged appropriately. When two robots
have been exploring the same parts of the environment the island-merging process will
typically result in the addition of multiple links between nodes of both islands. The set of
landmarks observed by both robots can be used to guide this process. Island-merging bears
a clear resemblance to loop-closing and has the same major impact on the graph structure.
Note that in order to avoid jeopardizing the Manifold’s consistency, also island-merging can
be delayed until a certain level of certainty is acquired.

All localization and mapping related functionality relies on scan matching. The geometric
details stored at the node-level are in fact the range scans acquired from the laser range
scanner. The details are discussed in Section 5.3, but the consequence that we wish to
mention here is that using the scan matcher we can compare the information that is stored
on nodes. Subsequently, the covariance matrix that is returned by the scan matcher is stored
on the link between the nodes. This way the Manifold embeds uncertainty information
throughout the graph. As discussed later in Section 5.4, this locally available uncertainty
information is used extensively during localization and mapping. Note also that because of
the scan matcher, localization is not limited to maintaining the current node. By comparing
the current observations to the information stored on the nodes using the scan matcher a
full pose estimate with associated uncertainty can be maintained.

By nature, the Manifold’s graph structure greatly facilitates navigation algorithms. The
implementation of path planning and search algorithms on the Manifold are straightfor-
ward. Shortest paths can be obtained using e.g. Dijkstra’s algorithm [14], but also heuristic
searching is supported. The uncertainty information that is stored on the links, or con-
fidence values that can be derived from them provide, a great heuristic in order to find
secure paths. To translate path plans into motion plans, the nodes provide the necessary
information about the local geometric properties of the environment. Thus, it is possible
to construct, analyze and evaluate path plans up to the obstacle avoidance details already
beforehand. Therefore, the Manifold data structure accommodates and facilitates the de-
velopment of advanced navigation, exploration or behavior.

5.3 Data Structure Details

In this section the Manifold data structure is discussed in detail. The three core concepts
that make up the Manifold will be introduced: patches, relations and local sub-maps [27].

5.3. Data Structure Details 59

Patches form the nodes of the overall graph structure while relations form the links. A local
sub-map is always acquired from the perspective of a single patch and will contain a local
subset of nearby and well-fitted patches.

We will denote a patch with π and a link with φ. The Manifold can then formally be
defined as the set of all patches and relations together: Π = {{π}, {φ}}. Local sub-maps
will be denoted with Π∗.

It should be noted that although the Manifold will be described for specific use with
laser range scans, the concept could be generalized to other types of sensor measurements
effortlessly. Incidentally, the implementation used at RoboCup 2006 integrates victim ob-
servations and other information in a single patch.

5.3.1 Patches

Patches are the fundamental building blocks of Manifolds. They form the nodes of the graph
structure, where each patch is of finite extent and defines a local planar coordinate system.
In effect, the patches discretize the full map into small, possibly overlapping, local, metric
maps. Let π denote a single patch, then:

π = (θ, s) : θ = (x, y, ρ) , s = {(α, d)n}

A single patch stores a single laser range scan observation s together with the estimated
global robot pose θ from where this scan was taken. A single scan as returned by the laser
range sensor will consist of a set of n angle-distance pairs (α, d), which are easily translated
into local (x, y) coordinates relative to the patch origin. Thus, the pose denotes as the
origin of the local coordinate frame and it provides the transformation from the global
coordinate frame to the local measurement frame and vice versa. Let rπa

be a robot pose
estimate relative to patch πa, then ⊕ is defined as the coordinate transformation operator
that projects this pose estimate on the global frame and 	 as the inverse operator that
projects it back to a patch-relative pose estimate [27]:

rglobal = rπa ⊕ θa

rπb
= rπa ⊕ θa 	 θb

Note that these transformations in fact decouple the local measurements from the posi-
tioning of the patches on the global frame. So during loop-closing and island-merging patch
positions can be re-estimated without having to update the measurement values. In essence,
the patches institute the lower layer of the Manifold as they hold the geometric details of
the environment.

60 Chapter 5. Our Approach: ManifoldSLAM

(a) Patch as pose θ(x,y,ρ) with scan (b) Patch as local coordinate system

Figure 5.3: Patches.

5.3.2 Relations

Relations form the links in the graph and represent the navigability between patches. They
are mostly constructed between consecutive robot poses and sometimes additional relations
are inferred during loop-closing and island-merging. Every relation stores a Gaussian prob-
ability distribution over the estimated pose-difference ∆θab between two related patches πa

and πb. This Gaussian distribution with mean ∆θab and covariance matrix Σab is estimated
from the set of pair-wise point-correspondences between the two patches. Typically, the
parameters of this Gaussian are estimated by a scan matcher, see also Chapter 4. Note
that the common convention in robotics it to decompose a pose difference like ∆θ into a
rotation ∆θρ followed by a translation ∆θτ , each with their own associated (Gaussian) un-
certainty. The covariance stored on relations should therefore be interpreted accordingly, as
an uncertainty in a consecutive rotation and translation. Therefore the resulting probability
distribution typically looks like a bent ellipse, see Figure 5.4.

Figure 5.4: Motion uncertainty shaped as a bent ellipse.

5.3. Data Structure Details 61

Subsequently, let φab denote the relation between two patches πa and πb, then:

φab = (πa, πb,∆θab,Σab)

Figure 5.5: Relations.

The uncertainty described by the covariance matrix could also be interpreted as a con-

fidence measure that describes how well the two patches fit together. A better fit means
that correspondences between the two range scans were found with higher associated cer-
tainty and thus that the relative positioning of the patches could be determined with higher
confidence. The covariance matrix gives a full description of the uncertainty, but for some
purposes a single confidence measure is more convenient. Good examples of single confi-
dence values that can be derived from a covariance matrix are the determinant det(Σ) or
the trace trace(Σ). The relations lend themselves very well for use in path-planning and
search algorithms. In addition, heuristic algorithms can take advantage of the uncertainty
information stored on the links.

5.3.3 Local Sub-Maps

Local sub-maps are defined from the perspective of a single patch [27]. They aggregate all
nearby and well-fitted patches. The primary purpose of local sub-maps is to aid SLAM. Both
mapping and localization on the Manifold heavily rely on scan matching. Traditionally scan
matching is about matching pairs of scans. However, we have extended the scan matcher of
our choice (see also section 5.4) so that it is also capable of matching a scan to a sub-map.

The concept is illustrated in Figure 5.6 where a robot zig-zags through a corridor. In
the example the robot is configured with a laser range scanner that has a field of view of
180 degrees, which is indicated using different shades of gray. Only the time steps at which
the range scan is used to create a patch are depicted, so the robot poses and range scans
in the illustrations can also be seen as the corresponding patches in the Manifold. At time

62 Chapter 5. Our Approach: ManifoldSLAM

t1, a patch is created as the robot enters the corridor. Then at time t2, the range scan is
compared to the one stored at time t1 and another patch is created. At time t3, the robot
could proceed in a similar way by comparing the new scan against the scan previously stored
at the patch of time t2. However, in the rightmost image, the new scan is not just matched
against the previous patch, but against the sub-map of the previous patch. Assume that
this sub-map will at least include the patch of time t1. Then it is not hard to see how a
much more complete reference frame is provided to match the new scan to, this difference
is also marked in red in the rightmost image.

(a) t1 (b) t2 (c) t3 regular (d) t3 using submap

Figure 5.6: The effect of using local sub-maps.

The local sub-map of a particular patch is obtained by a breadth-first search through
the Manifold’s graph structure that starts from the particular patch for which the local
sub-map is acquired. The frontier of this breadth-first search expands on patches that are
well-fitted and halts at ill-fitted patches. The quality of the fit between two neighboring
patches is determined by analyzing the covariance matrices that are stored on the relations.
For convenience, we first compute the Fisher information matrix from a particular covariance
matrix. Following standard statistics literature, we define the Fisher information matrix for
a multivariate Gaussian distribution as the expected outcome of the second derivative of the
log-likelihood:

Iab (∆θab,Σab) = E
[
∇2L (∆θab,Σab)

]
: L = ln (P (∆θab,Σab))

For a more elaborate treatment of Fisher information matrixes refer to [13], and see [20]
for a discussion of Fisher information in the context of SLAM. Here we limit ourselves to
postulating that for Gaussians, the Fisher information matrix reduces to just the inverse of
the covariance matrix:

Iab (∆θab,Σab) = E
[
∇2L (∆θab,Σab)

]
= Σ−1

ab

Having an equation to compute the Fisher information on the links now enables us to
exploit the additive nature of information. For patches that are direct neighbors of the
starting patch, the fitting quality can be determined by analyzing the Fisher information of
the single link involved. For patches that are not direct neighbors, the analysis can now be

5.3. Data Structure Details 63

based on the sum of all Fisher information matrices that lie on the search-expansion path
between the patches. An individual patch is deemed well-fitted by applying a threshold
on a confidence interval on every pose-variable. The confidence interval of a particular
pose-variable is given by:

σi = c

√(
Iab (∆θab,Σab)

−1
)

ii

We set c to 1.96 for a 95% confidence interval. The i index below the σ refers to the pose-
variable that the threshold is applied to. Correspondingly, the ii index below the inverted
Fisher information matrix refers to the on-diagonal element corresponding to the particular
variable. We had two thresholds in our configuration that could be tuned: τthreshold that
was applied on the translational variables ∆θx and ∆θy and ρthreshold that was applied
on the rotational variable ∆θρ. We considered two patches well-fitted when the confidence
value was below the corresponding threshold on all three variables. This is similar to the
reasoning in [27]. See Algorithm 5.1 for the GetSubmap (πs, τthreshold, ρthreshold) procedure
in pseudo-code.

Data: the start patch πs for which to acquire the sub-map, the translational
threshold τthreshold and the rotational threshold ρthreshold

Result: the sub-map Π∗ composed of all well-fitted nearby patches transformed to
the coordinate system of πs

Π∗ = {};1

Πfrontier = set of patches neighboring πs;2

while Πfrontier not empty do3

Πnextfrontier = {};4

for each patch πt ∈ Πfrontier do5

Linksst = all the links on the search-expansion path from πs to πt;6

Ist = I (Linksst) =
∑

(I (linkst)) for all linkst ∈ Linksst;7

xok =
(
1.96

√(
I−1
st

)
xx

< τthreshold

)
;8

yok =
(
1.96

√(
I−1
st

)
yy

< τthreshold

)
;9

ρok =
(
1.96

√(
I−1
st

)
ρρ

< ρthreshold

)
;10

wellfitted = xok and yok and ρok;11

if wellfitted then12

π′t = πt ⊕ θt 	 θs;13

Π∗ = Π∗ ∪ π′t;14

Πnext = patches π neighboring πt for which π /∈ Π∗;15

Πnextfrontier = Πnextfrontier ∪Πnext;16

end17

end18

Πfrontier = Πnextfrontier;19

end20

Algorithm 5.1: GetSubmap (πs, τthreshold, ρthreshold)

64 Chapter 5. Our Approach: ManifoldSLAM

5.4 Localization and Mapping

5.4.1 Weighted Scan Matching

Scan matching is the fundamental algorithm to most of the SLAM-related functionality
that is implemented on the Manifold. As indicated in Chapter 4 on scan matching and
as demonstrated in the extensive experiment discussed in Section 7.1, the Weighted Scan
Matcher by Pfister et al. [44] is the logical choice. Amongst the scan matchers evaluated, it
has superior accuracy without sacrificing performance.

The core algorithm that matches scan-pairs is outlined in Section 4.3.4 and the original
paper by Pfister et al. [44]. In addition, we implemented an extension that also enabled
us to match a scan against a local sub-map using the same algorithm. Local sub-maps
are explained in detail in Section 5.3.3. In essence, we have modified the scan matcher
so that it matches arbitrary point-clouds, where each point-cloud can have any number of
points. Recall that Weighted Scan Matching belongs to the family of Iterative Closest Point
algorithms, so after correlating points between the two point-clouds the maximum likelihood
estimation can proceed as usual. The maximum number of point correlations is naturally
constrained to the number of points in the smallest point-cloud. Note that along the same
lines a similar extension could be implemented where also local sub-maps can be compared
to each other. For our approach though, this was not necessary.

One interesting consequence of having a scan matcher that matches point-clouds is that
it no longer assumes range scans to be of a certain resolution or to have a certain field of
view. In the context of a multi-agent system this yields an interesting benefit as this allows
different robots to have different configurations for the range scanners. The benefit lies in
the fact that the configuration of the range scanner can be optimized with respect to the
robot’s intended strategy or processing capabilities. Also in the simulated environment of
the Rescue Virtual Robots League this is of interest. Some robots were spawned from a
three year old laptop while other robots were spawned from a high-end workstation. When
desired, we could configure the robots that were spawned from less capable hardware to
work with lower scan resolutions. This would have no repercussions on the shared Manifold
as all functionalities like localization, mapping, loop-closing and island-merging rely on the
scan matcher.

5.4.2 Incremental Localization and Mapping

Incremental localization and mapping refers to the main process that is executed online by
every robot as it explores the environment. Formally, localization is about maintaining the
tuple (θt, πt) where the subscript t refers to the current time index and θt is the current robot
pose with respect to the current patch πt. Mapping refers to the process that maintains the

5.4. Localization and Mapping 65

Manifold Π over time, where Πt denotes the Manifold as constructed up to time step t.

Localization and mapping is an incremental process that is triggered whenever a new
scan st is obtained from the laser range scanner. Initially, the robot is not localized and
the Manifold contains no patches. Therefore, localization is initialized with an arbitrary
starting pose θ0, for example at the global origin (0, 0) with rotation 0. The Manifold is
then initialized by immediately transforming the first incoming range scan s0 into a patch
π0 which is positioned at this initial pose estimate.

From then on, incoming laser range scans are compared with the current patch using
the scan matcher. Note that we actually compare against the local sub-map of the current
patch, but as there is only one patch to begin with, the sub-map is initially reduced to just
that patch. The scan matcher will return a Gaussian probability distribution N (∆θt,Σt)
over the disposition estimate ∆θt. Localization then proceeds by first updating the current
robot’s pose estimate θt+1 = θt + ∆θt. The patch πt+1 where the robot will be localized to
is set to be the patch in the sub-map that has its origin nearest to the estimated projected
pose. Note that if πt+1 differs from πt the pose estimate needs to be transformed accordingly
θt+1 = θt+1 ⊕ πt 	 πt+1. Some buffer could be put in place to avoid oscillations on equal-
distance points, but note that due to the concept of local sub-maps the decision of which of
the nearest patches to localize to is usually not important.

Mapping is more involved and is based on the quality of fit. To avoid a lot of redundant
data being stored on the patches, the Manifold is only extended with new patches when
this quality of fit drops below certain thresholds. The idea behind basing this decision on
the quality of fit is straightforward. In the case of a bad fit, the scan matcher did not
have sufficient reference data in the local sub-map to fit the new range scan with more
certainty. The new range scan apparently contains details not yet covered by the Manifold
and hence it is desired to add a new patch with this range scan. To asses the quality of fit
of a new range scan, the same notion of being well-fitted is used as during the construction
of local sub-maps (refer to Section 5.3.3). Recall that we already obtained the covariance
matrix Σt of the Gaussian distribution that was estimated by the scan matcher. The Fisher
information matrix It is computed by taking the inverse of this covariance matrix It = Σ−1

t

and we compute the 95% confidence interval for every pose variable as follows:

σi = 1.96
√(

I−1
t

)
ii

The details behind this equation were already discussed in Section 5.3.3 and are assumed
familiar here. The Manifold is extended when the confidence value of any pose variable drops
below the corresponding threshold. For the translational variables we use a threshold τext

and for the rotational variable we use ρext. Note that the thresholds that determine when to
extend the Manifold are usually much stricter than those that determine which patches to

66 Chapter 5. Our Approach: ManifoldSLAM

include in the local sub-map. If the algorithm decides to extend the Manifold, a new patch
π∗ is added at the estimated current robot pose and at the same time a new relation φ∗ is
inserted that connects the newly added patch to the patch the robot is currently localized
to. We store the parameters of the Gaussian distribution on this relation and we reset the
localization to the origin of the newly added patch.

Data: the current Manifold Πt and localization estimate (θt, πt), the newly obtained
range scan st and the extension thresholds: τext for translations and ρext for
rotations

Result: the updated Manifold Πt+1 and localization estimate (θt+1, πt+1)
Π∗ = GetSubMap (πt);1

P (∆θt,Σt) = WeightedScanMatcher (Π∗, st);2

It = Σ−1
t ;3

xexceeded =
(
1.96

√(
I−1
t

)
xx

> τext

)
;4

yexceeded =
(
1.96

√(
I−1
t

)
yy

> τext

)
;5

ρexceeded =
(
1.96

√(
I−1
t

)
ρρ

> ρext

)
;6

extend = xexceeded or yexceeded or ρexceeded;7

if extend then8

θ∗ = θt + ∆θt;9

π∗ = (θ∗, st);10

φ∗ = (πt, π∗,∆θt,Σt);11

Πt+1 = Πt ∪ {π∗, φ∗};12

θt+1 = (0, 0, 0);13

πt+1 = π∗;14

end15

else16

Πt+1 = Πt;17

θt+1 = θt + ∆θt;18

πt+1 = nearest π of π ∈ Π∗;19

end20

Algorithm 5.2: Incremental localization and mapping

When using just incremental localization and mapping the graph structure will actually
grow into a tree. Whenever new areas are explored trails of patches will be formed on the
Manifold. Branches are formed when a robot backtracks, is localized to non-leaf patches, and
then chooses a new direction. As discussed in Section 3.2, due to sensor and actuator noise
every patch will have some uncertainty in the estimate of its position and orientation. And
as the Manifold is developed incrementally the error due to this uncertainty will propagate
to future pose estimates. This implies that the error will have increasingly degrading effects
on the Manifold’s accuracy. In the following section the traditional and explicit means to
address this issue in graph-based SLAM will be discussed: Loop-closing.

