
Adaptive Indoor Map Generator
for USARSim

Olaf Zwennes
5974100



Adaptive Indoor Map Generator
for USARSim

Olaf Zwennes
5974100

Bachelor thesis
Credits: 9 EC

Bachelor Opleiding Kunstmatige Intelligentie

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Supervisor
Dr. A. Visser

Institute for Informatics
Faculty of Science

University of Amsterdam
Science Park 904

1098 XH Amsterdam

June 24th, 2011



Abstract

This paper focuses on the method and implementation of a map generator for
the USARSim environment, which is capable of generating indoor environments.
The generator adapts to a di�culty measure, which signi�es how di�cult the
generated map should be, when mapped by a robot. Both the method of the
procedural generation process as well as the theory of the di�culty measure are
explained, followed by the implementation of the generator. Multiple maps with
various di�culties are generated and mapping runs are simulated by experienced
robot operators. Then the di�culty is assessed by these operators and compared
to the di�culty level of the maps. The rules of the generator turn out to be
able to in�uence the di�culty of the maps, but are not able to consistently
generate maps with a speci�c di�culty, due to being too naive an encoding of
the complexities of 'di�culty'.

Keywords: Simulation, Robotic Mapping, Procedural Map Generation, Rule
Based Con�guration



Contents

1 Introduction 1

2 Related Work 2

3 Method 3

4 Application 6

5 Experiments 12

6 Results 13

7 Conclusion 15

8 Discussion 16

9 Future Work 17

A Room List & Di�culties 20

B Feedback Form 21

C Operator Maps 22

i



1 Introduction

For many a roboticist, the ultimate thrill is to have your programmed robot
successfully ful�lling a task in front of your eyes. But before a real life robot is
capable of impressive feats like mapping out rooms and �nding its way around
a campus, a lot of testing has to be performed. It is not uncommon for this
testing to be performed in a simulated environment, in order to simplify testing
and making analysis of the experiments easier. In order to best simulate the
sensor input of a real-world robot, sophisticated video-game engines are used
to simulate the environments and the robot itself. A popular software package
used for these kinds of robot simulations is the USARSim package [2], build on
the Unreal Engine 3TM game engine.

USARSim o�ers various environments with its default package, for the simu-
lated robots to experiment inside of. There are various types of environments,
like indoor and outdoor maps, as well as various levels of complexity. Users of
USARSim can use the game engine's tools to create arbitrarily many and diverse
maps to o�er a representative collection of maps to test the algorithms for map-
ping and localization of the robot. The experiments in a simulated environment
are usually used to test an algorithm in as many situations as possible, in order
to prove the performance of the algorithm in general. While an algorithm may
be written for a speci�c type of environment, like indoor maps, it always needs
to be tested on a wide variety of maps in order to con�rm that the algorithm
performs well on a arbitrary environment of that type.

Procedural generation can be used to generate diverse maps of various types in
a game engine. The process has already been used to generate both outdoor
and indoor maps, as well as assets, like vegetation in outdoor maps or complete
rooms in indoor maps, to �ll those maps with a rich variety of objects [6][5][8].
Procedural generation is the use of algorithms, usually with one or more random-
ized factors, to generate graphical assets, like the examples mentioned before.
In procedural generation, there is a balance between randomizing parameters of
the generation algorithm and having these parameters set by strict rules that
encode knowledge about the type of asset to be generated.

Indoor environments procedurally generated for use in USARSim could possibly
have a variable di�culty for robot mapping tasks. This di�culty measure may
be encoded in the rules of the generation algorithm, in order to ensure that the
di�culty of a generated map is controlled. This would require the generation
rules to generalize past just encoding the structure of an indoor environment,
to also encoding a property like di�culty for the robot's mapping task.

The central question of this paper is: Can the rules used in an algorithm for
generating indoor environments be used to make the generator adaptive to a
di�culty measure for a robot mapping task? This means the algorithm will
have to be able to generate indoor maps that re�ect a user-set di�culty, where
an increase in di�culty results in a indoor environment that is harder to map
for the simulated robot. This will a require theory of the di�culties of mapping
an environment, as well as procedural generation techniques.

1



In the next section, related work is discussed and compared to this research.
Following the related work is a section on the method and application of the
adaptive indoor map generator, explaining the choices made in the application.
The next section discusses how the experiments with the generator are per-
formed and the results of these experiments are given afterwards. Finally, a
conclusion is drawn from those results and the research as a whole is evaluated
in a discussion section. This report �nishes with suggestions for future work.

2 Related Work

Related and relevant work can be found in both the �eld of procedural generation
and the �eld of robotics. In the �eld of procedural generation, there is little work
in the generation of indoor environments. An exception is the work of Tutenel,
Bidarra, Smelik and de Kraker in rule-based layout solving [8]. Their rule-
based system de�nes classes consisting of a particular type of object and rules
associated with these classes determine their placement in an interior layout.
A solver then takes these rules into consideration and places objects inside an
interior plan to generate indoor environments. A rule-based system is also, in
a highly simpli�ed manner, implemented in this report, but it is extended to
encode the abstract notion of a di�culty measure for each entity. The rule-
based system of Tutenel et. al. is also fairly rigid, solving the rules to one best
solution. By assigning probabilities to solutions, a more diverse set of interiors
can be generated, at the cost of not always generating the best solution. This
approach is used in this report.

