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Chapter 1

Introduction to the thesis

1.1 Logic and metamathematics

Many different topics are studied within mathematical logic, but for the purposes of
this thesis we may say that logic is concerned with mathematical proofs. Although
every mathematician knows what a mathematical proof is, it might be good to spend
a few more words on the topic.

When a mathematician publishes a proof, he1 typically takes a few known the-
orems and uses generally accepted proof principles to derive from them a new, un-
known, result. The theorems on which he bases his argument have been obtained in
the same way and if one would start to trace back what the assumptions are on which
these in turn are based, then ultimately one will find a few fundamental axioms con-
cerning sets on which all mathematical results are based. It has been laid down very
precisely which fundamental set-theoretic axioms are allowed to occur at the end, and
which proof principles may be used to derive results from them. So precisely in fact,
that they can be captured in a formal system and be studied mathematically : this is
what is done in “metamathematics.”

The formal system which captures the commonly accepted axioms and methods
of proof has been called ZFC, for Zermelo-Fraenkel set theory with the Axiom of
Choice. Since this system is an (almost) universally acknowledged foundation for
mathematics, one obtains insights into the strengths and limitations of the usual
methods of proof by studying ZFC. Two classic results in this respect are:

• Gödel’s Incompleteness Theorems (1931). Gödel’s First Incompleteness Theo-
rem implies that ZFC is incomplete, meaning that there are statements that
ZFC can neither prove nor refute (unless it is inconsistent, i.e., proves con-
tradictory statements). Gödel’s Second Incompleteness Theorem shows that a
formal statement expressing the consistency of ZFC in ZFC is an example of
a statement which ZFC cannot decide.

1Throughout this introduction, please read “she or he” for “he” and “her or his” for “his”.

7



8 CHAPTER 1. INTRODUCTION TO THE THESIS

• The independence of the continuum hypothesis. The work of Gödel (published
in 1940) on the constructible hierarchy and that of Cohen (published in 1963)
on forcing together imply that the continuum hypothesis is another example of
a statement which cannot be decided in ZFC. (The continuum hypothesis says
that every subset of the real line is either countable or has the same cardinality
as the real line.)

1.2 Historical intermezzo

Nowadays, the idea that all of mathematics can be captured in a formal system and
that there are a few basic set-theoretic assumptions from which it all follows using
only logic, may seem obvious. Nevertheless, it was not always like this and this state
of affairs was the result of a long and complicated development which took place
during the second half of the nineteenth and the first half of the twentieth century.

Before 1850 or thereabouts, mathematics looked very different. Not only did
some people believe that the mathematical universe was conveniently populated with
infinitesimals, but there was no theory of continuity or the real line which people
could appeal to to close the gaps in their arguments. Euler’s proof of the Fundamental
Theorem of Algebra was not and could not be entirely rigorous. Much had to happen
before this could change and axiomatic set theory could be regarded as a sound
foundational framework for mathematics: Weierstrass’ ε-δ-definition of continuity,
Dedekind’s theory of Dedekind cuts, which he used to rigorously state and prove
the completeness of the real line, as well as his work on Was sind und was sollen
die Zahlen?, Cantor’s theory of sets, which was initially plagued by serious problems
(the paradoxes), Hilbert’s advocacy of the axiomatic method as the true method of
mathematics and his faith in Cantor’s paradise, Zermelo’s work on the development
of an axiomatic set theory, his defense of the controversial “axiom of choice,” which he
first identified as a mathematical principle, and, finally, further work on set theory by
Fraenkel, Skolem, von Neumann and Gödel, which led to the widespread conviction
that axiomatic set theory was free from the paradoxes that had plagued Cantor’s
initial views and that it was powerful enough to serve as a foundation for all of
mathematics. This is not the place to review all these developments, however; suffice
it to say, that mathematics was not changed overnight.

These developments did not meet with approval in all quarters; some felt that they
led to a kind of mathematics which had become divorced from its natural, intuitive
content and that logic alone could never be enough to save the marriage. These,
in a sense conservative, views were also expressed by eminent mathematicians such
as Poincaré and Brouwer.2 Both in their way also objected to the non-constructive
nature of the new mathematics. In this respect, Brouwer was the more radical:

2I agree that it sounds strange to classify Brouwer as a conservative. Possibly Hermann Weyl’s
exclamation “Brouwer – that is the revolution!” is still ringing in our ears. It might have made for
nice polemics at the time, but I believe it is not very accurate historically.
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shortly after finishing his PhD thesis, he became convinced that a truly constructive
mathematics requires a revision of logic, something Poincaré never suggested. Of the
two, Brouwer also went much further in developing his ideas on an alternative vision
of mathematics, called “intuitionism,” which would preserve the intuitive content
that mathematics had always had (hence the name) and which would only include
constructive methods (which, according to Brouwer, is more or less the same thing).

Despite attracting for some time a few prominent names,3 the dissenters were
always in the minority and most mathematicians were happy to embrace axiomatic
set theory as a way out of the foundational crisis. In many ways, Bourbaki enshrined
the new consensus by devoting a foundational volume to set theory (not his best, by
the way) and by putting Zorn’s Lemma firmly in place as one of the mathematician’s
tricks of the trade. By the end of the second World War, the foundational crisis was
effectively over.

1.3 Constructivity

But what were the non-constructive proofs to which Brouwer objected so much? A
precise definition is difficult, but a proof is constructive, if, roughly speaking, it does
not only tell you something exists, but also how you may find it. It might be better
to discuss two examples.

Take the following theorem, which was proved by Euclid in 300 BC:

There are infinitely many prime numbers.

His proof is constructive. Why? Because it tells you how, when you have a finite set
of prime numbers {p1, p2, . . . , pn}, you may find a new one not contained in the set
(take the smallest divisor of p1p2 · · · pn+1 bigger than 1). In effect, the proof provides
one with an algorithm for constructing an infinite list of prime numbers. Therefore
it has all the hallmarks of a constructive proof.

But now consider the following famous result:

Faltings’ Theorem (née Mordell’s Conjecture): a non-singular algebraic
curve over the rationals of genus bigger than one has only finitely many
points with rational coefficients.

This conjecture was first proved by Faltings in 1983. Over the years other proofs have
been found, but none of them is constructive. As a consequence we have, at present,
no general means of telling how many points with rational coefficients these curves

3At one point, Hermann Weyl wrote that he would be joining Brouwer’s efforts. Even when he
gave up on them, he remained deeply sympathetic to Brouwer’s views, writing, for instance, that
“mathematics with Brouwer achieves its highest possible intuitive clarity.”



10 CHAPTER 1. INTRODUCTION TO THE THESIS

in question possess; we do not even have upper bounds. Indeed, the only thing the
proof tells us is that it cannot be the case that there are infinitely many.

It is clear from the examples, I hope, that in a sense constructive arguments are
more informative than non-constructive ones. One also sees that questions concerning
the constructive or non-constructive nature of certain arguments remain of interest,
even when the validity of non-constructive arguments is no longer a matter of dispute.
And one may still want to see whether certain statements have a constructive proof at
all or want to tease out what makes constructive proofs more informative. These are
some of the question which are addressed in the “metamathematics of constructivity,”
to which this thesis intends to contribute.

Another reason for the continuing relevance of constructive reasoning is that it
has become clear that there is a rich supply of models in which non-constructive
arguments are not, in general, valid. These models can roughly be classified in two
categories.

First of all, there are models and interpretations based on the concept of an algo-
rithm (or a computer program), which are often called “realizability interpretations.”
This idea is quite natural, because constructive arguments have a direct computa-
tional interpretation. Less evident, however, is that this idea can be worked out
in several different ways, leading to a variety of realizability interpretations. The
fruitfulness of these different interpretations can be seen from the following:

1. Kleene-Vesley realizability was rediscovered as type-two effectivity, now a major
paradigm in computable analysis.

2. Realizability has been used to develop semantics of programming languages in
cases where more conventional ideas cannot work.

3. Martin-Löf’s type theory, which was intended by Per Martin-Löf as an expres-
sion of his constructivist philosophy, is at the same time a functional program-
ming language.

In connection with the third point, one could mention that extensions of Martin-
Löf’s type theory (such as the Calculus of Constructions) have been used as “proof
assistants”: software packages for rigorously checking mathematical proofs and soft-
ware. The most impressive feat in the formalisation of mathematical proofs may
be Gonthier’s verification of the Four Colour Theorem in COQ (a software package
based on the Calculus of Constructions). In addition, such systems have been used
in industry, when the correctness of certain software was of paramount importance:
for example, by NASA for rigorously proving the correctness of software controlling
air traffic and by Intel for checking new designs for computer chips.

The second class of models for constructive reasoning is based on ideas from
topology. Using such models one can typically prove results (“derived rules”) of the
following form:
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If a proof of the existence of a real number is constructive, then the real
number depends continuously on the parameters of the problem.

Such results bring out nicely the additional information contained in constructive
proofs. (In a similar fashion, one may use realizability interpretations to show that, if
a proof of the existence of a natural number is constructive, then the natural number
depends in a computable way on the parameters of the problem.) In fact, topological
models are a special case of sheaf models, which additionally subsume Kripke, Beth
and presheaf models for constructive logic. And sheaf and realizability models, in
turn, are subsumed by models based on topos theory.

Grothendieck toposes were invented by Grothendieck as part of his programme
for solving the Weil conjectures in algebraic geometry. Rather surprisingly, these
categories turned out to behave like alternative worlds of sets, with an internal logic,
which was, in general, only constructive. This discovery led Lawvere and Tierney to
formulate the notion of an “elementary topos,” which was intensively studied in the
seventies and eighties. Topos theory is now an extremely rich and rather sophisticated
mathematical theory (see Johnstone’s encyclopedic three-volume work “Sketches of
an Elephant”, of which at present two volumes [73, 74] have appeared), which, as
mentioned before, subsumes (almost) all known interpretations of constructive sys-
tems.

1.4 Constructive set theory

Despite the developments explained at the end of the last section, trying to understand
the work and views of constructivists remains important in the metamathematics of
constructivity. For example, a major reason for the rekindled interest in constructive
formal systems during the sixties and seventies is due to the work of Errett Bishop.
Seeking to address “the lack of numerical content” of ordinary mathematics, he wrote
a textbook on first and second year analysis in the constructive spirit [30]. By skillfully
choosing his definitions, avoiding the controversial aspects of, for example, Brouwer’s
philosophy and not spending too much time on foundational matters, he managed to
write a text that made perfect sense to any mathematician and which at the same
time covered all the standard material. Many felt that it made the constructive
programme look much more attractive than ever before.

Precisely because Bishop did not waste any time on explaining his foundational
stance, it fell upon the logicians to fill the gap and provide an axiomatic system
which would allow for the formalisation of Bishop-style constructive mathematics.
Many systems have been proposed, all with their own strengths and weaknesses, but
here I wish to mention only two. First of all, there is the type theory introduced
by Per Martin-Löf in 1973, which I already mentioned in the previous section. Its
particular strength is that it provides a direct analysis of the notion of construction
and that reasoning in the system means carrying along, at every step, a construc-
tive (computational) justification for the validity of that step. But precisely for the
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same reason, proofs in type theory look rather different from what one is accustomed
to. Indeed, the system is quite intricate and especially if one works with the “inten-
sional” formulation (which Martin-Löf prefers), one should be prepared for running
into difficult conceptual problems.

In this respect, formal systems for constructive mathematics based on set theory
are very different. In fact, the main attraction of constructive set theories is that they
allow for a development of constructive mathematics in a conceptual framework and
language with which every mathematician is familiar. In this way they preserve the
appealing features of Bishop’s programme.

So how does one make set theory constructive? Let me start by recalling the
axioms of Zermelo-Fraenkel set theory with the axiom of choice, ZFC:

Extensionality: Two sets are equal, if they have the same elements.

Empty set: There is a set having no elements.

Pairing: For every two sets a, b there is a set {a, b} whose elements are precisely a
and b.

Union: For every set a there is a set
⋃
a whose elements are precisely the elements

of elements of a.

Separation: If a is a set and ϕ(x) is a formula in which a does not occur, then there
is a set {x ∈ a : ϕ(x)} whose elements are precisely those elements x of a that
satisfy ϕ(x).

Replacement: If a is a set and ϕ(x, y) is a formula such that (∀x ∈ a) (∃!y)ϕ(x, y),
then there is a set consisting precisely of those y such that ϕ(x, y) holds for
some x ∈ a.

Infinity: There is a set ω whose elements are precisely the natural numbers.

Power set: For every set x there is a set P(x) whose elements are precisely the
subsets of x.

Regularity: Every non-empty set x contains an element y disjoint from x.

Choice: If a and b are sets and R ⊆ a × b is a relation such that (∀x ∈ a) (∃y ∈
b)R(x, y), then there is a function f : a → b such that R(x, f(x))) holds for all
x ∈ a.

The first step one should take, if one wishes to make this system constructive, is to
change the logic. It may sound surprising, but Brouwer’s contention that making a
system constructive involves changing the logic is now generally accepted. Indeed,
how could it not be? If, for example, one refutes that all elements x ∈ M satisfy a
property P (x), then this is not a constructive proof that there is an element x ∈ M
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not satisfying P (x), for such a proof would allow one to identify at least one such
element not having the property P . On the other hand,

¬(∀x ∈M)P (x)→ (∃x ∈M)¬P (x)

is a classical tautology, so a system in which one can only perform constructive proofs
cannot be based on the usual, “classical,” logic. (Something similar happens with
Mordell’s conjecture: from the impossibility of there being infinitely many things
having a certain property one cannot constructively deduce that there are finitely
many thing having that property, for that would involve a claim to be able to list
them.) Brouwer identified the Law of Excluded Middle (tertium non datur) as the
main cause of the non-constructive nature of classical logic. According to him (and
the constructivists after him), A ∨ ¬A can only be used in a constructive proof, if
one has the ability to decide which of the two (A or ¬A) is actually true. Of course,
saying which logical principles one should not use in a constructive proof is not the
same thing as having a calculus for constructive logic. Fortunately, these also exist:
the first such was formulated by Heyting, but many more have been identified since.
Constructive logic is now a rather well-understood fragment of classical logic, with
its own proof and model theory.

But making the logic of ZFC constructive is not sufficient for getting a construc-
tive set theory. In fact, the Axiom of Choice and the Axiom of Regularity both imply
the Law of Excluded Middle. The first is dropped altogether as being inherently
non-constructive, while the latter is reformulated (in a classically equivalent way) as

Set induction: If ϕ(x) is a property of sets which is inherited by a set if all its
elements have the property (i.e., is such that ∀x((∀y ∈ xϕ(y))→ ϕ(x)

)
holds),

then all sets x have the property ϕ(x).

In addition, the Axiom of Replacement is usually reformulated as the Collection
Axiom, to which it is classically, but not constructively, equivalent:

Collection: If a is a set and ϕ(x, y) is a formula such that (∀x ∈ a) (∃y)ϕ(x, y), then
there is a set b such that (∀x ∈ a) (∃y ∈ b)ϕ(x, y) and (∀y ∈ b) (∃x ∈ a)ϕ(x, y).

The system which results is called IZF (for “intuitionistic Zermelo-Fraenkel set the-
ory”) and has been intensively studied in the seventies and eighties. Although we
have weakened the logic, in a precise sense IZF is a constructive system which is
as strong as ordinary ZFC. But for the same reason, many constructivists feel that
the system is, in fact, too strong: they feel it includes many principles which are
not needed in constructive mathematics and whose constructive validity is anyway
doubtful.

In an important paper from 1975 [96], Myhill took up the task to come up with
a constructive set theory which would be in closer keeping with Bishop’s practice.
His main insight was that such a system ought to be “predicative.” As so often with
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philosophical terms, but with this one especially, it is hard to give a precise meaning
to the word “predicative.” But, in the present context, it mainly means that we give
up the Power Set Axiom und restrict Separation to:

Bounded separation: If a is a set and ϕ(x) is a bounded formula in which a does
not occur, then there is a set {x ∈ a : ϕ(x)} whose elements are precisely those
elements x of a that satisfy ϕ(x).

(A formula is bounded, if the quantifiers it contains never quantify over the entire set-
theoretic universe, but only over the elements of sets.) If Myhill would have stopped
here, he would have ended up with the system which in this thesis is called RST (for
Rudimentary Set Theory). Instead, Myhill decided to include the following axiom
as a replacement for the Power Set Axiom:

Exponentiation: If a, b are sets, then there is a set ab whose elements are precisely
the functions from b to a.

Of course, this is classically equivalent to the Power Set Axiom. But Myhill’s other
insight was that this is not true constructively, that, in fact, the Exponentiation is
constructively much weaker, but still sufficient for the formalisation of Bishop-style
constructive mathematics. Myhill made several other changes to RST, but I will not
discuss these any further.

Instead, I now want to concentrate on the work of Peter Aczel. In a paper pub-
lished in 1978 [1], he took up the other question: how can one show the constructive
acceptability of set-theoretic axioms? To address this, he defined an interpretation
of constructive set theory in Martin-Löf’s type theory. Since the proofs performed
in Martin-Löf’s type theory carry their computational meaning on their sleeves, this
gives a direct constructive meaning and justification to proofs in constructive set the-
ory. It turned out that on this interpretation Aczel was able to validate the axioms
of RST, but not the impredicative Power Set and Separation Axioms. Also, he could
interpret the Exponentiation Axiom; in fact, he managed to justify a stronger axiom,
from which Exponentiation follows, called the Fullness Axiom:

Fullness: If a, b are sets, then there is a set c of total relations from a to b, such that
any total relation from a to b is a superset of an element of c.

The result of extending RST with the Fullness Axiom has been called CZF (for
Constructive Zermelo-Fraenkel set theory) and has become the standard constructive
set theory in the field. It has, recently, received a lot of attention and is one of the
main topics of this thesis. For definiteness, the axioms of CZF are:

Extensionality: Two sets are equal, if they have the same elements.

Empty set: There is a set having no elements.
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Pairing: For every two sets a, b there is a set {a, b} whose elements are precisely a
and b.

Union: For every set a there is a set
⋃
a whose elements are precisely the elements

of elements of a.

Bounded separation: If a is a set and ϕ(x) is a bounded formula in which a does
not occur, then there is a set {x ∈ a : ϕ(x)} whose elements are precisely those
elements x of a that satisfy ϕ(x).

Collection: If a is a set and ϕ(x, y) is a formula such that (∀x ∈ a) (∃y)ϕ(x, y), then
there is a set b such that (∀x ∈ a) (∃y ∈ b)ϕ(x, y) and (∀y ∈ b) (∃x ∈ a)ϕ(x, y).

Infinity: There is a set ω whose elements are precisely the natural numbers.

Fullness: If a, b are sets, then there is a set c of total relations from a to b, such that
any total relation from a to b is a superset of an element of c.

Set induction: If ϕ(x) is a property of sets which is inherited by a set if all its
elements have the property (i.e., such that ∀x((∀y ∈ xϕ(y)) → ϕ(x)

)
holds),

then all sets x have the property ϕ(x).

And, of course, the underlying logic is constructive.

In one of the papers which has been included in this thesis, I make a case for a
stronger set theory, which would add to the axioms of CZF the following:

Smallness of W-types: For every indexed family of sets {Ai : i ∈ I} there is a
smallest set w such that if t:Ai → w is any function, then (i, t) ∈ w.

Axiom of multiple choice: For any set x there is a set {fi: yi → x : i ∈ I} of
surjections onto x such that for any surjection h: z → x there is an i ∈ I and a
g: z → yi such that h = fi ◦ g.

This stronger set theory allows one to prove a few more useful results and can still
be interpreted in Martin-Löf’s type theory (for details, I refer to the paper number
6 below). For the sake of this introduction, one might call this theory, which is still
much weaker than ZFC or IZF, TYST (for TYpe-theoretic Set Theory4).

1.5 Algebraic set theory

The goal of this thesis is to develop a semantics (model theory) for constructive
set theories, like IZF, CZF or TYST. As topos theory is a powerful machinery
which subsumes all known model constructions for constructive formal systems, the
semantics will be in a topos-theoretic spirit.

4“Tyst” also means “quiet” or “calm” in Swedish.
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Unfortunately, however, there is a mismatch between topos theory and set theory.
In essence, topos theory provides a semantics for higher-order logic rather than set
theory. Moreover, a topos is an inherently impredicative structure, which makes
it hard to apply topos theory to predicative systems like CZF. To deal with these
problems, I use the conceptual framework of algebraic set theory. Algebraic set theory
(AST) was introduced by André Joyal and Ieke Moerdijk in their book “Algebraic set
theory” from 1995 [76], and has since been taken up by many researchers working in
categorical logic (see the overview paper [7]; other important references are [106, 94,
9]).

The starting point of Joyal and Moerdijk was quite simple. Their key notion was
that of a ZF-algebra: a ZF-algebra A is a partial order which is complete (every subset
of A has a supremum) and comes equipped with a unary operation s:A→ A. They
allow A to be a proper class; in particular, V , the class of all sets, is a ZF-algebra,
because it is partially ordered by inclusion, has small suprema given by unions and
comes equipped with the operation s(x) = {x}. Their surprising observation is that,
in this way, V is actually the initial or free ZF-algebra.

In AST this observation is taken as the starting point for developing a semantics
of set theory. The idea is that every model of set theory is an initial ZF-algebra,
perhaps not in the “true” category of classes, but in a category which is similar to the
category of classes, in the same way as a topos is in many ways similar to the category
of sets. In the first part of this thesis, I, together with Ieke Moerdijk, suggest a precise
definition of the notion of “a category of classes.” We call it a “predicative category
with small maps,” and define it to be a pair (E ,S) with E a Heyting category (the
category of classes, intuitively speaking) and S a class of morphisms in E ; we call the
members of S “small maps” and these have to satisfy a list of axioms (the intuition
being that they are the maps in E whose fibres are sets).