5.4. Localization and Mapping 67

5.4.3 Loop Closing

Loop-closing refers to a family of algorithms related to topological SLAM that aim to identify
and resolve accumulated errors in the map. Metric SLAM methods solve this problem
implicitly. As the name suggests, the piece of information that triggers loop-closing is the
detection that a loop has been traversed in the environment. This detection is usually
the result of observing a particular landmark again. Due to error accumulation, the two
estimates are not likely to project to the same global coordinate. Even worse, as the error can
build up indefinitely, their projections could be very far apart. By identifying a previously
observed landmark, this error is now uncovered and loop-closing can start to resolve it.

(a) before loop closure. (b) after loop closure.

Figure 5.7: Loop-closing. The robot starts at the bottom right and moves up. Then the
robot turns left several times until it returns in the bottom right and observes a particular
landmark again and detects the loop.

In terms of the Manifold, the detection of an already known landmark will inform the
loop-closing algorithm that two distinct patches have been found to correspond to the same
part of the environment in reality. The accumulated error ε is then set to be the difference
between the globally projected position estimates of these two observations: ε = (λ1 ⊕ πλ1)−
(λ2 ⊕ πλ2). The different position estimates of landmark λ are denoted with λi. πλi

refers
to the patch from where the i-th landmark observation was made.

In our approach, loop-closing starts by relating the two patches πλ1 and πλ2 . For this
purpose, they are overlaid on each other based on the landmark positions, i.e. π

′

λ2
is πλ2

translated by ε, and then π
′

λ2
is compared against the local sub-map Π∗

λ1
of πλ1 using the scan

matcher. Subsequently a relation φ∗ =
(
πλ1 , π

′

λ2
,∆θ, Σ

)
is inserted into the Manifold that

connects the two patches and stores the Gaussian distribution N (∆θ, Σ) that is returned
by the scan matcher. Note that because we overlaid the patches based on the landmark

68 Chapter 5. Our Approach: ManifoldSLAM

estimates, we know that the newly inserted relation has zero accumulated error. What
remains now is to use this knowledge in order to revise the Manifold and improve its accuracy.

Data: the current Manifold Πt, the two landmark observations λ1 and λ2 together
with their respective patches πλ1 and πλ2

Result: the updated Manifold Πt+1

ε = (λ1 ⊕ πλ1)− (λ2 ⊕ πλ2);1

π
′

λ2
= πλ2 translated by ε;2

Π∗
λ1

= GetSubMap (πλ1);3

N (∆θ, Σ) = WeightedScanMatcher
(
Π∗

λ1
, π

′

λ2

)
;4

φ∗ =
(
πλ1 , π

′

λ2
,∆θ, Σ

)
;5

Πt+1 = Πt ∪ {φ∗};6

Πfrontier = {πλ1 , π
′

λ2
};7

Πt+1 = RefitManifold (Πt+1,Πfrontier);8

Algorithm 5.3: Loop closing

The Manifold’s accuracy is improved by back-propagating the new knowledge, starting
from the relation φ∗ that closed the loop. In essence this back-propagation involves a
breadth-first refitting of the Manifold. The frontier of this breadth-first process is initialized
with the two patches πλ1 and πλ2 on which the loop was closed: Πfrontier = {πλ1 , πλ2}.
As the frontier iterates through the Manifold, every patch encountered is refitted using the
scan matcher until all patches have been processed. In effect, this process ripples the error
correction throughout the Manifold.

Data: the current Manifold Πt and the initial frontier Πfrontier from which to start
refitting the Manifold

Result: the refitted Manifold Πt+1

Πt+1 = {};1

while Πfrontier not empty do2

Πt+1 = Πt+1 ∪Πfrontier;3

Πnextfrontier = {};4

for each patch πf ∈ Πfrontier do5

Πnext = patches π neighboring πf for which π /∈ Πt+1;6

Πnextfrontier = Πnextfrontier ∪Πnext;7

for each patch πn ∈ Πnext do8

P (∆θ, Σ) = WeightedScanMatcher (πf , πn);9

φ∗ = (πf , πn,∆θ, Σ);10

Πt+1 = Πt+1 ∪ {πn, φ∗};11

end12

end13

Πfrontier = Πnextfrontier;14

end15

Algorithm 5.4: Refitting the Manifold

5.4. Localization and Mapping 69

The key motivation behind this choice of loop-closure algorithm was the ease of imple-
mentation. Most parts of the algorithm are already available from the incremental local-
ization and mapping. One drawback is that this only pushes back the error to the other
side(s) of the Manifold and that along the way the error is bound to accumulate again. Note
though that the maximum path-length over which the error can accumulate is basically cut
in half, so accuracy will still improve significantly (see also Figure 5.7). Refer to Section 7.2
for more detailed results.

When implemented as described, loop closure is a costly process, where most of the pro-
cessing time is spent in the scan matcher. Several instruments can be put in place to speed up
loop-closing. One could compare the quality of fit before and after the refitting to determine
when the refitting no longer appears to yield significant improvements. Note that although
refitting is then no longer considered necessary, in order to avoid gross discontinuities in the
Manifold the frontier should still proceed to transform all remaining patches appropriately.
Another optimization would be to not refit patches that were already matched with high
confidence, the patch involved would then only need to be transformed to maintain the
relative positioning with respect to the previous patch.

The process of closing a loop has so far been described as a single-agent technique. In the
next section we discuss island-merging, which could be considered the multi-agent version
of loop-closing. The similarity lies in the fact that island-merging also aims to exploit the
information that can be deduced from observing a particular known landmark again. The
key difference is that island-merging is triggered when the observations are made by multiple

robots.

5.4.4 Island Merging

Island-merging is a multi-agent technique that merges two disconnected components in the
graph, the islands. The information that steers the merging process is the set of landmarks
that have been observed on both islands. Since island-merging has a sense of direction, we
will distinguish between the source island Π̂S and the target island Π̂T in the sense that we
will merge the source island into the target island in order to acquire the merged island Π̂M .
Note also that we use the “̂” to distinguish the notations for local sub-maps and complete
Manifolds. Given Π̂S and Π̂T , let ΛS and ΛT denote the landmarks observed on the each
island accordingly. Then the set of landmarks that will be used by island-merging are those
landmarks occurring in both sets: ΛM = ΛS ∩ ΛT . Since landmark position estimates
typically come without a rotation, at least two landmarks are needed in this set to be able
to also determine the relative rotation of the islands.

Given the relative positioning ∆Θ of the two islands, the algorithm starts by putting the
islands roughly in alignment. This is done by treating the source island Π̂S as a rigid body

70 Chapter 5. Our Approach: ManifoldSLAM

(a) Northern island. (b) Eastern island.

Figure 5.8: Two islands acquired in the Hotel arena.

which is transformed as a whole by ∆Θ. Then the actual merging of the islands is performed.
This part of the process can be seen as if we are stitching the two islands together. For
every landmark λi ∈ ΛM the corresponding patches πS

i ∈ Π̂S and πT
i ∈ Π̂T are obtained.

Using the scan matcher each source patch πS
i is matched with the local sub-map Π∗

i of the
respective target patch πT

i . Then a new relation φ∗ =
(
πS

i , πT
i ,∆θi,Σi

)
is constructed that

stores the Gaussian distribution N(∆θi,Σi) as obtained from the scan matcher. At this
point the two islands have been connected and the robots can continue their localization
and mapping on the merged island Π̂M .

(a) Overlaid based on known starting poses
in the upper-right end of the corridor.

(b) After rigid-body alignment the islands
are connected by newly constructed edges.

Figure 5.9: Island merging.

However, we can further exploit the inherent information in duplicate landmark detec-
tions, especially since we already have an algorithm in place to refit the Manifold (refer to
Algorithm 5.4). Instead of using just a single relation as the starting point for refitting the
Manifold, we can now use all the newly inserted relations as the initial seed. The frontier of
the breadth-first refitting is then initialized with all the patches that were used to connect
the two islands. From there loop-closing proceeds as described in the previous section. The
greater the number of landmarks that are used during island-merging and the more wide-
spread their positions, the more accurate the merged map will be after refitting. This is
because then the path-lengths over which the error can accumulate during the refitting are
likely to be much shorter.

Like loop-closing, island merging is a costly process. After the initial alignment and
connection, a refitting procedure is executed which iterates through the entire Manifold.

5.5. Multi Agent Support 71

Data: the source island Π̂S and target island Π̂T that will be merged
Result: the merged islands Π̂M

ΛS = all landmarks on Π̂S ;1

ΛT = all landmarks on Π̂T ;2

ΛM = ΛS ∩ ΛT ;3

ǒS = average position of λi for all λi ∈ ΛS ∩ ΛM ;4

ǒT = average position of λi for all λi ∈ ΛT ∩ ΛM ;5

V S = set of all vectors vS
i from ǒS to all λi ∈ ΛS ∩ ΛM ;6

V T = set of all vectors vT
i from ǒT to all λi ∈ ΛT ∩ ΛM ;7

ρ̌ = average ρi for all ρi = atan2
(
vS

i , vT
i

)
for vS

i ∈ V S and vT
i ∈ V T ;8

Π̂S′
= Π̂S rotated over ρ̌;9

recompute ǒS based on the rotated island Π̂S′
;10

τ̌ = ǒT − ǒS ;11

Π̂S′′
= Π̂S′

translated by τ̌ ;12

Π̂M = Π̂S′′ ∪ Π̂T ;13

Πfrontier = {};14

for each landmark λi ∈ ΛM do15

πS
i = the corresponding patch ∈ Π̂S ;16

πT
i = the corresponding patch ∈ Π̂T ;17

Π∗
i = GetSubMap

(
πT

i

)
;18

N (∆θi,Σi) = WeightedScanMatcher
(
Π∗

i , π
S
i

)
;19

φ∗ =
(
πS

i , πT
i ,∆θi,Σi

)
;20

Π̂M = Π̂M ∪ {φ∗};21

Πfrontier = Πfrontier ∪ {πS
i , πT

i };22

end23

Π̂M = RefitManifold
(
Π̂M ,Πfrontier

)
;24

Algorithm 5.5: Island merging

However, usually there will only be as many islands as there are robots so merges occur at
most (’the-number-of-robots’ - 1) times. This mirrors Howard’s findings from [27].

5.5 Multi Agent Support

As indicated earlier, the Manifold was explicitly designed to be able to support a team of
robots. Especially since our Behavior Control is mostly reactive and coordinates a single
agent as opposed to being greedy for exploration and coordinating multiple agents, we had a
lot to gain by deploying larger teams of robots. For this purpose we have adopted a strategy
that maximizes the Manifold’s support for multiple agents.

As described in Chapter 2, we did runs of 30 minutes during the competition, of which
20 minutes were allotted for the robots to explore the virtual rescue arena, and 10 minutes

72 Chapter 5. Our Approach: ManifoldSLAM

Figure 5.10: Merged islands after refitting.

were allowed to be used to generate any deliverables. Deliverables included information like
the map, the victims report, and single-shot RFID report. The rule that we made use of is
that during the time allotted for deliverables, we were still allowed to have processes running
as long as they run autonomously and only involve post-processing in order to generate the
required deliverables. It should be noted that we were allowed “a single interaction” with
our system in order to inform the software that the running time was over and that it should
switch to getting the deliverables.

There are several ways in which a team of agents can share information. Some approaches
adopt a leadership strategy where one leading agent operates as the information aggregator
and supplier. The approach that we followed is the one where a separate non-agent process
is run where information is accumulated and made available. We refer to this process as the
map-server where each agent connects to as a client, see also Chapter 6. The advantage is
that the map-server relieves the agents of work as all heavy processing like loop-closing and
island-merging only need to be done once on the central process, after which the changes
can be communicated back to the agents. The disadvantage is that the map-server could
become a limiting bottleneck of the system and determine the maximum capacity of the
system as a whole.

Based on our client-server process model, our strategy to maximize multi agent support
involved the following design decisions:

1. Every agent maintains its own Manifold and performs localization and mapping locally.

2. Any extension to the local Manifold is forwarded to the central map-server.

3. The loop-closing and island-merging processes are only executed on the map-server,
where they are decomposed into a part which operates during the run and a part which
generates deliverables.

5.5. Multi Agent Support 73

The first two items are straightforward. The main process run by every agent is that
of incremental localization and mapping where the performance is almost exclusively de-
termined by scan matching, refer also to Section 5.4. Whenever the local Manifold gets
extended, the update is forwarded to the central map-server as well. Since the agent al-
ready did the required processing for its own map, the map-server only needs to append the
incoming patches and relations to the central Manifold, which takes almost no time.

The third item is of main interest as it is the one that concerns the potential bottle-
neck. By centralizing all loop-closing and island-merging processes we have reduced the
computational load on the agents and are therefore able to run more agents on the same
hardware. In addition, to improve the map-servers capacity, we have decomposed these
processes which means that we can postpone most of the work until delivery time. The
decomposition follows from the realization that refitting the Manifold mostly serves to im-
prove the global accuracy. In case of loop-closing, after the relation that closes the loop has
been added, local accuracy is already near optimal. The same holds true for two islands
that have been aligned and connected. The notion of local accuracy refers to the fact that
the probability distributions that are stored on the relations store the fit between the two
related patches and its quality. It is true that during the refitting of the Manifold, better
fits are usually found, but mostly these improvements are only marginal when compared to
original fit. More concretely, this observation has led us to the design where the map-server
runs Algorithms 5.3 (loop-closing) and 5.5 (island-merging) during running time but then
without the refitting part. The execution of Algorithm 5.4 (refitting) is postponed until
after the active run, refer to Section 5.4 for details about these algorithms.

There is one consequence to be aware of when refitting is postponed as described. Since
global accuracy is only pursued after the active run, the coordinate transformation operators
⊕ and 	 that use the global frame as mediator should be handled with care. We introduce
a new operator � which we define as the coordinate transformation through a relation, i.e.
without the global frame as intermediate. Instead of

rb = ra ⊕ θa 	 θb

the pose rb relative to patch πb from the pose ra relative to patch πa is

rb = ra �∆θab

where ∆θab is obtained from the relation φab = (πa, πb,∆θab,Σab) that relates the patches
πa and πb. When algorithms make use of the Manifold online, this � operator is used for
their coordinate transformation as they then rely on the local accuracy which is maintained
online.

The map-server’s capacity, i.e. the number of simultaneous agents it can handle, is greatly

74 Chapter 5. Our Approach: ManifoldSLAM

improved when all refitting operations are postponed. In fact, loop-closing is reduced to a
single scan matching operation followed by the insertion of one relation. Island-merging is
reduced to a single scan matching operation and link insertion for every pair of landmark
observations from both islands. A logical but relatively minor further improvement might be
to move the responsibility for loop-closing to the agent to further decentralize the processing
load.

5.6 Visualization

Highly detailed visualizations of the Manifold map can be acquired due to the amount of
information that is stored per patch. The range scans are easily rendered as point clouds.
By ray-casting the individual scan beams from the patch origins, the more informative
occupancy grids can be derived. Rendering visualizations of the map can be done online
as well as offline, although we preferred offline rendering in order to improve the online
performance of our hardware.

(a) Part of a simulated arena.

(b) The corresponding visualization of the acquired map.

Figure 5.11: The highly detailed occupancy grid visualization preserves a lot of information.
Note that the robot’s laser range scanner is mounted at a height such that it scans below
the car’s chassis and only observes the wheels.

The patches lend themselves reasonably well for online rendering as they are updated

5.6. Visualization 75

only rarely. While feature-based SLAM re-estimate the landmark positions at every time
step, ManifoldSLAM only moves patches during the refitting of the Manifold after loop-
closing and island-merging operations. Refitting operations occur much less frequently than
the Kalman filter updates and in Section 5.5 we even presented a strategy were refitting
only occurs offline.

Offline rendering of the full map can be as easy as a single pass over all the patches. It is
possible to render any desired subset of the graph, but an interesting case is to consider the
situation where the Manifold still holds several disconnected islands. They could be rendered
separately, but their disconnectedness can also be used for other purposes. Consider for
example a robot that gets lost, falls down stairs and lands upside down or in any other
situation where the robot is useless at some point. In some of those scenarios, the island
that was developed by the robot becomes of low informative quality and is best kept from the
other islands and from the map in general. While rendering the Manifold, this can be taken
into account and certain islands can be flagged by some means such that they are ignored.
In other map representations it is not always possible to adequately deal with such errors
that were introduced by a robot whose failure was detected only later. With the Manifold
representation, however, there are possibilities to back-track and degrade gracefully.

