X

X

X
UNIVERSITEIT VAN AMSTERDAM

BACHELOR OPLEIDING KUNSTMATIGE INTELLIGENTIE

Picking a flower with a KUKA
youBot

Using A* pathplanning in a 4 DoF configuration-space to
evade surrounding obstacles

Bachelor thesis
Credits: 18EC

University of Amsterdam
Faculty of Science
Science Park 904

1098 XH Amsterdam

Author: Supervisor:
Ysbrand M. A. A. GALAMA Dr. Arnoud VISSER
10262067

Informatics Institute
Faculty of Science
University of Amsterdam
Science Park 904

1098 XH Amsterdam

27th June 2014

Contents

1I__Introduction| 2
2_Method 3
[2.1 Configuraton space| 4
[2.2 Path planning|. o0 oo 5
2.3 self-collisionl 6
2.4 Obstacle detection] 7
B_Results 8
4__Conclusion| 9
= - 9
(b1 Further researchl 10

Abstract

This project conducts research on the potential of using the con-
figuration space of a KUKA youBot to pick a specific flower. The goal
of the project is to make an autonomous robot that is able to grasp
a flower without damaging the environment. Applications that can
use techniques to recognise and pick a flower exits mainly in the ag-
ricultural field, but other industries can also use similar autonomous
robots.

The technique used in this project to calculate a path for the arm
to the goal while evading the obstacles is a configuration space in the
dimensions of the Degrees of Freedom of the robotic arm. In this
project the configuration space of a youBot is build where a three
dimensional point in world space can be reached. There also exists the
potential of mapping three dimensional coordinates from a perceived
point cloud as obstacles, which the robot should evade. Path planning
in this configuration space makes it possible for the robot to evade the
surroundings while grasping the correct flower.

Perception was planned to consist out of a point cloud from three
dimensional image data, from which the flower could be recognised
to get the coordinates of the goal. From the image data could also
be extracted the obstacles that have to be evaded. However, due to
limited resources the perception of the robot could not be finished.
The movement planning of the system works promising and results in
a well working kinematics for the youBot.

1 Introduction

There is an upcoming market for autonomous robots in industrial applica-
tions. Nowadays much work in the industry is carried out by robots, but
most of them are not yet autonomous. Most robotic applications are either
controlled by humans, or perform the exact same task repeatedly. There-
fore research is conducted to develop more autonomous robots. One of the
industries that have the need for autonomous robotics is the agricultural
field. In this specific industry the challenge lies in not damaging the vegeta-
tion. As|Siciliano and Khatib| (2008, Chapter 46.) describe there are already
many automated applications in the agricultural field, but improvement is
needed. Fully autonomous agents that can execute their task without dam-
aging itself or the surroundings do not exist in the field yet. Utilisation of
such autonomous robots can majorly improve the farming on a large scale.
When a robot is to be deployed in the field, a great reduction of work can
be achieved with respect to human workers.

To facilitate research the robotics team from the University of Amster-
dam (UvA) participates in the RoboCup@Work League. In this league one
of the challenges is for an agent to navigate through a field of flowers and
return with a specific flower. The team from the UvA does not build its own
robots, but uses standard platforms build by others. The robot chosen for
this task is the KUKA youBot (Bischoff et all 2011). This robot is among
others an educational platform on which researchers and students can test
their algorithms.

Figure 1: A KUKA youBot on four omnidirectional wheels with a single 5
DoF arm

The youBot is a drivable platform on four omnidirectional wheels, by
which it can move in two dimensions and turn on every point in 2D space,
and a robotic arm of 5 degrees of Freedom (DoF). There are youBots with
two arms as well, but the UvA robotics teams only uses a robot with one

arm. In figure[l] an image of the youBot can be seen.