Having an environment, like a program or a game, adapt to a di�culty mea-
sure, has been researched in a variety of contexts. Carro, Breda, Castillo and
Bajuelos presented a framework for creating adaptive educational games [3].
The framework requires a set of parameters, one of which is a di�culty of each
game. A game of a speci�c di�culty (among other features) is then considered,
given the progress of the student/player. The system thus uses annotation and
rules to adapt an educational game to the skill level of the player. In the context
of game entertainment, a system for procedurally generating levels for platform
games has been proposed by Compton and Mateas [4]. The di�culty of such a
platform level is calculated by determining the timing and the spacial window
required for successfully landing a jump from one platform to the next. So con-
trary to the previously noted research, in this case a simulation of the player's
behavior is used to calculate the di�culty, rather than annotations and a rule-
based system. A rule-based system is used in this report, instead of simulation
as a method to calculate di�culty, because the freedom of movement of a robot
is too large to reliably calculate the di�culty of a map using simulations alone.

While there has not been any research in adapting virtual environments to a
simulated robot's skill at tasks like mapping, there have been reports noting the
speci�c di�culties particular algorithms have when mapping environments. A
book by Thrun, Burgard and Fox notes four important mapping problems [7].
The �rst problem is size, which means the larger an environment is, compared
to the range of the robot's sensors, the more di�cult the mapping task becomes.

2



This problem is relevant to this report, because a map generator can vary the
size of elements of the map (or the entire map) in order to vary the di�culty of
that map. The second problem is noise in sensors, because when noise increases,
localization and recognition becomes harder and thus mapping becomes harder.
The third problem is perceptual ambiguity. When di�erent places in an envi-
ronment look a lot alike, it is more di�cult for a robot to distinguish between
these places. This problem can be used by the map generator, by creating am-
biguity inside a map, it will generate a more di�cult map. The last problem
Thrun et. al. note is cycles, where a robot can come back to the same location
using a di�erent path. The odometry errors accumulate when a robot moves
through a cycle, which results in mapping inaccuracy. This last problem is also
relevant to the indoor environment generator, because cycles can be generated
or prevented in order to increase or decrease map di�culty.

3 Method

USARSim includes several tools to make certain tasks required for robot sim-
ulation easier. One of those is the so called World Generator [1], which is a
simple map creator, where users can drag pre-made rooms and hallway pieces
to a grid of arbitrary size and then export the created map to a format that can
be converted to a 3D environment for use in USARSim. The tool also includes
a procedure to automatically generate a map using simple generation rules. For
instance, The hallways are laid out using a Manhattan-like grid with a constant
distance between hallways. This simple generator is expanded in this report to
adapt to a di�culty that the user sets when generating a new map.

Figure 1: A standard map generated by the World Generator tool.

There are three main rules in the existing World Generator, that encode the
geometric properties of the environment. The �rst is the layout of the hallways
in the map, where horizontal and vertical hallways are placed a speci�c distance
apart, which span the entire width and height of the map respectively. In Fig-

3



ure 1 this hallway layout is clearly visible. The light-green colored grid positions
are hallway pieces and the light-blue colored boxes are pre-made rooms inserted
into the map with the triangle in the center determining their orientation. The
white grid positions are empty (solid wall) and not accessible by the robot. The
hallway rule looks like this in pseudo-code:

hallwayRule(horizontalSpacing, verticalSpacing)
for every column dividable by horizontalSpacing

�ll entire column with hallway pieces
for every row dividable by verticalSpacing

�ll entire row with hallway pieces

The second rule places the rooms in the empty space randomly:

roomRule(roomList)
for every empty grid position starting from the top-left to the bottom-right

take a random room from roomList
if there is enough empty space for the room to �t

place room in empty space
else: pick another random room
if there is still empty space below the current position

move down the length of the room
else

move to the right the length of the largest room
move back up to the top empty space

The third and last rule places the doorways to the rooms:

doorwayRule(doorwayPercentage)
for every side of every room

if random number is smaller than doorwayPercentage
remove a doorway-sized part of the wall in the middle

These decidedly simple rules encode all geometric properties of the generated
map, with the exception of the content of the rooms, which is pre-made by
human designers. Together, these rules generate the entire environment, but
they do not create very varied maps, as variation is only achieved by choosing
rooms at random and randomly placing doorways (if doorwayPercentage < 1).

The rules that encode the di�culty measure and thus result in an adaptable
map generator are of the same type as the above rules that encode the geomet-
ric properties of the generated map. In fact, they are sometimes just a small
enhancement to the existing rule. For instance, the rule that places the hallways
in a grid structure equidistant from each other can encode a di�culty by sim-
ply changing the distance between the hallways. This means creating hallways
with less cross-section with other hallways and that results in long monotonous
hallways which should create location ambiguity for the robot. The reason that

4



the same type of rules can be used to encode an abstract concept like di�culty,
as well as encode the actual geometry of the environment, is that the di�culty
measure has a tangible e�ect on the geometry and it is this e�ect that is encoded
in the rules. This does however mean that the actual di�culty is not directly
encoded and the e�ect of di�erent di�culties is interpreted by the creator of
the rules. This will result in a simpli�cation of the likely complex dynamics of
real-life locations that show di�erent di�culties, when mapped by a robot. This
problem could possibly be solved by designing a system that learns the rules that
result in di�erent di�culties, from interactions between real-life robots and dif-
ferent environment. However, a rule-based system where the rules are designed
by an expert will generate more predictable maps with fewer odd features that
would not appear in the real world, because the rules can be controlled.

The tool and generator use a low resolution, where a single grid unit is an en-
tire hallway width and rooms always �ll a number of those grid units exactly.
Changes at a higher resolution, like moving or placing objects inside a room
or hallway can not be achieved without creating an entirely new room or hall-
way with that change incorporated. This low resolution has the advantage of
limiting the amount of possible actions to perform, because the only ones are
placing a hallway or room on one or more of the grid positions. Limiting the
amount of actions makes the generation process easier, because there are not
in�nitely many possible actions to perform during generation. A downside of a
low resolution is that the range of possible environments that can be generated
is also limited. This means that there is a trade-o� between controlling the gen-
eration process and generating diverse maps. For this paper, the low resolution
of the existing World Generator is kept, because if a di�culty measure can be
encoded using rules on a low resolution grid, a higher resolution will surely allow
for di�culty to be encoded, likely even better.