Chapter 6

Implementation

6.1 Overview

This chapter describes the implementation of the complete system that was used during the
RoboCup Rescue Virtual Robots competition at the RoboCup World Championships 2006
in Bremen, Germany. It was designed and implemented in C++ without directly reusing
existing SLAM or other robotics software.

As Chapter 5 states, the only parts of the system that we did not invent ourselves are
the scan matcher and the general underlying idea for our conception of ManifoldSLAM. The
scan matcher was originally implemented in MATLABTM ∗ scripts, which we ported to C++.
The only other supporting library used was the Qt Toolkit, a cross-platform Graphical User
Interface (GUI) library. This library is described in more detail in Section 6.4.1.

The system is designed in an Object Oriented way [21], such that swapping implemen-
tations at different levels is very straightforward. We apply this pattern throughout our
system, for example in the extensible simulator interface (see Section 6.3.1). In general, our
system is designed to be extensible at all levels, starting the the very low level of simulator
input and output, up to high levels such as behavioral control and SLAM. This flexibility is
very important and valuable during development as we are able to test and contrast different
implementations easily. It additionally allows for a much simplified design since no special
cases have to be made during processing.

This chapter first discusses the specific details of the USARSim simulator. This is fol-
lowed by a discussion of the architecture of the complete system by highlighting several
key factors in its design. Then some interesting implementation details are described. The
SLAM and Control modules are discussed in the end.

∗see http://www.mathworks.com

77

78 Chapter 6. Implementation

6.2 USARSim Technical Details

In order to implement a suitable client program to interact with the USARSim server, we
have to understand its communication protocol and organization. Our robot control software
has to connect to the simulator, sent commands and receive sensor data.

In addition to the text-based protocol used in USARSim, we present all simulated robot
models as well as the general process of connecting to, communicating with, and disconnect-
ing from the USARSim system.

6.2.1 Protocol

The text-based protocol employed in the simulator consists of different message types and
data segments (see also [65] for the complete manual). The general format of one message,
which is terminated by a return and a line-feed character, is:

TYPE {segment1} {segment1}...

Possible messages types are described below. Each segment consists of one or more
space-separated strings, some are names, some are values. Some examples are:

• {Type RangeSensor} - Type is the name, RangeSensor the value.

• {Location 3.212,2.5331,1.221} - Location is the name, the three floating point
numbers are the values.

• {Name F1 Range 4.2134} - The name of the specific sonar is F1, and its measured
range is 4.2134.

• {Name Camera Location 0.2,0.0,0.3 Orientation 0.0,0.0,0.0 Mount CameraTilt}
- The Camera is mounted on the CameraTilt object, 20cm in front and 30cm above.

It depends much on the message type what kind of data segments will be included.
Possible message types are:

• INIT: A command which initializes the connection and the kind of robot to be simu-
lated, along with the starting location.

• DRIVE: A command to set rotational speeds for the two motors of the differential
drive, and to toggle the lights on and off.

• SET: A multi-purpose command to manipulate actuators, or interact with sensors
(like resetting odometry).

• CAMERA: A command to control the camera’s rotation and zoom settings.

6.2. USARSim Technical Details 79

• MISPKG: A command to control one Mission Packages, which is a series of connected
joints (like an arm). Instead of using SET on each joint, this command allows to
specific the pose of the last joint, and the poses of all other connected joints is computed
automatically.

• GETGEO: Requests a GEO message for a certain part. See GEO below.

• GETCONF: Requests a CONF message for a certain sensor.

• STA: A status message with information about the simulator and the robot itself, like
the power level.

• MIS: A general status message of the Mission Packages, which is a series of connected
joints (like an arm). See MISPKG above.

• SEN: A message which contains sensor data.

• GEO: A message which describes the geometric properties of sensors and other fixtures
on the robot, with translational and rotational offsets, as well as information which
objects are attached where.

• CONF: A message which contains configuration values for different sensors, like the
field of view of a laser range scanner.

• RES: A general response to SET commands.

See Wang [65] for more information.

6.2.2 Robots, Sensors and Actuators

USARSim currently supports ten different robot designs.

Figure 6.1 shows all available robot designs, which are described in more detail in the
following list. Depending on its size, each platform has the capability to carry a specified
amount of sensors.

1. Activ Media Robotics’ Pioneer P2AT is a compact platform with a 50 cm by 50
cm footprint. It has a high sensor load capability.

2. Activ Media Robotics’ Pioneer P2DX has a small footprint of 44 cm by 38 cm.
It’s two wheel setup makes it unstable when navigating over uneven terrain. It has a
medium sensor load capability.

3. iRobot’s ATRV-Jr is one of the biggest platforms with a footprint of 55 cm by 77
cm. It is very mobile and through its size has a very high sensor load capability.

80 Chapter 6. Implementation

normalized speed in which 100 means maximum translate speed or rotation speed. For

details about the DRIVE command, please go back to section 7.4.

10.1 P2AT

10.1.1 Introduction

The P2AT is the 4-wheel drive all-terrain pioneer robot from ActivMedia Robotics,

LLC. For more information please visit ActivMedia Robotics’ website:

http://www.activrobots.com.

In summary, P2AT has:

! Four wheels

! Skid-steer

! Size: 50 cm x 49 cm x 26 cm

! Wheel diameter: 22 cm

! Weight: 14 kg

! Payload: 40 kg

a) Real P2AT b) Simulated P2AT

Figure 12 P2AT robot

By default, in our simulation it’s equipped with

! PTZ camera

! Front sonar ring

! Rear sonar ring

! Sick Laser Scanner LMS200

! INU

! Odometry sensor

! RFID sensor

! RFID victim sensor

The specification is:

Dimension: Length x Width x Height = 50 cm x 49 cm x 26 cm

Wheel: Diameter x Width = 22 cm x 7.5 cm

Sonars' positions are:

 53

(a) P2AT

direction parameters are in Unreal Unit.

Weight The weight of the chassis in kg. Similar to sensor’s

weight, it’s just an attribute for description purposes.

Payload The robot’s payload capability in kg.

batteryLife The life of the battery in seconds.

Sensors The sensors mounted on the robot. The structure of

sensor mounting is:

ItemClass The sensor class or the type of the sensor.

ItemName The name assigned to the sensor

Parent The part the sensor will mount on.

Position The mounting position relative to

parent’s geometric center.

Direction The direction the sensor is facing relative

to its parent.
Cameras The cameras mounted on the robot. It uses the same

structure of the sensor. The first camera is the main

camera. And you use The CAMERA command to

control it. For other cameras, please use SET and

MISPKG command to control its FOV and direction.

Note: When you control the camera, make sure bAbsoluteCamera is set to the correct

value.

10.2 P2DX

10.2.1 Introduction

The P2DX is the 2-wheel drive pioneer robot from ActivMedia Robotics, LLC. For

more information please visit ActivMedia Robotics’ website:

http://www.activrobots.com.

a) Real P2DX b) Simulated P2DX

Figure 13 P2DX robot

 55

(b) P2DX

In our simulation, it’s equipped with

! PTZ camera

! 17 sonars

! Sick Laser Scanner LMS200

a) Real ATRVJr b) Simulated ATRVJr

Figure 14 ATRVJr robot

The specification is:

Dimension: Length x Width x Height = 77.5 cm x 62.2 cm x 55 cm

Wheel: Diameter x Width = 33 cm x 10 cm (guessed data)

Sonars' position are:

{ X(mm), Y(mm), Theta(deg) } = { 334.95, -104.39, -30 },

{ 340.41, -49.91, -15 },

{ 347.06, 0, 0 },

{ 340.41, 49.91, 15 },

{ 334.95, 104.39, 30 },

{ 230.23, 175, 45 },

{ 172.49, 178.6, 60 },

{ 117.2, 181.1, 75 },

{ 72.26, 181.1, 90 },

{ -295.17, 181.1, 90 }, (guessed data)

{ -347.06, 150.36, 180 }, (guessed data)

{ -347.06, -150.36, 180 }, (guessed data)

{ -295.17, -181.1, -90 }, (guessed data)

{ 72.26, -181.1, -90 },

{ 117.2, -181.1, -75 },

{ 172.49, -178.6, -60 },

{ 230.23, -175, -45 }

Maximum translate speed: 1000 mm/s

Maximum rotating Speed: 120 deg/s

 57

(c) ATRV-Jr

10.3.2 Configure it

It’s the same as P2AT.

10.4 PER (Rover)

10.4.1 Introduction

The PER is the Personal Exploration Rover built by CMU for education and

demonstration purpose. The robot uses a rocker-bogie suspension system to adapt to

terrain. It has a pan-tilt camera mounted on it. For details about PER please visits the

PER home page: http://www-2.cs.cmu.edu/~personalrover/PER/

In summary, PER has:

! Six wheels. Four drive wheels and two omnidirectional wheels.

! Double Ackerman steering

! Rocker-Bogie suspension system

! Differential body pose adjusting

! A pan-tilt camera that can take a 360 degree panorama

In USARSim, we use classname USARBot.Rover to represent PER.

a) Real PER b) Simulated PER

Figure 15 PER robot

10.4.2 Configure it

It’s the same as P2AT.

10.5 Corky

10.5.1 Introduction

Corky is the robot built by CMU USAR term. Its features are:

! Two wheels.

! Differential steering

! A pan-tilt camera

! 5 range sensors

 58

(d) PER

In USARSim, an additional headlight is added to the robot. . It’s designed for this

specified robot. To archive speed control, PID controllers are built for both wheels of

Corky. Please note the model is obsolete.

In USARSim, we use the classname USARBot.USARBc to represent Corky.

10.5.2 Configure it

The configuration of Corky in USARBot.ini file looks like:

a) Real corky b) Simulated corky

Figure 16 Corcy robot

[USARBot.USARBc]

msgTimer=0.200000

bSpeedControl=True

bAbsoluteCamera=False

Sensors=(SensorClass=class'USARBot.RangeSensor',SenName="Front",Position=(

X=-80,Y=0,Z=50),Direction=(Pitch=0,Yaw=32768,Roll=0))

…

Sensors=(SensorClass=class'USARBot.RangeSensor',SenName="Right",Position=(

X=0,Y=-40,Z=50),Direction=(Pitch=0,Yaw=-16384,Roll=0))

Kp=0.2

Ki=0.8

Kd=0.0

MinOut=-20.0

MaxOut=20.0

Where:

msgTimer The time interval between sending two messages.

bSpeedControl Indicates whether Corky uses speed control. Set to false,

the value in the control command is interoperated as

torque. Otherwise, the value is treated as speed.

bAbsoluteCamera Indicates whether the camera control uses absolute value

or not. Set to false, the value in the control command is

interoperated as absolute value.

Sensors The sensor mounted on the robot. The structure of

sensor mounting is:

SensorClass The sensor class or the type of the

sensor.

 59

(e) Corky

SenName The name assigned to the sensor

Position The mounting position relative to the

geometric center of the robot.

Direction The direction the sensor is facing

relative to the robot.
Kp The proportional parameter of the PID control. Both

wheels use the same parameter.

Ki The integral parameter of the PID control.

Kd The derivative parameter of the PID control.

MinOut The minimum output torque of the motor engine.

MaxOut The maximum output torque of the motor engine.

10.6 Four-wheeled Car

10.6.1 Introduction

Very similar to Corky except it’s a four-wheeled vehicle. It also has a camera, a

headlight, and four range sensors mounted on the front, back and left, right side. The

model is obsolete.

In USARSim, we use the classname USARBot.USARCar to represent the car.

Figure 17 Simulated Four-wheeled Car

10.6.2 Configure it

It’s the same as Corky.

10.7 Papagoose

10.7.1 Introduction

The Papagoose (as shown in Figure 18) is a rescue robot that was built at the

International University Bremen (http://robotics.iu-bremen.de). It is a six wheel

differential drive and is equipped with the following sensors:

! Pan tilt camera

! Odometry

! INU

 60

(f) Four-Wheeled
Car

! 6 sonar sensors (3 on the front and 3 on the back)

! a range scanner on the front

! RFID sensor

! RFID victim sensor

Figure 18: Papagoose robot

10.7.2 Configure it

Please see the section on the P2AT.

10.8 Tarantula

10.8.1 Introduction

The Tarantula is a toy-based robot which was first turned into a robot platform

named "Lurker" by the team “Rescue Robots Freiburg”. They used the modified version

in the Rescue Robot League during the RoboCup 2005 competition. The Tarantula

model, which is now part of the USARSim package, was originally developed at the

University of Freiburg and has been further improved and merged into USARSim by the

University of Pittsburgh.

Figure 19 : Tarantula Model in USARSim

 61

(g) Papagoose

! 6 sonar sensors (3 on the front and 3 on the back)

! a range scanner on the front

! RFID sensor

! RFID victim sensor

Figure 18: Papagoose robot

10.7.2 Configure it

Please see the section on the P2AT.

10.8 Tarantula

10.8.1 Introduction

The Tarantula is a toy-based robot which was first turned into a robot platform

named "Lurker" by the team “Rescue Robots Freiburg”. They used the modified version

in the Rescue Robot League during the RoboCup 2005 competition. The Tarantula

model, which is now part of the USARSim package, was originally developed at the

University of Freiburg and has been further improved and merged into USARSim by the

University of Pittsburgh.

Figure 19 : Tarantula Model in USARSim

 61

(h) Tarantula

Figure 20: Zerg model

10.9.2 Configuration

 See P2AT.

10.10 Talon

10.10.1Introduction

The Talon is a lightweight tracked vehicle built by Foster-Miller (www.foster-

miller.com) for missions ranging from reconnaissance and weapons delivery to rescue. In

summary, a Talon has:

! Two tracks

! One arm with two joints

! Size: 86.4cm x 57.3cm x 27.9cm

! Weight: 34 kg

! Payload: 45 kg

In USARSim, the Talon is equipped with

! 4 fixed color cameras

! One gripper with two fingers

! One odometry sensor

! One INU sensor

 63

(i) Zerg

a) Real Talon b) Simulated Talon

Figure 21 Talon Robot

10.10.2 Configure it

It’s the same as P2AT except that a new variable “bMultiView” is introduced to

indicate whether we use multiple views for the robot. By default, bMultiView is set to

true. The multiple views are shown in Figure 22. From left to right, top to bottom, the

views are the gripper view, upper arm view, chassis front view, and chassis rear view.

Figure 22 Talon Multiple Views

11 Controller

11.1 MOAST

A description of the low-level connection (the architectural servo and prim levels)

from MOAST to USARSim is provided here. For a more complete description of the

MOAST system, please refer to the MOAST manual (http://moast.sourceforge.net/).

A description of how to install and bring a robot into the environment is presented

in Section 4.2.2. It is assumed that you have successfully installed MOAST, started the

Unreal Server, and have run the “run” script (located in the bin directory) with SECT,

VEH, and AM set to ‘no’ and PRIM and USARSIM set to ‘yes’.

 64

(j) Talon

Figure 6.1: All simulated robot designs in USARSim.

4. Carnegie Mellon University’s Personal Exploration Rover (PER) is a small
robot without many distinguishing details. It also seems to have an unstable wheel
configuration, at least in the simulated world. Also, it has a small sensor load capa-
bility.

5. Carnegie Mellon University’s Corky has two wheels with a counter weight to
keep the platform level. This platform is obsolete.

6. The generic four-wheeled car is a model of a remote controlled car. It has a very
small sensor load capability. This platform is obsolete as well.

7. International University Bremen’s Papagoose is a rather large platform with six
wheels. However, the above Pioneer robots show superior stability on uneven terrain.
It also has a high sensor load capability.

8. University of Freiburg’s Tarantula (toy-based) is a very small robot, and its
most distinguishing features are its four flippers. They also serve as the platforms
main locomotion. Its maximum sensor load is small.

9. University of Freiburg’s Zerg is the smallest robot platform in this list. It is a very
small four-wheeled robot with space for very few sensors. Its steering is hard because
the physics simulation makes it flip very easily with any reasonable acceleration.

10. Foster-Miller Talon is the only real tracked platform in this list. It has a very
complex gripper arm attached, and includes multiple cameras. It is the largest robot
with a footprint of 86 cm by 57 cm. It has a very high sensor load capability.

6.2. USARSim Technical Details 81

An almost complete list of sensors is implemented with reasonably realistic characteris-
tics.

1. The Sonar Sensor is a generic unidirectional range finder. It is modeled after the
general concept of a sonar distance sensor, but it neglects real-world constraints such
as incidence angle or surface texture which usually impacts the real sonar’s accuracy
significantly. The simulator implementation simply casts a ray in the world model and
reports the distance to the first object hit by that ray if it is below some distance thresh-
old. The additive noise is uniform: rmeasured = rreal + rreal ∗ random(−noise, noise).

2. The IR Distance Sensor is very similar to the sonar sensor, but it is based on the
infrared distance sensor. Its default maximum measurement threshold is therefore
much smaller, and its ray may pass through transparent objects. The noise model is
the same as above.

3. The Laser Range Scanner models real-world range scanners such as the SICK family
of sensors. It is basically a rotating sonar sensors (not IR sensors, counter-intuitively)
such that its rays sweep over one horizontal line. All other previous comments apply.

4. The Tilting Laser Range Scanner is simply a Laser Range Scanner which also
tilts and produces a depth image. Since each pixel means one ray-casting operation,
only small resolutions are feasible with the current implementation. This sensor is
motivated by recent sensor designs such as the Swiss Ranger 3D camera.

