#### A CONTRIBUTION TO THE INFRASTRUCTURE OF THE RESCUE SIMULATION COMPETITION



#### Amsterdam Oxford Joint Rescue Forces Victor Spirin and <u>Arnoud Visser</u>

Oxford University Computer Science Department

RoboCup Rescue Simulation Infrastructure Competition, João Pessoa, June 22, 2012

Universiteit van Amsterdam Intelligent Systems Laboratory

#### HISTORY OF UVA-RESCUE AND AOJRF

- UvA-Rescue is active in the Rescue Simulation League since 2003.
- Joint Rescue Forces with Oxford since 2008.
- Several infrastructure contributions over the years:
  - Smoke visible to the laser scanners
  - Omnidirectional camera
  - Validated walking robot
  - Validated flying robot
  - Upgrade from UT2004 to UDK



# THE DETAILED MAPS BY THE TEAM



# IDEAS OF UVA RESCUE FOR THE INFRASTRUCTURE COMPETITION

- Uniform Robot Description Format
- Ricoh Theta
- RoboCup@Home Simulation
- KUKA youBot
- Observations while moving





#### A SIMULATOR WITH A DETAIL LEVEL BETWEEN THE AGENT AND VIRTUAL COMPETITION



#### Victor Spirin, Julian de Hoog and Arnoud Visser

Oxford University Computer Science Department

RoboCup Rescue Simulation Infrastructure Competition, João Pessoa, June 22, 2012

Universiteit van Amsterdam Intelligent Systems Laboratory

# Role-Based Multi-Robot Exploration



Julian de Hoog University of Oxford

#### **RESULT: A 2D ROBOT SIMULATOR (VERSION 2.0)**



# CONTEXT

- High-bandwidth communication is limited
- Emphasis on cooperation strategies under the constraints of limited communication



# **ROLE-BASED EXPLORATION**

- Agents assigned one of two roles:
  - Explorer
  - Relay
- Explorers explore new frontiers, bring information back to rendezvous points
- Relays move information between base station and explorers
- Agents can swap roles in the tree, but the tree structure doesn't change



# **ROLE-BASED EXPLORATION**

- Explorer starts exploring, relay follows
- Once they are outside communication range, they pick the next rendezvous point (nearest to next frontier, within safe space), relay goes back to base
- Explorer estimates how long it would take the relay to return to the rendezvous point; stops exploring and returns to RV at the right time



#### SWAP ROLES

- Agents can swap roles if it would reduce travel time
- Swapping roles leads to emergent behaviour, where relays can form longer chains not explicitly defined in the relationship tree



# **RENDEZVOUS POINT SELECTION**

- Rendezvous point selection has a crucial effect on team behaviour
- RV points closer to base station lead to more frequent updates; closer to frontiers leads to faster exploration
- Good to pick points near frontiers but in open space (corridors, junctions)
- Get a skeleton of the environment, select points at junctions, remove points too close to others, fill in gaps, select best point



#### NOW: OPEN SOURCE & VERSION 2.2

#### 😣 🔵 Multi-robot Exploration Simulator (MRESim) v2.2



Multi-Agent Exploration in Indoor Environments with Limited Communication



Victor Spirin University of Oxford

#### PAPER I

# **RENDEZVOUS THROUGH OBSTACLES**

- Doesn't take into account communication range
  - Robust to communication problems
  - But can be very inefficient
- What if the robots planned to communicate through obstacles?
  - Need to select rendezvous point pairs – how?
  - What to do if communication does not happen?



# WHAT ARE THE CANDIDATE RV POINT PAIRS?

- We want point pairs that have an obstacle between them (no line of sight comms)
- Using the point pair has significant advantage over using a single rendezvous point
  - We want the benefit to outweigh the additional risks introduced with lack of line-ofsight



# **GENERATING CANDIDATE RV POINT PAIRS**

- Sample points close (but not too close) to obstacles.
  - Use several iterations of "thinning" to obtain a set of such points
  - Sample points from the set uniformly
- Evaluate communication range at each point (using a communication model with attenuation factor for walls); reduce the resulting range by a factor for additional safety
- Sample points from the communication polygon as candidates for the 2<sup>nd</sup> RV point in the pair
  - Evaluate distance to base



# FALLBACK

- Agents can estimate meeting time, and agree on a timeout
- After the timeout, they can proceed to the single rendezvous point as a fallback
- Use low-frequency (lowbandwidth) high-range communication channel for control messages



















<u>Video</u>



### RESULTS

- Improved team connectivity
- Base station gets more frequent updates
- But, overall exploration speed not affected as additional resources are not allocated to exploration
- Relays kept close to base station safer, avoid going into risky areas, spend less time travelling
- Relays spend more time idle may allow us to convert some relays into explorers, as fewer relays may be required

#### PAPER II

#### DYNAMIC ROLE SELECTION

#### Favour different metrics: overall time VS



#### PROPOSED METHOD

- Set the desired minimum ratio of total agent knowledge known at base station
- Control team behaviour with a single parameter, a real number between 0 and 1



#### IMPLEMENTATION

- User sets  $targetInfoRatio \in [0; 1]$
- For each agent *i*,
  - *infBase<sub>i</sub>* is the information *i* believes the base station to have
  - *infNew<sub>i</sub>* is 'new' information *i* knows
- Each agent either exploring, or returning to base
- An agent *i* only decides to return if

 $\frac{| infBase_i |}{(| infBase_i |+| infNew_i |)} < targetInfoRatio$ 

### **IMPLEMENTATION - RELAYS**

- Agents delivering same information to base = wasted resources
- When two agents, *i* and *j* meet, and *j* closer to base
  - $infNew_i$  added to  $infNew_i$ ,  $infNew_i$  set to 0
  - *infNew<sub>i</sub>* is marked as "being relayed"
- Reduce the risk of several agents trying to deliver the same information to base

# **EVALUATION**

- Evaluated in a 2D simulator
  - Assumed perfect
    localization and mapping
- Used target ratios of 0.95,
- 0.90, 0.75, 0.5 and 0.3,
- compared with Role-based
- exploration; tried with 4 and 8 robots
- 4 maps, 4 runs on each map for each configuration





#### **EMERGENT BEHAVIOUR**

- All agents start off as explorers
- As exploration moves deeper into the environment, dedicated relays emerge
- Relays create relay chains, as they navigate towards "popular" frontiers, plan similar paths and meet other relays on the way





# RESULTS

- A simple, effective way of specifying desired team behaviour and having the team adapt, by changing a single numerical parameter
  - Need to test in a realistic simulator and on a team of real robots
  - Which target ratios should be used for any particular situation
  - Bigger environments, more robots

#### CONCLUSIONS

- The MRESim Simulator is a Java based Open Source Simulator.
- Robots / Agent have a limited field of view, resembling a laser scanner (without noise)
- Robots / Agent have a limited communication range, attenuated by walls (like the WSS)
- Robots have to be distributed over the map
- Cooperation can be modelled by combining robots in explorer / relay pairs

#### https://github.com/v-spirin/MRESim

Julian de Hoog, Stephen Cameron and Arnoud Visser, "Role-Based Autonomous Multi-Robot Exploration", International Conference on Advanced Cognitive Technologies and Applications, 2009.