We then go on to show the following results, which, when taken together, show
that one can develop an adequate semantics of set theory based on the notion of
a predicative category with small maps. First of all, there is the crucial result that
every predicative category with small maps contains an initial ZF-algebra. This initial
ZF-algebra is unique up to isomorphism and models some weak set theory; in fact,
it will be a model of RST. Moreover, the semantics given by initial ZF-algebras is
complete for RST. In addition, these predicative categories with small maps behave
in many respects like toposes, so that one can develop a structure theory for them
mirroring topos theory. In fact, as we will show as well, predicative categories with
small maps are closed under internal realizability and sheaves (just like toposes). This
immediately leads, when combined with the result that all predicative categories with
small maps contain models of set theory, to realizability and sheaf models for RST.

Fortunately, the results from the last paragraph do not only hold for the relatively
unimportant set theory RST, but also for more meaningful set theories like CZF,
TYST and IZF. The reason is that we can impose new axioms on the class of small
maps S: in the minimal setting of predicative categories with small maps the initial
ZF-algebras are models of RST, but if one puts additional requirements on the class
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S, one can ensure that the initial ZF-algebra becomes a model of some stronger
set theory, like CZF, TYST or IZF. Moreover, the resulting semantics is again
complete, so that AST provides a uniform semantics of various different constructive
set theories. In fact, AST could also be used to provide a semantics for classical set
theories, like ZF or ZFC, but this aspect will only play a minor role in this thesis and
we will only note in passing how the theory could be adapted to account for classical
systems.

1.6 Contents

The thesis consists of the following papers:

1. A Unified Approach to Algebraic Set Theory (Chapter 2). This paper has
appeared in the proceedings of the Logic Colloquium 2006, Lecture Notes in
Logic, 2009, pp. 18–37. Cambridge University Press, Cambridge.

This paper serves several purposes. First of all, it present a survey of algebraic
set theory. In addition, it explains our approach based on the notion of a
“predicative category with small maps” (simply called “a category with small
maps” in this paper) and its relationship to the work of other researchers in the
area. Finally, it announces the results contained in the following three papers.

2. Aspects of Predicative Algebraic Set Theory I: Exact Completion (Chapter 3).
This paper has appeared in the Annals of Pure and Applied Logic (156), 2008,
pp. 123–159.

This is the first paper in a series of three in which we develop our approach to
algebraic set theory. It contains the basic results on predicative categories with
small maps and proves how they can be used to give a uniform semantics of set
theories of various different kinds. In particular, it shows that every predicative
category with small maps contains a model of set theory and explains how the
properties of the model depend on the closure conditions satisfied by the class
the small maps. It also shows how such predicative categories with small maps
can be obtained as the “exact completion” of simpler categories. Although this
result may not be so interesting in itself, it allows us to give a uniform proof of
the completeness of our semantics and plays a crucial role in the following two
papers.

3. Aspects of Predicative Algebraic Set Theory II: Realizability (Chapter 4). This
paper has been accepted for publication in Theoretical Computer Science.

The main result of this paper, the second in the series, is that predicative cat-
egories of classes are closed under (number) realizability. This leads to realiz-
ability models à la Friedman and McCarty for various constructive set theories,
like CZF, TYST and IZF. We also explain how the “Lubarsky-Streicher-van
den Berg” model fits into our framework and discuss how one might use the
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machinery of this and the next paper to construct models of set theory based
on interpretations obtained by combining sheaves and realizability.

4. Aspects of Predicative Algebraic Set Theory III: Sheaves (Chapter 5). This
paper has been submitted for publication.

In this paper, which is the last paper in the series of three, we show that
predicative categories of classes are closed under presheaves and sheaves, leading
to presheaf and sheaf models for CZF, TYST and IZF. We have also included
a concrete description of these models and a discussion why forcing models for
classical set theory are a special case.

5. Derived Rules for Predicative Set Theory: an Application of Sheaves (Chapter
6). This paper is available in preprint form as arXiv:1009.3553.

This paper applies the logical apparatus developed in the previous papers to
establish metamathematical properties of constructive set theories (in the form
of “derived rules”). It also includes a concise summary of the results from formal
topology that are needed for the proofs.

6. A Note on the Axiom of Multiple Choice (Chapter 7). This paper appears here
for the first time.

This paper makes a case for the set theory which in this introduction has
been called TYST. In particular, it discusses the Axiom of Multiple Choice
and shows the stability of this axiom under exact completion, realizability and
sheaves.

7. Ideas on Constructive Set Theory (Chapter 8). This paper appears here for the
first time.

This paper discusses my ideas on constructive set theory. It also identifies open
problem in the area and various directions for future research.

All these papers, except for the last one, are joint work with Ieke Moerdijk.

1.7 Warning concerning terminology

This is a cumulative thesis, which essentially consists of a collection of papers. I have
corrected some minor errors, made a few small changes and added a couple of cross
references, but I have not made a serious attempt to turn the thesis into an single
integrated text. As a result there are a few inconsistencies in the terminology, but I
believe none of them will lead to serious confusion. Nevertheless, it might be good to
make the following remarks:

• Our terminology is consistent from Chapter 3 onwards, with two minor excep-
tions, which I detail below. Chapter 2 was our first paper on algebraic set theory
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and by the time we wrote it the terminology was not quite settled. In partic-
ular, a few of the names for the axioms for a class of small maps are different
from those in later papers ((C) became (A7), (HB) became (A8) and (US)
became (A9)).

• The natural number object is required to be small in a predicative category with
small maps and RST includes the Infinity Axiom from Chapter 4 onwards. This
is not the case in Chapters 2 and 3.

• When Chapters 2, 3 and 4 refer to the Axiom of Multiple Choice (AMC), this
should be taken to be the axiom introduced by Moerdijk and Palmgren in [94].
From Chapter 5 onwards, (AMC) refers to a slightly weaker axiom, which is
explained in detail in Chapter 7. The stronger axiom due to Moerdijk and
Palmgren is then referred to as “strong (AMC)”. The difference is explained
in Chapter 7 as well.
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Chapter 2

A unified approach to algebraic set
theory

2.1 Introduction

This short paper1 provides a summary of the tutorial on categorical logic given by the
second named author at the Logic Colloquium in Nijmegen. Before we go into the
subject matter, we would like to express our thanks to the organisers for an excellent
conference, and for offering us the opportunity to present this material.

Categorical logic studies the relation between category theory and logical lan-
guages, and provides a very efficient framework in which to treat the syntax and the
model theory on an equal footing. For a given theory T formulated in a suitable lan-
guage, both the theory itself and its models can be viewed as categories with structure,
and the fact that the models are models of the theory corresponds to the existence of
canonical functors between these categories. This applies to ordinary models of first
order theories, but also to more complicated topological models, forcing models, real-
izability and dialectica interpretations of intuitionistic arithmetic, domain-theoretic
models of the λ-calculus, and so on. One of the best worked out examples is that
where T extends the theory HHA of higher order Heyting arithmetic [82], which is
closely related to the Lawvere-Tierney theory of elementary toposes. Indeed, every
elementary topos (always taken with a natural numbers object here) provides a cate-
gorical model for HHA, and the theory HHA itself also corresponds to a particular
topos, the “free” one, in which the true sentences are the provable ones.

The logic of many particular toposes shares features of independence results in
set theory. For example, there are very natural constructions of toposes which model
HHA plus classical logic in which the axiom of choice fails, or in which the con-
tinuum hypothesis is refuted. In addition, one easily finds topological sheaf toposes

1This chapter has appeared as B. van den Berg and I. Moerdijk, A Unified Approach to Algebraic
Set Theory, in the proceedings of the Logic Colloquium 2006, Lecture Notes in Logic, 2009, pp. 18–37.
Cambridge University Press, Cambridge.
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which model famous consistency results of intuitionistic logic, such as the consistency
of HHA plus the continuity of all real-valued functions on the unit interval, and
realizability toposes validating HHA plus “Church’s thesis” (all functions from the
natural numbers to itself are recursive). It took some effort (by Freyd, Fourman,
McCarthy, Blass and Scedrov [48, 46, 32, 33] and many others), however, to modify
the constructions so as to provide models proving the consistency of such statements
with HHA replaced by an appropriate set theory such as ZF or its intuitionistic
counterpart IZF. This modification heavily depended on the fact that the toposes in
question, namely various so-called Grothendieck toposes and Hyland’s effective topos
[68], were in some sense defined in terms of sets.

The original purpose of “algebraic set theory” [76] was to identify a categorical
structure independently of sets, which would allow one to construct models of set
theories like (I)ZF. These categorical structures were pairs (E ,S) where E is a cat-
egory much like a topos, and S is a class of arrows in E satisfying suitable axioms,
and referred to as the class of “small maps”. It was shown in loc. cit. that any such
structure gave rise to a model of (I)ZF. An important feature of the axiomisation in
terms of such pairs (E ,S) is that it is preserved under the construction of categories
of sheaves and of realizability categories, so that the model constructions referred to
above become special cases of a general and “elementary” preservation result.

In recent years, there has been a lot of activity in the field of algebraic set theory,
which is well documented on the web site www.phil.cmu.edu/projects/ast. Several
variations and extensions of the the original Joyal-Moerdijk axiomatisation have been
developed. In particular, Alex Simpson [106] developed an axiomatisation in which E
is far from a topos (in his set-up, E is not exact, and is only assumed to be a regular
category). This allowed him to include the example of classes in IZF, and to prove
completeness for IZF of models constructed from his categorical pairs (E ,S). This
approach has been further developed by Awodey, Butz, Simpson and Streicher in their
paper [10], in which they prove a categorical completeness theorem characterising
the category of small objects in such a pair (E ,S) (cf. Theorem 2.3.9 below), and
identify a weak “basic” intuitionistic set theory BIST corresponding to the core of
the categorical axioms in their setting.

In other papers, a variant has been developed which is adequate for constructing
models of predicative set theories like Aczel’s theory CZF [1, 6]. The most important
feature of this variant is that in the structure (E ,S), the existence of suitable power
objects is replaced by that of inductive W-types. These W-types enabled Moerdijk
and Palmgren in [94] to prove the existence of a model V for CZF out of such a
structure (E ,S) on the basis of some exactness assumptions on E , and to derive the
preservation of (a slight extension of) the axioms under the construction of sheaf
categories. This result was later improved by Van den Berg [19]. It is precisely at
this point, however, that we believe our current set-up to be superior to the ones
in [94] and [19], and we will come back to this in some detail in Section 6 below.
We should mention here that sheaf models for CZF have also been considered by
Gambino [56] and to some extent go back to Grayson [60]. Categorical pairs (E ,S)
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for weak predicative set theories have also been considered by Awodey-Warren [13]
and Simpson [107]. (Note, however, that these authors do not consider W-types and
only deal with set theories weaker than Aczel’s CZF.)

The purpose of this paper is to outline an axiomatisation of algebraic set theory
which combines the good features of all the approaches mentioned above. More
precisely, we will present axioms for pairs (E ,S) which

• imply the existence in E of a universe V , which models a suitable set theory
(such as IZF) (cf. Theorem 2.4.1 below);

• allow one to prove completeness theorems of the kind in [106] and [10] (cf. The-
orem 2.3.7 and Theorem 2.3.9 below);

• work equally well in the predicative context (to construct models of CZF);

• are preserved under the construction of sheaf categories, so that the usual topo-
logical techniques automatically yield consistency results for IZF, CZF and
similar theories;

• hold for realizability categories (cf. Examples 5.3 and 5.4 and Theorem 2.7.1).

Before we do so, however, we will recall the axioms of the systems IZF and CZF
of set theory. In the next Section, we will then present our axioms for small maps, and
compare them (in Subsection 3.4) to those in the literature. One of the main features
of our axiomatisation is that we do not require the category E to be exact, but only
to possess quotients of “small” equivalence relations. This restricted exactness axiom
is consistent with the fact that every object is separated (in the sense of having
a small diagonal), and is much easier to deal with in many contexts, in particular
those of sheaves. Moreover, together with the Collection axiom this weakened form
of exactness suffices for many crucial constructions, such as that of the model V of
set theory from the universal small map E → U , or of the associated sheaf of a given
presheaf. In Section 4 we will describe the models of set theory obtained from pairs
(E ,S) satisfying our axioms, while Section 5 discusses some examples. Finally in
Sections 6 and 7, we will discuss in some detail the preservation of the axioms under
the construction of sheaf and realizability categories.

Like the tutorial given at the conference, this exposition is necessarily concise,
and most of the proofs have been omitted. With the exception of Sections 6 and 7,
these proofs are often suitable adaptations of existing proofs in the literature, notably
[76, 106, 94, 10, 17]. A complete exposition with full proofs will appear as [21, 23, 25]
(Chapters 3–5).

We would like to thank Thomas Streicher, Jaap van Oosten and the anonymous
referees for their comments on an earlier draft of this paper, and Thomas Streicher
in particular for suggesting the notion of a display map defined in Section 7.
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2.2 Constructive set theories

In this Section we recall the axioms for the two most prominent constructive vari-
ants of Zermelo-Fraenkel set theory, IZF and CZF. Like ordinary ZF, these two
theories are formulated in first-order logic with one non-logical symbol ε. But unlike
ordinary set theory, these theories are constructive, in that their underlying logic is
intuitionistic.

In the formulation of the axioms, we use the following standard abbreviations:
∃xεa (. . .) for ∃x (xεa ∧ . . .), and ∀xεa (. . .) for ∀x (xεa → . . .). Recall also that a
formula is called bounded, when all the quantifiers it contains are of one of these two
forms. Finally, a formula of the form ∀xεa ∃yεb φ ∧ ∀yεb ∃xεa φ will be abbreviated
as:

B(xεa, yεb)φ.

The axioms which both theories have in common are (the universal closures of):

Extensionality: ∀x (xεa↔ xεb )→ a = b.

Empty set: ∃x ∀y ¬yεx.

Pairing: ∃x ∀y ( yεx↔ y = a ∨ y = b ).

Union: ∃x∀y ( yεx↔ ∃zεa yεz ).

ε-induction: ∀x (∀yεx φ(y)→ φ(x))→ ∀xφ(x)

Bounded separation: ∃x∀y ( yεx ↔ yεa ∧ φ(y) ), for any bounded formula φ in
which a does not occur.

Strong collection: ∀xεa ∃y φ(x, y)→ ∃bB(xεa, yεb)φ.

Infinity: ∃a (∃xxεa ) ∧ (∀xεa ∃yεa xεy ).

One can obtain an axiomatisation for the constructive set theory IZF by adding
to the axioms above the following two statements:

Full separation: ∃x ∀y ( yεx↔ yεa ∧ φ(y) ), for any formula φ in which a does not
occur.

Power set axiom: ∃x ∀y ( yεx↔ y ⊆ a ).

To obtain the predicative constructive set theory CZF, one should add instead
the following axiom (which is a weakening of the Power Set Axiom):

Subset collection: ∃c ∀z (∀xεa ∃yεb φ(x, y, z)→ ∃dεcB(xεa, yεd)φ(x, y, z)).
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The Subset Collection Axiom has a more palatable formulation (equivalent to it rel-
ative to the other axioms), called Fullness (see [6]). Write mv(a, b) for the class
of all multi-valued functions from a set a to a set b, i.e. relations R such that
∀xεa ∃yεb (x, y)εR.

Fullness: ∃u (u ⊆mv(a, b) ∧ ∀vεmv(a, b) ∃wεu (w ⊆ v)).

Using this formulation, it is also easier to see that Subset Collection implies Expo-
nentiation, the statement that the functions from a set a to a set b form a set.

2.3 Categories with small maps

Here we introduce the categorical structure which is necessary to model set theory.
The structure is that of a category E equipped with a class of morphisms S, satisfying
certain axioms and being referred to as the class of small maps. The canonical
example is the one where E is the category of classes in a model of some weak set
theory, and morphisms between classes are small in case all the fibres are sets. More
examples will follow in Section 5. In Section 4, we will show that these axioms actually
provide us with the means of constructing models of set theory.

2.3.1 Axioms

In our work, the underlying category E is a Heyting category with sums. More
precisely, E satisfies the following axioms (for an excellent account of the notions
involved, see [73, Part A1]):

• E is cartesian, i.e. it has finite limits.

• E is regular, i.e. every morphism factors as a cover followed by a mono and
covers are stable under pullback.

• E has finite disjoint and stable coproducts.

• E is Heyting, i.e. for any morphism f :X //Y the functor

f ∗: Sub(Y ) // Sub(X)

has a right adjoint ∀f .

This expresses precisely that E is a categorical structure suitable for modelling a
typed version of first-order intuitionistic logic with finite product and sum types.

We now list the axioms that we require to hold for a class of small maps, extending
the axioms for a class of open maps (see [76]). We will comment on the relation
between our axiomatisation and existing alternatives in Section 3.4 below.

The axioms for a class of open maps S are:
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(A1) (Pullback stability) In any pullback square

D

g

²²

// B

f
²²

C p
// A,

where f ∈ S, also g ∈ S.

(A2) (Descent) Whenever in a pullback square as above, g ∈ S and p is a cover,
f ∈ S.

(A3) (Sums) If X //Y and X ′ //Y ′ belong to S, then so does X+X ′ //Y +Y ′.

(A4) (Finiteness) The maps 0 // 1, 1 // 1 and 2 = 1 + 1 // 1 belong to S.

(A5) (Composition) S is closed under composition.

(A6) (Quotients) In any commutative triangle

Z
p

// //

g
ÃÃ

@@
@@

@@
@ Y

f~~}}
}}

}}
}

X,

where p is a cover and g belongs to S, so does f .

These axioms are of two kinds: the axioms (A1-3) express that the property we are
interested in is one of the fibres of maps in S. The others are more set-theoretic:
(A4) says that the collections containing 0, 1 or 2 elements are sets. (A5) is a union
axiom: the union of a small disjoint family of sets is again a set. Finally, (A6) is a
form of replacement: the image of a set is again a set.

We will always assume that a class of small maps S satisfies the following two
additional axioms, familiar from [76]:

(C) (Collection) Any two arrows p:Y //X and f :X //A where p is a cover and
f belongs to S fits into a quasi-pullback diagram2 of the form

Z

g

²²

// Y
p

// // X

f
²²

B
h

// // A,

where h is a cover and g belongs to S.

2Recall that a commutative square in a regular category is called a quasi-pullback if the unique
arrow from the initial vertex of the square to the inscribed pullback is a cover.
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(R) (Representability, see Remark 2.3.4) There exists a small map π:E //U (a
“universal small map”) such that for every small map f :X //Y there is a
diagram of the shape

X

f

²²

A

²²

//oooo E

π
²²

Y B //
p

oooo U,

where the left square is a quasi-pullback, the right square is a pullback and p is
a cover.

The collection principle (C) expresses that in the internal logic it holds that for any
cover p:Y //X with small codomain there is a cover Z //X with small domain
that factors through p, while (R) says that there is a (necessarily class-sized) family
of sets (Eu)u∈U such that any set is covered by one in this family.

The next requirement is also part of the axioms in [76]. For a morphism f :X //Y ,
the pullback functor f ∗: E/Y // E/X always has a left adjoint Σf given by compo-
sition.3 It has a right adjoint Πf only when f is exponentiable.

(ΠE) (Existence of Π) The right adjoint Πf exists, whenever f belongs to S.

This intuitively means that for any set A and class X there is a class of functions
from A to X.

When f is exponentiable, one can define an endofunctor Pf (the polynomial func-
tor associated with f) as the composition:

Pf = ΣY ΠfX
∗.

Its initial algebra (whenever it exists) is called the W-type associated to f . For
extensive discussion and examples of these W-types we refer the reader to [93, 17, 58].
We impose the axiom (familiar from [93, 55]):

(WE) (Existence of W ) The W-type associated to any map f :X //Y in S exists.

In non-categorical terms this means that for a signature consisting of a (possibly
class-sized) number of term constructors each of which has an arity forming a set, the
free term algebra exists (but maybe not as a set).

The following two axioms are necessary to have bounded separation as an in-
ternally valid principle (see Remark 2.3.3). For this purpose we need a piece of
terminology: call a subobject

m:A // // X

S-bounded, whenever m belongs to S; note that the S-bounded subobjects form a
submeetsemilattice of Sub(X). We impose the following axiom:

3We will write X∗ and ΣX for f∗ and Σf , where f is the unique map X // 1.
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(HB) (Heyting axiom for bounded subobjects) For any small map f :Y //X the
functor

∀f : Sub(Y ) // Sub(X)

maps S-bounded subobjects to S-bounded subobjects.

In addition, we require that all equalities are bounded. Call an object X separated,
when the diagonal ∆:X //X ×X is small. We furthermore impose (see [10]):

(US) (Universal separation) All objects are separated.

We finally demand a limited form of exactness, by requiring the existence of quo-
tients for a restricted class of equivalence relations. To formulate this categorically,
we recall the following definitions. Two parallel arrows

R
r0 //

r1
// X

in category E form an equivalence relation when for any object A in E the induced
function

Hom(A,R) // Hom(A,X)× Hom(A,X)

is an injection defining an equivalence relation on the set Hom(A,X). We call an
equivalence relation bounded, when R is a bounded subobject of X×X. A morphism
q:X //Q is called the quotient of the equivalence relation, if the diagram

R
r0 //

r1
// X

q
// Q

is both a pullback and a coequaliser. In this case, the diagram is called exact. The
diagram is called stably exact, when for any p:P //Q the diagram

p∗R
p∗r0

//

p∗r1
// p∗X

p∗q
// p∗Q

is also exact. If the quotient completes the equivalence relation to a stably exact
diagram, we call the quotient stable.