5. The Camera is a special sensor as it will provide a rendering of the world from its
specific point of view. That is why it cannot be accessed through the same interface
as all other sensors, but needs a separate Unreal Tournament ClientTM instance and
a special “camera server” to capture the client’s display, encode it as a JPEG picture,
for example, and transmit it to the robot control program. Otherwise, it works just
like a real world camera would.

6. The RFID Sensor is a rather unusual sensor with two functions. First, it is used to
assess the quality of produced maps by allowing to detect so-called “single-shot” RFID
tags with absolute accuracy, as described in Section 2.1.2. That way, the smaller the
error of localization of the robot, the smaller the error of the estimated location of
these tags. Also, it can detect RFID tags released by the robot itself, but with limited
accuracy and limited maximum range.

7. The Victim Sensor is meant to allow victim identification and localization without
a camera. It was included due to above mentioned shortcomings of the camera im-
plementation. It is very similar to the RFID sensor, but has a field of view which
is similar to that of a camera. Also, with decreasing distance, more information is

82 Chapter 6. Implementation

available for a victim. There are also distinct false positives, which are identified as
such with decreasing distance as well.

8. The Inertial Navigational Unit (Gyro) measures rotations around each of the
three axes, just like its real counterpart.

9. The Odometer keeps track of planar motion by simulating motor encoders and count-
ing wheel rotations. According to the wheel configuration, measurements are combined
into motion in all three directions.

The simulator also implements a small range of actuators.

1. The Motor has the obvious task to control the wheels, and therefore the movement
of the robot.

2. Gripper with Arm: A specific device is implemented to control the arm on the
Talon robot. Each joint and the opening angle of the gripper claw can be controlled
separately.

3. A Pan-Tilt-Zoom Camera Mount can control the direction of a mounted camera,
as well as the zoom level of the same camera. Each of these variables can be controlled
separately.

4. The RFID Releaser is able to place new RFID tags in the environment at the robot’s
position.

6.2.3 Organization

Figure 6.2 shows how processes are distributed when running USARSim. There are two
main components: The simulator server and the clients which control the simulated robots.

Each client process controls exactly one robot in the simulated world. Once a new client
connects to the server, a new robot controlled by that client is inserted into the world. Via
this network connection, all important data is communicated to and from the simulator.
Sensor values and manipulator commands are exchanged with the server via the previously
introduced protocol.

As mentioned before, the Camera sensor needs special attention. A separate Unreal
TournamentTM (UT) client process needs to be started. This game client will render the
picture as seen from the camera’s point of view. It has direct access to the geometry of the
world, robot models and their position through UTs special online game protocols. Since
the game is focused on online use, it is a very efficient way to distribute the simulation
processing and rendering to different computers. However, the game client only renders the

6.3. Architecture 83

Figure 6.2: Organization of the USARSim processes.

scene to the main screen. This means another application has to read the image directly
from the graphics card memory (achieved via a Direct3DTM hack), compress it for example
into a JPEG image, and send it on to the correct client.

Once the client disconnects from the simulator, the robot is removed from the world.

6.3 Architecture

There are two major parts to the system architecture: The Agent and the Server. The
Agent represents one robot with its sensors and actuators in the USARSim simulator, which
is described in Section 6.3.1. The Server gathers mapping information from all connected
agents and automatically merges it into one map. It is described in Section 6.3.2.

This decentralized setup allows us to spread the computations across many machines and
still run a relatively large team of agents. Only one server instance is required, which will
record the pre-processed mapping information from the agents. It will only merge everything
into one map once it is instructed to do so, hence it does not require much processing before
that point in time.

6.3.1 Agent Organization

The Agent process encapsulates everything one robot in the simulator represents. It hosts
the network connection to the simulator, reads the sensor data sent by the simulator, and
controls the simulated robot.

84 Chapter 6. Implementation

One agent consists of multiple connected sensors and some actuators. This corresponds
exactly to the organization of the simulated robot in USARSim. The agent also holds the
SLAM module and a Behavior module. These will be discussed in greater detail in the next
section.

The main function of the agent is an organizational one. It keeps track of all connected
sensors and actuators. In addition, it knows the general data format in which the USAR-
Sim server sends sensor information. The information packets are read from the network
connection as fast as possible, parsed in a generic format and passed on to the right sensor
implementation, identified by type and name. That sensor can interpret the data, which
depends on the type of sensor.

The agent also provides a method to send commands to the simulator server via its
network connection. This function is used by the actuators which send specially formatted
requests to the server, for example to drive forward.

Implemented sensors are (also illustrated in Figure 6.3):

• Sonar

• Laser Range Scanner

• Odometry / INU (position and orientation)

• RFID

• VictimRFID

One agent is configured in a subclass. Each uniquely configured robot class on the
simulation server will be represented by exactly one Agent subclass. This subclass will
instantiate the right kinds of sensors and actuators, as well as the SLAM and Behavior
modules. Our current implementation only consists of one such configuration as we used a
completely homogeneous team during the RoboCup competitions.

Originally, we evaluated the usage of Player† for this exact purpose, but it proved too
cumbersome to add new devices in the Player framework. As there are some special devices
used in USARSim for scoring (like the RFID sensor), we needed a framework which easily
support new types of sensor data. We needed a specially designed and flexible framework
to implement all sensors and actuators for use in the agent.

Figure 6.3 shows the final class hierarchy and associations for our agent and related
packages. Sensors are divided into two classes: Those from which we need to process every
single observation and those from which we only need the latest reading. The former is
represented as a MultiStateSensor, such as the laser range scanner, the latter is called a

†see http://playerstage.sf.net

6.3. Architecture 85

Map

Sensors

Actuators

Agent
Sensors
Actuators
connect()
start()

Sensor
Agent
Name
Type
accept(Data)

1

*

MultiStateSensor
Observations
T getOldestData()
T getNewestData()
clearData()
bool hasData()

T

Actuator
Agent
send(String)

1

*

LaserRangeScannerSensor
LRSData

INUSensor
INUData

OdometrySensor
OdoData

RFIDSensor
RFIDData

VictimRFIDSensor
VRFIDData

TouchSensor
TData

SonarSensor
SData

PositionActuator

RFIDReleaserActuator

SingleStateSensor
-
T getData()

T

Motion

SLAM

SlamStrategy

SimpleSlam

ManifoldSlam

1

Motion

Behavior

1

Manifold

Graph
1

Figure 6.3: The UML diagram of the Agent, Sensor and Actuator hierarchies with imple-
menting subclasses. Also shows the SLAM and Motion modules.

SingleStateSensor. All sensors are implemented as templates (parameter types are depicted
as dashed boxes in the UML diagram), which means that we can later decide which exact
type of data they will provide. This gives us great flexibility in the organization of sensor
data structures, as well as type safety. Polymorphism would not fit this specific need well
as it assumes similarity between derived classes, while sensor data structures may radically
differ between sensors.

The Motion, SLAM, and Map packages, which are only briefly summarized in Figure
6.3, are described in more detail later in this chapter in Section 6.5 and 6.6.

Actuators are another package represented in Figure 6.3. Currently, only two actuators
are implemented: One to control the robot’s movement, and one to release RFID tags at the
robot’s location. Since actuators in general only share the use of the agent object to send
commands encoded as strings to the server, all actuators are highly specialized and expose

86 Chapter 6. Implementation

methods that only relate to their specific function. For example, the PositionActuator only
exposes one method to manipulate the differential drive of the robot: void drive(float

translationalSpeed, float rotationalSpeed). Other possible actuators, like one to
operate a pan-tilt-zoom camera unit, would expose different functions.

The main advantage in this encapsulating design is that the complete set of knowledge
needed to operate and use one sensor or actuator is contained in one specific class. Other
approaches might share such responsibility between different entities in the system, which
would slow down development and impair maintainability.

6.3.2 Mapping Server Organization

The Server represents shared or aggregated knowledge between all agents. Initially, it was
intended that the agents organize decentrally. However, due to networking and portability
issues with the implementation of multicast messaging, the Server was implemented to
provide the same or similar facilities. Broadcast messaging could not be used since multiple
agent instances were to be used on one machine with one IP address.

In its current implementation, the server stores and later post-processes mapping infor-
mation gathered by the individual agents. It can be extended to provide communication
between agents, or a global planning module. All these concerns were taken into account
while designing the server.

Figure 6.4 shows an UML diagram of the classes involved in the server. One Server object
consists of multiple connections to one agent each. Here, our specialized cross-platform high-
performance networking abstraction was used, which is described in Section 6.4.2. An agent
connection also hosts a SLAM module, through which all mapping information is forwarded
from the agent. This information has already been pre-processed by the sending agent
and can be directly inserted into the combined map in the Server object. This process is
very inexpensive, and a server was successfully run with eight connected agents, while one
physical machine was only able to host at most two agents.

After agents finish sending mapping information, the server uses its Map module to
merge the still separated individual maps from each agent. While this is implemented as an
offline procedure, it can be an online one. Such an online map merging is detailed in the
description of ManifoldSLAM in Chapter 5.

6.4 Details

There are some noteworthy implementation details that are described in this section. Firstly,
the cross-platform API Qt is described, followed by our custom networking implementation.

6.4. Details 87

Server
Agents
saveMap()

Map

Manifold

Graph

1

BaseServer
Connections
Port
listen()

SLAM

SlamStrategy

SimpleSlam

1Agent
Connection
Server
receive()

ManifoldSlam

1

*

Figure 6.4: The UML diagram of the Server hierarchy with implementing subclasses.

6.4.1 Qt Cross-Platform API

The Qt Toolkit is very popular in the Linux community. The widely known KDE (K Desktop
Environment) window manager is based on this library. Since version four, it is also freely
available for the Windows and Mac OS X platforms for non-commercial use. While it
is mainly a windowing and graphical toolkit, it provides many additional functions that
are commonly needed in modern desktop applications. It supports cross-platform multi-
threading, many collection classes similar to the Standard Template Library (STL), and an
extensible object serialization mechanism to send objects over network connections or save
them to a file.

We extensively used this API to develop the required functionality quickly. As our com-
puters had various different operating systems installed, it made development very speedy
since we did not have to worry about using the right platform-dependent APIs or even
writing abstractions ourselves.

As our application is very resource intensive, we required multi-threading support and

88 Chapter 6. Implementation

thus used Qt’s thread and thread synchronization facilities in many places. Qt’s threading
model is inspired by the Java programming language and works by subclassing the abstract
QThread class. Our applications require up to around ten threads in some cases, which
makes this a very important feature of Qt.

Object serialization is also an important feature Qt provides. Such facilities allow us to
use the C++ stream operators (“<<” and “>>”) to send data contained in objects over
the network connections or store it in binary format. This feature is used extensively to
assemble data containing mapping information that is to be sent to the server.

6.4.2 Networking

While Qt does provide some cross-platform network socket classes, they were too heavy-
weight and too dependent on Qt’s own event system. Since Qt is usually used within
desktop applications, their networking support is adequate for that area of application, but
not for high speed data processing as we require.

Therefore, we implemented our very own cross-platform high-performance network sock-
ets. Using a common class interface, two versions supporting MS Windows (using the
WinSock API) and Unix-like (using the Berkeley Socket API) operating systems respec-
tively were developed. These classes wrapped the low level platform-specific code. Other
features, like synchronous communication over asynchronous sockets, were built on top of
these abstractions.

The system was divided into two parts: First, two base classes for outgoing (connecting
socket) and incoming (listening socket) connections were implemented wrapping only the
platform specific system calls. Secondly, classes to represent a connection, a server and a
client were designed. These used the low level functions of the socket implementations and
extended it with higher-level constructs such as threads, buffers, and message formatting.
Qt’s byte manipulation facilities are used to store and retrieve typed binary data in network
transferrable form.

One extra feature which facilitated development substantially was being able to start a
synchronous conversation over an asynchronous connection. This works by using the thread
synchronization mechanisms such that the calling thread is suspended while the worker
thread of the connection waits for a reply for this conversation. Safeguards such as timeouts
are not implemented yet, so a program may hang if the connection is lost or no answer
is received after the calling thread is suspended. However, this was never a problem in
our trials as we used high-speed cable ethernet connections in our tests as well as in the
competition.

Synchronous calls help development because even complex queries to the mapping server
could be expressed as simple function calls instead of having to supply a callback function.

6.5. SLAM Module 89

A query for changes in the global map might be formulated as a function MapUpdates

getMapUpdates(long timestamp). Here, an object which contains all recent updates to
the maps would be returned from the function call. This object is generated from the
mapping server’s response. Since we use multi-threading extensively, only one thread waits
for this response while we can keep processing data with the other threads. This network
communications model helped us a lot in developing the mapping server.

XSocket
low-level socket
i/o queues
send(bytes)
bytes receive()

Connection
socket
disconnect()

Thread

XServer
listen(port, #conn)
XSocket accept()

Client
Conversations
connect()
disconnect()
doX() (synchronous)

Server
Connection queues
server socket
disconnectClients()
broadcast(bytes)

Platform Dependent

Figure 6.5: A UML diagram of the networking classes. The box on the right depicts the
platform-dependent code based on either the Berkeley Socket or WinSock APIs.

6.5 SLAM Module

As shown in Figures 6.3 and 6.4, the SLAM module is part of both the Map Server and
Agent. The module consists of two parts, the map itself and the algorithm implementation
to manipulate it. A more detailed overview over the two involved packages is given in Figure
6.6.

The map is represented as a specific implementation of an abstracted graph data struc-
ture. All graph-specific implementation detail is encapsulated in the Graph superclass, which
keeps the actual map free of any distracting code and therefore more maintainable. The
graph is stored in an edge-list form. This is beneficial for later communication with the
server as single vertices and edges can be easily accessed for synchronization and partial
updates.

Superseding and extending a Graph, the Manifold class allows manipulation of the map
data by the SLAM implementation described in the next paragraph. It also implements im-
portant functionality like island merging (described in Section 5.4.4) directly. Such methods
which operate directly on the map data would have been too cumbersome to implement as
part of the SLAM methods. Additionally, the Manifold can generate so-called sub-maps.

90 Chapter 6. Implementation

Map

Manifold

Graph

SLAM

SlamStrategy

SimpleSlam

ManifoldSlam

ScanMatcher
matchScan()
matchMultipleScans()

IDC
ScanMatcher

Weighted
ScanMatcher

MapRenderer

Simple
MapRenderer

Occupancy
MapRenderer

Figure 6.6: A more detailed UML diagram of the SLAM and Map packages.

These can be seen as local neighborhoods of given nodes in the graph and are central to
the inner workings of the ManifoldSLAM method shown in Chapter 5. The class uses stan-
dard graph traversal algorithms to generate these sub-maps. The graph traversal is also
important for map rendering, which is discussed next.

Rendering the Map as an occupancy grid (or any other form) is implemented in the
MapRenderer hierarchy. It is not central to the general architecture and thus not shown on
previous UML diagrams. Two forms of renderers are implemented: The first one is a simple
renderer which is optimized for speed and was used for debugging purposes. It only shows
occupied space like walls. See the left side of Figure 3.9 for an example. The second one is
a real occupancy grid renderer. Using Qt’s 2D drawing features, it draws white lines with a
black dot at the end for each laser scan ray. The right side of Figure 3.9 shows this style of
rendering. All sample maps shown in this thesis are rendered using this implementation.

The SLAM algorithms are implemented in the Strategy pattern. These classes usually do
not have any state variables but only encapsulate a specific way of doing something. In this
case, they implement different ways to generate maps. SLAM strategies have one common

6.6. Autonomous Behavior and Motion Module 91

SlamStrategy superclass which defines a function to process one observation. The simplest
strategy, SimpleSLAM, is to just add the new observations without any processing. This is
only correct if there is no noise on odometry and laser range scanner data. ManifoldSLAM
is implemented as a strategy as well.

One last component which is indirectly included in the SLAM strategies above is scan
matching. Scan matchers are implemented in a similar way as the SLAM strategies. The
abstract ScanMatcher class defines two functions, one to match two consecutive scans and
one to match a new scan to a history of scans which are already aligned. The second version
is of course more robust to occlusions and discontinuous environments as the first, but with
some algorithms it is much harder to implement. Two different scan matchers are available:
The Weighted Scan Matcher (Section 4.3.4) and the Iterative Dual Correspondence (Section
4.3.2) algorithms. The common interface allows them to be used interchangeably.

6.6 Autonomous Behavior and Motion Module

In our complete approach, we focused on Multi-Agent SLAM. However, another important
topic is autonomous exploration and its connection with SLAM. There are two dimensions on
which exploration algorithms are typically compared and contrasted: exploration rate and
multi-agent support. The former refers to a ratio that measures the amount of explored area
over time where high exploration rates are usually preferred. The latter refers to whether an
algorithm can take advantage of multiple agents by coordinating their joint actions. We set
out to be on the high side of both these dimensions as initially we included frontier-based

multi-agent exploration in our design [68, 70].