Research by van Enkl (2013) shows that navigation through a flowerbed
is possible with A* path planning. After a path is planned, the youBot
can drive on its omnidirectional wheels through the field of roses to a goal
while evading the flowers. Therefore this project focuses on perceiving and
picking the flower with its arm while the assumption is made that the robot
is positioned in front of the flower and is not required to drive to its goal.
This results in a robot that stays stationary and does not use its wheels
while using its arm to a position calculated form image data of a camera. In
previous research of the UvA robotics team conducted by van Enk (2013)
and Negrijn et al.| (2014) the ROS interface for programming the robot was
used. Therefore this project also makes use of this interface to maintain
continuity and make distribution possible. If this program can make the
youBot recognise and pick a flower, it could make a contribution to the
RoboCup@Work team of the UvA.

The goal of this project is to be able to recognise and pick a given flower
without damaging the environment. This project will focus on perceiving
the surroundings and connecting them to a configuration space (Dorst et al.,
1991)) of the DoF of the youBot. In section [2|a detailed description on how
this is achieved can be read. The MoveIt!(Sucan and Chitta) environment
was deliberately not chosen due to the fact that it is not fully supported on
the youBot interface. To make a flower-picking robot working, a standalone
ROS plugin was made which should be able to achieve this task. The out-
come of this plugin can be found in section [3| while in section [b| potential
further research is stated.

2 Method

The problem that is undertaken in this project can be separated in two
problems, firstly the perception of the environment and the recognition of
the flower and secondly the movement of the robotic arm and the evading
of the surroundings. For the second problem, as stated in the introduction,
the choice was made to use a configuration space for the motion planning of
the robot. To achieve this, several pieces of code had to be build.

Firstly, because the ROS interface works in C++, a multidimensional
boolean array had to be build, with a conversion between the real world
axis of the robot and the dimensions of the configuration space. More detail
how this was achieved can be read in section [2.I] The array is boolean
because some states cannot be reached; the states where the robot collides
with itself or the environment. The fashion in which this is done can be
read in section 2.3

Secondly, after building the configuration space, a path planning al-
gorithm had to be implemented to search for the best path, which is shown

in section When a path is found, the joint states are send to the robot
so the arm moves to the correct goal. The calculation between the world
space and configuration space can be extracted from the kinematics of the
robot, of which an image with the DoF is shown in figure

To be able to recognise a flower from the data of a camera, several options
with a point cloud form a depth-camera can be set out. C++ offers a library
where point clouds can be analysed (Rusu and Cousins| 2011)) which makes
the recognition of a flower possible. However, due to the limited resources
of this project, it was not possible to build such a plugin. More on possible
vision of the robot can also be read in section where the perception of
the obstacles of the surroundings is laid out.

gripper jaws

(0.,0,+/-8)
gripper palm
arm joint 5 __(0.0.57.16}
(0,0,113.6) /
arm joint 4
(0,0,135)
arm joint 3
(0,0,155)
arm joint 2
(33.0.0)
plate '- arm joint 1

(-159,0.46) (24,0.413.5)

arm fixed joint
(143,0,46)

back right wheel }
(-228,-158,-34) /

back left wheel /
(-228,158,-34)/

front left wheel
"\ (228,158,-34)

%, base
'_{0.%4)
., front right wheel
“.(228,-158.-34)

Figure 2: A model of the KUKA youBot with the positions of the joints
(KUKA youBot Developers, 2011)

2.1 Configuraton space

As shown by Dorst et al| (1991)) the configuration space makes it possible
to search in the joint configuration for the shortest path without collision.
The configuration space consists of a multidimensional space where each
axis corresponds to one of the DoF of the robot. Therefore each point
in this space represents a specific rotation in each axis and thus a single
configuration of the robot. The youBot has a 5 DoF arm, but to reduce the
complexity the rotation of the last joint has been rejected, thus a 4 DoF

configuration space is used.

For the fact that in a continuous configuration space a path cannot be
calculated, the space is discretized. To reduce the complexity the precision
of the discretising is 6° or 35 rad in all the remaining DoF. The resulting
configuration space is therefore an array of dimensions: 56 x 49 x 26 x 33.

In the resulting space a path planning algorithm can search for the best
path.

2.2 Path planning

The path planning algorithm that has been implemented is A* (Hart et al.|
1968)). This algorithm, that is also used in two dimensions in the research
of van Enk (2013), has been implemented in C++ for the purpose of path
planning in four dimensions.