In the presence of (US), any equivalence relation that has a (stable) quotient,
must be bounded. So our last axiom imposes the maximum amount of exactness that
can be demanded:

(BE) (Bounded exactness) All S-bounded equivalence relations have stable quo-
tients.

This completes our definition of a class of small maps. A pair (E ,S) satisfying
the above axioms now will be called a category with small maps.
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When a class of small maps S has been fixed, we call a map f small if it belongs
to S, an object A small if A // 1 is small, a subobject m:A //X small if A is small,
and a relation R ⊆ C ×D small if the composite

R ⊆ C ×D //D

is small.

We conclude this Subsection with some remarks on a form of exact completion
relative to a class of small maps. As a motivation, notice that axiom (BE) is not
satisfied in our canonical example, where E is the category of classes in a model
of some weak set theory. To circumvent this problem, we will prove the following
theorem in our companion paper [21] (Chapter 3):

Theorem 2.3.1 The axiom (BE) is conservative over the other axioms, in the fol-
lowing precise sense. Any category E equipped with a class of maps S satisfying all
axioms for a class of small maps except (BE) can be embedded in a category E equipped
with a class of small maps S satisfying all the axioms, including (BE). Moreover,
the embedding y: E // E is fully faithful, bijective on subobjects and preserves the
structure of a Heyting category with sums, hence preserves and reflects validity of
statements in the internal logic. Finally, it also preserves and reflects smallness, in
the sense that yf belongs to S iff f belongs to S.

The category E is obtained by formally adjoining quotients for bounded equivalence
relations, as in [36, 35]. Furthermore, a map g:B //A in E belongs to S iff it fits
into a quasi-pullback square

yD

yf
²²

// // B

g

²²

yC // // A,

with f belonging to S in E .

2.3.2 Consequences

Among the consequences of these axioms we list the following.

Remark 2.3.2 For any object X in E , the slice category E/X is equipped with a class
of small maps S/X, by declaring that an arrow p ∈ E/X belongs to S/X whenever
ΣXf belongs to S. Any further requirement for a class of small maps should be stable
under slicing in this sense, if it is to be a sensible addition. We will not explicitly
check this every time we introduce a new axiom, and leave this to the reader.

Remark 2.3.3 In a category E with small maps the following internal form of
“bounded separation” holds. If φ(x) is a formula in the internal logic of E with
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free variable x ∈ X, all whose basic predicates are bounded, and contains existential
and universal quantifications ∃f and ∀f only along small maps f , then

A = {x ∈ X |φ(x)} ⊆ X

defines a bounded subobject of X. In particular, smallness of X implies smallness of
A.

Remark 2.3.4 It follows from the axioms that any class of small maps S is also
representable in the stronger sense that there is a universal small map π:E //U
such that for every small map f :X //Y there is a diagram of the shape

X

f

²²

A

²²

//oooo E

π
²²

Y B //
p

oooo U,

where the left square is a pullback, the right square is a pullback and p is a cover.
Actually, this is how representability was stated in [76]. We have chosen the weaker
formulation (R), because it is easier to check in some examples.

Remark 2.3.5 Using the axioms (ΠE), (R), (HB) and (BE), it can be shown
along the lines of Theorem 3.1 in [76] that for any class of small maps the following
axiom holds:

(PE) (Existence of power class functor) For any object C in E there exists a power
object PsC and a small relation ∈C⊆ C × PsC such that, for any D and any
small relation R ⊆ C × D, there exists a unique map ρ:D //PsC such that
the square:

R
²²

²²

// ∈C
²²

²²

C ×D
1×ρ

// C × PsC

is a pullback.

In addition, one can show that the object PsC is unique (up to isomorphism) with
this property, and that the assignment C 7→ PsC is functorial.

A special role is played by Ωb = Ps1, what one might call the object of bounded
truth-values, or the bounded subobject classifier. There are a couple of observations
one can make: bounded truth-values are closed under small infima and suprema,
implication, and truth and falsity are bounded truth-values. A subobject m:A //X
is bounded, when the assertion “x ∈ A” has a bounded truth-value for any x ∈ X,
as such bounded subobjects are classified by maps X // Ωb.
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Remark 2.3.6 (See [13].) When E is a category with a class of small maps S,
and we fix an object X ∈ E , we can define a full subcategory SX of E/X, whose
objects are small maps into X. The category SX is a Heyting pretopos, and the
inclusion into E/X preserves this structure; this was proved in [13]. This result can
be regarded as a kind of categorical “soundness” theorem, in view of the following
corresponding “completeness” theorem, which is analogous to Grothendieck’s result
that every pretopos arises as the coherent objects in a coherent topos (see [74, Section
D.3.3]).

Theorem 2.3.7 Any Heyting pretopos H arises as the category of small objects S1

in a category E with a class of small maps S.

This theorem was proved in [13], where, following [10], the objects in E were called
the ideals over H.

2.3.3 Strengthenings

For the purpose of constructing models of important (constructive) set theories, we
will consider the following additional properties which a class of small maps may
enjoy.

(NE) (Existence of nno) The category E possesses a natural numbers object.

(NS) (Smallness of nno) In addition, it is small.

There is no need to impose (NE), as it follows from (WE). The axiom (NS) is
necessary for modelling set theories with Infinity. The property (PE) in Remark
2.3.5 has a similar strengthening, corresponding to the Power set Axiom:

(PS) (Smallness of power classes) For each X the Ps-functor on E/X preserves small-
ness of objects over X.

Both (NS) and (PS) were formulated in [76] for the purpose of modelling IZF.

Remark 2.3.8 (Cf. [10].) Let X be an object in a category with small maps (E ,S)
satisfying (PS). The category SX is a topos, and the inclusion into E/X preserves
this structure. In fact, every topos arises in this way:

Theorem 2.3.9 Any topos H arises as the category of small objects S1 in a category
equipped with a class of small maps satisfying (PS).

Like Theorem 2.3.7, this is proved in [10] using the ideal construction.
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We will also need to consider requirements corresponding to the axioms of Full
Separation and Fullness. To Full Separation corresponds the following axiom, intro-
duced in [76]:

(M) All monos are small.

A categorical axiom corresponding to Fullness was first stated in [20]. In order to
formulate it, we need to introduce some notation. For two morphisms A //X and
B //X, we will denote by MX(A,B) the poset of multi-valued functions from A to
B over X, i.e. jointly monic spans in E/X,

A Poooo // B

with P //X small and the map to A a cover. By pullback, any f :Y //X determines
an order preserving function

f ∗:MX(A,B) //MY (f ∗A, f ∗B).

(F) For any two small maps A //X and B //X, there are a cover p:X ′ //X, a
small map f :C //X ′ and an element P ∈ MC(f ∗p∗A, f ∗p∗B), such that for
any g:D //X ′ and Q ∈ MD(g∗p∗A, g∗p∗B), there are morphisms x:E //D
and y:E //C, with gx = fy and x a cover, such that x∗Q ≥ y∗P .

Though complicated, it is “simply” the Kripke-Joyal translation of the statement that
there is for any pair of small objects A and B, a small collection P of multi-valued
relations between A and B, such that any multi-valued relation contains one in P .

2.3.4 Relation to other settings

The axioms for a category with small maps (E ,S) as we have presented them are very
close to the original axioms as presented by Joyal and Moerdijk on pages 6-8 of their
book [76]. We only require the weak form of exactness of (BE) (instead of ordinary
exactness), and added the axioms (WE), (HB) and (US).

Since the appearance of [76], various axiomatisations have been proposed, which
can roughly be subdivided into three groups. To the first group belong axiom systems
extending the original presentation in [76]. Already in [76], it is shown how to extend
these axioms for the purpose of obtaining models for IZF, and this is followed up in
[78]. In [55] Gambino introduces an extension of the original axiomatisation leading
to models of predicative set theories.

A second group of papers starts with Simpson’s [106] and comprises [10, 34, 107,
11, 13]. In these axiomatisations, the following axioms which are here taken as basic
are regarded as optional features: the Collection Axiom (C), Bounded Exactness
(BE), and also (WE) (although they all hold in the category of ideals). Instead, the
existence of a Ps-functor as in (PE) is postulated, as is a model of set theory, either
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in the form of a universe, or a universal object. In the approach taken here, these
are properties derived from the existence of a universal small map π:E //U . Part
of the purpose of this paper is to make clear that the results for axiom systems in
[106, 10, 13] also hold for our axiomatisation. We list the achievements in order to
make a comparison possible: in [106], Simpson obtained a set-theoretic completeness
result for an impredicative set theory (compare Theorem 2.4.4). Then in [10], Awodey,
Butz, Simpson and Streicher prove a categorical completeness result of which our
Theorem 2.3.9 is variant. A predicative version of this result which does not involve
W-types but is otherwise analogous to Theorem 2.3.7 above, was then proved by
Awodey and Warren in [13].

The fact that our set-up contains the Collection Axiom (C) makes it less appro-
priate for modelling set theories based on the axiom of Replacement. However, in our
theory this Collection Axiom plays a crucial role: for example, in the construction
of the initial ZF-algebra from W-types (see Theorem 2.4.1 below), or in showing the
existence of the associated sheaf functor.

A third group of papers starts with [94], and continues with [19, 18]. These
axiomatisations have a flavour different from the others, because here the axioms for
a class of small maps do not extend the axioms for a class of open maps, as the
Quotient Axiom (A6) is dropped. The aim of Moerdijk and Palmgren in [94] was to
find an axiomatisation related to Martin-Löf’s predicative type theory which included
the category-theoretic notion of a W-type, from which models of Aczel’s CZF could
be constructed. We will point out below that the same is true here (in fact, we can
construct models of CZF proper, rather than of something less or more). Another
concern of [94], which is also the topic of Van den Berg’s paper [19], is the stability
of the notion of category with small maps under sheaves. The earlier results in [94]
and [19] concerning sheafification were less than fully satisfactory. For the notion of
category with small maps explained here, the theory of sheaves can be developed very
smoothly (see Section 6), using the combination of the axioms (BE) and (US). We
consider this one of the main advantages of the present axiomatisation.

2.4 Models of set theory

For the purpose of discussing models of set theory, we recall from [76] the notion
of a ZF-algebra in a category with small maps (E ,S). A ZF-algebra V is an object
in E equipped with two independent algebraic structures: on the one hand, it is an
(internal) poset with small (in the sense of S) sups. On the other hand, it is equipped
with an endomap s:V //V , called “successor”. A morphism of ZF-algebras should
preserve both these structures: the small suprema, and the successor.

A crucial result is the following:

Theorem 2.4.1 In any category with small maps (E ,S), the initial ZF-algebra exists.

This theorem can be proved along the lines of [94]. Indeed, one can consider the



34 CHAPTER 2. A UNIFIED APPROACH TO ALGEBRAIC SET THEORY

W-type associated to the universal small map π:E //U . One can then show that
the equivalence relation given by bisimulation is bounded so that the quotient exists.
This quotient is the initial ZF-algebra (more details will appear in [21] (Chapter 3)).
This initial ZF-algebra has a natural interpretation as a model of set theory. We
think of the order as inclusion, suprema as union, and sx as {x}. This suggests to
define membership as:

x ε y : = sx ≤ y.

Since E is a Heyting category, one can ask oneself the question which set-theoretic
statements the structure (V, ε) satisfies in the internal logic of E . The answer is given
by the following theorem, whose second part was proved in [76] (the first part can be
proved in a similar manner):

Theorem 2.4.2 Let (E ,S) be a category with small maps in which the natural num-
bers object is small (so (NS) holds).

1. If (E ,S) satisfies the Fullness Axiom (F), then the initial ZF-algebra models
CZF.

2. If (E ,S) satisfies the Power Set Axiom (PS) and the Separation axiom (M),
then the initial ZF-algebra models IZF.

Remark 2.4.3 To obtain models for classical set theories, one may work in Boolean
categories. Initial ZF-algebras in such categories validate classical logic, and therefore
model classical set theories.

As a counterpart to Theorem 2.4.2 we can formulate a completeness theorem:

Theorem 2.4.4 The semantics of Theorem 2.4.2 is complete for both CZF and IZF
in the following strong sense.

1. There is a category with small maps (E ,S) satisfying (NS) and (F) such that
its initial ZF-algebra V has the property that, for any sentence φ in the language
of set theory:

V |= φ⇔ CZF ` φ.
2. There is a category with small maps (E ,S) satisfying (NS), (M) and (PS),

such that its initial ZF-algebra V has the property that, for any sentence φ in
the language of set theory:

V |= φ⇔ IZF ` φ.

To prove this theorem one builds the syntactic category of classes and a ZF-algebra
V such that validity in V is the same as derivability in the appropriate set theory.
Problems concerning (BE) are, of course, solved by appealing to Theorem 2.3.1. The
first person to prove a completeness result in this manner was Alex Simpson in [106]
for an impredicative set theory. A predicative variation is contained in [13] and [55].
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Remark 2.4.5 Every (ordinary, classical) set-theoretic model (M, ε) is also sub-
sumed in our account, because every such model there is an initial ZF-algebra VM in
a category with small maps (EM ,SM) having the property that for any set-theoretic
sentence φ:

VM |= φ⇔M |= φ.

EM is of course the category of classes in the model M , with those functional rela-
tions belonging to SM that the model believes to have sets as fibres, extended using
Theorem 2.3.1 so as to satisfy (BE). One could prove completeness of our categorical
semantics for classical set theories along these lines.

2.5 Examples

We recall from [76] the basic examples of categories satisfying our axioms.

Example 2.5.1 The canonical example is the following. Let E be the category of
classes in some model of set theory, and declare a morphism f :X //Y to be small,
when all its fibres are sets. If the set theory is strong enough, this will satisfy all our
axioms, except for (BE), but an appeal to Theorem 2.3.1 will resolve this issue.

Example 2.5.2 Let E be a category of sets (relative to some model of ordinary
set theory, say), and let κ be an infinite regular cardinal. Declare f :X //Y to be
small, when all fibres of f have cardinality less than κ. This will validate all our basic
axioms, as well as (M). When κ > ω, (NS) will also hold, and when κ is inaccessible,
(PS) and (F) will hold.

Example 2.5.3 The following two examples are related to realizability, and define
classes of small maps on the effective topos Eff (see [68]). Recall that there is an
adjoint pair of functors Γa∇, where Γ = Eff(1,−): Eff //Sets is the global sections
functor. Fix a regular cardinal κ > ω, and declare f :X //Y to be small, whenever
there is a quasi-pullback square

Q // //

g

²²

X

f

²²

P p
// // Y

with p a cover, and g a morphism between projectives such that Γg is κ-small, in the
sense of the previous example. This example was further studied by Kouwenhoven
and Van Oosten in [78], and shown to lead to McCarty’s realizability model of set
theory for an inaccessible cardinal κ (see [89]).

Example 2.5.4 Another class of small maps on Eff is given as follows. Call a map
f :X //Y small, whenever the statement that all its fibres are subcountable is true
in the internal logic of Eff (a set is subcountable, when it is the quotient of a subset of
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the natural numbers). These maps were studied in [70] and dubbed “quasi-modest”
in [76]. The first author showed they lead to a model of CZF in which all sets are
subcountable, and therefore refutes the Power Set Axiom (see [18]). He also showed
the model is the same as the one contained in [111] and [84].

Example 2.5.5 Once again, fix an infinite regular cardinal κ, and let C be a sub-
canonical site which is κ-small, in the sense that every covering family has cardinality
strictly less than κ. We say that a sheaf X is κ-small, whenever it is covered by
a collection of representables whose cardinality is less than κ. Finally, a morphism
f :X //Y will be considered to be κ-small, whenever for any map y:C //Y from a
representable C ∈ C the pullback f−1(y) as in

f−1(y) //

²²

X

f

²²

C y
// Y

is a κ-small sheaf. This can again be shown to satisfy all our basic axioms. Also,
when κ > ω, (NS) will hold, and so will (PS) and (F), when κ is inaccessible.

2.6 Predicative sheaf theory

The final example of the previous Section, that of sheaves, can be internalised, in a
suitable sense. Starting from a category with small maps (E ,S), and an appropriate
site C in E , one can build the category ShE(C) of internal sheaves over C, which is
again a Heyting category with stable, disjoint sums. Furthermore, there is a notion
of small maps between sheaves, turning it into a category with small maps. In fact,
stability of our notion of a category with small maps under sheaves is one of its main
assets. Here we will limit ourselves to formulating precise statements, leaving the
proofs for [25] (Chapter 5).

For the site C we assume first of all that the underlying category is small, in that
the object of objects C0 and of arrows C1 are both small. By a sieve on a ∈ C0 we
mean a small collection of arrows into a closed under precomposition. We assume
that the collection of covering sieves Cov(a) on an object a ∈ C0 satisfies the following
axioms:

(M) The maximal sieve Ma = {f ∈ C1 | cod(f) = a} belongs to Cov(a).

(L) For any U ∈ Cov(a) and morphism f : b // a, the sieve

f ∗U = {g: c // b | fg ∈ U}

belongs to Cov(b).
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(T) If T is a sieve on a, such that for a fixed U ∈ Cov(a) any pullback h∗T along a
map h: b // a ∈ U is an element of Cov(b), then T ∈ Cov(a).

The definition of an (internal) presheaf and sheaf is as usual.

Using the bounded exactness of (E ,S) and assuming that the relation S ∈ Cov(a)
is bounded, one can show the existence of the associated sheaf functor (the cartesian
left adjoint for the inclusion of sheaves into presheaves). This functor can then be
used to prove in the usual way that the sheaves form a Heyting category with stable
and disjoint sums.

As the small maps between sheaves we take those that are “pointwise small”.
Observe that there is a forgetful functor U : ShE(C) // E/C0, and call a morphism
f :B //A of sheaves pointwise small, when Uf is. To show that these morphisms
form a class of small maps, we make two additional assumptions. First of all, we
assume the Exponentiation Axiom in the “metatheory” (E ,S):

(ΠS) For any small map f :B //A, the functor Πf : E/B → E/A preserves small
objects.

Furthermore, we also assume that our site has a basis, meaning the following: for any
a ∈ C0 there is a small collection of covering sieves BCov(a) such that

S ∈ Cov(a)⇔ ∃R ∈ BCov(a):R ⊆ S.

Note that the relation S ∈ Cov(a) is bounded, when the site has a basis.

Theorem 2.6.1 Let (E ,S) be a category with small maps, and let C be an internal
site with a basis. If the class S satisfies (ΠS), then ShE(C) with the class of pointwise
small maps is again a category with small maps satisfying (ΠS).4 Furthermore, all
the axioms that we have introduced, (NS), (PS), (F) and (M), are stable in the
sense that each of these holds in sheaves, whenever it holds in the original category.

2.7 Predicative realizability

In this Section we outline how the construction of [76] of a class of small maps in
Hyland’s effective topos (as in Example 5.3), can be mimicked in the context of a
category with small maps (E ,S) as introduced in Section 3. Our construction is
inspired by the fact that the effective topos arises as the exact completion of the
category of assemblies, as in [37].

Let us start with a category with small maps (E ,S) satisfying (NS) (so the nno in
E is small). The first observation is that we can internalise enough recursion theory

4Footnote added in the Habilitation Thesis: this claim might be too strong. In Section 5.4 we
will only be able to prove this result with (F) instead of (ΠS). See also the third footnote in Chapter
5.
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in E for doing realizability. In fact, enough can already be formalised in Heyting
Arithmetic HA, so certainly in a category with small maps. We then define the
category of assemblies, as follows. An assembly consists of an object A in E together
with a surjective relation α ⊆ N × A. For pairs (n, a) belonging to this relation, we
write n ∈ α(a), which we pronounce as “n realizes (the existence of) a”; surjectivity
of the relation then means that every a ∈ A has at least one realizer. A morphism f
of assemblies from (B, β) to (A,α) is given by a morphism f :B //A in E for which
the internal logic of E verifies that:

there is a natural number r such that for all b ∈ B and n ∈ β(b), the
Kleene application r · n is defined, and realizes f(b) (i.e. r · n ∈ α(fb)).

One can now prove that the category of assemblies E [Asm] relative to E is a Heyting
category with stable and disjoint sums (see [68], where the assemblies occur as the
¬¬-separated objects in the effective topos).

In order to describe the relevant exact completion of this category of assemblies,
we first outline a construction. Consider two assemblies (B, β) and (A,α) and a
morphism f :B //A, not necessarily a morphism of assemblies. Then this defines a
morphism of assemblies (B, β[f ]) // (A,α) by declaring that n ∈ β[f ](b), whenever
n codes a pair 〈n0, n1〉 such that n0 ∈ α(fb) and n1 ∈ β(b). In case f belongs to S
and β is a bounded relation, a morphism of this form will be called a standard display
map relative to S (this notion was pointed out to us by Thomas Streicher). A display
map is a morphism that can be written as an isomorphism followed by a standard
display map. These display maps do not satisfy the axioms for a class of small maps;
in particular, they are not closed under Descent and Quotients. Another problem is
that the category of assemblies is not exact, not even in the more limited sense of
being bounded exact.