Frontiers are defined by Yamauchi [67] as the ‘regions on the boundary between open
space and unexplored space’. Intuitively it is easy to understand why these regions are of
interest: Essentially all unexplored areas are of interest but robots can only start exploring
these from where they are accessible, i.e. where the unexplored area borders on known
free area. The notions of free space and unexplored space are well-defined concepts on
occupancy grids. As it was illustrated in Section 5.6, the Manifold can produce these
easily. Unfortunately, time did not permit us to further develop the idea of frontier-based
exploration on the Manifold and we have had to move this to Future Work, see also Section
9.2.

The remainder of this section discusses our current implementation that was inspired
by the Dutch Aibo Team [61], which has successfully participated in the 4-Legged League
of the RoboCup Soccer competition since 2004. By using a similar approach to control a
robot’s behavior, we were able to develop a very robust exploration strategy that can easily
be extended and elaborated on in the future.

92 Chapter 6. Implementation

Following the popular sense-reason-act paradigm to analyze a robot’s behavior, we could
decompose exploration as follows:

• sense: is about acquiring all necessary sensory information.

• reason: the Behavior Control layer determines which behavior should currently be
executed by the agent based on the sensory inputs. The term current behavior refers
to a higher level description like ‘explore-environment ’.

• act: the Motion Control layer bridges the semantic gap between the higher level behav-
ior descriptions and the low-level motion commands that trigger the actual movements.
To hide the low-level actuator details from the behavior control layer, the motion con-
trol layer exposes several elementary motion patterns like ‘go-to-victim’ that can be
activated by the behavior control.

In bottom-up fashion, the following sections first discuss the sensor input that was used
by both Motion Control and Behavior Control. Then the details of the Motion Control layer
and the elementary motion patterns it exposes follow. How and when these are activated is
described in the final section on the Behavior Control layer. For an illustration of how the
three components collaborate refer to Figure 6.9.

6.6.1 Sensor Input

The used P2AT robot was equipped with the following sensors:

• A laser range scanner

• Several sonar range sensors

• An odometry sensor

• An INU sensor

• A RFID sensor

• A Victim sensor

The laser range scanner was pointing straight ahead and was configured with a field of
view of 180 degrees. The resolution was sometimes 1 degree, resulting in scans of 181 laser
beams and sometimes 0.5 degree, which resulted in scans of 361 beams. Of the 16 sonar
sensors, 8 were mounted on the front and 8 on the back. They were evenly spaced and some
of them were slightly tilted up or down so that the robot would also be able detect obstacles
hanging above as well as holes in the floor.

6.6. Autonomous Behavior and Motion Module 93

The INU sensor and odometry sensor were able to be placed arbitrarily and are not
visible in Figure 6.7. Both RFID sensors were attached to the bottom of the robot’s chassis.
They were positioned in the center and were both pointing straight ahead.

Figure 6.7: Sensors. The SICK laser range scanner on top and the front and back sonar
rings are clearly visible. The other sensors like the VictimRFID sensor and INU sensor are
hidden or attached to the bottom of the robot’s chassis.

6.6.2 Motion Control

For the behaviors of our design three elementary motions were sufficient. An overview is
shown in Figure 6.8.

Figure 6.8: Elementary motions.

JustGo can be seen as the default motion. Robots executing this motion move straight
ahead for as long as possible. When the sonars or laser range scanners detect an obstacle
in front of the robot, it will stop, move backwards a random amount of time, turn left or
right randomly and move ahead again. Simplistic as it may seem, it is excellent for covering
long distances in corridors or outdoors. A fall-back scenario was included to make the robot
more robust against unnoticed obstacles or other unforeseen challenges. In these situations
where the robot may have missed an obstacle in its sonar or range scanner input, the INU
will eventually inform the robot of significant changes in the pitch or roll values. The robot
will then initiate an immediate retreat to avoid falling over and choose a new direction.

GoToVictim will make the robot move towards the specified victim. This motion relies
on the high-resolution laser range data which the robots uses to cautiously approach the
victim while avoiding bumping into it. It also reads the victim sensor to potentially adjust
its heading.

Stop will stop the robot immediately.

94 Chapter 6. Implementation

6.6.3 Behavior Control

The currently executed behavior is managed in a finite state machine as outlined in Figure
6.9. Only one behavior-state can be active at a time. Each behavior controls the Motion
Control layer when it is active. The transitions from one behavior-state to the next are
determined by the behavior-state that is currently active. At startup, the Explore behavior
is activated by default and from there everything is based on sensor input.

Figure 6.9: Behavior Control. The dashed arrows indicate the possible behavior-state tran-
sitions and the solid lines indicate which elementary motion is executed during the activation
time of a particular behavior-state.

The states Explore, GetVictimID and GetVictimStatus aim to get a maximum ScorePer-
Victim. Recall from Section 2.3 that 10 points are awarded for every victim that is reported.
At least the victim’s ID is required to get a valid victim report, so the transition (Explore
→ GetVictimID) is made when the Victim sensor reports that a victim is observed but
that the robot is still too far away to be able to read the corresponding ID. Another 10
points are earned when the victim’s status is also reported. When the ID is sensed, the
transition (GetVictimID → GetVictimStatus) is triggered. If a robot observes a victim’s ID
while in the Explore state, which could happen for example when it encounters a victim just
after turning around a corner, then GetVictimStatus is activated directly through (Explore
→ GetVictimStatus). Both GetVictimID and GetVictimStatus are programmed such that
in case they fail to achieve their objective in a certain time, they transfer control back to
Explore through either (GetVictimID → Explore) or (GetVictimStatus → Explore).

The WaitForLaser state is implemented to increase the accuracy of RFID position es-

6.6. Autonomous Behavior and Motion Module 95

timates. Especially for the single-shot RFID tags that were used to measure the Met-
ricMapQuality, this behavior-state is of great value. Whenever a single-shot RFID tag is
observed, the robot is stopped immediately and the tag is stored on a new patch that is
formed with the range scan acquired during the stand-still. Such range scans are not affected
by the usual time-of-flight issues, rotational distortions or additional motion noise, so the
patch-relative estimate for the RFID position is improved. The same is done for first-time
victim observations that contain the victim’s ID. The WaitForLaser state can be triggered
from any other state and runs for at most a second because the laser range scanner is con-
figured to generate at least one scan per second. After the scan is obtained and stored as
a newly inserted patch together with the RFID tag, control is transferred back to the state
which activated WaitForLaser.

Chapter 7

Experiments and Results

7.1 Scanmatcher Evaluation

7.1.1 Introduction

The scan matcher algorithms described in Chapter 4 already brought along some results
in the respective papers that introduced them. However, none of the mentioned results
was representative in the setting of the RoboCup Rescue Virtual Robots league. Since
we received implementations for four different algorithms, we were able to produce more
relevant results.

An important note is that we received three implementations written or endorsed by the
authors of the respective algorithms. The fourth one, implementing the IDC algorithm, was
used as a comparison to the WSM algorithm by its author.

The results of the NDT based scan matcher are included for completeness as we en-
countered some problems with the implementation. Instead of converging towards the real
solution, it diverges or terminates inexplicably. After some study of the code, it was possible
to at least make the implementation not diverge, but it still does not converge very reliably.
This is evident in the section describing the results.

In the next section, we describe the setup of the experiment. Then, the results of the
trials are described for each method. Afterwards, we discuss some implications of the results
in respect to the best choice for our SLAM method.

97

98 Chapter 7. Experiments and Results

7.1.2 Experimental Setup

Each implementation is tested with four different sets of scans with 361 points each over
an arc of 180 degrees. All distinct areas in the RoboCup Rescue Virtual Robot league are
represented. Four situations, which were also encountered in the competition, are included.
Figure 7.1 shows the scan data in detail. Figure 7.2 shows the area around the scans in the
simulated environment.

1. Indoor, many features: A scan of a lobby in a simulated office building. It includes
many features such as legs of benches, flower pots and doors. This should be a rather
easy problem for a scan matcher. The difficult factor is that the distance between
scans is about 1.2 meters, with rotation.

2. Indoor, few features: A scan of a corridor in a simulated office building. The length
of the corridor gives rise to many local optima. However, there are some features, like
doorways, which make a correct alignment possible.

3. Outdoor, very few features: A scan of a wooded area. This scan includes many
“infinity” values, and only very few and small features. These are mainly tree trunks.
The main difficulty is the complete lack of structure.

4. Best case, like 1.: Same scan as the first situation, but the scan matcher tries to
match on scan to itself. Since the scans are completely identical, this test shows the
best case match, or an upper bound for a certain method.

For each situation, 1275 trials were conducted with different added noise. 17 different
translational perturbations are included: No perturbation, 8 positions each 45 degrees on a
circle with a radius of 25 cm, and 8 positions each 45 degrees on a circle with a radius of
50 cm. On top of translational noise, rotational noise is added as well. Here, we include
5 different levels: from -30 to +30 degrees in steps of 15 degrees. That is 85 different
perturbations, each repeated 15 times.

These noise levels are very high, however, we want to establish a worst-case scenario.
In practice, the robot does not travel much between two consecutive observations from the
laser scanner, but we need to know what kind of error a specific method is able to correct
and how fast.

In each trial, the disturbance is recorded, as well as the initial guess for the trial. We
also record the final answer from the scan matcher, and how many iterations were needed
to converge. Settings, such as the maximum number of iterations remain unchanged in
the individual implementations. In general, we make no distinction between converging or
reaching the maximum number of iterations allowed. Our goal is to evaluate the methods
by their best possible guess given reasonable settings, which we assume the defaults to be.

7.1. Scanmatcher Evaluation 99

!5 0 5 10 15

0

2

4

6

8

10

12

14

16

18

Situation 1: Office Building Lobby

Reference Scan
New Scan

(a) Situation 1

0 2 4 6 8 10 12 14 16 18 20

!10

!8

!6

!4

!2

0

2

4

Situation 2: Office Building Corridor

Reference Scan
New Scan

(b) Situation 2

!15 !10 !5 0 5 10 15 20 25

!15

!10

!5

0

5

10

15

Situation 3: Park Area

Reference Scan
New Scan

(c) Situation 3

!2 0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

Situation 4: Office Building Lobby, no movement

Reference Scan
New Scan

(d) Situation 4

Figure 7.1: The scans used for each experimental setup

7.1.3 Results

In each following section, we will explain the results on the above situations from each specific
method. As a distance metric for two poses, we used the metric proposed by Minguez et al.
[36]:

distance(a, b) =
√

(ax − bx)2 + (ay − by)2 + L2 · (aθ − bθ)2

As described by Minguez et al. [36], L is analogous to a length (the length of one radian
compared to meters). Just as recommended in the paper, we also chose L = 3 for these
evaluations.

With the induced noise in the test trials, this results in the following baseline errors.
Here, we assume the worst-case scan matcher which always returns the initial guess:

100 Chapter 7. Experiments and Results

(a) Situation 1 and 4 (b) Situation 2

(c) Situation 3

Figure 7.2: Locations in the simulated world where the experimental scans were taken

Rotation / Translation 0 .25 .5

0 deg 0.000000 0.250000 0.500000

+/- 15 deg 0.785398 0.824227 0.931048

+/- 30 deg 1.570796 1.590566 1.648454

In the mean, the baseline error is 1.1751. However, the largest errors appear in the cells
with high translational and high rotational error, so the mean is not very representative.

Any scan matcher should be able to improve on these figures or at least not return a
result which is worse than the initial estimate. Please note that slight deviations from this
baseline are acceptable. The exact optimum of the specific method can differ a little from
the ground-truth because of the point sampling of the laser range finder. The reason is
the same as given in the introduction of the Correspondence Error in Section 4.1. Only in
the last situation are the points identical, thus the true minimum should be exactly at the
ground-truth value. This is especially important in the first case where the baseline error is

7.1. Scanmatcher Evaluation 101

zero.

Situation 1: Indoor, many features

In this situation, the feature-rich office building lobby, we assume that it is the best case for
scan matchers: It is a dense scan, with many distinguishing features such as doorways and
flower pots. As seen in Figure 7.1a, there is still a lot of overlap between the two scans even
though the difference between the poses is quite large. However, there are still significant
portions of the scans that do not have a corresponding part in the other scan. This is
because the second scan is taken at an angle of around 30o and after a translation of about
1.2 meters.

Alg. 0m/0o .25m/0o .5m/0o 0m/15o .25m/15o .5m/15o 0m/30o .25m/30o .5m/30o Mean # It.

base 0.000000 0.250000 0.500000 0.785398 0.824227 0.931048 1.570796 1.590566 1.648454 1.1751 n/a

NDT 0.001094 0.325732 0.522488 0.785398 1.019792 0.905721 1.570796 1.592676 1.682743 1.211989 2.117647

IDC 0.006687 0.007594 0.007845 0.007873 0.007873 0.007873 4.185263 3.931223 3.831785 2.466790 24.717647

MbICP 0.010804 0.010489 0.011106 0.011206 0.010933 0.010854 0.011329 0.010947 1.216617 0.527934 20.435294

WSM 0.009132 0.009132 0.009132 0.009132 0.009132 0.009132 1.227053 2.013077 1.046770 1.002273 16.223529

In the above comparison of the performance of the four different algorithms, NDT seems
to be the best in the first column, meaning the one which has the closest optimum to the
ground-truth, the other noise settings show how close its error is to the baseline. This,
along with the very low iteration count, is an indication that it never significantly changes
the initial estimate it is given. This behavior of the NDT algorithm can also be observed in
the rest of the experiments described later.

The comparison shows that IDC is the best for small noise, closely followed by the WSM
algorithm. In the cases of extreme translational noise, the rule to find correspondences of
the MbICP algorithm seems to work much better than the one used in the WSM or IDC
methods. However, the WSM method converges in the least number of iterations on average.

In this trial, we would prefer the WSM method because it displays very good performance
under small rotational noise, and reasonable performance under high rotational noise while
requiring a small number of iterations.

Situation 2: Indoor, few features

In this situation, the main difficulty is the lack of distinguishing features. It should be rather
easy for any method to find the correct rotation because the corridor itself is a very big clue
in this case. However, finding the translation in the direction of the corridor is hard because
not many unique features exist. There are only four doorways, and the scan was only able to

102 Chapter 7. Experiments and Results

record very little of the first room. With high rotational and translational noise, it might be
possible for methods to misattribute the walls and infer that there are actually two parallel
corridors with a very thin wall between them. In our specific run, that does not seem to be
the case since the recorded errors are too small.

Alg. 0m/0o .25m/0o .5m/0o 0m/15o .25m/15o .5m/15o 0m/30o .25m/30o .5m/30o Mean # It.

base 0.000000 0.250000 0.500000 0.785398 0.824227 0.931048 1.570796 1.590566 1.648454 1.1751 n/a

NDT 0.000000 0.253762 0.519781 0.785398 0.843109 0.980248 1.356286 1.673229 1.677732 1.208638 1.894118

IDC 0.041257 0.063864 0.310380 0.069467 0.320919 0.389518 1.607720 1.586968 1.576797 1.029767 20.705882

MbICP 0.006066 0.119723 0.129221 0.037217 0.120134 0.135755 0.076706 0.661858 0.672813 0.420649 30.352941

WSM 0.011013 0.011527 0.152342 0.011694 0.052939 0.169485 0.012337 0.094252 1.103251 0.488799 17.482353

Just as in the first situation, NDT does not converge at all. The results are only included
for completeness.

In this case, WSM and MbICP perform very similarly. However, we can see that WSM
needs significantly fewer iterations on average to converge to its solution. As seen previously,
MbICP ’s correspondence rule also seems to work better for this situation. It is notable that
the difference is not so significant this time as both methods seem to deal very well with
matching to the corridor in general. The specific translation along the corridor however is
exactly what gives rise to the Correspondence Error, which is explicitly dealt with in the
WSM method. This is what might speed up that specific method so significantly. Accuracy,
however, does not improve very significantly. WSM is more accurate than MbICP 5 out
of 9 times. Though it is visible that WSM can be 2-10 times better than MbICP, while,
conversely, MbICP can only be at most twice as good as WSM.

As a conclusion, WSM also shows to be best in this situation. It converges significantly
faster than other methods, and displays either comparable or much better accuracy than its
closest competitor.

Situation 3: Outdoor, very few features

This specific situation is very hard for any method because it displays such a small number
of features. Since it is in an outdoor setting, both scans show many “out of range” values.
This reduces the number of potential correspondences significantly. Also, the translation
and rotation between both scans reduces the overlap, which again decreases the potential
correspondences. Figure 7.1c clearly displays this difficulty.

Additionally, the very localized features create very significant local optima. With high
noise, methods are more and more likely to find those solutions rather than the correct one.

7.1. Scanmatcher Evaluation 103

Alg. 0m/0o .25m/0o .5m/0o 0m/15o .25m/15o .5m/15o 0m/30o .25m/30o .5m/30o Mean # It.

base 0.000000 0.250000 0.500000 0.785398 0.824227 0.931048 1.570796 1.590566 1.648454 1.1751 n/a

NDT 0.000000 1.078081 0.489488 0.786170 0.831364 0.925397 1.570796 1.590607 1.709810 1.233846 2.176471

IDC 0.012821 0.012821 0.012821 0.936856 1.043303 0.967307 3.472407 2.858219 2.845654 1.935837 21.882353

MbICP 0.003299 0.006904 0.007047 0.006979 0.006708 0.073947 0.006394 1.545696 1.531521 0.944613 16.741176

WSM 0.001959 0.001959 0.001934 0.001926 4.378479 4.377351 1.198689 3.403532 7.742021 4.551092 17.329412

Again, the WSM and MbICP algorithms perform similarly in the lower noise levels.
As soon as rotational noise is introduced, however, WSM performs very badly. Since its
correspondence rule does not include a specific way to deal with rotation (unlike MbICP),
it can not find good correspondences and gets stuck in local optima. Here, the advantage of
MbICP is especially noticeable. It can quickly find reasonable correspondences, even with
large rotational noise. IDC also seems more robust than WSM when dealing with rotational
noise. This is because IDC also employs a special rule to identify rotational error.