The heuristic function that is used to estimate the remainder to the goal
is calculated with the Manhattan Distance Function and the step cost is set
to 1. To reduce the time complexity the estimation is calculated once and
stored with the appropriate path. To find the best path, an ordered data
structure of the estimations is used. In this structure the first element is
always the path with the lowest cost and insertion is done in time complexity
of O(log(n)). However, the calculations to check if a node has already been
visited is in O(n).

At every iteration in the algorithm, a check is done at the current node
to verify there is no collision at the next node. This collision could be a
state where the arm intersects with a part of the robot, or an obstacle is on
that location.

The goal that has to be found is the location of the flower, which is a
coordinate in 3D world space. This coordinate can be deduced from the
kinematics of the robotic arm. These kinematics can be calculated from the
following matrix multiplication with rotations in 2D homogeneous coordin-
ates, where (z,vy,2) is the coordinate relative to the first joint and ¢, and
sy, are the cos(6,) and sin(f,,) respectively:

\r? + 2 cas Ss2 33 c3 s1 0 ca s3 0 0

z =|—-s2 co T0)-|—s3 c3 155 || —s4 c4 135]-| 185
1 0 0 1 0 0 1 0 0 1 1

From this multiplication the following formulae are derived:

X
tan(60y) =—
(61) "

Va4 y? =185 (sa4- (co-c3— 52+ 83) +ca- (co- 83+ 82+ ¢3))
+ 135 (c2 - s3+ 52+ ¢3)
+ 155 - 59 + 33

z:186-(—34-(32-63+62-33)+C4-(02-03—82-33))
—1—135-(62-03—82-83)
+155-¢co + 70

Shown in figure |3]is a drawing that explains the kinematics of the formulae.
With these formulae the states of the arm where the tip is at a goal point,
the position of the flower for example, can be found. From there the arm
can move to one of the possible end-states to grasp the flower.

, z T
. . j91

/22 + 12 M Y
F 5
7T, y, 2)

Figure 3: The kinematics of the KUKA youBot after eliminating the last
DoF

Because the goal has several states in the configuration space, while the
start is a single node, the choice was made, with a hint from Leo Dorst,
to calculate the path from the goals to the start. Therefore the search for
the final path becomes more trivial, because A* is faster with a single goal,
while beginning with several start nodes does not affect the performance.
In the end the path is reversed so the robot can move with the correct steps
to the goal.

2.3 self-collision

It is important to eliminate the nodes in the configuration space where self-
collision is possible. There are several configurations for the robot where

the tip of the arm collides with another part of the robot, and if the robot
tries to reach these configurations, damage can be caused to the hardware
of the robot.

To detect self-collision a simulator has been built in Blender3D (Blender
Foundation, (1995)). In this simulator a simplified model of the youBot was
made from the model of KUKA youBot Developers| (2011) and a script was
ran to detect the collision states. Usage of Blender3D was chosen for the
previous experience with this program.

The program, made in Blender 2.49, rotates the arm according to the
possible states in the configuration space. At each state there is calcu-
lated to check if the robot intersects with the fourth and final part of the
arm the base and first two parts of the arm. It is not necessary to calcu-
late for intersections with the other parts, because they cannot intersect in
without intersection of the fourth part. To calculate if there is an inter-
section between the parts at each vertex of the fourth part a check is done
if the vertex is inside the mesh of the other part. These calculations exist
native in Blender, therefore only some small calculations where necessary to
convert the points between frames of reference from local to global space.
Whether an intersection, thus a self-collision, is found, the output is written
to a file that can be read by the main program of the configuration space to
include the self-colliding states of the robot in the path planning.

The calculating at which states the robot collides with itself takes a
sizable amount of time, however, this program only has to run once, from
which point on the self-collision states can be read in from a single file. The
only time when this algorithm has to be ran again, is when the resolution
of the program has to be more exact.