Both problems can be solved by appealing to Theorem 2.3.1. Or, to be more
precise, they can be solved by constructing an exact completion for categories with a
class of display maps, resulting in categories with small maps satisfying (BE) (how
this is to be done will be shown in [23] (Chapter 4)). Recall that the small maps in
the exact completion are precisely those g that fit into a quasi-pullback diagram

yD

yf
²²

// // B

g

²²

yC // // A,

where f is a small map in the original category. Therefore it is to be expected that the
class of small maps in the exact completion of a category with display maps satisfies
Descent and Quotients even when the class of display maps in the original category
from which it is defined, does not satisfy these axioms. In fact, as it turns out, the
display maps between assemblies have enough structure for the maps g in the exact
completion of assemblies that fit into a square as above with f a display map, to form
a class of small maps. In this way, both problems with the category of assemblies
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can be solved at the same time by moving to the exact completion. Therefore we
define the realizability category (E [Eff ],S[Eff ]]) to be this exact completion of the
pair (E [Asm],D), where D is the class of display maps in the category of assemblies.

Theorem 2.7.1 If (E ,S) is a category with small maps satisfying (NS), then so is
(E [Eff ],S[Eff ]]). Furthermore, all the axioms that we have introduced, (ΠS), (PS),
(F) and (M), are stable in the sense that each of these holds in the realizablity
category, whenever it holds in the original category.

The initial ZF-algebra in the realizability category should be considered as a suit-
able internal version of McCarty’s realizability model [89] (see also [78]), which in our
abstract approach is also defined for predicative theories like CZF (compare [104]).
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Chapter 3

Exact completion

3.1 Introduction

This is the first in a series of three papers on Algebraic Set Theory.1 Its main purpose
is to lay the necessary groundwork for the next two parts, one on realizability [23]
(Chapter 4) and the other on sheaf models in Algebraic Set Theory [25] (Chapter 5).

Sheaf theory and realizability have been effective methods for constructing mod-
els of various constructive and intuitionistic type theories [68, 82, 47]. In particular,
toposes constructed using sheaves or realizability provide models for intuitionistic
higher order logic (HAH), and it was shown by Freyd, Fourman, Friedman respec-
tively by McCarthy in the 1980s that from these toposes one can construct models of
intuitionistic Zermelo-Fraenkel set theory IZF [48, 46, 51, 89]. These constructions
were non-elementary, in the technical sense that they used the class of all ordinal
numbers external to the topos, i.e., ordinals in an ambient classical metatheory. The
original purpose of Algebraic Set Theory [76] was to provide an elementary, categor-
ical framework making such constructions of models of IZF possible. More precisely,
in loc. cit. the authors proposed a notion of “category with small maps”, which is
a pair consisting of a category E which behaves to some extent like a topos, and a
class S of arrows in E , the “small maps”, to be thought of as maps whose fibres are
small in some a priori given sense. It was proved that such a pair (E ,S) always
contains a special object V (an initial ZF-algebra in the terminology of [76]), which
is a model of IZF. Although this was never proved in detail, the idea behind the
definition of such pairs (E ,S) was that they would be closed under sheaves and re-
alizability. For example, for sheaves, this means that for any internal small site C
in (E ,S), the category ShE(C) of internal sheaves is equipped with a natural class of
maps S[C], for which the pair (ShE(C),S[C]) again satisfies the axioms for a “category
with small maps”. As a consequence, one would be able to apply and iterate sheaf
and/or realizability constructions to obtain new categories with small maps from old

1It has appeared as B. van den Berg and I. Moerdijk, Aspects of Predicative Algebraic Set Theory
I: Exact Completion, in the Annals of Pure and Applied Logic (156), 2008, pp. 123–159.
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ones, each of which contains a model of set theory V . The original constructions of
Freyd, Fourman and McCarthy [48, 46, 51, 89, 78] form a special case of this. An
immediate result would be that known independence proofs for HAH, proved using
topos-theoretic techniques, can be transferred to IZF (for example, [44, 32, 45]).

Subsequently, various alternative axiomatisations of the notion of a category with
small maps have been proposed, notably the one by Awodey, Butz, Simpson and
Streicher [10, 9]. In particular, Simpson in [106] proves that IZF is complete with
respect to models in his axiomatisation of a category with small maps.

The main goal of this series of three papers is to investigate how these techniques
apply in the context of predicative type theories in the style of Martin-Löf [88] and
related predicative set theories such as Aczel’s CZF [1, 6]. A distinguishing feature
of these type theories is that they do not allow power object constructions, but do
contain inductive types (so-called “W-types”) instead. In analogy with the non-
predicative case, we aim to find axioms for a suitable notion of “category with a
class of small maps” (E ,S) where the category E is some sort of predicative analogue
of a topos, having equally good closure properties as in the impredicative case. In
particular, the following should hold:

(i) Any such pair (E ,S) contains an object V which models CZF.

(ii) The notion is closed under taking sheaves; i.e., for a internal site C (possibly sat-
isfying some smallness conditions), the category of internal sheaves in E contains
a class of small maps, so that we obtain a similar such pair (ShE(C),S[C]).

(iii) The notion is closed under realizability: i.e., for any small partial combinatorial
algebra A in E , one can construct a category EffE [A] of A-effective objects
(analogous to the effective topos [68]), and a corresponding class of small maps
S[A], so that the pair (EffE [A],S[A]) again satisfies the axioms.

(iv) The notion admits a completeness theorem for CZF, analogous to the one for
IZF mentioned above.

This list describes our goals for this series of papers, but is not exhaustive. There are
other constructions that are known to have useful applications in the impredicative
context of topos theory, HAH and IZF, which one might ask our predicative notion
of categories with small maps to be closed under, such as glueing and the construction
of the category of coalgebras for a (suitable) comonad [115, 49, 82].

To reach these goals, one needs the category E to have some exactness properties,
in particular to be closed under quotients of certain equivalence relations. Indeed,
some particular such quotients are needed in (i) above to construct the model V as a
quotient of a certain universal W-type, and in (ii) to construct the associated sheaf
functor. On the other hand, the known methods of proof to achieve the goals (iii)
and (iv) naturally give rise to pairs (E ,S) for which E is not sufficiently exact. In
order to overcome this difficulty, we identify the precise degree of exactness which is
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needed, and prove that for the kinds of categories with a class of small maps (E ,S)
which arise in (iii) and (iv), one can construct a good “exact completion” (E ,S). The
first of these three papers is mainly concerned with analysing this exact completion.

To illustrate the work involved, let us consider the axiom of Subset collection of
CZF, which can be formulated as

Subset collection: ∃c ∀z (∀xεa ∃yεb φ(x, y, z)→ ∃dεcB(xεa, yεd)φ(x, y, z)),

where
B(xεa, yεb)φ.

abbreviates ∀xεa ∃yεb φ ∧ ∀yεb ∃xεa φ. An alternative formulation in terms of multi-
valued functions is known as the Fullness axiom (see Section 3.7 below):

Fullness: ∃z (z ⊆ mvf(a, b) ∧ ∀xεmvf(a, b)∃cεz (c ⊆ x)).

Here we have used the abbreviation mvf(a, b) for the class of multi-valued functions
from a to b, i.e., sets r ⊆ a× b such that ∀xεa ∃yεb (x, y)εr. This Fullness axiom has
a categorical counterpart (F). This latter axiom is one of the axioms for our pairs
(E ,S), for which we prove the following:

(a) If (E ,S) satisfies (F), then the model V constructed as in (i) satisfies Subset
collection (see Corollary 3.8.8 below).

(b) If (E ,S) satisfies (F), then so does its exact completion (E ,S) (see Proposition
3.6.25 below).

(c) If (E ,S) satisfies (F), then so does the associated pair (EffE [A],S[A]) defined
by realizability (this willed be proved in [23] (Chapter 4)).

(d) If (E ,S) satisfies (F), then so does the associated pair (ShE(C),S[C]) defined by
the sheaves (this willed be proved in [25] (Chapter 5)).

Of these, statement (a) is easy to prove, but the proofs of the other three statements
are non-trivial and technically rather involved, as we will see.

This series of papers is not the first to make an attempt at satisfying these goals. In
particular, the authors of [93] provided a suitable categorical treatment of inductive
types, and used these in [94] in an attempt to find a notion of “predicative topos
equipped with a class of small maps” for which (i) and (ii) could be proved. The
answer they gave, in terms of stratified pseudo-toposes, was somewhat unsatisfactory
in various ways: it used the categorical analogue of an infinite sequence of “universes”,
and involved a strengthening of CZF by the axiom AMC of “multiple choice”. This
was later improved upon by [19], who established results along the lines of aim (ii)
without using AMC, but still involved universes. Awodey and Warren, in [13], gave
a much weaker axiomatisation of a “predicative topos equipped with a class of small
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maps”, which didn’t involve W-types, but for which they proved a completeness
result along the lines of (iv). Gambino in [55] also proved a completeness theorem,
and showed that unpublished work of Scott on presheaf models for set theory could
be recovered in the context of Algebraic Set Theory. Later in [57], he took a first step
towards (ii) by showing the possibility of constructing the associated sheaf functor
in a weak metatheory. In [114], Warren shows the stability of various axioms under
coalgebras for a cartesian comonad.

To conclude this introduction, we will describe in more detail the contents of this
paper and its two sequels.

We begin this paper by making explicit the notion of “category E with a class S of
small maps”. Our axiomatisation, presented in Section 2, is based on various earlier
such notions in the literature, in particular the one in [76], but is different from all of
them. In particular, like the one in [94], our axiomatisation is meant to apply in the
predicative context as well, but has a rather different flavour: unlike [94], we assume
all diagonals to be small, work with a weaker version of the representability axiom,
assume the Quotients axiom and work with Fullness instead of AMC. In the same
section 2, we will also introduce the somewhat weaker notion of a class S of “display
maps”, and prove that any such class can be completed to a class Scov which satisfies
all our axioms for small maps. In Section 3, we will consider various additional ax-
ioms which a class of small maps might satisfy. These additional requirements are all
motivated by the axioms of set theories such as IZF and CZF (cf. Section 9 for the
axioms of IZF and CZF). Examples are the categorical Fullness axiom (F) already
mentioned above, and the axioms (WE) and (WS) which express that certain induc-
tive W-types exist, respectively exist and are small. The core of the paper is formed
by Sections 4–6, where we discuss exact completion. In Section 4, we will introduce a
notion of exactness for categories with small maps (E ,S), essentially expressing that
E is closed under quotients by “small” equivalence relations. In Section 5, we use the
familiar exact completion of regular categories [35] to prove that any such pair (E ,S)
possesses an exact completion (E ,S). In Section 6, we then prove that the additional
axioms for classes of small maps, such as Fullness and the existence of W-types, are
preserved by exact completion. Some of the proofs in this section are quite involved,
and probably constitute the main new technical contribution to Algebraic Set Theory
contained in this paper. In Sections 7 and 8, we return to the constructive set theories
IZF and CZF, and show that our theory of exact pair (E ,S) of categories with small
maps provides a sound and complete semantics for these set theories. In particular,
in these two sections we achieve goals (i) and (iv) listed above.

All the notions and results discussed in the present paper will be used in the second
and third papers in this series [23, 25] (Chapters 4 and 5), where we will address
realizability and sheaves. In the second paper, we will construct for any category
with small maps (E ,S) a new category AsmE [A] of assemblies equipped with a class
of display maps D[A]. For this pair, we will show that its exact completion again
satifies all our axioms for small maps. The model of set theory contained in this exact
completion is a realizability model for constructive set theory CZF, which coincides
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with the one by Rathjen in [104]. We also plan to explain how a model construction
by Streicher [111] and Lubarsky [84] fits into our framework.

The third paper will then address presheaf and sheaf models. First of all, we
extend the work by Gambino in [55] to cover presheaf models for CZF. Furthermore,
for any category with small maps (E ,S) and internal site C, satisfying appropriate
smallness conditions, we will define a class of small maps S[C] in the category of
internal sheaves in E , resulting in a pair (ShE(C),S[C]). The validity of additional
axioms for small maps is preserved through the construction, and, as a consequence,
we obtain a theory of sheaf models for CZF (extending the work in [56] on Heyting-
valued models).

Throughout our work on the subject of this paper and its two sequels, we have been
helped by discussions with many colleagues. In particular, we would like to mention
Steve Awodey, Nicola Gambino, Per Martin-Löf, Jaap van Oosten, Erik Palmgren,
Michael Rathjen and Thomas Streicher. We are also grateful to the anonymous referee
for helpful comments. Last but not least, we would like to thank the editors for their
patience.

The categorical setting

The contents of this part of the paper are as follows. We first present the basic
categorical framework for studying models of set theory in Section 2: a category with
small maps. We give the axioms for a class of small maps, and also present the weaker
notion of a class of display maps, and show how it generates a class of small maps.
This will become relevant in our subsequent work on realizability. In Section 3 we
will present additional axioms for a class of small maps, allowing us to model the set
theories IZF and CZF.

Throughout the entire paper, we will work in a positive Heyting category E . For
the definition of a positive Heyting category, and that of other categorical terminology,
the reader is referred to Section 10.

3.2 Categories with small maps

The categories we use to construct models of set theory we will call categories with
small maps. These are positive Heyting categories E equipped with a class of maps
S satisfying certain axioms. The intuitive idea is that the objects in the positive
Heyting category E are classes, and the maps f :B //A in S are those class maps
all whose fibres Ba = f−1(a) for a ∈ A are “small”, i.e., sets in some (possibly rather
weak) set theory . For this reason, we call the class S a class of small maps. So a
map f :B //A belonging to such a class S is an A-indexed family (Ba)a∈A of small
subobjects of B.
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3.2.1 Classes of small maps

We introduce the notion of a class of small maps.

Definition 3.2.1 A class of morphisms S in a positive Heyting category E will be
called a locally full subcategory, when it satisfies the following axioms:

(L1) (Pullback stability) In any pullback square

D

g

²²

// B

f
²²

C // A

where f ∈ S, also g ∈ S.

(L2) (Sums) If X //Y and X ′ //Y ′ belong to S, then so does X +X ′ //Y +Y ′.