In this situation, MbICP performs the best. It is just as fast as WSM, but much more
accurate.

Situation 4: Indoor, many features, no translation

In this test situation, the scan of Situation 1 is used again. However, the second scan is
discarded and the first is used in its place. This gives the impression that the robot did
not move at all between both scans. All points in the scan thus correspond to each other
exactly. Such an unlikely situation should facilitate the performance of point-based scan
matchers significantly. Therefore, this particular situation serves as a best-case scenario. It
will show how well each scan matcher can perform at all.

Alg. 0m/0o .25m/0o .5m/0o 0m/15o .25m/15o .5m/15o 0m/30o .25m/30o .5m/30o Mean # It.

base 0.000000 0.250000 0.500000 0.785398 0.824227 0.931048 1.570796 1.590566 1.648454 1.1751 n/a

NDT 0.000121 0.191923 0.719698 0.785398 0.794804 1.004130 1.575583 1.601607 1.617779 1.187160 2.294118

IDC 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 51.941176

MbICP 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.470635 0.472485 0.289337 29.988235

WSM 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 24.494118

It is obvious that all point-based methods perform very well. NDT shows very bad
performance again, but that is probably not because it is not point-based. In this particular
case, MbICP ’s correspondence rule does not seem to work as well as the one used in IDC or
WSM. With high rotational noise, MbICP performs much worse than the others (yet still
very well). A possible cause for this might be that the modified correspondence rule does
not necessarily find the right correspondences. Wrong points may seem closer (meaning
more likely to be the right corresponding point), which gives rise to local minima. The two

104 Chapter 7. Experiments and Results

best algorithms only differ in the number of iterations necessary to converge. WSM clearly
outperforms IDC in this respect.

Clearly, WSM is generally better than all other methods in this best-case scenario. I
performs perfectly, and in the least amount of iterations.

7.1.4 Implications

The NDT scan matcher does not seem to perform very well, it is always very close to the
baseline. This is because it never does many iterations, most probably because or problems
with the convergence criteria and the optimization step. This observation was already
predicted in the introductory section and is visible consistently throughout all trials.

In very extreme situations, MbICP performs very well. However, in most settings, WSM
performs best. It is consistently the fastest or one of the fastest methods, and always
very accurate. However, it does not deal well with very sparse scans, like in Situation 3.
Sparse scans give rise to many local optima which can be reported instead of the true global
optimum.

We are mainly interested in fast and accurate methods, which work well with dense scans
and minimal noise on the initial estimate. Before the competition, we were not aware of
extensive outdoor areas where very sparse scans might be generated. With this in mind, we
chose the WSM algorithm as our scan matcher.

7.2 ManifoldSLAM Evaluation

Our ManifoldSLAM implementation has been thoroughly tried and tested at the RoboCup
of 2006. The results acquired in the Virtual Robots League will be discussed in detail in
Section 7.2.1.

After the RoboCup, we also investigated the applicability of our system on real-world
data. For this purpose we conducted a set of experiments where we apply ManifoldSLAM
on the Cogniron data-set available on Radish [46]. In Section 7.2.2 we discuss the results
obtained this data-set from [69].

7.2.1 RoboCup 2006 Results

The competition runs in the Virtual Robots League took place in simulated arenas with
simulated robots and sensors. In this controlled setting, the exact ground truth can be
made available. As a result, our results acquired at RoboCup 2006 can be compared to
those obtained by our fellow competitors in detail.

7.2. ManifoldSLAM Evaluation 105

In the following sections, the results obtained by our ManifoldSLAM implementation
are compared to those of the other award winners. They are:

• First place: ’Rescue Robots Freiburg’ from the University of Freiburg, Germany, from
now on referred to as ’Freiburg’;

• Second place: ’Virtual IUB’ from the International University of Bremen, Germany,
from now on referred to as ’IUB’;

• Best Human-Computer Interface Award: ’Steel Team’ from the University of Pitts-
burgh, USA, from now on referred to as ’Steel’.

Following this convention we will refer to our team in the diagrams with ’UvA’. We won
two awards:

• We won the third place in the competition.

• We received the Best Mapping Award.

The scoring function, that was introduced in Section 2.1.2 and is also further explained in
[1, 2], is used as the basis for our results analysis. All results are plotted per competition run,
where we denote the three qualification runs with Q1, Q2, and Q3 and the two semifinals
with Semi1 and Semi2. Where applicable, the number of robots deployed by our system
is indicated in the diagrams between parentheses.

Overview

Like us, IUB and Freiburg had designed a fully autonomous system that was capable of
supporting multiple robots. Steel also employed a multi-agent system, but in their approach
an operator was guiding the team of robots. With the operator, Steel performed comparably
or better on all individual rewards. However, the penalty for having an operator kept Steel
below the other three teams.

In Figure 7.3 each team’s total score per run is plotted. As can be observed, all teams
have improved during the competition, but as it turns out this did not cause many changes
in the daily rankings. The only time Freiburg did not rank first was in the first semifinals
run, during which IUB and UvA were able to outperform them. In the second semifinals run,
however, Freiburg performed best again while both IUB and UvA showed a drop in their
scores. Steel showed a slow but steady rate of improvement throughout the competition and
was able to surpass UvA in Q1 and Semi2.

Figure 7.3 only plots the total scores acquired. In the following sections we further
discuss the individual rewards: exploration, mapping and victims found.

106 Chapter 7. Experiments and Results

Figure 7.3: Total scores during the competition.

Exploration

On the first day, at the first qualification round, we did not support multiple agents yet. So
we only deployed a single agent in this round. In the second qualification round we did have
support for multiple agents and since then we have always deployed 6 to 8 robots.

(a) Explored Area (b) Exploration Score

Figure 7.4: Exploration Results.

Note that for each run a target area of explored space was set. If that area or more was
explored then the maximum score of 50 points was rewarded. This target area was much
higher for the first semifinals run than it was for the second one. Therefore, even though we
explored significantly more area in Semi1, the score was still lower than in Semi2.

The plots in Figure 7.4 show that the exploration as conducted by our team of robots

7.2. ManifoldSLAM Evaluation 107

improved in each single round. The increase between Q1 and Q2 is due to the jump in the
number of robots deployed. After Q2, we have continuously further fine-tuned our behavior
control and motion control specifications which caused the exploration to keep improving
until we acquired the maximum score of 50 points in the second semifinals run.

Mapping

The mapping score was computed by taking the product of the automatically computed
metric score and a manually assessed topological score. The metric score was based on the
single-shot RFID report and would result in a multiplier between 0 and 1 that was used to
scale the manual topological score. As the name indicates, the latter was assessed manually
by a jury and would result in a score ranging from 0 to 50 points showing how well and to
what quality the map represented the environment.

All the maps that we have submitted during RoboCup 2006 are listed in Figure 7.5.

(a) Q1 (b) Q2 (c) Q3

(d) Semi1 (e) Semi2

Figure 7.5: The maps produced during the competition.

In Table 7.1, the acquired mapping scores based on these maps are displayed in detail.
In the first qualification round no metric quality was computed, so the multiplier was fixed
to 1 for all participants. The jury score is of particular interest as this earned us the Best
Mapping Award, more details about this will follow. The mapping score is the product of
the former two scores and institutes the mapping-related reward. The localization error was
only computed after the qualification rounds and describes how far off the RFID position
estimates were on average.

When reviewing Figure 7.5 in conjunction with Table 7.1 several observations can be
made. To start with, the map of Q1 is not too big as the robot only crossed the street
from left to right. However, the map captures a lot of detail and does so at high precision.

108 Chapter 7. Experiments and Results

Metric Score Jury Score Mapping Score Localization Error
Q1 (1.0) 24 24 -
Q2 0.4 21 8 -
Q3 - 32 - -
Semi1 0.95 44 42 0.2 meter
Semi2 0.18 50 9 0.02 meter

Table 7.1: Map score details

Note that the laser range sensor is mounted at such a height that only the wheels of cars
are observed. In Q2 parts of the map are clearly misplaced, which caused the low metric
score. In Q3 there was a problem with our RFID report, so the metric score could not be
computed. Although the map for Q3 was not too bad, due to the missing multiplier we got
0 mapping points for that round. In Semi1 we produced a very good map with only 20
centimeters localization error. And in the second semifinal we even had only 2 centimeters
localization error, but because the map only covers a small fraction of the explored area,
the metric score was only 0,18.

In Figure 7.6 we focus on the part of the mapping score that was assessed by the jury.

Figure 7.6: Jury assessment of our maps.

The diagram shows a steady increase in the evaluation of our maps by the jury. After
Q1, a slight drop in Q2 can be observed, but from Q3 onward the jury continuously gave
higher rewards for our maps in each run until we acquired the maximum score in Semi2.
Balakirsky et al. [1] discuss the factors that have been taken into account when assessing a
map. Among these are: Accuracy and augmentation.

Mapping - Accuracy

According to [1] accurate maps should ease the job of human rescuers that want to use the
map by accurately displaying features and augmented information. The maps produced by
ManifoldSLAM exceed all other maps by far on this aspect. This difference was made pos-
sible mainly by supporting a grid resolution in our map that is an order of magnitude higher

7.2. ManifoldSLAM Evaluation 109

than those of our competitors. Therefore, the visualizations produced by ManifoldSLAM
display what is known about the environment’s geometry at an unmatched level of detail.

(a) Freiburg (b) GROK

(c) IUB (d) SPQR (e) Steel

Figure 7.7: Typical maps produced by competitors.

Freiburg reported the environment’s connectedness using a graph but did not report
any geometric detail. GROK’s binary occupancy grid was already much more capable of
visualizing the environment’s geometry, but did not distinguish between area that is known
to be free and area that is yet unexplored. The occupancy grids from IUB, SPQR and Steel
do make this distinction but still none of them provides the amount of detailed information
that ManifoldSLAM is able to deliver.

The difference in accuracy is most clearly displayed in Figure 7.8. The same room has
been mapped by IUB, Steel and UvA but only the map of UvA displays the table legs and
the lamp post.

Mapping - Augmentation

Augmentation refers to the amount of information that is conveyed in the map in addition
to geometry. Typical pieces of information to include in the map are victim locations and
names, RFID tag positions and IDs, as well as traversed robot paths. Figure 7.9 shows the
attributes included in maps by the different teams. SPQR did not augment their maps with
any additional information, as can also be observed in Figure 7.7. All other teams report
victims in the map, but only Freiburg, GROK and UvA plot their full names. All teams
but GROK also marked observed RFID tags in the map, but only Freiburg and UvA also

110 Chapter 7. Experiments and Results

(a) Screenshot

(b) IUB (c) Steel (d) UvA

Figure 7.8: Map accuracy.

included the ID in the map. The robot trajectories were plotted only by Steel and UvA.
All teams but SQPR applied some augmentation of information, but only our (UvA) maps
featured all mentioned information.

Finding Victims

In Figure 7.4 a steady increase in exploration is illustrated. Naturally, with increasing
amounts of explored areas, a team of robots is also likely to find and report more victims.
In Figure 7.10 our acquired victims scores are presented.

In Q1, we found no victims and in Q2 we found only one but also bumped into it.
Therefore, we received a bump-penalty. This was addressed and after Q2, we never bumped
into victims again. In Q3 and Semi1, we found three victims, but in Semi1 we also reported
victim statuses and we received the full localization accuracy bonus for each victim. In
Semi2, we found two victims which were reported with moderate localization accuracy.

7.2. ManifoldSLAM Evaluation 111

(a) Freiburg (b) GROK (c) IUB (d) Steel (e) UvA

Figure 7.9: Map Augmentation.

Figure 7.10: Victim score.

Cumulative Results

In 7.11 the individual rewards are plotted with the acquired total scores, where each total
score is simply the sum over the rewards.

In a cumulative analysis we observe that the following aspects have been key to our
achievements:

• The full autonomy of our system prevented the operator-penalty from being applied.

• The steady improvements in exploration directly contributed to our rankings and are
primarily the result from the capability of our system to support up to 8 robots.

• The robust behavior control guided the exploration efforts and ensured that our agents
have bumped into a victim only once in 29 individual trajectories that together have
a running length of 9 hours and 40 minutes.

• The high accuracy and rich augmentation of our maps received increasing jury scores
and earned us the Best Mapping Award.

• The maps also facilitated accurate localization of victims in the semifinals and caused
a significant increase in the victim score.

• The combined effects of improving exploration and increasingly better maps earned us
the third place in the competition.

112 Chapter 7. Experiments and Results

Figure 7.11: UvA scores during the competition.

7.2.2 Cogniron Results

Ben Kröse et al. published the Cogniron data-set as part of the IROS 2006 Workshop:
’From sensors to human spatial concepts’ [69]. This data-set is also available on the Radish
website [46].

Figure 7.12: Schematic map of the Cogniron home. Courtesy of [69]

The data-set was acquired in a home environment as depicted in Figure 7.12. A Nomad
Scout robot moved around through the environment while sensor data was recorded on
a mounted laptop. The maps produced by ManifoldSLAM for this data-set are based
exclusively on the laser range data. Range scans were recorded using a SICK LMS-200
laser scanner. The LMS-200 collected measurements with a field of view of 180 degrees
while emitting a laser beam at every 0.5 degree, which resulted in 361 measurements per
range scan. The sensor was mounted at a height of approximately 57 centimeters and had
a maximum range of approximately 8 meters.

Three separate runs have been published and we show maps generated by ManifoldSLAM
for each of them:

7.2. ManifoldSLAM Evaluation 113

(a) living (b) bed (c) kitchen

Figure 7.13: Some pictures taken in the Cogniron home, from http://www.unet.nl

1. The first run is a relatively ’clean’ run where no people were walking in the robot’s
field of view.

2. The second run was intentionally perturbed by having people walk in front of the
robot. This run involves a number of loops.

3. The third run was acquired during a ’home tour’ where someone took the robot on a
guided tour through the room. Thus the guide is almost continuously in the robot’s
field of view.

With each of our maps we also present a visualization of the raw data that was published
with the data-set. These visualizations are based on the raw odometry and laser range
measurements. Note that ManifoldSLAM did not use the odometry data when constructing
the maps. It should also be noted that our loop closure algorithm only works with victim
observations that could be acquired in the USARSim simulator. We have not implemented
any detection algorithm for other landmarks, so all the maps presented here were generated
without explicitly closing loops.

No fine-tuning specific to one particular run was done, so the configuration of our system
was identical for all runs. This enables a direct comparison of the generated maps.

Run 1 - Static Obstacles Only

The map captures a very large amount of detail. The couches in the living room, the chairs
in the kitchen and the observable part of the bed are all clearly and sharply visualized. Also,
much smaller details are neatly preserved, like the legs of the kitchen table, the decorated
vase, the trunks of the plants in the living room and also the base of the lamp halfway at
the bottom (see Figure 7.13).

114 Chapter 7. Experiments and Results

(a) raw data (b) map

Figure 7.14: Cogniron run 1.

Run 2 - Three Loops

The robot started in the kitchen, then traversed the smaller loop in the living room followed
by the loop through the kitchen and ends with one and a half loop around the living room
and bed together. Despite these loops, our system is still able to build a highly consistent
map. Some ghosting of the exterior wall can be observed on the far left and in the bottom-
left corner of the living room. Also one of the couches is displayed twice and the piece of
furniture above the bed shows some ghosting.

However, other than that the map is of comparable quality to the one of the first run.
The kitchen, the bed and the bottom couch are visualized sharply and a great amount of
additional detail is still accurately preserved. For example the legs of the kitchen table
and of the computer desk in the bottom-left corner and also the base of the lamp at the
bottom-center are clearly visible.

(a) raw data (b) map

Figure 7.15: Cogniron run 2.

Run 3 - Home Tour

This run was the most challenging one as a dynamic obstacle, i.e. the guide, is continuously
affecting the range scan measurements. The robot started at the top and made one big loop

7.2. ManifoldSLAM Evaluation 115

in counter-clockwise direction. It can be observed that our system finds a local optimum
only once, somewhere near the upper-left corner of the map. Obviously, the upper wall and
also several measurements of the cupboard above the bed and measurements of the couches
are rotated by several degrees.

The remainder of the map however, from the upper-left corner onward, is very consis-
tent. The bottom wall is almost perfectly straight and certainly the straightest of all runs.
Additionally, similar crispness and detail as observed in the previous maps is also exhibited
here.

(a) raw data (b) map

Figure 7.16: Cogniron run 3.

Analysis

In this set of experiments we applied ManifoldSLAM on data that was acquired on a real
robot using real sensors that were affected by real noise. The applicability of our system
to such real-world data is illustrated with results acquired on three different runs. Each
run posed different challenges to overcome, but regardless of these our system produced
consistent, accurate and detailed maps for each of them. Note that no explicit loop closing
was performed to generate these maps.