There are two more trade-o�s to be considered when building the indoor map
generator. In order to generate diverse environments di�erent room and hall-
way layouts should be generated, even when the user set the same di�culty.
Also, rooms are annotated with a di�culty measure, in order to put the right
rooms in a map with a particular di�culty, by minimizing the error between
the annotation and the user-set di�culty. However, just minimizing the error
would result in one or few rooms being the best pick to place in the map and
there would be little variation between maps of the same di�culty. To solve
this, the generator assigns probabilities to rooms for being picked to be placed
on the map, which are higher when the maps annotated di�culty is closer to
the maps di�culty. The trade-o� is that assigning a higher probability to rooms
with an incorrect di�culty will result in more varying generated environments,
but those environments are also less likely to have the exact di�culty that the
user wants. The equations used in the generator are shown in the application
section. And while those are functional, they may not capture this trade-o� the
best.

The last trade-o� is between user control over the map and matching the user-
de�ned di�culty with the generated map. When a user is allowed to control a
parameter of the generation process, this parameter can not be used to adapt
the map to the right di�culty. However, allowing a user control means he

5



is able to steer the generation process in order to generate environments that
are particularly useful to him. An example of this trade-o� is: when using
the existing generator in the World Generator tool, the user could change the
distance between hallways in the generated map. However, as explained above,
variations to this distance can mean that the generated map better matches the
desired di�culty. So for the adaptive generator, the user is not able to change
that parameter. More generally, the user can not change any parameter of the
generation process, except for the di�culty and which rooms are allowed to be
placed in the map. However, when the map has been generated, the user is
free to change the map by adding, moving or removing rooms and hallways.
This does mean that if the user decides to change the map, the di�culty of the
resulting environment is not guaranteed.

4 Application

As previously mentioned, the generator is an adaptation of an existing tool
for USARSim called World Generator [1]. This tool is written in Java and
provides a valuable base for the generator to be build upon. Firstly, the World
Generator dictates a grid structure that the generator can build its map on.
More importantly, the tool includes processes to convert the grid map to a
plain text �le that can be converted to a proper 3D environment �le, usable by
USARSim. The tool also already includes a variety of pre-made rooms that can
be placed in the map by the generator. Finally, the World Generator already
has a simple map generator, whose rules can be expanded to build an adaptive
map generator.

To create the adaptive generator, �ve adaptations to the existing generator have
been made: variable distance between hallways, open area creation, variable
doorway probability, adaptive room placement and cycle prevention. All of
these changes depend in some way or another on the di�culty that is set by
the user before the map generation begins. The user is required to set the
di�culty to a value between 0 and 10. There are several reasons for constraining
the range of values the di�culty can take. Firstly, by constraining the range,
the rooms' di�culty annotations can be in the same range and the annotation
can be directly compared to the user-set di�culty. Another reason is that by
constraining the range, the di�culty value can be directly used in probability
equations, and the probability will never exceed 1. Lastly, by constraining the
range of di�culty values, there is a clear minimum and maximum di�culty the
generator is capable of generating.

The �rst of the adaptations is a variable distance between hallways. The dis-
tance between hallways was set to an arbitrary value in the unmodi�ed World
Generator tool. The adaptation consists of increasing the distance between
hallways in both directions (independently), when the di�culty increases. This
adaptation is illustrated in Figure 2 with the lowest and highest di�culty, respec-
tively. The distance between hallways is calculated independently for horizontal
and vertical hallways using the following equation:
hallwaySpacing = (0.06×difficulty+0.2)×size+randomGaussian×0.1×size

6



(a) lowest di�culty (0), where the distance
between hallways is small.

(b) highest di�culty (10), where the distance
between hallways is large.

Figure 2: A grid-view of maps with varying hallway layouts.

, where difficulty is the user-set di�culty (range: 0-10), size is either the height
or width of the map in grid units, depending on if the vertical or horizontal dis-
tance between hallways is calculated. randomGaussian is a random number
drawn from a standard Gaussian distribution. The random deviation is used
to ensure variation in maps of the same di�culty, and the deviation is larger
with larger maps. hallwaySpacing is kept within a range of 3 to size, to ensure
there is enough space between hallways for the generator to place rooms and
there are always at least two hallways per direction.

There are several causes why the di�culty could increase when the distance
between hallways increases. The �rst is that increasing the distance between
hallways in, for instance, the horizontal direction, results in less intersections
with the vertical hallways. Less intersections on the vertical hallways means
there is more distance between intersections, where the robot can build up a
larger odometry error. Another cause of increased di�culty as a result of longer
distance between hallways, is that bigger rooms can �t in the empty space
between hallways. Bigger rooms can have a larger complexity, by containing
more objects or longer paths to traverse, for instance when the room is a large
maze (see Figure 3). Another increased di�culty is created when large rooms
are placed and a large portion of empty space is left after the rest of the column
is �lled with smaller rooms. This empty space is not �lled by rooms because the
generator moves to the right a number of columns equal to the largest room that
was placed in the current column, when it reaches the bottom of the current
column (see rule roomRule). Figure 2(b) shows how the second adaptation �lls
this empty space with hallway pieces (the light-green areas), thus creating large
open areas with no distinguishable objects. A robot inside one of these large
open areas likely has a problem with localizing itself, due to the walls being
on the far end of the sensor range or beyond and the fact that there are no
identi�able objects inside the area.

7



Figure 3: A large (6x6 grid units) pre-made maze room.