2.4 Obstacle detection

The KUKA youBot does not have sensors to detect the surroundings, there-
fore the RoboCup@Work team of the UvA makes use of a stereoscopic cam-
era and couples this to the youBot. From the stereoscopic camera data in
the form of a point cloud can be collected, these points in the point cloud
are usually 3D coordinates. Several algorithms could be used to detect the
flower from this point cloud and give the resulting coordinates to the path
plan algorithm. However, due to limited time, this could not be implemen-
ted.

After the flower is found, the remaining point cloud data could be used
to detect obstacles, which should be evaded with help of the configuration
space search algorithm. The algorithm could plan around the obstacles if the
point cloud coordinates are mapped in the configuration space. A possible
manner to achieve this could be similar to the self-collision detection.

Therefore another simulation in Blender is scripted where an intersection
of a single point with the robot is calculated. This program discretizes the

world space to voxels and at each state in the configuration space an iteration
is done over the parts of the robot and saves the states where a voxel is
intersected by a part. To speed up the calculation the base of the youBot
and the first rotating part of the arm is only calculated once, because those
voxels will always intersect with the robot, regardless of the configuration
of the arm. From the database made with this program each point of the
point cloud could fill the configuration space with collision states. However
the time complexity of this program is too large to run with the limited
resources that were used in this project, but another project could run and
test this program. Though this program is only needed to run once as well.
When a database of obstacle voxels is build, only the database has to be
read to fill the configuration space.

3 Results

The plugin for the ROS interface that was built during this project has
been tested with the components that were finished during the course of the
project.

The A* algorithm can find a path in the 4D configuration space with
relative ease, as table[I|shows. In this table the size of a path and the initial
states of the goal are shown with the time it took to calculate the path on
a 64-Bit i5 processor. The found path can then be calculated back to the
real world so the robot can move its arm to the given 3D coordinate.

Table 1: Several tests on the time performance of the A* algorithm in the
4D configuration space

path size (# of nodes) | # of goal states | time (sec)
40) 0.02
52 3 0.03
74 16 0.03
50 28 0.02
47 4 0.02
71 3 0.04

The self-collision states in the configuration space can be read from a
file, made with the Blender script. The robot is tested with and without
this file, and when tested without considering the self-collision states the
robot arm tried to move through itself, when tested with the file, the robot
moved without trying to go through itself. A short clip of the moving robot
can be found in figure @ This film shows the youBot moving to several
positions in the 3D world space.

Lthis clip does not work in all versions of pdf-readers

Figure 4: A short clip of the youBot navigating its arm to several coordinates
in space.

Testing if the algorithm could evade obstacles could not be done, partly
because the point cloud data could not be incorporated and partly because
the building of the collision state took a considerable amount of time.

4 Conclusion

The usage of an A* path planning algorithm in a 4D configuration space
appears to be a elegant solution to move the robot arm in an obstacle filled
space. Both time and space complexity of the program itself are surmount-
able, though the making of a filled configuration space considering the col-
lision states are sizable. However, the making of a filled configuration space
is needed only once, after which a database exists from which the program
can read its collision states. The advantage of this system is that it is gen-
eralizable for other robots, with a small number of adaptions and a model
of the robot, they could use this system.

The fact that the sensor data could not be processed due to the limited
time, made it not possible to test the ability of the robot to pick a flower.
However, in future research with this system, it could be possible to pick the
correct flower while evading the surroundings. When the system is finished,
the performance of the program can be evaluated on time complexity and
accuracy.

5 Discussion

While the parts of the system that have been build work satisfactory, the
goal of the project could not be reached. Due to limited resources it was not
possible to finish the system and test it on the robot. While several frame-
works were thought out to make the robot able to recognise and retrieve the
flower, the programming of them took a large amount of time which made
it impossible to build the complete system. With a smoother start in the

C++ language or several weeks extra to program the system, the frameworks
could have been finished what would make evaluating possible. Another
possibility that could have resulted in a youBot that is able to pick a flower
was a more extensive literature research on groups that are developing for
the KUKA youBot presently. If more frameworks could have been used from
other researchers, combining them in a working flower picking robot could
have taken less time.