(L3) (Local Fullness) For a commuting triangle

Z

h
ÃÃ

@@
@@

@@
@

f
// Y

g
~~~~

~~
~~

~~

X

where g ∈ S, one has f ∈ S iff h ∈ S.

When a locally full subcategory S has been fixed together with an object X ∈ E ,
we write SX for the full subcategory of E/X whose objects are morphisms A //X ∈
S.

Definition 3.2.2 A locally full subcategory S will be called a locally full positive
Heyting subcategory, when every SX is a positive Heyting category and the inclusion
SX // E/X preserves this structure.

To complete the definition a class of small maps, we introduce the notion of a
covering square.

Definition 3.2.3 A diagram

A

f
²²

q
// B

g

²²

C p
// D

is called a quasi-pullback, when the canonical map A //B ×D C is a cover. In the
internal language this amounts to saying that for every c ∈ C the map Ac → Bpc is
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surjective. If p is also a cover, the diagram will be called a covering square (so then we
also have – in the internal language – for every d ∈ D an element c ∈ C with pc = d,
from which it follows that every fibre of g is covered by a fibre of f ; but, beware, this
is only a consequence: the property of being a covering square is stronger than that).
When f and g fit into a covering square as shown, we say that f covers g, or that g
is covered by f .

Lemma 3.2.4 In a positive Heyting category E,

1. covering squares are stable under pullback. More explicitly, pulling back a cov-
ering square of the form

A

²²

// // B

²²

C // // D

along a map p:E //D results in a covering square of the form

p∗A

²²

// // p∗B

²²

p∗C // // E.

2. the juxtaposition of two covering squares as in the diagram below is again a
covering square.

A

f
²²

// // B

g

²²

// // C

h
²²

X // // Y // // Z

So, when f covers g and g covers h, f covers h.

3. the sum of two covering squares is a covering square. More explicitly, when both

A0

f0
²²

// // B0

g0
²²

C0
// // D0

and A1

f1
²²

// // B1

g1
²²

C1
// // D1

are covering squares, then so is

A0 + A1

f0+f1
²²

// // B0 +B1

g0+g1
²²

C0 + C1
// // D0 +D1.

Therefore, if f0 covers g0 and f1 covers g1, then f0 + f1 covers g0 + g1.
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Proof. All straightforward consequences of the regularity of E . ¤

Definition 3.2.5 A locally full positive Heyting subcategory S is a class of small
maps when it satisfies the following two axioms:

(Collection) Any two arrows p:Y //X and f :X //A where p is a cover and f
belongs to S fit into a covering square

Z

g

²²

// Y
p

// // X

f
²²

B
h

// // A

where g belongs to S.

(Covered maps) When an arbitrary map g is covered by a map f ∈ S, also g ∈ S.

Definition 3.2.6 A pair (E ,S), in which E is a positive Heyting category and S
a class of small maps, will be called a category with small maps. A morphism of
categories with small maps F : (E ,S) // (F , T ) is a functor F that preserves the
positive Heyting structure and sends maps in S to maps in T .

Remark 3.2.7 There is one informal example of a category with small maps that
the reader should try to keep in mind. Let E be the category of classes and let S
consist of those class morphisms all whose fibres are sets. The notions of class and set
here can be understood in some intuitive sense, or can be made precise by a formal
set theory like IZF or CZF. It is not too hard to see that this is indeed an example.
We will flesh out this informal example in two different ways in Section 8.

Remark 3.2.8 An essential fact about categories with small maps is their stability
under slicing. By this we mean that for any category with small maps (E ,S) and
object X in E , the pair (E/X,S/X), with S/X being defined by

f ∈ S/X ⇔ ΣXf ∈ S,
is again a category with small maps. The verification of this claim is straightforward
and omitted.

Strengthened versions of a category with small maps obtained by imposing more
requirements on the class of small maps should also be stable under slicing in this
sense. Therefore, when we introduce additional axioms for a class of small maps S in
a category E , their validity should be inherited by the classes of small maps S/X in
E/X. This will indeed be the case, but we will not point this out explicitly everytime
we introduce an axiom, and a proof of its stability under slicing will typically be left
to the reader.
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When a class of small maps S in a positive Heyting category E has been fixed, we
refer to the morphisms in S as the small maps. Objects X for which the unique map
X // 1 is small, will be called small. Furthermore, a subobject A ⊆ X represented
by a monomorphism A //X belonging to S will be called bounded.

Remark 3.2.9 Throughout the paper, we will make use of the following internal
form of “bounded separation”. If φ(x) is a formula in the internal logic of E with free
variable x ∈ X, all whose basic predicates are bounded, and contains existential and
universal quantifications ∃f and ∀f along small maps f only, then

A = {x ∈ X : φ(x)} ⊆ X

defines a bounded subobject of X. In particular, smallness of X implies smallness
of A. This is an immediate consequence of the fact that a class of small maps is a
locally full positive Heyting subcategory.

It will be convenient to also have a less comprehensive and more elementary ax-
iomatisation of the notion of a class of small maps available, as provided by the next
proposition. It will also facilitate the comparison with other definitions of a class of
small maps to be found in the literature (cf. Remark 3.7.6 below).

Proposition 3.2.10 A class of maps S in a positive Heyting category E is a class of
small maps iff it satisfies the following axioms:

(A1) (Pullback stability) In any pullback square

D

g

²²

// B

f
²²

C p
// A

where f ∈ S, also g ∈ S.

(A2) (Descent) If in a pullback square as above p is a cover and g ∈ S, then also
f ∈ S.

(A3) (Sums) If X //Y and X ′ //Y ′ belong to S, then so does X+X ′ //Y +Y ′.

(A4) (Finiteness) The maps 0 // 1, 1 // 1 and 1 + 1 // 1 belong to S.

(A5) (Composition) S is closed under composition.

(A6) (Quotients) In a commuting triangle

Z

h ÃÃ
@@

@@
@@

@
f

// // Y

g
~~}}

}}
}}

}

X,

if f is a cover and h belongs to S, then so does g.
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(A7) (Collection) Any two arrows p:Y //X and f :X //A where p is a cover and
f belongs to S fit into a covering square

Z

g

²²

// Y
p

// // X

f
²²

B
h

// // A,

where g belongs to S.

(A8) (Heyting) For any morphism f :Y //X belonging to S, the right adjoint

∀f : Sub(Y ) // Sub(X)

sends bounded subobjects to bounded subobjects.

(A9) (Diagonals) All diagonals ∆X :X //X ×X belong to S.

Proof. Axioms (A1, 3, 5, 7, 9) hold for any class of small maps by definition.
Axioms (A2) and (A6) are equivalent to saying that S is closed under covered maps.
(A4) holds because S1 is a lextensive category, and the inclusion in E preserves this,
while (A8) holds because every SX is Heyting, and the inclusion in E/X preserves
this.

Conversely, let S is a class of maps satisfying (A1-9). It will follow from the lemma
below that S is a locally full subcategory. Because S satisfies Collection and is closed
under covered maps by assumption, it remains to show that it is a locally full positive
Heyting category. So let X ∈ E be arbitrary: SX inherits the terminal object (by
1 // 1 ∈ S and pullback stability), pullbacks (by (A1) and (A5)) and the finite sums
(by (A4), pullback stability and (A3)) from E/X. Finally, the regular structure it
inherits by (A6) and the Heyting structure by (A8). ¤

Lemma 3.2.11 Let S be a class of maps satisfying the axioms (A1), (A5) and
(A9). If in a commuting triangle

Z

h ÃÃ
@@

@@
@@

@
f

// Y

g
~~}}

}}
}}

}

X,

h belongs to S, then so does f .
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Proof. By the universal property of the pullback Y ×XZ we obtain a map ρ = 〈f, id〉
making the diagram

Z

f

ÃÃ

id

&&

ρ

$$HHHHHHHHH

Y ×X Z p2
//

p1

²²

Z

h
²²

Y g
// X

commute. It suffices to show that ρ belongs to S, because p1 belongs to S by pullback
stability and S is closed under composition. But this follows by pullback stability as
both squares in the diagram

Z

ρ

²²

f
// Y

∆g

²²

// Y

∆
²²

Y ×X Z id×Xf
// Y ×X Y // Y × Y

are readily seen to be pullbacks. ¤

3.2.2 Classes of display maps

In our subsequent work on realizability [23] (Chapter 4), classes of small maps are
obtained from something we will call classes of display maps.

Definition 3.2.12 A locally full Heyting subcategory S will be called a class of
display maps, when it satisfies the Collection axiom (A7) and the Diagonal axiom
(A9).

Proposition 3.2.13 A class of maps S in a positive Heyting category E is a class of
display maps iff it satisfies the axioms (A1), (A3-5), (A7-9), and

(A10) (Images) If in a commuting triangle

Z

f ÃÃ
@@

@@
@@

@
e // // Y

~~

m
~~}}

}}
}}

}

X,

e is a cover, m is monic, and f belongs to S, then also m belongs to S.

Proof. As in Proposition 3.2.10. Like for small maps, axioms (A1, 3, 5, 7, 9)
hold for any class of display maps by definition. Axiom (A4) holds because S1 is a
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lextensive category, and the inclusion in E preserves this, (A10) holds because every
SX is regular, and the inclusion in E/X preserves this and (A8) holds because every
SX is Heyting, and the inclusion in E/X preserves this.

Conversely, let S be a class of maps satisfying (A1), (A3-5), (A7-10). As S is a
locally full subcategory by Lemma 3.2.11, and satisfies Collection and contains all
diagonals by assumption, all that has to be shown is that S is a locally full positive
Heyting category. But that follows in the manner we have seen, using (A10) to show
that all SX are regular. ¤

The proposition we just proved explains that a class of display maps is like a class
of small maps, except that it need not be closed under covered maps. More precisely,
it need not satisfy the Descent axiom (A3), and it may satisfy the Quotients axiom
(A6) only in the weaker form of (A10). It should be pointed out that notions that
we have defined for a class of small maps, like boundedness of subobjects, can also be
defined for a class of display maps. And observe that Remark 3.2.9 applies to classes
of display maps as well.

The following proposition makes clear how a class of display maps generates a
class of small maps.

Proposition 3.2.14 Let E be a category with a class of display maps S. Then there
is a smallest class of small maps Scov containing S, where the maps that belong to
Scov are precisely those that are covered by morphisms in S.

The proof relies on the following lemma, which makes use of the Collection axiom
(A7).

Lemma 3.2.15 Any two maps f :Y //X and g:Z //Y belonging to Scov fit into
a diagram of the form

Z ′ // //

g′
²²

Z

g

²²

Y ′ // //

f ′

²²

Y

f
²²

X ′ // // X,

where both squares are covering squares and g′ and f ′ belong to S.
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Proof. By definition of Scov, g and f fit the diagram

Dg0
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Y f
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B

?? ??ÄÄÄ

f0
ÂÂ

???
X

A,

?? ??ÄÄÄ

with f0, g0 ∈ S and the squares covering. We compute the pullback B ×Y C, and
then apply Collection to obtain a map f ′ ∈ S fitting into the diagram

Z ′

g′

²²
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g0

~~}}
}}

}}
}}

ÃÃ ÃÃA
AA

AA
AA

A

C

ÃÃ ÃÃ
@@

@@
@@

@@
Z

g
~~}}

}}
}}

}}

Y ′ //

f ′
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X ′ // // A.

>> >>}}}}}}}}

In this picture, the map g′ is obtained by pulling back g0, so also this map belongs
to S. This finishes the proof. ¤

Proof. (Of Proposition 3.2.14.) The class of maps Scov is closed under covered maps
by Lemma 3.2.4, so (A2) and (A6) follow immediately. The validity of the axiom
(A3) for Scov follows from Lemma 3.2.4 as well. Validity of (A4) and (A9) follows
simply because S ⊆ Scov, while that of (A5) follows from the previous lemma. The
other axioms present more difficulties.

(A1): Assume f can be obtained by pullback from a map g ∈ Scov. We will construct
a cube involving f and g of the form

D // //

g′

²²

W

g

²²

B // //

f ′

²²

??ÄÄÄ
Y
f

²²

??ÄÄÄ

C // // V.

A // //

??ÄÄÄ
X

??ÄÄÄ

We begin by choosing a covering square at the back with g′ ∈ S. Next, the front
is obtained by pulling back the square at the back along the map X //V . This
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makes the front a covering square as well (by Lemma 3.2.4), and all the other faces
pullbacks. Therefore f ′ ∈ S, by pullback stability of S, so that f ∈ Scov.

(A7): Let f :Y //X ∈ Scov and a cover Z //Y be given. We obtain a diagram

Z // // Y

f

²²

D

g′

²²

// P

??ÄÄÄ
// // B

f ′

²²

??ÄÄÄ

X.

C // // A

??ÄÄÄ

The map f ′ ∈ S covering f exists by definition of Scov. Next, we apply Collection to
f ′ and the cover P //B obtained by pullback. This results in a map g′ ∈ S covering
f ′, and hence also f .

(A8): Let f :Y //X be a map belonging to Scov, and let A be an Scov-bounded
subobject of Y . Using the previous lemma, we obtain a diagram

A′ // //

i′
²²

A
²²

i
²²

Y ′ q
// //

f ′

²²

Y

f
²²

X ′
p

// // X,

with i′, f ′ ∈ S and both squares covering. We may actually assume that the top square
is a pullback and i′ is monic (replace i′ by its image and use (A10) if necessary). We
can now use the following formula for ∀f (i) to see that it is Scov-bounded:

∀f (i) = ∃p∀f ′(i′).
For ∀f ′(i′) is an S-bounded subobject of X ′, since (A8) holds for S, and hence
∃p∀f ′(i′) is a Scov-bounded subobject of X by the Descent axiom (A2) for Scov. ¤

Remark 3.2.16 A result closely related to Proposition 3.2.14 can already be found
in [75]. We have borrowed the term “display map” from sources such as [69], where
classes of maps with similar properties were used to provide a categorical semantics
for type theory.

Like for small maps, a pair (E ,S), where E is a positive Heyting category and S
is a class of display maps, will be called a category with display maps.

What does not seem to be true in general is that additional axioms on S, such as
those explained in the next section, are automatically inherited by Scov. The question
which additional properties are inherited is explored in Section 6, and it will be seen
that the answer may depend on the exactness properties of E .
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3.3 Axioms for classes of small maps

For the purpose of modelling the set theories IZF and CZF, our notion of a category
with small maps is too weak (the reader will find the axioms for these set theories
in Section 9 below). Therefore we consider in this section various possible strength-
enings, obtained by imposing further requirements on the class of small maps. This
will allow us to prove the soundness and completeness results of Sections 7 and 8 (see
Proposition 3.7.2 and Proposition 3.8.6).

For later use it is important to observe that the axioms make sense for a class
of display maps as well. For this reason, our standing assumption throughout this
section is that (E ,S) is a category with display maps.

3.3.1 Representability

Definition 3.3.1 A representation for a class of display maps S is a morphism
π:E //U ∈ S such that any morphism f ∈ S is covered by a pullback of π. More
explicitly: any f :Y //X ∈ S fits into a diagram of the form

Y

f

²²

A

²²

//oooo E

π
²²

X B //oooo U,

where the left hand square is covering and the right hand square is a pullback. The
class S will be called representable, if it has a representation.

Remark 3.3.2 In [76], the authors take as basic a different notion of representability.
Even when these notions can be shown to be equivalent (as in Proposition 3.4.4), it
is the above notion we find easier to work with.

3.3.2 Separation

For the purpose of modelling the Full separation axiom of IZF, one may impose the
following axiom:

(M) All monomorphisms belong to S.

3.3.3 Power types

Before we introduce an axiom corresponding to the Power set axiom of IZF, we first
formulate an axiom which imposes the existence of a power class object. Intuitively,
the elements of the power class PsX of a class X are the subsets of the class X.
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For our purposes it is important to realise that an axiom requiring the existence of
a power class is rather weak: it holds in every set theory, even predicative ones like
CZF, and it is therefore not to be confused with the Power set axiom.

Definition 3.3.3 By a D-indexed family of subobjects of C, we mean a subobject
R ⊆ C ×D. A D-indexed family of subobjects R ⊆ C ×D will be called S-displayed
(or simply displayed), whenever the composite

R ⊆ C ×D //D

belongs to S. If it exists, the power class object PsX is the classifying object for
the displayed families of subobjects of X. This means that it comes equipped with
a displayed PsX-indexed family of subobjects of X, denoted by ∈X⊆ X × PsX
(or simply ∈, whenever X is understood), with the property that for any displayed
Y -indexed family of subobjects of X, R ⊆ X × Y say, there exists a unique map
ρ:Y //PsX such that the square

R
²²

²²

// ∈X
²²

²²

X × Y
id×ρ

// X × PsX

is a pullback.

This leads to the following axiom for a class of display maps S:

(PE) For any object X the power class object PsX exists.

For once, we will briefly indicate why this axiom is stable under slicing:

Lemma 3.3.4 If (E ,S) is a category with of a class of display maps satisfying (PE)
and X is any object in E, then S/X also satisfies (PE) in E/X. Moreover, Ps is an
indexed endofunctor.

Proof. If f :Y //X is an object of E/X, then PXs (f) //X is

{(x ∈ X,α ∈ Ps(Y )) : ∀y ∈ α f(y) = x},
together with the projection on the first component. ¤

As discussed already in [76], the assignment X 7→ PsX is functorial for a class of
small maps for which (PE) holds (we doubt whether the same is true for a class of
display maps). In fact, in this case Ps is the functor part of a monad, with a unit
ηX :X //PsX and a multiplication µX :PsPsX //PsX which can be understood
intuitively as singleton and union. We refer to [76] for a discussion of these points.
We also borrow from [76] the following proposition, which we will have to invoke later.
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Proposition 3.3.5 [76, Proposition I.3.7] When S is a class of small maps satisfying
(PE), then Ps preserves covers.

Remark 3.3.6 For a class of small maps S, the object Ωb = Ps1 could be called the
object of bounded truth-values, or the bounded subobject classifier, as the subobject
∈ of 1 × Ps1 ∼= Ps1 classifies bounded subobjects: for any mono m:A //X in S
there is a unique map cm:X //Ps1 such that

A
²²

m

²²

// ∈
²²

²²

X cm
// Ps1

is a pullback. Actually, as for the ordinary subobject classifier in a topos, it can be
shown that the domain of the map ∈ //Ps1 is isomorphic to the terminal object 1.
Moreover, internally, Ps1 has the structure of a poset with small infima and suprema,
implication, and top and bottom. This is a consequence of the fact that the maximal
and minimal subobject are bounded, and bounded subobjects are closed under im-
plication, union, intersection, existential and universal quantification. Another way
of expressing this would be to say that bounded truth-values are closed under truth
and falsity, implication, conjunction and disjunction, and existential and universal
quantification over small sets. The classifying bounded mono 1 //Ps1 will therefore
be written > (for “true” or “top”), as it points to the top element of the poset Ps1.

A formula φ in the internal language will be said to have a bounded truth-value,
when

∃p ∈ Ps1 (φ↔ p = > ),

or, equivalently,
∃p ∈ Ps1 (φ↔ ∗ ∈ p ),

if ∗ is the unique element of 1. Notice that in both cases a p ∈ Ps1 having the required
property is automatically unique. Note also that for a subobject A ⊆ X, saying that
x ∈ A has a bounded truth-value for all x ∈ X is the same as saying that A is a
bounded subobject of X.

For a class of display maps S satisfying (PE) we can now state the axiom we need
to model the Power set axiom of IZF.

(PS) For any map f :Y //X ∈ S, the power class object PXs (f) //X in E/X
belongs to S.

3.3.4 Function types

We will now introduce the axiom (ΠS) reminiscent of the Exponentiation axiom in
set theory. Before we do so, we first note an important consequence of the axiom
(PE).



58 CHAPTER 3. EXACT COMPLETION

Call a map f :Y //X in E exponentiable, if the functor (−) × f : C/X // C/X
has a right adjoint (−)f , or, equivalently, if the functor f ∗: C/X // C/Y has a right
adjoint Πf .

Lemma 3.3.7 [13] When a class of display maps satisfies (PE), then all display
maps are exponentiable.

Proof. Since the axiom (PE) is stable under slicing, it suffices to show that the
object XA exists, when A is small. But this can be constructed as:

XA: = {α ∈ Ps(A×X) : ∀a ∈ A∃!x ∈ X (a, x) ∈ α}.

The required verifications are left to the reader. ¤

In certain circumstances, the converse holds as well (see Corollary 3.6.11).

One can formulate the conclusion of the preceding lemma as an axiom:

(ΠE) All morphisms f ∈ S are exponentiable.

This axiom should not be associated with the Exponentiation axiom in set theory,
which is more closely related to its strengthening (ΠS) below.

(ΠS) For any map f :Y //X ∈ S, the functor

Πf : E/Y // E/X

exists and preserves morphisms in S.

Note that:

Lemma 3.3.8 For a class of display maps S, (PS) implies (ΠS).

Proof. As in Lemma 3.3.7. ¤

The converse is certainly false: the Exponentiation axiom is a consequence of
CZF, but the Power set axiom is not. (For a countermodel, see [111] and [84]. We
will study this model further in the second paper of this series.)

3.3.5 Inductive types

In this section we want to discuss axioms concerning the existence and smallness of
certain inductively defined structures. Our paradigmatic example of an inductively
defined object is the W-type in Martin-Löf’s type theory [88]. We will not give a
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review of the theory of W-types, but we do wish to give a complete explanation of
how they are modelled categorically, following [93].

W-types are examples of initial algebras, and as we will meet other initial algebras
as well, we will give the general definition.

Definition 3.3.9 Let T : C // C be an endofunctor on a category C. The cate-
gory T−alg of T -algebras has as objects pairs (A,α:TA //A), and as morphisms
(A,α) // (B, β) arrows m:A //B making the diagram

TA
Tm //

α

²²

TB

β
²²

A m
// B

commute. The initial object in this category (whenever it exists) is called the initial
T -algebra.

In our main examples the category C will be cartesian and the endofunctor T will
be indexed with respect to the canonical indexing of C over itself (by this we refer
to the indexed category whose base is C, while the fibre over an object I ∈ C is the
slice category C/I; reindexing is then given by pullback). In this case, the category
of T−alg of T -algebras is again an indexed category, and the initial T -algebra will
be called the indexed initial T -algebra if all its reindexings are also initial in the
appropriate fibres.

An essential fact about initial algebras is that they are fixed points. A fixed point
for an endofunctor T is an object A together with an isomorphism TA ∼= A. A lemma
by Lambek [81] tells us that the structure map α of the initial algebra, assuming it
exists, is an isomorphism, so that initial algebras are fixed points.

Another property of initial algebras is that they have no proper subalgebras:
m: (A,α) // (B, β) is a subalgebra of (B, β), when m is a monomorphism in C. The
subalgebra is called proper, in case m is not an isomorphism in C. That initial
algebras have no proper subalgebras is usually related to an induction principle that
they satisfy, while their initiality expresses that they allow definitions by recursion.

When a map f :B //A is exponentiable in a cartesian category E , it induces an