The third adaptation is a variable doorway probability. The unmodi�ed World
Generator tool already places doorways on the sides of rooms according to a
probability and this probability is made adaptive to the di�culty level. The
reasoning behind this adaptation is that having more doorways to a room on
average, results in more small-scale cycles, where the robot can enter and exit
the same room through di�erent doorways. This can result in the same room
being mapped from di�erent directions and the two views of the room being
misaligned on the map. So, a lower doorway probability is assigned to a map
with a lower di�culty level, according to this equation:

doorwayProb =
difficulty

16
+ 0.375

This equation ensures that the probability of placing doorways is never 0, be-
cause that would make every room inaccessible.

The next adaptation changes the random room placement of the unchanged
World Generator tool. In order to adapt the map to a di�culty level, the
rooms inside the map also need to be of a di�culty corresponding to that level.
The adaptation consists of annotating the rooms that can be placed inside the
environment, with their own di�culty. The rooms are assessed, ideally by an
expert in the �eld of robot mapping, and given a di�culty value in the same
range as the di�culty values the user sets for generated maps. When it comes
time to generate a map, a probability of being placed in the map is assigned
to each room, which corresponds with how well the room's di�culty matches
with the map's di�culty. The equations that calculate this probability are as
follows:

ISE(room) =
1

(difficulty − diff(room))2 + 1
is calculated for each room, where diff(room) is the di�culty annotation of
room. Then the probability is calculated as:

P (room) =
ISE(room)
rooms∑

r

ISE(r)

8



, where rooms is the list of rooms, which can be found in Appendix A, along
with the di�culties. The +1 in the �rst equation prevents a possible division
by zero and the second equation turns the inverse squared error (ISE) into a
probability. For each empty space in the map that requires a room to be placed
inside it (see roomRule in previous section), each room has a chance of P (room)
of being placed in that space. Using probabilities ensures that maps of the same
di�culty are still varied, because all rooms have at least some probability of
being placed. This method also ensures that on average, the di�culty of the
rooms inside an environment is the same as the di�culty of the environment,
as set by the user.

Figure 4: A map created by two robots during an experimental run through a
generated environment.

The last adaptation adds a new rule to the generation process, as opposed to
changing the existing rules to become adaptive. This rule is designed to prevent
cycles in a generated map. A cycle in a hallway can result in a misaligned hall-
way on the robot's map. The robot builds up an odometry error when moving
through the cycle, that is insigni�cant at a local level, but when the robot com-
pletes the cycle the odometry error is large enough that the cycle is misaligned
and the map re�ects that error [7]. Figure 4 shows such a misalignment, where
a robot moved around the left side of the map (the green dots show the path),
returning to its starting position and the top horizontal hallway is misaligned
as a result of the cycle. The new rule blocks o� horizontal hallways at speci�c
positions, so the hallways do not form cycles anymore. This rule is applied with
a probability of:

P = 1− difficulty

10
At low di�culties, there is a high probability of cycles being blocked o�, and
that probability drops linearly with increasing di�culty. The rule itself looks
like this in pseudo-code:

9



preventCycles(horizontalSpacing, verticalSpacing)
for every column dividable by horizontalSpacing - 1

for every row dividable by verticalSpacing
remove the hallway piece on that grid position

place back one hallway piece on this column at random

This rule is inspired by the hallwayRule but instead of placing hallway pieces,
it removes them to block of the horizontal hallways. In order to ensure that
the entire map is still accessible, one hallway piece is placed back per column.
Figure 5 shows the e�ect of this rule (note the white grid positions), when
compared to Figure 2(a) for instance. When this rule is applied it is no longer
possible to move in a cycle around the map, when moving through hallways.
However, because rooms can have multiple doorways, moving through a room
can still result in a cycle. But since the doorway probability is lower at the
di�culties that this rule is likely to be applied, it is less likely for rooms to have
multiple doorways that connect di�erent hallways together.

Figure 5: A grid-view of a generated map with 'cycle prevention'.

Together, all the above adaptations of the World Generator tool result in a map
generator that adapts to a di�culty that the user sets, without requiring further
user intervention. It generates diverse maps with clear di�erences in geometry
between di�erent di�culties. Figure 6 shows just how di�erent a map of a low
di�culty is compared to one with a high di�culty, with a clear di�erence in
room complexity, as well as in general layout.

10



(a) generated with a low di�culty (1).

(b) generated with a high di�culty (9).

Figure 6: An eagle-eye view of generated maps with di�erent di�culty settings.

11



5 Experiments

Ideally, the di�culty of the generated environments is evaluated by having a
quantitative measure of the quality of a robot's map, after performing a run
through the generated environment. Then, the quality of a map decreases as the
di�culty increases, if the generator correctly adapts to the di�culty measure.
However, determining the quality of a map, even in a simulated environment
where the ground truth of the environment is known, is an open research issue
(A. Visser, personal communication, June 16, 2011). And since this issue is
beyond the scope of this research, a qualitative assessment of the performance
of the map generator is performed.

To get a representative assessment of the generated maps, several USARSim op-
erators with di�erent experience levels were asked to run simulations on maps
generated with varying di�culty levels. Maps were generated with �ve di�-
culties (1, 3, 5, 7 and 9), with two di�erent maps per di�culty, for a total of
ten maps. The participating operators were asked to run simulations on three
maps with di�erent di�culties. They were then asked for detailed feedback on
how di�cult they perceived each environment to be, when mapping the environ-
ment. They were also asked more speci�cally what elements in the environment
made the mapping either di�cult or easy. The feedback form that was used for
these experiments can be found in Appendix B. The operators were free to use
the operating environment and settings of their choice, as well as choosing how
many robots they used to map the environments. One reason for not specify-
ing a simulation con�guration, is that the focus is on the environment and the
map's speci�cs can be assessed regardless of the exact simulation con�guration.
Another reason is that the assessment of the di�culty can vary between opera-
tors, so operators are compared to themselves by comparing their feedback on
the di�erent maps they evaluated.