The framework build in this project has promising results, therefore fur-
ther development of the algorithm is valid for research. The results of the
finished parts of the framework were expected to appear as they are. The
working A* algorithm could find a path in the four dimensional configura-
tion space because the A* algorithm is known for its scalability in complex
dimensions. The therefore working kinematics through the configuration
space were even so expected.

The part of the project that could not be finished is the perception of the
flower and obstacles and calculating these into the configuration space. It is
possible to move to a given coordinate in 3D space, so the flower recogniser
should return a coordinate where the robot needs to pick the flower. The
evasion of the surroundings could also be implemented in a similar manner
because with several adaptations the configuration space could be filled with
the data of the collision script made in Blender.

Several steps could be undertaken to improve the current program. One
of which could be a better heuristic in the A* path plan algorithm, one
which does not only take in account the distance in the configuration space,
but moreover the distance in the 3D world space. The same modification
can likewise be made in the path cost of the algorithm.

Another improvement could be a optimisation of the different parts of the
program. There are several possibilities in the C++ code for the calculation
of the path as in the Python code within the Blender program to have less
operations while executing the code. A small amount of optimisation has
already taken place, but improvements from specialist could be made.

5.1 Further research

One possible future study could be finishing this project. Due to limited
time, it was not possible to finish the program, therefore another project
could be started which finishes the framework suggested in this thesis. The
flower recognition could be done form the point cloud data, and the coordin-
ates of the obstacles could be mapped in the configuration space. When this
is done, the youBot should be able to pick the flower without damaging the
environment.

Once a working program is build that can pick the flower with usage of
the configuration space, several steps could be taken to optimise the pro-
gram. The code that uses the A* algorithm could possibly be more efficient

10

when optimised to the least complexity. The program that calculates the
self-collisions and the program that calculates the obstacle collisions could
additionally be optimised to be more accurate and less time consuming.

When the program is optimised, tests could be done to investigate if
other path planning algorithms could find the goal state more easily. An-
other improvement could be the use of probability distributions to have a
better understanding of the changing surroundings with respect to the the-
oretical calculations. Furthermore, work could be done to develop a MoveIt!
package to make use of the libraries of MoveIt! within the applications of
the KUKA youBot in agricultural environments.

References

R. Bischoff, U. Huggenberger, and E. Prassler. Kuka youbot-a mobile manip-
ulator for research and education. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 1-4. IEEE, 2011.

Blender Foundation. Blender 3D, 1995. http://www.blender.org/|

L. Dorst, I. Mandhyan, and K. Trovato. The geometrical representation of
path planning problems. Robotics and Autonomous Systems, 7(2):181—
195, 1991.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. Systems Science and Cybernetics,
IEEE Transactions on, 4(2):100-107, 1968.

KUKA youBot Developers. KUKA youBot kinemat-
ics, dynamics and 3D model, 2011. http://www.
youbot-store.com/youbot-developers/software/simulation/
kuka-youbot-kinematics—dynamics-and-3d-modell

S. Negrijn, J. Haber, S. van Schaik, and A. Visser. Uva@ work customer
agriculture order. 2014.

R. B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In Robotics
and Automation (ICRA), 2011 IEEE International Conference on, pages
1-4. IEEE, 2011.

B. Siciliano and O. Khatib. Springer handbook of robotics. Springer, 2008.

I. A. Sucan and S. Chitta. Movelt! Online Available: http://moveit.ros.
org.

J. van Enk. Navigating youbot through a rose field with A*. Project Re-
port, Universiteit van Amsterdam. Science Park 904 1098 XH Amsterdam,
2013.

11

http://www.blender.org/
http://www.youbot-store.com/youbot-developers/software/simulation/kuka-youbot-kinematics-dynamics-and-3d-model
http://www.youbot-store.com/youbot-developers/software/simulation/kuka-youbot-kinematics-dynamics-and-3d-model
http://www.youbot-store.com/youbot-developers/software/simulation/kuka-youbot-kinematics-dynamics-and-3d-model
http://moveit.ros.org
http://moveit.ros.org

	Introduction
	Method
	Configuraton space
	Path planning
	self-collision
	Obstacle detection

	Results
	Conclusion
	Discussion
	Further research