The maps are topologically consistent and clearly indicate walls and doorways. The
maps acquired for the first two runs match the schematic map displayed in 7.12 quite well,
despite the number of loops in the second one. In the map of the third run, a small part of
the living room is rotationally off, but the majority of the map’s topology compares to the
former two.

The kitchen with the chairs is very clearly rendered in all three maps. Also the couches
and the observable part of the bed are often rendered without ghosting. When observed,
smaller details are usually preserved very sharply.

All three maps preserve a large amount of detail, like individual table legs and the trunks
of the plants in the living room.

Chapter 8

Related Work

8.1 Comparison to the State of the Art

The SLAM approach presented in this paper shows a certain resemblance to the Atlas
framework that was originally presented by Bosse et al. [7] and applied in [8] and has
been discussed in Section 3.4.2. Both Atlas and ManifoldSLAM use a graph structure to
decompose the global map in small-scale local maps. Thus, both approaches share several
benefits like the low update costs, the capability to map large environments and the fact
that the online effects of error accumulation are limited to the extent of a local map only.
Note though that in ManifoldSLAM a local sub-map is a dynamic concept whereas in Atlas
the extent of a local map remains fixed once defined. A much more significant difference can
be observed in the way potential false data associations are addressed. Atlas employs an
elaborate strategy that tracks multiple concurrent hypotheses for candidate closure points
but still closes loops in the map as soon as they are discovered. ManifoldSLAM on the other
hand simply refrains from loop-closing until enough certainty is acquired. Both approaches
work fine, but we believe that the multi-hypothesis tracking in Atlas has a significant impact
on the online performance of the SLAM algorithm and that this is the key motivation for
Atlas to only use a limited amount of features to match observations. ManifoldSLAM does
not suffer from this limitation and has been implemented using range scans containing 361
’point features’, to use Atlas terminology. The key advantage is that ManifoldSLAM is
not biased towards particular environments, while Atlas is strongly biased to the particular
features employed in the local maps. For example, Bosse et al. [7] propose to use line
segments which would strongly bias Atlas to regular-shaped indoor environments. On the
other hand, the Weighted Scan Matcher, which ManifoldSLAM uses, has been shown to
operate indoors as well as outdoors when matching point clouds. Another aspect to note
is that ManifoldSLAM inherently supports mapping multi-floor environments because of

117

118 Chapter 8. Related Work

the way the graph structure is employed. In Atlas, this feature depends on the kind of
used features and local maps. The consequence is that ManifoldSLAM enables mapping
multiple floors while still using inherently two-dimensional algorithms, while in Atlas, the
map matching and hypothesis tracking algorithms would have to take all spatial dimensions
into account explicitly. Also it is unclear how Atlas would scale to support multiple agents
because the map matching seems to rely on known relative positions.

The design of FastSLAM [38] is driven by the observation that, given the robot’s path,
the landmark observations are conditionally independent, see also Section 3.4.1. In effect,
this decomposes the joint space of landmark estimates in path estimates. ManifoldSLAM
exhibits a similar decomposition as the Manifold data structure stores all observations as
independent estimates with respect to the patches, i.e. the robots’ trajectories. However,
while the Manifold is a hybrid approach that really decomposes the map in small-scale
maps, FastSLAM remains a holistic approach and the decomposition is only the result of a
factorized formulation of the global map probability. As a result, although FastSLAM has
been extended in a number of papers [40, 37, 42, 25, 22], it remains an approach that assumes
planar environments. A direct extension to incorporate the capability to map multi-floor
environments like ManifoldSLAM would result in having the particles of the particle filter
maintain the robot trajectory and landmark positions in 3D. The performance impact of
such an extension is an open question. Also, FastSLAM has yet to be applied in a multi-
agent setting. It is unclear how multiple agents whose relative position is unknown would
contribute to the same map. They would probably maintain individual instances but then
an appropriate merging operation remains to be defined.

The concept of the Manifold data structure was inspired by Howard et al. [27]. In
our approach, the same benefits and strengths can be observed. On the implementation
level though, we might indicate a minor difference as we have decided to store uncertainty
information as covariance matrices on the relations, while Howard et al. [27] seem to hint at
a single information matrix that stores all uncertainty information globally. A much more
significant difference though concerns the scalability of the ManifoldSLAM implementation
versus the implementation discussed by Howard et al.. In their paper, the authors illustrate
an experiment that was conducted with 4 robots. The algorithm was run online, but as
commented in [27], Section V - Experiments:

“During island merging or loop closure, however, it is necessary to halt the robots

for some tens of seconds to allow the mapping process to ’catch up’.”

and in Section VI - Conclusion and Further Work:

“The algorithm, as presented ... scales poorly with increasing team size (the

largest experiment conducted to date employed just four robots).”

8.2. Competitors at the RoboCup 119

ManifoldSLAM also uses a centralized process, the Mapping Server (see Section 6.3.2
for details), and as emphasized in [2] the system has run several competition runs with up
to 8 agents. This is most probably due to the use of the Weighted Scan Matcher of Pfister
et al. [44] in our approach. Howard et al. on the other hand refer to work by Lu and Milios
[32] which builds on the IDC framework presented in [33] and is also discussed in Section
4.3.2. In an extensive set of experiments that are specific to our challenge (see Section
7.1), we have reproduced similar findings to those reported by Pfister et al. [44]. In short,
the Weighted Scan Matcher has proven to be more accurate and to perform faster than
the IDC algorithm of Lu and Milios. This led to our observation that we can distinguish
between local accuracy and global accuracy, see also Section 5.5. This was translated into a
decomposition of the loop-closing and island-merging algorithms where the map-refitting is
postponed until visualizations are requested.

8.2 Competitors at the RoboCup

The RescueRobots Freiburg team from the University of Freiburg acquired first place in our
league. The aspect of their system that clearly made the difference was the employed explo-
ration strategy based on RFID tags that the robots deployed by themselves [29]. Following
the multi-agent frontier-based exploration strategy discussed in [68] and [70], the Freiburg
team had designed a system that showed superior exploration performance during the com-
petition. Good exploration naturally leads to finding a lot of victims as well. However, the
energy invested in exploration was apparently lost on the mapping part. Only in the second
semifinals run and in the finals did their system produce maps. Until then their ranking
had been based solely on exploration and victim reports.

Virtual IUB of the International University of Bremen was the first runner up. Their sys-
tem also employed a frontier-based exploration strategy. However, their implementation did
not coordinate the joint actions of the team, but each agent would evaluate the frontier in-
dependently and execute an individual plan. Especially when multiple agents were deployed
from the same entrance point they would take the same greedy decisions, move to the same
destinations and become dynamic obstacles to each other. The frontiers were constructed on
a grid-map that was produced by an off-the-shelf SLAM approach [22] that is basically an
extension to FastSLAM. Note that although Virtual IUB employed a multi-agent system,
the mapping and localization did not truly support multiple agents. Each robot worked
independently of the others and after competition runs, map merging was done by simply
overlaying maps from individual robots based on the known starting position of each robot.

The primary focus of the Steel team from the University of Pittsburgh was on human
computer interaction. Their systems was equipped with an extensive user interface that
allowed a single operator to control a complete team of rescue robots. During the competition

120 Chapter 8. Related Work

runs the operator was usually able to find a lot of victims and the team also showed good
exploration and mapping scores. However, the applied penalty for manually controlling
the robots caused the team to rank lower than the top three which were all using fully
autonomous systems. The Steel team won the special award for having the best human-
computer interface.

When we compare our system with those of the other prize winners, we obviously had
superior mapping software, since we won the special award in this field. The comparison to
maps of all other teams is further detailed in Section 7.2.1. The RescueRobots Freiburg team
only delivered maps that were strictly topological and did not display any geometric features.
Virtual IUB and the Steel Team used occupancy grids for online SLAM. Consequently, they
had to constrain the resolution of the map to what the software could handle during online
execution. Our system on the other hand only produced a complete occupancy grid in
a post-processing step, so we could optimize the resolution to the maximum of what our
rendering algorithm could handle in the 10 minutes time limit. Usually we would deliver
maps with a resolution that was an order of magnitude higher than those of our competitors.

Interestingly, of all teams in our league, only Freiburg’s approach and our approach
appear to be ready for multi-floor environments. Freiburg’s approach relies on a graph
structure which makes no assumptions about planarity. All team-coordination is based on
this graph and the frontiers are only defined locally on the graph nodes. The team from
Bremen uses a system that is based on work by Grisetti et al. [22] and the Steel Team’s
mapping software is based on Carmen [39]. Carmen includes a mapping module that builds
on [24]. Both systems thus rely on occupancy grids that is inherently planar.

The other aspects of our system that enabled us to win the third position in our league is
the fact that it operates fully autonomously and can handle a large number of agents. With
the former feature, we avoided the operator penalty that for example the Steel team suffered
from. With the latter one, we were able to still explore reasonably well and therefore find
a good number of victims. The key limitation of our system concerns the behavior control.
Although our behavior control has proven to be very robust, the map-based greedy behavior
as employed by the teams from Freiburg and Bremen significantly outperformed our strictly
reactive behavior.

Chapter 9

Conclusions and Future Work

9.1 Concluding Remarks

An award-winning SLAM system is presented in this thesis. We designed and implemented
a multi-agent system that successfully addresses the challenges faced by rescue robots in
an Urban Search and Rescue setting. Using the presented system, we participated in the
Rescue Virtual Robots league in the RoboCup World Championships, held in Bremen in
June 2006. We won third place in our league and also received the Best Mapping Award.

Based on the Manifold concept presented by Howard et al. [27], we implemented a sophis-
ticated data structure that we describe in Section 5.3. This data structure supports online
localization and mapping, loop closing and island merging. In Chapter 3, we survey the
state of the art in SLAM research and we discuss the individual strengths and weaknesses of
the different approaches. We based our work on [27] as we intended our approach to address
the challenges faced by rescue robots in the best possible way. This choice is supported by
a detailed explanation in Section 5.2. In Chapter 8, we compare and contrast our approach
with those reviewed in Section 3.4 and those of our competitors in the RoboCup Rescue
Virtual Robots League. By combining the strengths of topological and metric maps in a
layered data structure, our system is able to deal effectively with the challenges we envision
in Chapter 2 and meet the objectives presented in Section 1.2.

The mapping and localization algorithms in our system rely on the Weighted Scan
Matcher (WSM) that was introduced by Pfister et al. [44]. In their paper the authors
show that WSM outperforms the well-known IDC scan matcher from Lu and Milios [34, 32].
We conducted an extensive set of experiments designed specifically for our field of applica-
tion (the simulated USAR setting) with a broader scope than the ones performed in [44].
These experiments also included the recent MbICP scan matcher from Minguez et al. [36]

121

122 Chapter 9. Conclusions and Future Work

and the Normal Distribution Transform (NDT) by Biber and Straßer [5]. In Section 7.1,
we conclude that in our domain, where dense range scans are usually available, the WSM
outperforms IDC, MbICP and NDT in both speed and accuracy. This implies that the
WSM algorithm is the best choice for us and we thus also confirm the findings in [44].

By combining the best scan matcher for our domain with a hybrid data structure in
ManifoldSLAM, we have constructed a state-of-the-art SLAM approach with which we suc-
cessfully competed in the RoboCup Rescue Virtual Robots League. As can be verified
in Section 7.2.1, the following aspects of our system were key to our achievements: The
highly accurate and detailed mapping capabilities, the system’s scalability, and the fully
autonomous and robust behavior control implementation.

The maps produced by ManifoldSLAM compare favorably to those delivered by our
competitors at RoboCup, see also Section 7.2.1. Our system does not impose limitations
on the amount of data preserved in our maps during competition runs. This is contrary
to the grid-based SLAM approaches used by the teams from University of Pittsburgh and
International University Bremen, for example. Therefore, we were able to capture an amount
of detail in our maps that was unparalleled in our league. Basically, we were able to provide
maps at arbitrary high resolutions and we were only limited by the maximum resolution
that our software could handle in the 10 minutes time limit.

In Section 5.5, we describe the decomposition of the loop-closing and island-merging algo-
rithms in an online part and an offline part implemented in ManifoldSLAM. This significantly
increased the online performance and hence the scalability of our system. ManifoldSLAM
has demonstrated support for up to 8 robots that simultaneously explored the arena and
searched for victims. In Section 7.2.1, we show that the exploration exposed by our robot
team improved every day during the competition until the maximum score was achieved in
the second semi-final. Thus, the exploratory capabilities of our system served as a constant
source of rewards for our scoring.

The behavior control that steers the exploration efforts and our robots also proves to be
of great value in other respects. In Section 7.2.1, we display our victim finding rewards and
also the contribution of individual rewards to our total scores for every run. This shows
that especially in the semi finals the received victim finding rewards ensured us a third place
in the competition. Our behavior control has done an excellent job in securing us from
penalties, which was of great value throughout the competition. In 29 individual runs of
20 minutes each, our robots only bumped into a victim once. Moreover, the full autonomy
of our robot team ensured that any rewards were not discounted by the severe operator
penalty.

While ManifoldSLAM has proven to be able to produce high quality maps under the
simulated conditions at the RoboCup, in Section 7.2.2 we show that our system can also be
applied on real-world data. We demonstrate that ManifoldSLAM can produce maps from

9.2. Future Work 123

raw laser range data that suffers from real-world odometric error and sensor noise which
exhibit similar levels of accuracy and detail.

9.2 Future Work

We are in the process of acquiring more real-world results in order to further investigate
and improve the applicability of ManifoldSLAM on real-world data. In an upcoming special
issue of the Elsevier Robotics and Autonomous Systems Journal about the 2006 RoboCup
Rescue Virtual Robots competition, we intend to demonstrate the applicability of our system
to real-world settings by publishing results on several popular data-sets that are available
on the Radish website [46]. Below are some preliminary results acquired on the ’AP Hill’
and ’Intel Lab’ data-sets.

(a) AP Hill (b) Intel Lab

Figure 9.1: Preliminary results on real-world data-sets

Note that both maps involve a lot of loops which we are closed as we currently only
support loop closure based on victim observations in the simulator. Considering the ac-
curate visualization of individual rooms in ’AP Hill’ (Figure 9.1a) and the relatively small
accumulation of error in the ’Intel Lab’ (Figure 9.1b) over the three large consecutive loops,
the results are very encouraging.

In the context of future RoboCup competitions, several desirable improvements can be
listed. First and foremost, the key limitation that prevented us from achieving a higher
ranking this year was the lack of a greedy exploration strategy. The patches of the Manifold
lend themselves excellently for a frontier-based exploration strategy as presented in [68, 70]
or a RFID-based exploration strategy as presented in [29].

A similar improvement, but from a broader perspective, would be to implement planning
on the Manifold. This idea builds on the observation that SLAM and exploration are oppos-
ing forces: For better maps it is usually preferable to acquire more certainty about the same

124 Chapter 9. Conclusions and Future Work

environment through additional observations while exploration aims at observing yet unob-
served parts of the environment. Reinforcement Learning techniques like Markov Decision
Processes (MDPs) [49, 3] seem to be the ideal framework for planning on the Manifold on as
they integrate nicely with its graph-based map structure. Localization within the Manifold
to a specific patch allows for state observations. Actions such as move to a neighboring
patch could be formulated. This gives rise to a very intuitive definition of planning on the
Manifold as an MDP. There exist efficient methods to solve such Reinforcement Learning
problems which can also be applied online [49]. In addition, with further examination of
patches it would be possible to identify frontiers within them. Such features, along with
potential victim observations and other sensory inputs, can then be used to define a reward
function. For example: A positive reward would be given if frontiers would become observ-
able as they might lead to an increase in the amount of explored area. Moving too close to
a victim might imply a negative reward. This way we could formulate the problem of the
RoboCup Rescue Virtual Robots League in a few simple positive and negative goals, and
the planning algorithms would control the robot such that it pursues or avoids these goals.
This behavior would be vastly superior to reactive approaches since it would be able to take
the current environment and possible futures into account.

Another straight forward extension of the system would be to add the third dimension
in our map. A 3D scan matcher would be all that is needed to compute 3D maps, all other
parts of ManifoldSLAM can be reused without changes. The RoboCup Rescue Virtual
Robots simulator, USARSim, already includes a 3D range scanner sensor that could be used
for this purpose. This sensor is modeled after existing sensors such as the Swiss Ranger 3D
camera and 2D range scanners which are mounted in a way to tilt up and down. Including
the third dimension in maps will be necessary in future competitions as the environments
are bound to get more complex and unstructured. Proper obstacle avoidance may have to
include obstacles that extend from the ceiling, which are significant bumps on the floor,
or that do not have straight sides. Consequently, maps will have to capture such complex
environments properly. Also, Balakirsky et al. [1] mention a possible future requirement for
participants to include an extensive ’data sheet’ in the victims report that enumerates all
hazards encountered en route. It is yet unclear what kind of hazards are meant here, but the
organizers of our league have proven be very creative. This would add another argument in
favor of incorporating more detailed and potentially three-dimensional obstacle information
in the map.