If the participants in the experiments rate the maps in the same order of di�-
culty as the di�culty levels at which they were generated, then the map genera-
tor encodes at least some element in the maps that gets more di�cult to map as
the di�culty rating of the environments themselves increases. If on top of the
rating, the operators also note the e�ects of the adaptable rules to be the cause
of the di�erence in di�culty, then the rules can be considered to correctly adapt
to the di�culty measure. If the participants �nd no distinguishable di�erence in
di�culty between the maps, then the map generator is not capable of adapting
to a di�culty measure. If the operators ratings are in reverse order compared
to the supposed map di�culties, then an adaptable rules can be reversed to
show the behavior at the opposite end of the di�culty scale, in order to make
the map's di�culty properly scale. This does however require that the rule that
caused the incorrect behavior is identi�ed by the operators.

12



6 Results

Six operators provided feedback on one or three of the ten generated maps each,
with experience levels ranging from experimental experience as an operator to
experience as an operator at multiple competitions. All operators used the same
type of robot for mapping the simulated environments, namely the P3AT robot
present in the USARSim package. The P3AT simulated robot is modeled after
the real-world Pioneer 3-AT four-wheeled robot, with a laser range scanner for
mapping purposes and a camera for operator convenience (so the operator can
navigate using the camera image instead of the map). Some operators choose
to map the environments using one robot, while others navigated two robots
simultaneously through the environment. There was a 20 minute timer for
the simulation, but the operators never reached this limit, instead reaching a
natural ending when either the robot(s) got stuck or the robot(s) ran out of
battery power.

The �rst of the results is the overall di�culty rating that each operator assigned
to each environment they mapped. These di�culty ratings have been plotted
both using absolute and relative values, in Figure 7. The absolute graph plots
the di�culty with which the maps were generated against the average di�culty
that the operators assigned to those maps. For the relative graph, only the
feedback of operators that �nished runs on three maps were processed. The
three maps that each operator evaluated were ordered based on the di�culty
that they were generated with and then they were given a value of 1, 2 or 3 based
on the order of the di�culty ratings that the operator assigned to these maps.
Then the average value of each of the three relative di�culties was plotted.

(a) Absolute di�culty level against di�culty rat-
ing.

(b) Relative di�culty level against di�culty rat-
ing.

Figure 7: Graphs of the absolute and relative di�culty ratings, against the
di�culty level the maps were generated with.

While the di�culty rating is a quantitative value and as a result can be plotted
in graphs, it should be noted that the sample size is small (14 samples spread
over 5 di�culty levels) and the plots o�er no guarantee of statistical signi�cance.
They do however give some indication of the performance of the map generator.

13



The red line in both graphs shows the best possible result, where the di�culty
that the operators assigned to the maps equals the di�culty level the maps were
generated with exactly. The blue line is the actual result, which in the absolute
graph shows that the lowest and highest di�culty levels are not rated as such
by the operators.

Maps that were generated with a di�culty of 1 are rated 6 on average, which
is signi�cantly higher and it is even higher than the di�culty rating for maps
with di�culty 3. An experienced operator that has participated in multiple
competitions, notes that the dead ends created by the cycle prevention rule
result in mapping di�culties, as written in his feedback form: "The deadends
at the corners made the mapping di�cult..." and "Only one central crossing,
which forces you to repeately come back at the same location...". He rates the
di�culty of the map with a 7. However, comparing Figure 8(b) and Figure 8(c)
(in Appendix C) for instance, shows that the cycle prevention in the second map
does result in fairly straight and correct hallways, while the cycles still present
in the �rst map resulted in a signi�cant o�set between the two halves of the
top hallway. Another operator with experience at a single competition, notes
the lack of doorways in rooms as a di�culty when mapping an environment
generated with di�culty 1: "No doors found: need to leave through the door
i entered.", is his response to the question which rooms were di�cult to map.
Turning, especially in a small space, is a time-consuming and di�cult job for
a robot operator and it results in an odometry error building up, says another
operator (O. Formsma, personal communication, June 20, 2011).

On the other end of the spectrum, the maps that were generated with a high
di�culty (9) were not rated as being very di�cult by the operators, as those
maps got an average rating of 6. One operator with experience as an experi-
mental operator, notes in his feedback form that the many doorways to each
room, as well as the long hallways, results in an easy to map environment:
"Long straight corridors and square rooms with openings on several sides made
it easier to map.". The probability for many doorways per room is signi�cantly
higher at higher di�culties, because a rule lowers the amount of doorways at
low di�culty to avoid cycles in the environment. The hallways are also not
cut o� at higher di�culties, because the rule that prevents cycles has a very
small chance at activating at higher di�culties. The same operator did also
note that the objects inside rooms were a primary cause of di�culty in the map
and rooms with obstructing objects have a higher probability of being placed
on a map with a higher di�culty, due to their higher di�culty annotation (note
the o�ce-type rooms in Appendix A).

Between the extreme di�culties however, the ratings by the operators matched
the desired di�culty levels to a reasonable degree, as seen in Figure 7(a). This
is backed up by the feedback given by the operators, who consistently noted
the contents of the rooms as a reason for the maps to be either easy or di�-
cult to map. One operator with experience in a single competition notes that a
map with di�culty level 7 is di�cult speci�cally because of the contents of the
rooms: "Although a general overview of the map is easily found by following
the corridors, exploring the rooms turned out to be exceedingly di�cult.". This
comment also shows that hallways were a predictable element in the environ-

14



ments and following those gave a very good idea of the overall layout of the
entire map, which was also noted by other operators. The same operator also
notes that on an easier environment (with di�culty level 3), the rooms are the
reason for being easier to map: "Relatively large rooms with little furniture are
very easy to navigate.". This comment also shows that besides the contents,
the size of the room is also a factor in its di�culty, as larger rooms are noted
to be easier to map, likely because the robot can more easily navigate a larger
room.