endofunctor on C, which will be called the polynomial functor Pf associated to f .
The quickest way to define it is as the following composition:

C ∼= C/1 B∗ // C/B Πf
// C/A ΣA // C/1 ∼= C.

In more set-theoretic terms it could be defined as:

Pf (X) =
∑
a∈A

XBa .
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Whenever it exists, the initial algebra for the polynomial functor Pf will be called
the W-type associated to f .

Intuitively, elements of a W-type are well-founded trees. In the category of sets,
all W-types exist, and the W-types have as elements well-founded trees, with an
appropriate labelling of its edges and nodes. What is an appropriate labelling is
determined by the branching type f :B //A: nodes should be labelled by elements
a ∈ A, edges by elements b ∈ B, in such a way that the edges into a node labelled by
a are enumerated by f−1(a). The following picture hopefully conveys the idea:

. . . . . . . . . . . .
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This set has the structure of a Pf -algebra: when an element a ∈ A is given, together
with a map t:Ba

//Wf , one can build a new element supat ∈ Wf , as follows. First
take a fresh node, label it by a and draw edges into this node, one for every b ∈ Ba,
labelling them accordingly. Then on the edge labelled by b ∈ Ba, stick the tree tb.
Clearly, this sup operation is a bijective map. Moreover, since every tree in the W-
type is well-founded, it can be thought of as having been generated by a possibly
transfinite number of iterations of this sup operation. That is precisely what makes
this algebra initial. The trees that can be thought of as having been used in the
generation of a certain element w ∈ Wf are called its subtrees. One could call the
trees tb ∈ Wf the immediate subtrees of supat, and w′ ∈ Wf a subtree of w ∈ Wf if
it is an immediate subtree, or an immediate subtree of an immediate subtree, or. . . ,
etc. Note that with this use of the word subtree, a tree is never a subtree of itself (so
proper subtree might have been a better terminology).

This concludes our introduction to W-types.

In the presence of a class of display maps S satisfying (ΠE), we will consider the
following two axioms for W-types:

(WE) For all f :X //Y ∈ S, f has an indexed W-type Wf .

(WS) Moreover, if Y is small, also Wf is small.

3.3.6 Infinity

The following two axioms, which make sense for any class of display maps S, are
needed to model the Infinity axiom in IZF and CZF:

(NE) E has a natural numbers object N.
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(NS) Moreover, N // 1 ∈ S.

In fact, this is a special case of the previous example, for the natural numbers object
is the W-type associated to the left sum inclusion i: 1 // 1 + 1 (which is always
exponentiable). So (WE) implies (NE) and (WS) implies (NS).

3.3.7 Fullness

We have almost completed our tour of the different axioms for a class of small maps
we want to consider. There is one axiom that is left, the Fullness axiom, which
allows us to model the Subset collection axiom of CZF. It should be considered as a
strengthened version of the axiom (ΠS).

Over the other axioms of CZF the Subset collection axiom is equivalent to an
axiom called Fullness (see [6]):

Fullness: ∃z (z ⊆ mvf(a, b) ∧ ∀xεmvf(a, b)∃cεz (c ⊆ x)),

where we have used the abbreviation mvf(a, b) for the class of multi-valued functions
from a to b, i.e., sets r ⊆ a × b such that ∀xεa ∃yεb (x, y)εr. In words, this axiom
states that for any pair of sets a and b, there is a set of multi-valued functions from
a to b such than any multi-valued function from a to b contains one in this set. We
find it more convenient to consider a slight reformulation of Fullness, which concerns
multi-valued sections, rather than multi-valued functions. A multi-valued section (or
mvs) of a function φ: b // a is a multi-valued function s from a to b such that φs = ida
(as relations). Identifying s with its image, this is the same as a subset p of b such
that p ⊆ b // a is surjective. Our reformulation of Fullness states that for any such
φ there is a small family of small mvss such that any mvs contains one in this family.
Written out formally:

Fullness (second version): ∃z (z ⊆ mvs(f) ∧ ∀xεmvs(f)∃cεz (c ⊆ x)).

Here, mvs(f) is an abbreviation for the class of all multi-valued sections of a function
f : b // a, i.e., subsets p of b such that ∀xεa ∃yεp f(y) = x. The two formulations of
Fullness are clearly equivalent. (Proof: observe that multi-valued sections of φ are
multi-valued functions from a to b with a particular ∆0-definable property, and multi-
valued functions from a to b coincide with the multi-valued sections of the projection
a× b // a.)

We now translate our formulation of Fullness in categorical terms. A multi-valued
section (mvs) for a map φ:B //A, over some object X, is a subobject P ⊆ B such
that the composite P //A is a cover. We write

mvsX(φ)
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for the set of all mvss of a map φ. This set obviously inherits the structure of a partial
order from Sub(B).

Multi-valued sections have a number of stability properties. First of all, any
morphism f :Y //X induces an order-preserving map

mvsX(φ) // mvsY (f ∗φ),

obtained by pulling back along f . To avoid overburdening the notation, we will
frequently talk about the map φ over Y , when we actually mean the map f ∗φ over
Y , the map f always being understood.

Furthermore, in a covering square

B0

φ0

²²

β
// B

φ
²²

A0 α
// A,

the sets mvs(φ0) and mvs(φ) are connected by a pair of adjoint functors. The right
adjoint β∗: mvs(φ) // mvs(φ0) is given by pulling back along β, and the left adjoint
β∗ by taking the image along β.

Suppose we have fixed a class of display maps S. We will call a mvs P ⊆ B of
φ:B //A displayed, when the composite P //A belongs to S. In case φ belongs to
S, this is equivalent to saying that P is a bounded subobject of B.

If we assume that in a covering square as above φ and φ0 belong to S, the pullback
functor β∗ will map displayed mvss to displayed mvss. If we assume moreover that
β, or α, belongs to S, also β∗ will preserve displayed mvss.

We can now state a categorical version of the Fullness axiom:2

(F) For any φ:B //A ∈ S over some X with A //X ∈ S, there is a cover
q:X ′ //X and a map y:Y //X ′ belonging to S, together with a displayed
mvs P of φ over Y , with the following “generic” property: if z:Z //X ′ is any
map and Q any displayed mvs of φ over Z, then there is a map k:U //Y and
a cover l:U //Z with yk = zl, such that k∗P ≤ l∗Q as (displayed) mvss of φ
over U .

Remark 3.3.10 For classes of small maps satisfying (PE), the axiom (F) implies
(ΠS). For showing this implication for classes of display maps not necessarily satis-
fying (PE), some form of exactness seems to be required.

Exact completion
2A version in terms of multi-valued functions was contained in [20].
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We now come to the technical heart of the paper. We present a further strengthening
of the notion of a category with small maps in the form of exactness. In Section 4 we
will argue both that it is a very desirable property for a category with small maps to
have, and that we cannot expect every category with small maps to be exact. This
motivates our work in Sections 5 and 6, where we show how every category with small
maps can “conservatively” be embedded in an exact one. In Section 5 we show this
for the basic structure, and in Section 6 for the extensions based on the presence of
additional axioms for a class of small maps.

3.4 Exactness and its applications

Let us first recall the notion of exactness for ordinary categories.

Definition 3.4.1 A subobject

R // i // X ×X
in a cartesian category C is called an equivalence relation when for any object A in C
the image of the injective function

Hom(A,R) // Hom(A,X ×X) // Hom(A,X)2

is an equivalence relation on the set Hom(A,X). In the presence of a class of small
maps S, the equivalence relation is called S-bounded, when R is a S-bounded subob-
ject of X ×X.

A diagram of the form

A
r0 //

r1
// B

q
// Q

is called exact, when it is both a pullback and coequaliser. The diagram is called
stably exact, when for any p:P //Q the diagram

p∗A
p∗r0

//

p∗r1
// p∗B

p∗q
// P

obtained by pullback is also exact. A morphism q:X //Q is called the (stable)
quotient of an equivalence relation i:R //X ×X, if the diagram

R
π0i //

π1i
// X

q
// Q

is stably exact.

A cartesian category C is called exact, when every equivalence relation in C has a
quotient. A positive exact category is called a pretopos, and a positive exact Heyting
category a Heyting pretopos.
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This notion of exactness is too strong for our purposes, in view of the following
argument. Let i:R //X×X be an equivalence relation that has a quotient q:X //Q
in a category with small maps (E ,S). Since diagonals belongs to S and the following
square is a pullback:

R
²²

i

²²

// Q
²²

∆Q

²²

X ×X
q×q

// Q×Q,

i belongs to S by pullback stability. So all equivalence relations that have a quotient
are bounded. So if one demands exactness, all equivalence relations will be bounded.
The only case we see in which one can justify this consequence is in the situation
were all subobjects are bounded (i.e., (M) holds). But imposing such impredicative
conditions on categories with small maps is inappropriate when studying predicative
set theories like CZF.

Two possibilities suggest themselves. One alternative would be to require the
existence of quotients of bounded equivalence relations only (the above argument
makes clear that this is the maximum amount of exactness that can be demanded).
The other possibility would be to drop the axiom (A9) for a class of small maps,
which requires the diagonals to be small.

We find the first option preferable both technically and psychologically. Since
objects that do not have a small diagonal play no role in the theory, it is more
convenient to not have them around. Moreover, a number of our proofs depend on
the fact that all diagonals are small: in particular, those of Lemma 3.2.11 and the
results which make use of this lemma, and Proposition 3.6.16. It is not clear to us
if corresponding proofs can be found if not all diagonals are small. We also expect
additional technical complications in the theory of sheaves when it is pursued along
the lines of the second alternative. Finally, note that the ideal models in [9] and [13]
only satisfy bounded exactness. Hence the following definition.

Definition 3.4.2 A category with small maps (E ,S) will be called (bounded) exact,
when every S-bounded equivalence relation has a quotient.

Remark 3.4.3 Observe that a morphism F : (E ,S) // (F , T ) between categories
with small maps, as a regular functor, will always map quotients of S-bounded equiv-
alence relations to quotients of T -bounded equivalence relations.

Exactness of a category with small maps has two important consequences. First
of all, we can use exactness to prove that every category with a representable class
of small maps satisfying the axioms (ΠE) and (WE) contains a model of set theory.
This will be Theorem 3.7.4 below.

The other important consequence, which we can only state but not explain in
detail, is the existence of a sheafification functor. This is essential for developing
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a good theory of sheaf models in the context of Algebraic Set Theory. As is well-
known (see e.g. [86]), the sheafification functor is constructed by iterating the plus
construction twice. But the plus construction is an example of a quotient construction:
it builds the collection of all compatible families and then identifies those that agree
on a common refinement. For this to work, some exactness is necessary. We will come
back to this in subsequent work.

Another issue where exactness plays a role is the following. We have shown that
any class of display maps S generates a class of small maps Scov (see Section 2.2). As
it turns out, showing that additional properties of S are inherited by Scov sometimes
seems to require the exactness of the underlying category, as will be discussed in
Section 6 below.

As another application of exactness we could mention the following:

Proposition 3.4.4 Let (E ,S) be an exact category with a representable class of small
maps satisfying (ΠE). Then there exists a “universal small map” in the sense of [76],
i.e., a representation π′:E ′ //U ′ for S such that any f :Y //X in S fits into a
diagram of the form

Y

f

²²

A

²²

//oo E ′

π′
²²

X B //
p

oooo U ′,

where both squares are pullbacks and p is a cover.

Proof. U ′ will be constructed as:

U ′ = {(u ∈ U, v ∈ U, p:Ev //Eu × Eu) :

Im(p) is an equivalence relation on Eu},

while the fibre of E ′ above (u, v, p) will be Eu/Im(p). To indicate briefly why this
works: any small object X is covered by some fibre Eu via a cover q:Eu //X. The
kernel pair of q is an equivalence relation R ⊆ Eu × Eu, which is bounded, since
the diagonal X //X × X is small. This means that R is also small, whence R is
also covered by some Ev. This yields a map p:Ev //Eu × Eu, whose image R is an
equivalence relation, with quotient X. ¤

All in all, it seems more than just a good idea to restrict ones attention to cat-
egories with small maps that are exact, and, indeed, that is what we will do in our
subsequent work.

The problem that now arises is that exactness is not satisfied in our informal
example, where E is the category of classes in some set theory T and the maps in S
are those maps whose fibres are sets in the sense of T. For consider an equivalence
relation

R ⊆ X ×X



66 CHAPTER 3. EXACT COMPLETION

on the level of classes, so R and X are classes, and we need to see whether it has a
quotient. The problem is that the standard construction does not work: the equiv-
alence classes might indeed be genuine classes. Of course, we are only interested in
the case where the mono R ⊆ X ×X is small, but even then the equivalence classes
might be large.

For some set theories T this problem can be overcome: for example, if T validates
a global version of the axiom of choice, one could build a quotient by choosing rep-
resentatives. Or if T is the classical set theory ZF (or some extension thereof) one
could use an idea which is apparently due to Dana Scott: only take those elements
from an equivalence class which have minimal rank. But in case T is some intuition-
istic set theory, like IZF or CZF, this will not work: in so far a constructive theory
of ordinals can be developed at all, it will fail to make them linearly ordered. Indeed,
we strongly suspect that for IZF and CZF the category of classes will not be exact.

We will solve this problem by showing that every category with small maps can
“conservatively” be embedded in an exact category with small maps, and even in a
universal way. We will call this its exact completion.

3.5 Exact completion

The notion of exact completion we will work with is the following:

Definition 3.5.1 The exact completion of a category with small maps (E ,S) is an
exact category with small maps (E ,S) together with a morphism

y: (E ,S) // (E ,S),

in such a way that precomposing with y induces for every exact category with small
maps (F , T ) an equivalence between morphisms from (E ,S) to (F , T ) and morphisms
from (E ,S) to (F , T ).

Clearly, exact completions (whenever they exist) are unique up to equivalence.
The following is the main result of this section and we will devote the remainder of
this section to its proof.

Theorem 3.5.2 The exact completion of a category with small maps (E ,S) exists,
and the functor y: (E ,S) // (E ,S) has the following properties (besides being a mor-
phism of categories of small maps):

1. it is full and faithful.

2. it is covering, i.e., for every X ∈ E there is an object Y ∈ E together with a
cover yY //X.
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3. it is bijective on subobjects.

4. f ∈ S iff f is covered by a map of the form yf ′ with f ′ ∈ S.

Note that (1) and (4) imply that y reflects small maps.

There is an extensive literature on exact completions of ordinary categories, which
we will use to prove our result ([35, 90] are useful sources). The next theorem sum-
marises what we need from this theory.

Definition 3.5.3 Let C be a positive regular category. By the exact completion
of C (or the ex/reg-completion, or the exact completion of C as a positive regular
category) we mean a positive exact category (i.e., a pretopos) Eex/reg together with a
positive regular morphism y: E // Eex/reg such that precomposing with y induces for
every pretopos F an equivalence between pretopos morphisms from Eex/reg to F and
positive regular morphisms from E to F .

Theorem 3.5.4 The exact completion of a positive regular category C exists, and
the functor y: C // Cex/reg has the following properties (besides being a morphism of
positive regular categories):

1. it is full and faithful.

2. it is covering, i.e., for every X ∈ E there is an object Y ∈ E together with a
cover yY //X.

Proof. See [80]. ¤

Note that because y is a full covering functor, every map f in Cex/reg is covered
by a map of the form yf ′ with f ′ ∈ C. We will frequently exploit this fact.

As it happens, one can describe Cex/reg explicitly. Objects of Cex/reg are the equiv-
alence relations in C, which we will denote by X/R when R ⊆ X ×X is an equiva-
lence relation. Morphisms from X/R to Y/S are functional relations, i.e., subobjects
F ⊆ X × Y satisfying the following statements in the internal logic of E :

∃y F (x, y),
xRx′ ∧ ySy′ ∧ F (x, y)→ F (x′, y′),
F (x, y) ∧ F (x, y′)→ ySy′.

The functor y: C // Cex/reg sends objects X to their diagonals ∆X :X //X ×X.

One may then verify the following facts: when R ⊆ X × X is an equivalence
relation in C, its quotient in Cex/reg is precisely X/R. When the equivalence relation
already has a quotient Q in C this will be isomorphic to X/R in Cex/reg. This means
that an exact category is its own exact completion as a regular category, and the
exact completion construction is idempotent.3

3This applies to the exact completion of a regular category as a regular category only.
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Lemma 3.5.5 Let Cex/reg be the exact completion of a positive regular category C and
let y be the standard embedding.

1. y induces an isomorphism between Sub(X) and Sub(yX) for every X ∈ C.

2. When C is Heyting, so is Cex/reg, and y preserves this structure.

Proof. To prove 1, let m:D // yC ′ be a mono in Cex/reg. Using that y is covering,
we know that there is a cover e: yC //D. Then, as y is full, there is a map f ∈ C
such that yf = me. Then we can factor f = m′e′ as a cover e′ followed by a mono m′.
This factorisation is preserved by y, so yf = ym′ye′ factors yf as a cover followed
by a mono. But as such factorisations are unique up to isomorphism, ym′ = m as
subobjects of yC ′.

When C is Heyting, all pullback functors

(yf)∗: Sub(yX) // Sub(yY )

for f :Y //X in C have right adjoints by (1). As y is covering, every morphism g in
Cex/reg is covered by an arrow yf with f ∈ C:

yX

yf
²²

q
// // A

g

²²

yY p
// // B.

Now ∀g can be defined as ∃p∀yfq∗. To see this, let K ⊆ A and L ⊆ B. That g∗L ≤ K
implies L ≤ ∃p∀yfq∗K, one shows directly using that ∃pp∗ = 1. The converse we
show by using the internal logic. So let a ∈ A be such that g(a) ∈ L. By assumption,
there is an y ∈ Y with p(y) = g(a) such that for all x ∈ (yf)−1(y), we have q(x) ∈ K.
Because the square is a quasi-pullback, there is such an x with q(x) = a. Therefore
a ∈ K, and the proof is finished. ¤

From the description of the universal quantifiers in the proof of this lemma it
follows that Eex/reg is also the exact completion of E as a positive Heyting category,
when E is a positive Heyting category. More precisely, when E is a positive Heyting
category and F is a Heyting pretopos, precomposing with y induces an equivalence
between Heyting pretopos morphisms from Eex/reg to F and positive Heyting category
morphisms from E to F .

We return to the original problem of constructing the exact completion of a cat-
egory with small maps (E ,S). As suggested by the statement of Theorem 3.5.2, we
single out the following class of maps S in Eex/reg:

g ∈ S ⇔ g is covered by a morphism of the form yf with f ∈ S.
In the next two lemmas, we show that this class of maps satisfies the axioms (A1-8)
for a class of small maps in Eex/reg. The proof is very similar to the argument we
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gave to show that Scov defines a class of small maps for a class of display maps S in
Section 2.3.

Lemma 3.5.6 Any two maps f :Y //X and g:Z //Y belonging to S fit into a
diagram of the form

yZ ′ // //

yg′
²²

Z

g

²²

yY ′ // //

yf ′
²²

Y

f

²²

yX ′ // // X,

where both squares are covering squares and f ′ and g′ belong to S.

Proof. By definition of S, g and f fit a diagram of the form

yD
yg0

||zz
zz

zz
zz

!! !!B
BB

BB
BB

B

yC

"" ""EEEEEEEE Z

g
}}{{

{{
{{

{{

Y
f

!!CC
CC

CC
CC

yB

<< <<yyyyyyyy

yf0 ""DD
DD

DD
DD

X

yA,

== ==||||||||

with f0, g0 ∈ S and the squares covering. By computing the pullback yB×Y yC and
covering this with yE // yB ×Y yC, we obtain a diagram to which we can apply
collection (in E), resulting in:

yZ ′

yg′

²²

// // yD
yg0

}}zz
zz

zz
zz

!! !!B
BB

BB
BB

B

yC

!! !!DD
DD

DD
DD

D Z

g
~~||

||
||

||
|

yY ′ //

yf ′

²²

yE // // yB ×Y yC

%% %%KKKKKKKKKK

99 99ssssssssss
Y

f

!!B
BB

BB
BB

B

yB

== ==zzzzzzzzz

yf0 !!DD
DD

DD
DD

X

yX ′ // // yA.

>> >>||||||||
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Finally, the map yg′ is obtained by pulling back g0, so also this map belongs to S.
This finishes the proof. ¤

Lemma 3.5.7 The class of maps S defined above satisfies axioms (A1-8).

Proof. The class of maps S is closed under covered maps by Lemma 3.2.4, so (A2)
and (A6) follow immediately. The axiom (A3) follows from Lemma 3.2.4 as well,
combined with the fact that y preserves the positive structure. (A4) follows because
y preserves the lextensive structure, and (A5) follows from the previous lemma.
Verifying the other axioms is more involved.

(A1): Assume f ∈ Eex/reg can be obtained by pullback from a map g ∈ S. Then f
and g fit into a diagram as follows:

yD // //

yg′

²²

W

g

²²

yB // //

yf ′

²²

Q

??ÄÄÄ
// //

²²

Y
f

²²

??ÄÄÄ

yC // // V.

yA // // P // //

??ÄÄÄ
X

??ÄÄÄ

The picture has been constructed in several steps. First, we obtain at the back of the
cube a covering square involving a map yg′ with g′ ∈ S by definition of S. Next, this
square is pulled back along the map X //V , making the front covering as well (by
Lemma 3.2.4), and the other faces pullbacks. Finally, we obtain a cover yA //P ,
using that y is covering, and yB by pullback, using that y preserves pullbacks. By
pullback stability of S, f ′ ∈ S, so that f ∈ S.

(A7): Let f :Y //X ∈ S and a cover Z //Y be given. We obtain a diagram as
follows, again constructed in several steps.

Z // // Y

f

²²

yD

yg′

²²

// yE // // P

??ÄÄÄ
// // yB

yf ′

²²

??ÄÄÄ

X.

yC // // yA

??ÄÄÄ

First, we find a map yf ′ with f ′ ∈ S covering f . Next, we obtain the object P by
pullback, and we let yE be an object covering P . Finally, we apply Collection in E
to f ′ and the cover E //B to get a map g′ ∈ S covering f ′ in E . As covering squares
are preserved by y, it follows that yg′ covers yf ′, and hence also f .
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(A8): Let f :Y //X be a map belonging to S, and let A be an S-bounded subobject
of Y . Using the previous lemma, we obtain a diagram

yA′ // //

yi′
²²

A
²²

i

²²

yY ′ q
// //

yf ′
²²

Y

f

²²

yX ′
p

// // X,

with i′, f ′ ∈ S and both squares covering. As S satisfies the quotient axiom (A6),
we may actually assume that the top square is a pullback and i′ is monic. Observe
that the proof of Lemma 3.5.5 yields the formula ∀f (i) = ∃p∀yf ′(yi′). But ∀yf ′(yi′)