Another beneficial extension would be to implement the refitting of the Manifold as a
global optimization instead of the current piece-wise locally optimal implementation. A
suitable function which represents the fit of the complete map can be constructed from
the scan matching results that are stored on the graph links. Such a function would take
all patch poses as free parameters and evaluate the quality of fit, possibly on the basis of
a Gaussian function for which we already have a covariance matrix. This way, it would

9.2. Future Work 125

be straightforward to compensate for errors in directions where the initial scan matching
process was uncertain as the Gaussian would indicate those directions. Since closed form
solutions for first and second derivatives from Gaussian functions are readily available, effi-
cient optimization methods similar to the NDT scan matching method discussed in Section
4.3.1 could be used.

Alternatively, loop closure, island merging and related operations can be done using a
different method of global optimization. Olson et al. [43] present a nonlinear optimization
method for pose graphs using exactly the same uncertainty representation as in Manifold-
SLAM. Their work is motivated by work on the Atlas SLAM framework (described in Section
3.4.2). Their method seems very efficient and accurate, although implementing it may be
laborious. It would be a nice task for the future as it would presumably significantly improve
map alignment and achieve loop-closing and island-merging in one operation.

Bibliography

[1] S. Balakirsky, C. Scrapper, S. Carpin, and M. Lewis. Usarsim: providing a framework
for multi-robot performance evaluation. In Proceedings of PerMIS 2006, 2006.

[2] Stephen Balakirsky, Stefano Carpin, Alexander Kleiner, Michael Lewis, Arnoud Visser,
Jijun Wang, and Vittorio Amos Ziparo. Towards heterogeneous robot teams for disaster
mitigation: Results and performance metrics from robocup rescue. Journal of Field
Robotics, Special Issue on Teamwork in Field Robotics, (submitted).

[3] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 2nd,
vols. i and ii edition, 2001.

[4] Paul J. Besl and Neil D. Mckay. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256, February
1992. ISSN 0162-8828. doi: 10.1109/34.121791. URL http://dx.doi.org/10.1109/

34.121791.

[5] Peter Biber and Wolfgang Straßer. The normal distributions transform: A new ap-
proach to laser scan matching. In IEEE/RJS International Conference on Intelligent
Robots and Systems, 2003.

[6] Andreas Birk, Holger Kenn, Stefano Carpin, and Max Pfingsthorn. Toward autonomous
rescuerobots. In First International Workshop on Synthetic Simulation and Robotics
to Mitigate Earthquake Disasters, 2003.

[7] M. Bosse, P. Newman, J. Leonard, and S. Teller. An atlas framework for scalable map-
ping. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), 2003.

[8] M. C. Bosse, P. M. Newman, J. J. Leonard, and S. Teller. Simultaneous Localization
and Map Building in Large-Scale Cyclic Environments Using the Atlas Framework.
The International Journal of Robotics Research, 23(12):1113–1139, 2004.

127

http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/34.121791

128 BIBLIOGRAPHY

[9] S. Carpin, J. Wang, M. Lewis, A. Birk, and A. Jacoff. High fidelity tools for rescue
robotics: Results and perspectives. In Proceedings of the 2005 RoboCup Symposium,
2005.

[10] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper. Bridging the gap
between simulation and reality in urban search and rescue. In RoboCup 2006: Robot
Soccer World Cup X, LNAI. Springer, 2006.

[11] J.A. Castellanos and J.D. Tardos. Mobile Robot Localization and Map Building: A
Multisensor Fusion Approach. Kluwer Academic Publishers, Boston, MA, 2000.

[12] Howie Choset and Keiji Nagatani. Topological simultaneous localization and mapping
(slam): Toward exact localization without explicit localization. IEEE Transactions on
Robotics and Automation, 17:125–137, 2001.

[13] Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-
Interscience, New York, NY, USA, 1991. ISBN 0-471-06259-6.

[14] E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Matem-
atik, 1:269–271, 1959.

[15] G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-Whyte, and M. Csorba. A solution
to the simultaneous localisation and map building (slam) problem. IEEE Transactions
of Robotics and Automation, 2001.

[16] Mauro Dragone, Ruadhan O’Donoghue, John J. Leonard, Gregory O’Hare, Brian Duffy,
Andrew Patrikalakis, and Jacques Leederkerken. Robot soccer anywhere: Achieving
persistent autonomous navigation and mapping and object vision tracking in dynamic
environments. In Proceedings of SPIE Opto Ireland, Dublin, Ireland, April 2005.

[17] H. Durrant-Whyte, S. Majumder, S. Thrun, M. de Battista, and S. Scheding. A bayesian
algorithm for simultaneous localization and map building. In Proceedings of the 10th
International Symposium of Robotics Research (ISRR01), 2001.

[18] A. Elfes. Sonar-based real-world mapping and navigation. In IEEE Transactions on
Robotics and Automation, pages 249–465, 1987.

[19] D. Ferguson, A. Morris, D. Hähnel, C. Baker, Z. Omohundro, C. Reverte, S. Thayer,
W. Whittaker, W. Whittaker, W. Burgard, and S. Thrun. An autonomous robotic
system for mapping abandoned mines. In S. Thrun, L. Saul, and B. Schölkopf, editors,
Proceedings of Conference on Neural Information Processing Systems (NIPS). MIT
Press, 2003.

[20] U. Frese. A discussion of simultaneous localization and mapping. Autonomous Robots,
20(1):25–42, 2006.

BIBLIOGRAPHY 129

[21] Erich Gamma, Richard Helm, and Ralph Johnson. Design Patterns. Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional Computing Series.
Addison-Wesley, 1995. GAM e 95:1 1.Ex.

[22] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective resampling. In
Proceedings of the IEEE International Conference on Robotics and Automation, 2005.

[23] J. Gutmann and K. Konolige. Incremental mapping of large cyclic environments.
In Proceedingsof the IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA), pages 318–325, Monterey, California, 1999.

[24] D. Hähnel, D. Schulz, and W. Burgard. Map building with mobile robots in populated
environments. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2002.

[25] D. Hähnel, D. Fox, W. Burgard, and S. Thrun. A highly efficient fastslam algorithm for
generating cyclic maps of large-scale environments from raw laser range measurements.
In Proceedings of the Conference on Intelligent Robots and Systems (IROS), 2003.

[26] Andrew Howard, Lynne E. Parker, and Gaurav S. Sukhatme. Experiments with large
heterogeneous mobile robot team: Exploration, mapping, deployment and detection.
International Journal of Robotics Research, 25(5):431–447, May 2006.

[27] Andrew Howard, Gaurav S. Sukhatme, and Maja J. Matarić. Multi-robot mapping
using manifold representations. Proceedings of the IEEE - Special Issue on Multi-robot
Systems, 2006.

[28] R. E. Kalman. A new approach to linear filtering and prediction problems. Trans.
ASME, Journal of Basic Engineering, 82:35–45, 1960.

[29] A. Kleiner, J. Prediger, and B. Nebel. Rfid technology-based exploration and slam
for search and rescue. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006 (to appear).

[30] K. Konolige, D. Fox, C. Ortiz, A. Agno, M. Eriksen, B. Limketkai, J. Ko, B. Morisset,
D. Schulz, B. Stewart, and R. Vincent. Centibots: Very large scale distributed robotic
teams. In International Symposium on Experimental Robotics (ISER-04), 2004.

[31] B. Lisien, D. Morales, D. Silver, G. Kantor, and H. Rekleitis, I. andChoset. The
hierarchical atlas. IEEE Transactions on Robotics and Automation, 21:473–481, 2005.

[32] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.
Autonomous Robots, 4:333–349, 1997.

130 BIBLIOGRAPHY

[33] Feng Lu and E. Milios. Robot Pose Estimation in Unknown Environments by Matching
2D Range Scans. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 1994. Proceedings CVPR ’94., 1994, pages 935–938, 1994. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=323928.

[34] Feng Lu and E. Milios. Robot pose estimation in unknown environments by matching
2D range scans. Journal of Intelligent and Robotic Systems, 18:249–275, 1997.

[35] M. Maimone, A. Johnson, Y. Cheng, R. Willson, and L. Matthies. Autonomous nav-
igation results from the mars exploration rover (mer) mission. In 9th International
Symposium on Experimental Robotics (ISER), June 2004.

[36] J. Minguez, L. Montesano, and F. Lamiraux. Metric-based iterative closest point scan
matching for sensor displacement estimation. IEEE Transactions on Robotics, 22(5):
1047–1054, October 2006. URL http://webdiis.unizar.es/~jminguez/MbICP_TRO.

pdf.

[37] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with unknown
data association using FastSLAM. In Proceedings of the IEEE International Conference
on Robotics and Automation, volume 2, pages 1985–1991. IEEE, September 2003.

[38] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam: A factored solution
to the simultaneous localization and mapping problem. In Proceedings of the AAAI
National Conference on Artificial Intelligence, Edmonton, Canada, 2002. AAAI.

[39] M. Montemerlo, N. Roy, and S. Thrun. Perspectives on standardization in mobile robot
programming: The carnegie mellon navigation (CARMEN) toolkit. In Proceedings of
the Conference on Intelligent Robots and Systems (IROS), 2003.

[40] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. Fastslam 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges. In Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI), Acapulco, Mexico, 2003. IJCAI.

[41] Hans Moravec. Sensor fusion in certainty grids for mobile robots. AI Magazine, 9:
61–74, 1988.

[42] J. Nieto, J. Guivant, E. Nebot, and S. Thrun. Real time data association for fastslam. In
Proceedings of the IEEE International Conference on Robotics and Automation, 2003.

[43] Edwin Olson, John Leonard, and Seth Teller. Fast iterative optimization of pose graphs
with poor initial estimates. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 2262–2269, 2006.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=323928
http://webdiis.unizar.es/~jminguez/MbICP_TRO.pdf
http://webdiis.unizar.es/~jminguez/MbICP_TRO.pdf

BIBLIOGRAPHY 131

[44] Samuel T. Pfister, Kristo L. Kriechbaum, Stergios I. Roumeliotis, and Joel W. Burdick.
A weighted range sensor matching algorithm for mobile robot displacement estimation.
IEEE Transactions on Robotics and Automation, submitted for publication, 2006.

[45] M. E. Pollack, S. Engberg, J. T. Matthews, S. Thrun, L. Brown, D. Colbry, C. Orosz,
B. Peintner, S. Ramakrishnan, J. Dunbar-Jacob, C. McCarthy, M. Montemerlo,
J. Pineau, and N. Roy. Pearl: A mobile robotic assistant for the elderly. AAAI Work-
shop on Automation as Eldercare, 2002.

[46] Radish. The robotics data set repository, -. URL http://radish.sourceforge.net.

[47] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in
robotics. I.J. Cox and G.T. Wilfong, editors, Autonomous Robot Vehnicles, pages 167–
193, 1990.

[48] R. C. Smith and P. Cheeseman. On the representation and estimation of spatial uncer-
tainty. International Journal of Robotics Research, 5:56–68, 1986.

[49] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[50] S.Williams, G. Dissanayake, and H.F. Durrant-Whyte. Towards terrain-aided naviga-
tion for underwater robotics. Advanced Robotics, 15(5), 2001.

[51] S. Thrun. Learning metric-topological maps for indoor mobile robot navigation. Arti-
ficial Intelligence, 99(1):21–71, 1998.

[52] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors, Exploring
Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.

[53] S. Thrun, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox, D. Hähnel,
C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: A second generation mo-
bile tour-guide robot. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 1999.

[54] S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A.B. Cremers, F. Dellaert, D. Fox,
D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. Probabilistic algorithms
and the interactive museum tour-guide robot minerva. International Journal of Robotics
Research, 19(11):972–999, 2000.

[55] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping
with applications to multi-robot and 3D mapping. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), San Francisco, CA, 2000.
IEEE.

http://radish.sourceforge.net

132 BIBLIOGRAPHY

[56] S. Thrun, S. Thayer, W. Whittaker, C. Baker, W. Burgard, D. Ferguson, D. Hähnel,
M. Montemerlo, A. Morris, Z. Omohundro, C. Reverte, and W. Whittaker. Autonomous
exploration and mapping of abandoned mines. IEEE Robotics and Automation Maga-
zine, 2004.

[57] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong,
J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,
P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rum-
mel, J. van Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger,
A. Kaehler, A. Nefian, and P. Mahoney. Winning the darpa grand challenge. Journal
of field Robotics, 2006. accepted for publication.

[58] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with applications
to large-scale mapping of urban structures. Int. J. Rob. Res., 25(5-6):403–429, 2006.
ISSN 0278-3649.

[59] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent
Robotics and Autonomous Agents). The MIT Press, September 2005. ISBN 0262201623.

[60] N. Tomatis, I. Nourbakhsh, and R. Siegwart. Hybrid simultaneous localization and
map building: Closing the loop with multi-hypotheses tracking. In Proceedings of the
IEEE International Conference on Robotics and Automation, Washington DC, USA,
May 11 - 15., 2002.

[61] A. Visser, P. van Rossum, J. Westra, J. Sturm, D.A. van Soest, and M. de Greef. Dutch
aibo team at robocup 2006. Team description paper for the 10th RoboCup International
Competition, June 2006, Bremen, Germany, June 2006.

[62] J. Wang, M. Lewis, and J. Gennari. Usar: A game-based simulation for teleoperation. In
Proceedings of the 47th Annual Meeting of the Human Factors and Ergonomics Society,
pages 493–497, Denver, CO, 2003.

[63] J. Wang, M. Lewis, and J. Gennari. Interactive simulation of the nist usar arenas. In
Proceedings of the 2003 IEEE International Conference on Systems, Mand and Cyber-
netics, pages 1350–1354, Washington, DC, USA, October 2003.

[64] J. Wang, M. Lewis, and J. Gennari. A game engine based simulation of the nist usar
arenas. In Proceedings of the 2003 Winter Simulation Conference, pages 1039–1045,
New Orleans, LA, 2003.

[65] Jijun Wang. Usarsim v2.0.2, a game-based simulation of the nist reference arenas.
Available on the USARsim website, 2006. URL http://usarsim.sf.net/.

http://usarsim.sf.net/

BIBLIOGRAPHY 133

[66] S. Williams and I. Mahon. Simultaneous localisation and mapping on the great barrier
reef. In Proceedings of the IEEE International Conference on Robotics and Automation,
Jan 2004.

[67] B. Yamauchi. A frontier based approach for autonomous exploration. In Proceedings
of IEEE International Symposium on Computational Intelligence in Robotics and Au-
tomation, Monterey, CA, July 10-11, 1997., 1997.

[68] Brian Yamauchi. Frontier-based exploration using multiple robots. In AGENTS ’98:
Proceedings of the second international conference on Autonomous agents, pages 47–53,
New York, NY, USA, 1998. ACM Press. ISBN 0-89791-983-1.

[69] Zoran Zivkovic. Ieee/rsj iros 2006 workshop: ’from sensors to human spatial concepts’,
2006. URL http://staff.science.uva.nl/~zivkovic/FS2HSC.

[70] R. Zlot, A. Stentz, M. Dias, and S. Thayer. Multi-robot exploration controlled by a
market economy. In Proceedings of the IEEE International Conference on Robotics and
Automation, 2002.

http://staff.science.uva.nl/~zivkovic/FS2HSC

	Introduction
	Motivation
	Research Goals
	Thesis Organization
	Authorship Designations

	The Challenge: RoboCup Rescue
	RoboCup
	Rescue
	Rescue Virtual Robots

	The USARSim Simulator
	Overview
	Related Projects

	Designing A Successful Approach

	Simultaneous Localization and Mapping
	Introduction
	The SLAM Challenge
	Sensor Limitations and Measurement Noise
	Inaccurate Movement and Odometric Error
	Error Accumulation
	Data Dimensionality
	Data Association
	Dynamic Environments and Obstacles
	Exploring the Unknown

	Approaches
	Feature-Based Maps: Kalman Filters
	Metric Maps: Occupancy Grids
	Topological Maps: Graphs and Voronoi Diagrams
	Hybrid Maps: The Optimal Combination

	Current State of the Art
	FastSLAM
	Atlas

	Conclusion

	Scan Matching
	Overview
	Approaches
	Point-Correspondence Methods
	Function Optimization Methods

	Specific Algorithms
	Normal Distribution Transform
	Iterative Dual Correspondence (IDC)
	Metric-based Iterative Closest Point (MbICP)
	Weighted Scan Matching

	Conclusion

	Our Approach: ManifoldSLAM
	Introduction
	Design Essentials
	Data Structure Details
	Patches
	Relations
	Local Sub-Maps

	Localization and Mapping
	Weighted Scan Matching
	Incremental Localization and Mapping
	Loop Closing
	Island Merging

	Multi Agent Support
	Visualization

	Implementation
	Overview
	USARSim Technical Details
	Protocol
	Robots, Sensors and Actuators
	Organization

	Architecture
	Agent Organization
	Mapping Server Organization

	Details
	Qt Cross-Platform API
	Networking

	SLAM Module
	Autonomous Behavior and Motion Module
	Sensor Input
	Motion Control
	Behavior Control

	Experiments and Results
	Scanmatcher Evaluation
	Introduction
	Experimental Setup
	Results
	Implications

	ManifoldSLAM Evaluation
	RoboCup 2006 Results
	Cogniron Results

	Related Work
	Comparison to the State of the Art
	Competitors at the RoboCup

	Conclusions and Future Work
	Concluding Remarks
	Future Work