Lastly, the relative di�culty graph in Figure 7(b) shows that on average, the
operators rate the easiest map with the lowest di�culty, the second easiest
map with a higher di�culty and the hardest map with the highest di�culty.
However, the relative ratings of the hardest and second hardest maps (3 and 2
on the graph) are close together, meaning they are often rated the other way
around by the operators.

7 Conclusion

In this report, the challenge was to adapt an indoor map generator of USARSim
environments to generate maps according to a user-de�ned di�culty level, and
the generator should generate maps that were roughly that di�cult to map for
a (simulated) robot. The focus was on the following research question: Can
the rules used in an algorithm for generating indoor environments be used to
make the generator adaptive to a di�culty measure for a robot mapping task?
The adaptive map generator was implemented by adding �ve simple additions
to an existing generator, to make the generated maps di�erent, based on the
di�culty level. The adaptive rules resulted in signi�cant di�erences to the layout
of the maps of di�erent di�culty levels. However, operators that mapped the
generated environments found that the hallways were a predictable structure in
most of the generated maps. And while it is usual that hallways have a clear
pattern, even in real-world indoor locations, the generator could only generate
one type of hallway layout, despite adapting that layout by scaling it based
on the di�culty level. This predictable structure resulted in the maps being
noticeably easier to map by operators, which likely counteracted the e�ects of
the other rules to make the maps more di�cult (when the di�culty level was
high).

There were two speci�c adaptive rules, namely cycle prevention and doorway
probability, that were designed to prevent cycles in the environment at low dif-
�culties. And while they did succeed in that respect, they had the unforeseen
e�ect of making the map more di�cult, by creating dead ends and rooms with
few doorways that required extensive maneuvering by the robot operator to back
out of. So while these rules did prevent cycles and the potential mapping errors
associated with them, they introduced a navigation di�culty, that had a nega-
tive e�ect on the map. This shows that the rules encoded the abstract notion of
di�culty very naively, not taking into account the complexity of di�culty and
the many ways it can manifest itself.

15



The room placement based on the room di�culty annotation did encode di�-
culty in a reliable way, as nearly all operators noted that easily mapped rooms
could be found in maps with a low di�culty and harder to map rooms, mostly
due to obstacles and hazards like water, could be found in maps with a high
di�culty. However, the rooms were annotated with their own di�culty level
by someone with insight, which means the annotations encode the knowledge
that this person has about mapping di�culties and the room placement rule
simply uses those annotations to place rooms with the correct di�culty in the
environment. The generator is not able to somehow derive the di�culty of a
room, based on the room's characteristics, but is simply handed the di�culty
of each room and places the room with the right di�culty in the map.

In conclusion, the simple adaptive rules are not capable of reliably generating
environments with a speci�c di�culty for robot mapping, as the feedback of
the operators proved by not consistently assigning the highest di�culty rating
to the map with the highest di�culty level, for instance. The rules do however
signi�cantly in�uence the di�culty of the map, as the operators note di�erences
in di�culty that they attest to the e�ects of the rules. This in�uence is not
reliable however, as the same rule can both result in mapping di�culties, as
well as prevent them.

8 Discussion

A �rst point to note is that the generator used rules that were derived from
known di�culties with robot mapping [7]. By using this knowledge, the gen-
erator is build to speci�cally generate di�cult maps for the current generation
of mapping algorithms. On top of this, high level, low resolution (room-based)
rules were used, which means the generator shows little to no emergent behavior.
Together this means that the generator likely does not generalize well to, for
instance, future mapping techniques, as the rules are limited in their scope and
made to take advantage of the current known issues with mapping. However,
if these rules were able to encode di�culty, it would have opened the way for
more complex rules to re�ne the generation process.

Another observation to note is that experienced operators were well able to
identify the causes of mapping di�culties, after they had �nished a simulated
run through the environments. Those observations by the operators could have
shaped the adaptive generation rules, if these operators were brought in to
the project during the rule designing process, as opposed to being brought in
solely to evaluate the generated maps. This suggested approach would bring
a potential con�ict to the research however, because when the same operators
(or similar operators) help design the generation rules and then evaluate the
resulting generated maps, they could see their own rules in e�ect in the generated
maps and would not be able to objectively evaluate these maps.

Something that became apparent when reading the feedback on the forms the
robot operators �lled in, was that some of the operators based their assessment of
the di�culty of a generated map on the di�culty to navigate the environment, as

16



opposed to the di�culty to map the environment, while the latter of the two was
the di�culty with which the environment was generated. This misunderstanding
was likely caused by the way the questions were formulated in the feedback form
(Appendix B). While navigation and mapping di�culties are distinctly di�erent,
it should be noted that navigation di�culties can cause mapping di�culties, as
robots that are not able to navigate an environment properly, are also likely not
able to map the environment properly, if only because the environment is not
completely accessible for mapping.

Lastly, a question should be posed about the simulated environments and the
need for these environments to mirror the real-world. Realism in simulated
environments for robot mapping is a good criteria for the quality of these en-
vironments, as simulated robots are used to test (and train) algorithms that
ultimately should work on real robots in real-world locations. This means that
simulated environments should consist of a representative sample of real-world
locations and should match the characteristics of these locations as best they
can. It is easy to create simulated environments that contain unrealistic chal-
lenges for robots when navigating or mapping the environments, but the al-
gorithms should not be trained on unrealistic challenges, as it puts unrealistic
demands on the capabilities of the algorithm that could take away from realistic
challenges that the algorithm should be able to handle. This means that any
adaptive map generator for robot simulation purposes should generate maps
within a realistic range, instead of creating arti�cial challenges that a robot
would never face in real life.