is an S-bounded subobject of yX ′ as (A8) holds for S, and then ∃p∀yf ′(yi′) is an
S-bounded subobject of X by Descent for S. ¤

The problem with the pair (Eex/reg,S) is that it does not satisfy axiom (A9) (in
general). Therefore, call an object X separated relative to a class of maps T , when the
diagonal X //X ×X belongs to T . We will write SepT (E) for the full subcategory
of E consisting of the separated objects. Using this notation we define

E = SepS(Eex/reg).

Lemma 3.5.8 (E ,S) is an exact category with small maps.

Proof. Essentially a routine exercise. E is a Heyting category, because the terminal
object is separated, and separated objects are closed under products and subobjects.
Separated objects are also closed under sums, so that E is a positive Heyting category.

In showing that S is a class of small maps, the only difficulty is proving that it satisfies
the Collection axiom (A7). But note that in the proof of the previous lemma, while
showing that S satisfies the axiom (A7) in Eex/reg, we showed a bit more: we actually
proved that, in the notation we used there, the map covering f could be chosen to be
of the form yg′. But this is a map between separated objects, since all objects of the
form yX are separated.

To prove that (E ,S) is exact, it suffices to show that the quotient q:X //Q in Eex/reg
of an S-bounded equivalence relation R ⊆ X × X is separated. That follows from
Descent for S in Eex/reg, as the following square is a pullback:

R //

²²

²²

Q
²²

²²

X ×X
q×q

// // Q×Q.
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¤

Let’s see to what extent we have established Theorem 3.5.2. Since objects of the
form yX are separated, the morphism y: E // Eex/reg factors through E . It is clear
that y considered as functor E // E is still a morphism of positive Heyting categories
satisfying items (1) and (2) from Theorem 3.5.2. It is immediate from the definition
of S that it preserves small maps, so that

y: (E ,S) // (E ,S)

is indeed a morphism of categories with small maps. Furthermore, it also satisfies
item (3), because y it is bijective on subobjects by Lemma 3.5.5, and the definition
of S was made so as to make it satisfy item (4) as well.

Therefore, to complete the proof of Theorem 3.5.2, it remains to show the universal
property of (E ,S). For this we use:

Lemma 3.5.9 For an exact category with small maps (F , T ), we have that

(F , T ) ∼= (F , T ).

Proof. It suffices to point out that y:F //F is essentially surjective on objects.
We know that every object in F arises as a quotient X/R of an equivalence relation
R ⊆ X × X in E . But we can say more: X/R is T -separated, so the equivalence
relation R ⊆ X ×X is T -bounded, and therefore also T -bounded, because y reflects
small maps. So a quotient Q of this equivalence relation already exists in F , and as
this is preserved by y, we get that yQ ∼= R/X. ¤

So let (F , T ) be an exact category with small maps, and F : (E ,S) // (F , T ) be a
morphism of categories with small maps. Consider the exact completion Fex/reg of F ,
together with y:F //Fex/reg. Then there is an exact morphism F : Eex/reg //Fex/reg
such that yF ∼= Fy, by the universal property of Eex/reg. This morphism F also pre-
serves the positive and Heyting structure of Eex/reg, and, moreover, sends morphisms
in S to those in T . Therefore F restricts to a functor between the separated objects
in Eex/reg and those in Fex/reg, that is, a functor between categories with small maps
from (E ,S) to (F , T ). This completes the proof of Theorem 3.5.2.

Remark 3.5.10 The question arises as to whether we can describe the category E
more concretely, i.e., if we can identify those objects in Eex/reg that belong to E . As
was implicitly shown in the proof of Lemma 3.5.9, these are precisely the bounded
equivalence relations.

Remark 3.5.11 An important property of exact completions is their stability under
slicing. By this we mean that for any category with small (or display) maps (E ,S)
and object X in E ,

(E/X,S/X) ∼= (E/yX,S/yX).

A formal proof is left to the reader.
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Remark 3.5.12 When we combine Theorem 3.5.2 with our earlier work on display
maps, we obtain the following result:

Corollary 3.5.13 For every category with display maps (E ,S) there exists an exact
category with small maps (F , T ) together with a functor y: E //F of positive Heyting
categories with the following properties:

1. it is full and faithful.

2. it is covering.

3. it is a bijection on subobjects.

4. f ∈ S iff f is covered by a map of the form yf ′ with f ′ ∈ S.

For (F , T ) we can simply take the exact completion (E ,Scov) of (E ,Scov). By abuse
of terminology and notation, we will refer to this category as the exact completion of
the category with display maps (E ,S), and denote it by (E ,S) as well.

To abuse terminology even further, we will call a category with display maps (E ,S)
(bounded) exact, when (E ,Scov) is a (bounded) exact category with small maps. Note
that for an exact category with display maps, (E ,S) = (E ,Scov).

Actually, as is not too hard to see using the results obtained in this section, the
properties of (F , T ) and y formulated in the Corollary determine these uniquely up
to equivalence. A fortiori, the same remark applies to Theorem 3.5.2.

3.6 Stability properties of axioms for small maps

In this – rather technical – section of the paper we want to show, among other things,
the stability under exact completion of additional axioms for a class of small maps.
The importance of this resides in the fact that many of these axioms are needed to
model the axioms of IZF and CZF. So this section makes sure that in studying these
set theories we can safely restrict our attention to exact categories with small maps.

We should point out that we are not able to show the stability of all the axioms
we mentioned in Section 3 under exact completion. In fact, we conjecture that (ΠS)
and (WS) are not. But, fortunately, these axioms are not necessary for modelling
either IZF or CZF.

But for those axioms for which we can show stability, we will actually be able to
show something slightly stronger: we will show that their validity is preserved by the
exact completion (E ,S), assuming only that (E ,S) is a category with display maps
(see Remark 3.5.12). It is in this form we will need the results from this section in
our subsequent work on realizability, for in that case the appropriate category with
small maps is constructed using display maps (our paper [24] (Chapter 2) gives the
idea).
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So in this section, (E ,S) will be a category with display maps, unless explicitly
stated otherwise.

Simultaneously, we will discuss which of the axioms are inherited by covered maps
(i.e., by Scov from S). The reason why we discuss this question in parallel with the
other one is that the proofs of their stability (in case they are stable) are almost
identical. So what we will typically do is show stability under exact completion and
then point out that an almost identical proof shows stability under covered maps. In
some cases the argument only works for exact categories with display maps. When
this is the case, we will point this out as well.

3.6.1 Representability

Proposition 3.6.1 Let (E ,S) a category with display maps. Then a representation
for S is also a representation for Scov. Indeed, S is representable iff Scov is.

Proposition 3.6.2 Let y: (E ,S) // (E ,S) be the exact completion of a category with
display maps. Then S is representable iff S is. Moreover, y preserves and reflects
representations.

We omit the proofs, as by now these should be routine. The only insight they require
is that a small map covering a representation is again a representation.

3.6.2 Separation

The following two propositions are even easier to prove:

Proposition 3.6.3 Let (E ,S) a category with display maps. When S satisfies (M),
then so does Scov.

Proposition 3.6.4 Let y: (E ,S) // (E ,S) be the exact completion of a category with
display maps. When S satisfies (M), then so does S.

3.6.3 Power types

In this subsection, we give proofs for the stability of (PE) and (PS) under exact
completion and covered maps. They all rely on the following lemma:

Lemma 3.6.5 Let y: (E ,S) // (E ,S) be the exact completion of a category with dis-
play maps. When PsX is the power object for X in E, then yPsX is the power object
for yX in E.
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Proof. From now on, we will drop occurences of y in the proofs.

For the purpose of showing that PsX in E has the universal property of the power
class object of X in E , let U ⊆ X × I // I be an S-displayed I-indexed family of
subobjects of X. We need to show that there is a unique map ρ: I //PsX such that
(id× ρ)∗ ∈X= U .

Since U // I ∈ S, there is a map V // J ∈ S such that the outer rectangle in

V

f
²²

// // U
²²

²²

X × J //

²²

X × I

²²

J p
// // I,

is a covering square. Now also f :V //X × J ∈ S by Lemma 3.2.11. By replacing
f by its image if necessary and using the axiom (A10), we may assume that the top
square (and hence the entire diagram) is a pullback and f is monic.

So there is a classifying map σ: J //PsX in E , by the universal property of PsX in
E . This map σ coequalises the kernel pair of p, again by the universal property of
PsX and ∈X . Therefore there is a unique map ρ: I //PsX such that ρp = σ:

V
²²

f
²²

// // U
²²

²²

// ∈X
²²

²²

X × J // //

²²

X × I

²²

// X × PsX

²²

J
p

// //

σ
11

I
ρ

// PsX.

The desired equality (id×ρ)∗ ∈X= U follows from Lemma 3.10.3, and the uniqueness
of ρ follows from the fact that p is epic. ¤

Proposition 3.6.6 Let (E ,S) be a category with display maps S. When S satisfies
(PE), then so does Scov. Indeed, the power class objects for both classes of maps
coincide.

Proof. The proof of the lemma above can be copied verbatim, making the obvious
minor changes: in particular, replacing E by E and S by Scov. ¤

Proposition 3.6.7 Let y: (E ,S) // (E ,S) be the exact completion of a category with
display maps S. When S satisfies (PE), then so does S. Moreover, y preserves power
class objects.
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Proof. Let Y be an arbitrary object in E . Since y is covering, there is an X ∈ E
together with a cover

q:X //Y .

From Lemma 3.6.5 we learn that X has a powerobject PsX in E . On this object we
can define the following equivalence relation:

α ∼ β ⇔ qα = qβ

⇔ ∀a ∈ α ∃b ∈ β: qa = qb ∧ ∀b ∈ β ∃a ∈ α: qa = qb.

We claim that the quotient of PsX with respect to this S-bounded equivalence rela-
tion, which we will write PsY , is indeed the power object of Y .

We first need to construct an S-displayed PsY -indexed family of subobjects of Y : it
is defined as the image of ∈X along X × PsX //Y × PsY . Then, since the entire
diagram in

∈X
²²

²²

// // ∈Y
²²

²²

X ×PsX

²²

// Y × PsY

²²

PsX // // PsY
is a covering square, ∈Y //PsY ∈ S.

It remains to verify the universal property of ∈Y . So let U ⊆ Y × I be an S-displayed
I-indexed family of subobjects of Y . We need to find a map ρ: I //PsY such that
(id×ρ)∗ ∈Y = U . Pulling back U ⊆ Y ×I along X×I //Y ×I, we obtain a subobject
q∗U ⊆ X × I. Then we use the Collection axiom for S to obtain a covering square of
the form

V //

²²

q∗U
²²

²²

// // U
²²

²²

X × I // // Y × I

²²

J p
// // I,

with V // J ∈ S. By considering the diagram

V

ÂÂ

''##GG
GG

GG
GG

G

X × J //

²²

X × I

²²

J // I,
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we see that the image V ′ of V in X × J defines an S-displayed J-indexed family of
subobjects of X, and therefore a morphism σ: J //PsX. We now claim that the
composite

m: J
σ // PsX // PsY

coequalises the kernel pair of the cover p: J // I. This follows from the fact that
m(j) equals m(j′) in case the images of

Vj //X //Y and Vj′ //X //Y

are the same. But as these images are precisely Up(j) and Up(j′), this happens in
particular whenever p(j) = p(j′). Therefore we obtain a morphism ρ: I //PsY such
that ρp = σ. The proof that it has the desired property, and is the unique such, is
left to the reader. ¤

Proposition 3.6.8 Let y: (E ,S) // (E ,S) be the exact completion of a category with
display maps. When S satisfies (PS), then so does S.

Proof. Consider a map f :B //A in S. There is a g:Y //X in S such that

Y

g

²²

// // B

f
²²

X p
// // A

is a covering square. This we can decompose as follows:

Y

g
!!CC

CC
CC

CC
e // // p∗B // //

p∗f
²²

B

f

²²

X p
// // A.

From the validity of (PS) for S it follows that PXs (g) //X is S-small in E , and
also S-small in E by Lemma 3.6.5 (and Remark 3.5.11). As Proposition 3.3.5 implies
that PXs (e):PXs (g) //PXs (p∗f) is a cover, we see that PXs (p∗f) //X belongs to S.
Hence the same holds for PAs (f) //A by Descent. ¤

The same argument shows:

Proposition 3.6.9 Let (E ,S) be a category with display maps S. When S satisfies
(PS), then so does Scov.
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3.6.4 Function types

As we already announced in the introduction to this section, we will not be able
to show stability of the axiom (ΠS). The difficulty is that the morphism in E are
functional relations in E . In fact, for this reason we actually conjecture that the
axiom (ΠS) is not stable.

On the other hand, by generalising Theorem I.3.1 in [76], we can show the stability
of the axiom (ΠE) for representable classes of display maps.

Proposition 3.6.10 Let y: (E ,S) // (E ,S) be the exact completion of a category
with display maps S. If S is representable and satisfies (ΠE), then S satisfies (PE)
as well as (ΠE).

Proof. As the validity of (PE) implies that of (ΠE) by Lemma 3.3.7, we only need
to construct power class objects in E . And it suffices to do this for the objects X ∈ E ,
for the general case will then follow as in the proof of Proposition 3.6.7.

In E , the class S has a representation π:E //U , which is exponentiable in E , since
we are assuming (ΠE) for S. Therefore we can build in E the object

Pπ(X) = {u ∈ U, t:Eu //X},
together with the equivalence relation

(u, t) ∼ (u, t′) ⇔ Im(t) = Im(t′)

⇔ ∀e ∈ Eu ∃e′ ∈ Eu′ te = t′e′ ∧ ∀e′ ∈ Eu′ ∃e ∈ Eu te = t′e′.

This equivalence relation is S-bounded, so also S-bounded in E . Therefore we can
take its quotient in E , which we will write as PsX. We claim it is the power class
object of X in E .

To show this, we first have to define an S-displayed family of subobjects of X in E .
Let L ⊆ X × Pπ(X) be defined by

(x, u, t) ∈ L⇔ ∃e ∈ Eu te = x.

Then define ∈X as the image of L along X × Pπ(X) //X ×Ps(X):

L
²²

²²

// // ∈X
²²

²²

X × Pπ(X)

²²

// X ×PsX

²²

Pπ(X) // PsX.

Since
(x, u, t) ∈ L ∧ (u, t) ∼ (u′, t′)⇒ (x, u′, t′) ∈ L,
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the top square in the above diagram is a pullback, and therefore the entire diagram
is a pullback. So the fact that ∈X //PsX belongs to S follows from the fact that
L //PπX belongs to S.

To check the universal property of PsX with ∈X , let U ⊆ X × I be an S-displayed
family of subobjects of X in E . We need to find a map ρ: I //PsX such that
(id× ρ)∗ ∈X= U .

As U // I ∈ S, it fits into a covering square with V // J ∈ S as follows:

V

²²

// U
²²

²²

X × J

²²

// X × I

²²

J q
// // I.

The fact that V // J belongs to S means that for every j ∈ J there is a morphism
φj:Vj //X, where Vj is S-small. Then, since π is a representation, the following
statement holds in E :

∀j ∈ J ∃u ∈ U, p:Eu //Vj (p is a cover),

and hence the following as well:

∀j ∈ J ∃u ∈ U, t:Eu //X (Im(t) = Im(φj))

(for t take the composite of p and φj). Defining G ⊆ J × Pπ(X) by

(j, u, t) ∈ G⇔ Im(t) = Im(φj),

we can write this as

∀j ∈ J ∃(u, t) ∈ Pπ(X) ((j, u, t) ∈ G).

Since clearly
(j, u, t), (j, u′, t′) ∈ G⇒ (u, t) ∼ (u′, t′),

G defines the graph of a function σ: J //PsX. This σ coequalises the kernel pair
of the cover q: J // I, for the following reason. The righthand arrow in the above
diagram defines for every i ∈ I a morphism ψi:Ui //X, and the fact that the entire
diagram is a quasi-pullback means that

Im(φj) = Im(ψqj).

Therefore Im(φj) = Im(φk), whenever qj = qk, or:

(j, u, t) ∈ G, qj = qk ⇒ (k, u, t) ∈ G.
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So σ coequalises the kernel pair of q, and we find a morphism ρ: I //PsX such that
ρq = σ. We leave the proof that it has the required property, and is the unique such,
to the reader. ¤

An immediate corollary of this proposition is the following result, which is essen-
tially Theorem I.3.1 on page 16 of [76], but derived here using bounded exactness
only.

Corollary 3.6.11 Let (E ,S) be an exact category with a representable class of display
maps S satisfying (ΠE). Then S also satisfies (PE). Moreover, there exists a natural
transformation

τX :PπX =
∑
u∈U

XEu //PsX

which is componentwise a cover.

We will now briefly discuss the stability of (ΠE) and (ΠS) under covered map.
Again, stability of (ΠS) seems problematic, while for (ΠE) we have the following
result:

Proposition 3.6.12 Let (E ,S) be an exact category with a class of display maps S.
When S satisfies (ΠE), then so does Scov.

Proof. We omit a proof, but it could go along the lines of Lemma I.1.2 on page 9 of
[76], all the time making sure we use bounded exactness only. ¤

3.6.5 Inductive types

The situation for the axioms for W-types is the same as that for the Π-types. We
conjecture that (WS) is not a stable under exact completion, just as (ΠS) is not,
while the axiom (WE) is stable under exact completion for representable classes of
display maps. It is by no means easy to establish this, and the remainder of this
subsection will be devoted to a proof. (The results that will now follow are, in fact,
variations on results of the first author, published in [17].)

We first prove the following characterisation theorem:

Theorem 3.6.13 Let E be a category with a class of small maps S satisfying (PE).
Assume that f :B //A is a small map. The following are equivalent for a Pf -algebra
(W, sup:Pf (W ) //W ):

1. (W, sup) is a W-type for f .

2. The structure map sup is an isomorphism and W has no proper Pf -subalgebras
in E.
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3. The structure map sup is an isomorphism and X∗W has no proper PX∗f -
subalgebras in E/X, for every object X in E.

4. (W, sup) is an indexed W-type for f .

Proof. First we establish the equivalence of (1) and (2).

(1) ⇒ (2): These properties are enjoyed by all initial algebras, so also by W-types.

(2)⇒ (1): Assume sup is an isomorphism and W has no proper Pf -subalgebras. The
latter means that we can prove properties of W by induction. For if L ⊆ W and L is
inductive in the sense that

∀b ∈ Ba: tb ∈ L⇒ supa(t) ∈ L,

then L defines a Pf -subalgebra of W and therefore L = W .

Our first aim is to define a map

tc: W //PsW,

that intuitively sends a tree to its transitive closure: the collection of all its subtrees,
together with the tree itself. This we can do as follows. Call A ∈ PsW transitive,
when it is closed under subtrees. Formally:

supa(t) ∈ A, b ∈ Ba ⇒ tb ∈ A.

Define TC(w,A) to mean: A is the least transitive subset of W containing a. Formally:

w ∈ A ∧ ∀B(B is transitive ∧ w ∈ B ⇒ A ⊆ B).

We can then define L = {w ∈ W : ∃!A ∈ PsW TC(w,A)}. As L is inductive, the
object TC will be the graph of a function tc: W //PsW.

Now let (X,m:Pf (X) //X) be an arbitrary Pf -algebra. We need to construct a
Pf -algebra morphism k:W //X. Intuitively, we do this by glueing together partial
solutions to this problem, so-called attempts. An attempt for an element w ∈ W is
a morphism g: tc(w) //X with the property that for any tree supa(t) ∈ tc(w) the
following equality holds:

g(supat) = m(λb ∈ Ba.g(tb)).

Intuitively, it is a Pf -algebra morphism k:W //X defined only on the transitive
closure of w. Notice that there is an object of attempts in E , because tc(w) is a small
object for every w ∈W , and the validity of (PE) implies that of (ΠE).

Our next aim is to show that for every w ∈ W there is a unique attempt. Let L be
the collection of all those w ∈ W such that for every v ∈ tc(w) there exists a unique
attempt. We show that L is inductive. So assume that for a fixed t:Ba

//W , unique
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attempts gb have been defined for every tb with b ∈ Ba. Now define an attempt for
supa(t) by putting

g(v) = gb(v) if v ∈ tc(tb),
g(supa(t)) = m(λb ∈ Ba.gb(tb)).

One readily sees that g is the unique attempt for supa(t), so that supa(t) belongs to
L. Therefore L is inductive and unique attempts exist for every w ∈ W .

The desired map k:W //X can be defined by

k(w) = x ⇔ g(w) = x,

where g is the unique attempt for w. One uses the definition of an attempt to verify
that this a Pf -algebra morphism. And it is the unique such, because restricting a
Pf -algebra morphism k to the transitive closure of a fixed tree w gives an attempt
for w.

(2) ⇒ (3): If T is a PX∗f -subalgebra of X∗W in E/X, then

L = {w ∈ W : ∀x ∈ X (x,w) ∈ T }

defines a Pf -subalgebra of W in E . So if W has no proper Pf -subalgebras, X∗W has
no proper PX∗f -subalgebras.

(3) ⇒ (4): This is the argument from (2) to (1) applied in all slices of E .

(4) ⇒ (1): By definition. ¤

We will need the notion of a collection span.

Definition 3.6.14 A span (g, q) in E

A B
q

//
g

oo Y

is called a collection span, when, in the internal logic, it holds that for any map
f :F //Ba covering some fibre of g, there is an element a′ ∈ A together with a cover
p:Ba′ //Ba over Y which factors through f .

Diagrammatically, we can express this by asking that for any map E //A and
any cover F //E ×A B there is a diagram of the form

Y

B

g

²²

q
22

E ′ ×A B //oo

²²

F // // E ×A B //

²²

B

g

²²

q
ll

A E ′ // //oo E // A,
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where the middle square is a covering square, involving the given map

F //E ×A B,

while the other two squares are pullbacks.

Lemma 3.6.15 Assume E is a category equipped with a representable class of display
maps S satisfying (ΠE). Then every f :Y //X ∈ S fits into a covering square

B

g

²²

q
// // Y

f
²²

A p
// // X,

where g belongs to S and (g, q) is a collection span over X.

Proof. As usual, we denote the representation of S by π:E → U .

We define A by

A = Σx∈X,u∈U{h:Eu //Yx : h is a cover},
and p is the obvious projection. The fibre of g above an element (x, u, h) is Eu, and
q sends a pair (x, u, h, e) with (x, u, h) ∈ A and e ∈ Eu to h(e). It follows that p is a
cover, because π is a representation, and the square is covering, because we require h
to be a cover.

When a cover s:T //Ba has been given for some a = (x, u, h), there is an element
v ∈ U and a cover t:Ev //Ba factoring through s. (This is by using the Collection
axiom (A7) and representability.) Consider the element a′ = (x, v, qt) ∈ A. The map

Ba′
∼= // Ev

t // // Ba

is a cover over Y which factors through s. ¤

Proposition 3.6.16 Assume E is an exact category with a class of small maps S
satisfying (PE). Assume furthermore f ∈ S fits into a covering square

B

g

²²

q
// // Y

f
²²

A p
// // X,

where (g, q) is a collection span over X, and g is a small map for which the W-type
exists. Then the W-type for f also exists.
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Proof. Write W for the W-type for g and sup for the structure map. The idea
is to use the well-founded trees in W , whose branching type is determined by g, to
represent well-founded trees whose branching type is determined by f . In fact, Wf

will be obtained as a subquotient of W .

We wish to construct a binary relation ∼ on W with the following property:

supat ∼ supa′t
′ ⇔ pa = pa′ and

∀b ∈ Ba, b
′ ∈ Ba′ qb = qb′ ⇒ tb ∼ t′b′.

(3.1)

We will call a relation ∼ with this property a bisimulation, and using the inductive
properties of W we can prove that bisimulations on W are unique. To see that there
exists a bisimulation on W we employ the same techniques as in Theorem 3.6.13.
Recall in particular from the proof of Theorem 3.6.13 the construction of a transitive