9 Future Work

This research introduced the concept of adaptive map generation, to generate
functional indoor environments within a robot simulation environment. Future
work could build upon this concept and expand it to encompass di�erent func-
tional needs or re�ne the concept to become more practically usable. First and
foremost, the generator could bene�t from being expanded with more complex
rules. Using L-systems for instance to generate hallways could generate much
more diverse and challenging map layouts. L-systems have previously been used
to successfully generate diverse city street plans [6], as these systems are very
powerful recursive processes.

Using rules with a higher resolution (object-based, as opposed to room-based)
could also be a good direction for future work, as a higher resolution gives
the designer of adaptive rules the ability to in�uence the environment at a
smaller scale and as a result the designer can also encode di�culty in smaller
structures in the environment. An example of this would be to create rules that
can rearrange objects inside a room to narrow or widen the paths through the
room, to increase or decrease the di�culty of the room.

Another possible direction for future research is to generate di�erent environ-
ments and create rules to combine these. For instance, generating both an
outdoor and several indoor environments, and then combining them to create

17



a realistic scenario where the robot can move from the outside to the inside
environment and can move to di�erent �oors inside. This also creates more
possibilities to encode di�culty for mapping, for instance by limited the num-
ber of ways the inside can be reached from the outside.

Another way to re�ne the generation rules is to look at speci�c robots and
their capabilities and then designing rules around the speci�c di�culties the
particular robot can have while navigating or mapping. This will make the
generated maps speci�c to a particular robot, but it will likely also make it
easier to generate maps with a speci�c di�culty, because the speci�c mapping
issues of that robot are known. It will also likely result in a more versatile
generator, that is able to generate speci�c types of maps for speci�c types of
robots. The current generator does not generate environments that are properly
navigable by �ying robot, for example, and a generator that takes into account
the characteristics of di�erent types of robots will be able to generate di�erent
maps that are navigable by di�erent types of robots.

Another possibility for future work is to research if the map generator creates
realistic environments and if rules have an inherent 'realism' property, where
the rule itself dictates the generation of realistic or unrealistic structures in
a simulated environment. This could result in more insight in how to design
a map generator that creates realistic environments, with realistic challenges
for a simulated robot. This research could also show whether generating more
di�cult environments also results in generating more realistic environment, or
if more di�cult environments create unrealistic challenges for robots.

A practical suggestion for future work is to design more varied rooms and hall-
way pieces for the current map generator. The current generator will likely
bene�t from having a larger selection of rooms to place in the environment, be-
cause it can then generate more diverse maps as well as match the user-de�ned
di�culty better, because more rooms with varying di�culties are available for
placement. If the generator can also place di�erent hallway pieces, for instance
with objects blocking the hallway to a certain extent, it would be able to di-
versify the element of the maps that is currently the most predictable: the
hallways. Introducing dynamic objects into the rooms and hallways could also
result in more diverse and realistic maps. Dynamic objects like slamming doors,
moving people and smoke create a di�erent set of di�culties for the robot, while
mapping his surroundings.

Instead of a rule-based generator, a di�erent approach to generation based on
simulation could also be researched in the future. Existing literature [4] has
already shown that for a simple video game, simulating the player's movement
can give the generator the data required to adjust the map to be more or less
di�cult. While simulation of a robot is not nearly as straightforward as a video
game character, it would allow for the generator to use the simulation data to
adjust the map to be more or less di�culty, as opposed to someone having to
interpret the di�culties a robot has while mapping, in order to design generation
rules.

18



Acknowledgments

I would like to thank my supervisor Arnoud Visser, for his support and assis-
tance. I would also like to thank all the USARSim operators that participated
in the experiments for o�ering their expertise and sacri�cing their time: Nick
Dijkshoorn, Okke Formsma, Nguyen Nhu Hieu, Julian de Hoog, Sevaztian So�a
Otarola and Arnoud Visser.

References

[1] Brent, T., Carlson, S., and Dutko, J. USARSim World Genera-
tor tool. http://usarsim.sourceforge.net/wiki/index.php/World_Generator,
June 2011.

[2] Carpin, S., Lewis, M., Wang, J., Balakirsky, S., and Scrapper, C.
Usarsim: a robot simulator for research and education. In Proceedings of the
IEEE International Conference on Robotics and Automation (2007), ICRA,
pp. 1400�1405.

[3] Carro, R., Breda, A., Castillo, G., and Bajuelos, A. A methodol-
ogy for developing adaptive educational-game environments. In Adaptive Hy-
permedia and Adaptive Web-Based Systems, P. De Bra, P. Brusilovsky, and
R. Conejo, Eds., vol. 2347 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2006, pp. 90�99.

[4] Compton, K., and Mateas, M. Procedural level design for platform
games. In Proceedings of the Arti�cial Intelligence and Interactive Digital
Entertainment International Conference (2006), AIIDE.

[5] Deussen, O., Hanrahan, P., Lintermann, B., M¥ch, R., Pharr, M.,
and Prusinkiewicz, P. Realistic modeling and rendering of plant ecosys-
tems. In Proceedings of the 25th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1998), SIGGRAPH '98,
ACM, pp. 275�286.

[6] Parish, Y., and Müller, P. Procedural modeling of cities. In Proceed-
ings of the 28th annual conference on Computer graphics and interactive
techniques (New York, NY, USA, 2001), SIGGRAPH '01, ACM, pp. 301�
308.

[7] Thrun, S., Burgard, W., and Fox, D. Probabilistic robotics. Intelligent
robotics and autonomous agents. MIT Press, 2005.

[8] Tutenel, T., Bidarra, R., Smelik, R., and de Kraker, K. Rule-
based layout solving and its application to procedural interior generation.
In Proceedings of the CASA Workshop on 3D Advanced Media In Gaming
And Simulation (Amsterdam, NL, 2009), 3AMIGAS, pp. 15�24.

19



Appendices

A Room List & Di�culties

The table below lists the names and sizes of all pre-made rooms that can be
placed inside a generated map by the map generator. Also shown is the di�culty
of each room, as well as a short explanation of the reasoning behind the di�culty
rating.

Room name (scale in grid
units)

Di�culty Elaboration

dark (1x1) 0.5 A tiny empty room with no mapping
di�culties.

empty (1x1) 0.5 See dark (1x1).
bisquare (2x2) 1.5 An average-sized empty room with lit-

tle mapping di�culties.
maze (2x2) 2.5 Simple maze with some uneven ground.
Maze (smaller) (2x2) 4.0 Small dense maze with uneven ground.
Boiler Room (1x1) 6.8 The boiler takes up just enough room

to block the robot's path.
Dragon Room (2x2) 5.5 Some obstructing objects, but still some

space to move left.
Warehouse (2x2) 4.0 Plenty of room to move with some con-

tainers taking up space.
Futuristic Reception (2x2) 3.5 Reception in the middle of the room

with plenty of space around it.
Water Room (3x3) 9.0 Hazardous water with narrow walkways

and stairs blocking the view.
Maze2 (6x6) 9.5 Very large maze with narrow paths and

uneven ground.
Computer Lab (2x2) 5.0 Desks and chairs make navigating trick-

ier, but not impossible.
Single O�ce (1x1) 5.25 Same as Computer Lab, but with less

space to move.
Multi O�ce (2x1) 5.75 Desks and chairs block movement

slightly and no walls.
CompLab_unlit_destroyed
(2x2)

7.3 Fallen chairs, desks and computer
screens make navigating hard.

Cubicle_unlit (4x4) 6.25 Large room with cubicles but also rea-
sonably sized walkways.

Cubicle_unlit_destroyed
(4x4)

8.0 Slanted cubicle walls and fallen objects
make navigation very hard.

Single_o�ce_north_destroyed
(1x1)

7.0 Fallen desks and chairs make navigation
hard.

MultiO�ce_tight_unlit_dest
(2x1)

7.2 Fallen objects split the room in two, al-
lowing no robot through.

victims (1x2) 2.0 Empty space, with room for victims

20



B Feedback Form

The form below was used to poll the operators that participated in the evaluation
of the map generator, about their opinion on the di�culty of the map.

USARSim Robot Mapping Feedback Form

Name:

Experience level as Operator (none, experimental, single competition, multiple
competitions):

Filename of the map/environment:

Software package used for running the simulated mapping (e.g. Amsterdam
Oxford Joint Rescue Forces' USARCommander Rev. 2215):

Connection model (Direct, PropegationModel, DistanceOnly, ObstaclePropega-
tionModel):

Number and type of robots (e.g. 1x P3AT):

Overall, how would you rate the di�culty of the environment in terms of map-
ping (scale 0-10):
NOTE: 0 di�culty means the environment does not include any aspects that
'force' a mapping error on the robot. 10 di�culty means the map resulting from
the mapping process can not be properly navigated, due to excessive mapping
errors.

What aspect(s) of the map contributed most to the di�culty rating given above:

Were there one or more rooms in the environment that proved to be particu-
larly di�cult, and if so, what do you think made the room(s) di�cult to map:

Were there one or more rooms in the environment that proved to be particu-
larly easy, and if so, what do you think made the room(s) easy to map:

What patterns/regularities did you notice in the way the map was laid out (e.g.
hallways/dead ends/doorways/etc.), and what e�ect did each of these patterns
have on the di�culty of the map, in your opinion:

Are there any other aspects of the environment that, for whatever reason, stood
out, that you wish to note?

21



C Operator Maps

The maps below are all the maps that the operators created while evaluating
the generated environments, including information about the operator, di�-
culty level of the map and number of robots used. The maps are in the order
the operators performed them in. All operators used the four-wheeled P3AT
robot for their simulations and operated the robot(s) using Amsterdam Oxford
Joint Rescue Forces' USARCommander rev. 2215 tool, with connection model:
Direct.

(a) map765 with di�culty 3
mapped using 1 robot

(b) map354 with di�culty 7
mapped using 2 robots

(c) map674 with di�culty 1
mapped using 2 robots

Figure 8: Operator: Okke Formsma. Experience: Single Competition

(a) map674 with di�culty 1
mapped using 1 robot

(b) map238 with di�culty 7
mapped using 1 robot

(c) map165 with di�culty 5
mapped using 1 robot

Figure 9: Operator: Nick Dijkshoorn. Experience: Single Competition

22



(a) map364 with di�culty 5
mapped using 1 robot

(b) map104 with di�culty 9
mapped using 2 robots

(c) map673 with di�culty 3
mapped using 2 robots

Figure 10: Operator: Julian de Hoog. Experience: Multiple Competitions

(a) map245 with di�culty 9
mapped using 1 robot

(b) map673 with di�culty 3
mapped using 2 robots

(c) map364 with di�culty 5
mapped using 2 robots

Figure 11: Operator: Sevaztian So�a Otarola. Experience: Experimental

Figure 12: map347 with di�culty 1
mapped by Arnoud Visser (experi-
ence: multiple competitions) using 1
robot

Figure 13: map765 with di�culty 3
mapped by Nguyen Nhu Hieu (expe-
rience: experimental) using 2 robots

23