closure tc(w) of an element w ∈ W : it is really the small object of all its subtrees,
together with w itself. In the same way, we can also define st(w), the collection of all
subtrees of w (not including w).

Since all diagonals are assumed to be small and Ps1 classifies bounded subobjects,
there is, for every object X, a function X × X //Ps1 which assigns to every pair
(x, y) ∈ X × X the small truth-value of the statement “x = y”. We will denote
it by [− = −]. For a pair (w,w′) ∈ W 2, call a function g: tc(w) × tc(w′) //Ps1 a
bisimulation test, when for all supat ∈ tc(w), supa′t

′ ∈ tc(w′) the equality

g(supat, supa′t
′) = [pa = pa′] ∧

∧

b∈Ba,b′∈Ba′

([qb = qb′]→ g(tb, t′b′))

holds. Intuitively, a bisimulation test measures the degree to which two elements are
bisimilar, by sending a pair (w,w′) to the truth-value of the statement “w and w′ are
bisimilar”.

Our first aim is to show that for every pair (w,w′) there is a unique bisimulation test.
For this purpose, it suffices to show that for

L = {w ∈ W : there is a unique bisimulation test

for every pair (w,w′) with w′ ∈ W }

the following property holds:

st(w) ⊆ L⇒ w ∈ L.

Because this will imply that M = {w ∈ W : tc(w) ⊆ L} is inductive (i.e., defines a
Pg-subalgebra of W ), and therefore equal to W . As M ⊆ L ⊆ W also L = W , and it
follows that for every pair there is a unique bisimulation test.

So let w,w′ ∈ W be given such that st(w) ⊆ L. We need to show that for (w,w′)
there is a unique bisimulation test g. We define g(v, v′) for v ∈ tc(w), v′ ∈ tc(w′) as
follows:
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• If v ∈ st(w), then v ∈ L and the pair (v, v′) has a unique bisimulation test h.
We set g(v, v′) = h(v, v′).

• If v = w = supat and v′ = supa′t
′, then for every b ∈ Ba and b′ ∈ Ba′ we know

that tb ∈ st(w) ⊆ L by induction hypothesis, and therefore there exists a unique
bisimulation test hb,b′ for (tb, t′b′). We set

g(v, v′): = [pa = pa′] ∧
∧

b∈Ba,b′∈Ba′

([qb = qb′]→ hb,b′(tb, t
′b′)).

We leave to the reader the verification that this defines the unique bisimulation test
g for (w,w′).

Now we have established that for every pair there exists a unique bisimulation test,
we can define a binary relation ∼ on W by

w ∼ w′ ⇔ g(w,w′) = >,

where g is the unique bisimulation test for (w,w′). By construction, the relation ∼
is a bounded bisimulation on W .

We can now show, using that ∼ is the unique bisimulation, that the relation is both
symmetric and transitive. Since ∼ is bounded, it defines a bounded equivalence
relation on the object R = {w ∈ W : w ∼ w} of reflexive elements. Using bounded
exactness, we can take its quotient V , writing [−] for the quotient map R //V .

We claim V is the W-type associated to f . To show that V has the structure of a
Pf -algebra, we need to define a map s:PfV //V . So start with an x ∈ X and a
map k:Yx //V . Choosing a ∈ A to be such that pa = x, we have

∀b ∈ Ba ∃r ∈ Rkqb = [r].

Since (g, q) is a collection span over X, there is a (potentially) different a′ ∈ A with
pa′ = x, and a map t:Ba′ //R such that for all b′ ∈ Ba′ :

kqb′ = [tb′].

We set s(x, k) = [supa′t]. The equivalence in (3.1) ensures that this value is indepen-
dent of the choices we have made.

Finally, we use Theorem 3.6.13 to prove that (V, s) is the W-type for f . For showing
that s is an isomorphism, we need to construct an inverse i for s. Now, every v ∈ V
is of the form [w] for a reflexive element w = supat. Since w is reflexive the equation

k([b]) = [t(b)] for all b ∈ Ba

defines a function k:Ypa //V . So one may set iv = (pa, k), which is, again by (3.1),
independent of the choice of a.
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It remains to be shown that V has no proper Pf -subalgebras. For this one proves
that if L is Pf -subalgebra of V , then

T = {w ∈ W : w ∼ w ⇒ [w] ∈ L}
defines a Pq-subalgebra of W . ¤

Lemma 3.6.17 Let y: (E ,S) // (E ,S) be the exact completion of a category with a
class of display maps. Then y preserves the exponentials that exist in E.

Proof. A trivial diagram chase: the key fact is that any object in E arises as a
quotient of an equivalence relation in E . ¤

Theorem 3.6.18 Let y: (E ,S) // (E ,S) be the exact completion of a category with
a representable class of display maps S satisfying (ΠE) and (WE). Then S satisfies
(WE) as well.

Proof. In this proof it might be confusing to drop the occurences of y, so for once
we insert them.

We first want to show that every map of the form yf with f ∈ S has a W-type in
E . From Lemma 3.6.17 we learn that the functor y commutes with Pf . This means
that y does also commute with W : using Theorem 3.6.13, we see that we only need
to show that yWf has no proper Pyf -subalgebras. But this is immediate, since y
induces a bijective correspondence between Sub(Wf ) in E and Sub(yWf ) in E .

Now the general case: by definition, any map f ∈ S fits into a covering square as
follows:

yX

yf ′
²²

p
// A

f
²²

yY // B,

with f ′ ∈ S. By Lemma 3.6.15, f ′ fits into a covering square in E
M

g

²²

q
// X

f ′
²²

N // Y,

where g ∈ S and (g, q) is a collection span over Y . All of this is preserved by y. More-
over, (yg, pyq) is a collection span over B. This means that we can apply Proposition
3.6.16 to deduce that a W-type for f exists. ¤

Corollary 3.6.19 Let (E ,S) be an exact category with a representable class of display
maps S satisfying (ΠE). When S satisfies (WE), then so does Scov.

Again, we doubt whether a similar result for (WS) holds.
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3.6.6 Infinity

The following proposition is a triviality:

Proposition 3.6.20 Let (E ,S) be a category with display maps S. When S satisfies
(NE) or (NS), then so does Scov.

The following, however, less so:

Proposition 3.6.21 Let y: (E ,S) // (E ,S) be the exact completion of a category E
with a representable class of display maps S satisfying (ΠE). When S satisfies (NE)
or (NS), then so does S.

Proof. The statement follows immediately from the fact that y preserves the natural
numbers object N, whenever it exists in E . But as N is the W-type associated to the
left sum inclusion i: 1 // 1+1, this can be shown as in Theorem 3.6.18: we only need
to show that yN has no proper Pi-subalgebras (by Theorem 3.6.13), which follows
from the fact that y is bijective on subobjects. ¤

3.6.7 Fullness

In this subsection we discuss the stability properties of the Fullness axiom, which are
rather good. To show this, we first prove two lemmas, the second of which is also
useful in other contexts.

Lemma 3.6.22 Let (E ,S) be a category with display maps. Any composable pair of
arrows in E of the form

C // m // B
f

// A

with m ∈ Scov a mono and f ∈ S, fits into a diagram of the form

Z
²²

n

²²

// // C
²²

m

²²

Y

g

²²

// // B

f
²²

X p
// // A,

where both squares are pullbacks, the horizontal arrows are covers (as indicated), and
both n and g belong to S.
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Proof. Using the definition of Scov, we know that m is covered by a map in S. Using
axiom (A10), we may actually assume that m is covered via a pullback square by a
mono m′ ∈ S. Then using Collection for S, we obtain a diagram of the form

Z ′
²²

n′
²²

// C ′
²²

m′
²²

// // C
²²

m

²²

Y ′

g′

²²

// B′ // // B

f
²²

X p
// // A,

where the top squares are pullbacks and the rectangle below is covering, and both n′

and g′ belong to S. By pulling back m and f along p, we obtain a diagram as follows:

Z ′
²²

n′
²²

// // Z
²²

p∗m=n

²²

// // C
²²

m

²²

Y ′

g′
ÃÃ

@@
@@

@@
@@
q

// // Y // //

p∗f=g

²²

B

f
²²

X p
// // A,

where the squares are all pullbacks. Then g ∈ S by pullback stability, and q ∈ S
by local fullness (or Lemma 3.2.11). Since n′ ∈ S, also qn′ ∈ S by closure under
composition. Then n ∈ S by axiom (A10). ¤

Lemma 3.6.23 Let (E ,S) be a category with a class of display maps. Suppose we
are given in E a diagram of the form

B0
// //

ψ
²²

B

φ

²²

A0
// //

i
²²

A

j
²²

X0 p
// // X,

in which both squares are covering and ψ and i belong to S and φ and j belong to
Scov. If a generic S-displayed mvs for ψ exists, then also a generic Scov-displayed
mvs for φ exists.

Proof. By pulling back φ along p, we obtain over X0 the following covering square:

B0
δ // //

ψ

²²

p∗B

p∗φ
²²

A0
// // p∗A.
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By Lemma 3.2.11, all arrows in this square belong to Scov.

Using Fullness for ψ, we find a cover e:X ′ //X0 and a map s:Y //X ′ ∈ S, to-
gether with a generic S-displayed mvs P for ψ over Y . Writing κ for the composite
es:Y //X0 and α for pκ:Y //X, we obtain the following covering square over Y :

κ∗B0
κ∗δ // //

κ∗ψ
²²

α∗B

α∗φ
²²

κ∗A0
// // α∗A.

All the arrows in this square belong to Scov, so the S-displayed mvs P of ψ over Y
induces a Scov-displayed mvs P of φ over Y by P = (κ∗δ)∗P . We claim it is generic.

So let t:Z //X ′ be any map and Q be an Scov-displayed mvs of φ over Z. Writing
λ = et and β = pλ, we obtain a diagram over Z as follows:

Q′
²²

²²

// Q
²²

²²

λ∗B0
λ∗δ //

λ∗ψ
²²

β∗B

β∗φ
²²

λ∗A0
// β∗A,

with Q′ = (λ∗δ)∗Q. Because all arrows in this diagram belong to Scov, and Q is an
Scov-displayed mvs for φ over Z, the subobject Q′ is an Scov-displayed mvs for ψ over
Z.

Notice that we have obtained a diagram of the form

Q′ // // λ∗B
λ∗(iψ)

// Z,

where the first map belongs to Scov and the second belongs to S. So we can use the
previous lemma to obtain a cover v:Z ′ //Z such that Q = v∗Q′ is an S-displayed
mvs of ψ over Z ′.

By genericity of P , this means that we find a map y:U //Y and a cover q:U //Z ′

with sy = tvq such that y∗P ≤ q∗Q as displayed mvss of ψ over U . Now

κy = esy = etvq = λvq,

and therefore also

((κy)∗δ)∗y∗P ≤ ((λvq)∗δ)∗q∗Q = ((λvq)∗δ)∗(vq)∗Q′

as displayed mvss of φ over U . But

((κy)∗δ)∗y∗P = y∗(κ∗δ)∗P = y∗P,
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and

((λvq)∗δ)∗(vq)∗Q′ = (vq)∗(λ∗δ)∗Q′ = (vq)∗(λ∗δ)∗(λ∗δ)∗Q ≤ (vq)∗Q.

This completes the proof. ¤

Proposition 3.6.24 Let (E ,S) be a category with display maps S. When S satisfies
(F), then so does Scov.

Proof. Immediate from the previous lemma using Lemma 3.2.15. ¤

Now the proof of the main result of this subsection should be straightforward:

Proposition 3.6.25 Let y: (E ,S) // (E ,S) be the exact completion of a category
with a class of display maps S. When S satisfies (F), then so does S.

Proof. Once again, we systematically suppress occurences of y.

In view of Lemma 3.5.6 and Lemma 3.6.23, it suffices to show that a generic S-
displayed mvs exists in E for those φ:B //A ∈ S with A //X ∈ S. Of course,
because Fullness holds for φ in E , there is a cover e:X ′ //X and a map s:Y //X ′ ∈
S, together with an S-displayed mvs P for φ which is generic in E . We claim it is
also a generic S-displayed mvs for φ in E .

So let t:Z //X ′ be any map and Q be an S-displayed mvs of φ over Z. As y is
covering, we obtain a cover p:Z0

//Z with Z0 ∈ E . Writing λ = etq, we obtain the
following diagram in E (!):

p∗Q // // λ∗B
λ∗(iφ)

// Z0,

where the first arrow belongs to Scov and the second arrow to S. Then, using Lemma
3.6.22, we find a cover q:Z1

//Z0 in E such that (pq)∗Q is an S-displayed mvs for φ
over Z1.

Using the genericity of P , this means there exist a map y:U //Y and a cover
r:U //Z1 with sy = tpqr such that y∗P ≤ r∗(pq)∗Q = (pqr)∗Q as S-displayed,
and therefore also S-displayed, mvss of φ over U . This completes the proof. ¤

A categorical semantics for set theory

In this final part of the paper we will explain how categories with small maps provide
a semantics for set theory. In Section 7, we establish its soundness, and in Section 8
its completeness.
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3.7 Soundness

Throughout this section (E ,S) will be a bounded exact category with a representable
class of small maps S satisfying (ΠE) and (WE). We will refer to this as a predicative
category with small maps.4

It follows from Corollary 3.6.11 that (PE) holds in E as well, so it makes sense
to consider (indexed) Ps-algebras in E (see Definition 3.3.9 and Lemma 3.3.4). In
particular, it makes sense to ask whether the indexed initial Ps-algebra exists in E .
For the moment we will simply assume that it does and denote it by V .

Since V , as an initial algebra, is a fixed point of Ps, it comes equipped with with
two mutually inverse maps:

PsV
Int

++
V.

Ext

ll

In the internal logic of E , we can therefore define a binary relation ε on V , as follows:

xεy ⇔ x ∈ Ext(y).

In this way, we obtain a structure (V, ε) in the language of set theory, and the next
result shows that it models a rudimentary set theory RST (see Section 9 for its
axioms).

Proposition 3.7.1 Assume the indexed initial Ps-algebra V exists, and ε is the bi-
nary predicate defined on it as above. Then all axioms of RST are satisfied in the
structure (V, ε).

Proof. By the universal property of power objects, there is a correspondence between
small subobjects A ⊆ V (i.e., subobjects A of V such that A // 1 is small) and
elements of Ps(V ). Therefore we can call y ∈ V the name of the small subobject
A ⊆ V , in case Ext(y) is the corresponding element in Ps(V ).

We verify the validity of the axioms of RST by making extensive use of the internal
language of the positive Heyting category E .

Extensionality holds because two small subobjects Ext(x) and Ext(y) of V are equal
if and only if, in the internal language of E , z ∈ Ext(x) ↔ z ∈ Ext(y). The least
subobject 0 ⊆ V is small, and its name ∅: 1 //V models the empty set. The pairing
of two elements x and y represented by two arrows 1 //V , is given by Int(l), where
l is the name of the (small) image of their copairing [x, y]: 1 + 1 //V . The union
of the sets contained in a set x is interpreted by applying the multiplication of the
monad Ps to (PsExt)(Ext(x)):

Ext(x) ∈ PsV PsExt
// PsPsV µV // PsV Int // V.

4Compare the notion of a ΠW -pretopos or a “predicative topos” in [93] and [17].
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To show the validity of Bounded separation, we need to observe that = and ε are
bounded relations on V . So for any bounded formula φ in the language of set theory
and a ∈ V , the subobject S of Ext(a) defined by

S = {y ∈ Ext(a) : V |= φ(y)}
is bounded, and hence small. The name x of S now satisfies ∀y ( yεx↔ yεa∧ φ(y) ).

To show the validity of Strong collection, assume ∀xεa∃yφ(x, y) holds. Then we have
a cover p1

E = {(x, y) ∈ V 2 : V |= φ(x, y) ∧ xεa} // // Ext(a),

given by the first projection. Since Ext(a) is small, there is a small object S together
with a cover q:S // Ext(a) factoring through p1. So there is a map f :S //E with
p1f = q. Consider the image of p2f :S //V , where p2 is the second projection: its
name b provides the right bounding set to witness the desired instance of the Strong
collection scheme.

So far we have only used that V is a fixed point, but to verify Set induction we use
that it is indexed initial as well. If ∀yεx φ(y) → φ(x) holds in V , then L = {x ∈
V : V |= φ(x)} is a Ps-subalgebra of V . But the initial Ps-algebra has no proper
Ps-subalgebras, so then L ∼= V and ∀xφ(x) holds in V . ¤

Several questions arise: is it possible to extend this result to cover the set theo-
ries IZF and CZF? The next proposition shows the answer to this question is yes.
Another question would be: does the indexed initial Ps-algebra always exist? As it
turns out, the answer to this question is affirmative as well.

Proposition 3.7.2 Assume the indexed initial Ps-algebra V exists, and ε is the bi-
nary predicate defined on it as above.

1. When S satisfies (M), then (V, ε) validates the Full separation scheme.

2. When S satisfies (PS), then (V, ε) validates the Power set axiom.

3. When S satisfies (NS), then (V, ε) validates the Infinity axiom.

4. When S satisfies (F), then V validates the Fullness axiom.

Proof. We again make extensive use of the internal language of E .

1. The argument for Full separation is identical to the one for bounded Separation.

2. When S satisfies (PS), then Ps(Ext(x)) is small for any x ∈ V . The same
applies to the image of

Ps(Ext(x)) // // PsV Int // V,

whose name y will be the small power set of x.
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3. The morphism ∅: 1 //V , together with the map s:V //V which takes an
element x to x∪{x}, yields a morphism α:N //V . When N is small, so is the
image of α, as a subobject of V . Applying Int to its name we get an infinite set
in V .

4. Assuming that S satisfies (F), there is for any function f : b //A ∈ V a small
subobject Z ∈ PsExt(b) of multi-valued sections of

Ext(f): Ext(b) // Ext(a)

that is full (in the sense that any mvs contains one in this set). The value z of
Z under the map

Ps(Ext(b)) // // PsV Int // V,

is then a full set of mvss of f in V .

¤

We will now prove the existence of an initial Ps-algebra in E . The proof makes
essential use of the exactness of E , and, as mentioned before, it is one of our reasons
for insisting on exactness for predicative categories with small maps. The idea behind
this result, which shows how initial Ps-algebras can be constructed in the presence
of W-types, is essentially due to Aczel in [1]. The first application of this idea in a
categorical context was in [94]. But before we go into the proof of this result, we
first borrow from [78] the following characterisation theorem for initial Ps-algebras
(compare Theorem 3.6.13).

Theorem 3.7.3 Let E be a category with a class of small maps S satisfying (PE).
The following are equivalent for a Ps-algebra (V, Int:Ps(V) // V):

1. (V, Int) is the initial Ps-algebra.

2. The structure map Int is an isomorphism and V has no proper Ps-subalgebras
in E.

3. The structure map Int is an isomorphism and X∗V has no proper PXs -subalgebras
in E/X, for every object X in E.

4. (V, Int) is the indexed initial Ps-algebra.

Proof. See [78] and Theorem 3.6.13. ¤

Note that the characterisation theorem also shows that initial Ps-algebras are
always indexed.

Theorem 3.7.4 If (E ,S) is a predicative category with small maps, then the initial
Ps-algebra exists in E.
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Proof. The proof is very similar to that of Proposition 3.6.16, so we will frequently
refer to that proof for more details. In particular, we again construct a bisimulation on
a W-type, which can be done by glueing together local solutions given by bisimulation
tests.

Consider W = Wπ, the W-type associated to the representation π:E //U for S. To
obtain the initial Ps-algebra, we want to quotient W by bisimulation, by which we
now mean a binary relation ∼ on W such that

supu(t) ∼ supu′(t
′) ⇔ ∀e ∈ Eu ∃e′ ∈ Eu′ te ∼ t′e′

and ∀e′ ∈ Eu′ ∃e ∈ Eu te ∼ t′e′.

It can again be shown by induction that bisimulations are unique, but the difficulty
is to show that they exist.

Using the notion of a transitive closure from the proof of Theorem 3.6.13, we define
the appropriate notion of a bisimulation test. For a pair (w,w′) ∈ W 2, call a function
g: tc(w) × tc(w′) //Ps1 a bisimulation test, when for all suput ∈ tc(w), supu′t

′ ∈
tc(w′) the equality

g(suput, supu′t
′) =

∧
e∈Eu

∨

e′∈Eu′

g(te, t′e′) ∧
∧

e′∈Eu′

∨
e∈Eu

g(te, t′e′)

holds. In the manner of Proposition 3.6.16 it can be shown that there is a unique
bisimulation test for every pair (w,w′).

Using now that for every pair there is a unique bisimulation test, we can define the
desired bisimulation ∼ by putting

w ∼ w′ ⇔ g(w,w′) = >,

if g is the unique bisimulation test for (w,w′). By construction it is a bisimulation,
which is also bounded.

Using the inductive properties of W again, we can see that any bisimulation on W
is an equivalence relation. So ∼ is a bounded equivalence relation for which we can
take the quotient V = W/ ∼, with quotient map q.

We claim V is the initial Ps-algebra. We first need to see that it is a fixed point for
the Ps-functor. To this end, we consider the solid arrows in the following diagram

PπW
τW // //

sup

²²

PsW Psq
// // PsV

Int
ªª

W q
// // V,

Ext

II

where τW is the component on W of the natural transformation in Corollary 3.6.11,
and Psq is a cover by Proposition 3.3.5. One quickly sees that the notion of a bisim-
ulation is precisely such that maps Int and Ext making the above diagram commute
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have to exist. To see that it is the initial Ps-algebra, we use the criterion in Theorem
3.7.3. Simply note that if L is a (proper) Ps-subalgebra of V , then

q−1L = {w ∈ W : q(w) ∈ L}

is a (proper) Pπ-subalgebra of W . ¤

The next result summarises the results we have obtained in this section:

Corollary 3.7.5 Let (E ,S) be a predicative category with small maps. Then (E ,S)
contains a model (V, ε) of the set theory RST given by the initial Ps-algebra. More-
over, if S satisfies the axioms (NS), (M) and (PS), the structure (V, ε) models IZF;
and if the class of small maps satisfies (NS) and (F), it is a model of CZF.

Completeness of this semantics for all three set theories will be proved in the next
section.

Remark 3.7.6 This might be the right time to compare our approach and concepts
to some of the other ones available in the literature, and our notion of a predicative
category with small maps in particular.

In the book “Algebraic Set Theory” [76], the basic notion of a category with small
maps on pages 7–9 is given by a Heyting pretopos E with an nno equipped with a
representable class of maps satisfying (A1-7) and (ΠE). Our notion of a predicative
category with small maps is both stronger and weaker: it is stronger, because we have
added the axioms (A8) and (A9), as well as (WE); it is weaker, because we have
bounded exactness only. To be absolutely precise: in [76] the authors work with a
different notion of representability, which is equivalent to ours in the bounded exact
context (as was shown in Proposition 3.4.4), but probably stronger in the context of
Heyting pretoposes.

For showing the existence of the initial Ps-algebra in Chapter III of [76], the
authors make the additional assumption of the presence of a subobject classifier in
E . This assumption was too impredicative for our purposes, so therefore we have
assumed the existence of W-types in the form of (WE) instead. (Note that the
existence of a subobject classifier, as well as the axioms (A8) and (A9), all follow
from the impredicative axiom (M).)5

In [13], Awodey and Warren call a positive Heyting category with a class of maps
satisfying (A1-9) and (PE), with the possible exception of the Collection axiom
(A7), a basic class structure. To this, our notion of a predicative category with
small maps adds the Collection axiom (A7), bounded exactness, representability and
(WE). But note that all these axioms are valid in the ideal models that they study.

5We suspect that (WE) follows from the existence of a subobject classifier, but we haven’t
checked this.
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3.8 Completeness

In this section we will show that the semantics for IZF and CZF we have developed in
the previous section is complete. In order to show this, we need to make our “informal
example” (cf. Remark 3.2.7) more concrete. This we can do in two ways: either we
can consider the classes and sets of IZF and CZF as being given by formulas from
the language, or we work relative to a model. To be more precise:

Remark 3.8.1 For any set theory T extending RST we can build the syntactic cat-
egory E [T]. Objects of this category are the “definable classes”, meaning expressions
of the form {x:φ(x)}, while identifying syntactic variants. Morphisms are “definable
class morphisms”: a morphism from the object {x:φ(x)} to {y:ψ(y)}, where we can
assume that x and y are different, is an equivalence class of formulas α(x, y) such
that the following is derivable in T:

∀x (φ(x)→ ∃!y (ψ(y) ∧ α(x, y) ) ).

Two such formulas α(x, y) and β(x, y) are identified when T proves

∀x∀y (φ(x) ∧ ψ(y)→ (α(x, y)↔ β(x, y) ) ).

One readily shows that this syntactic category is a positive Heyting category. It is
actually a category with small maps, when, following the intuition, we declare those
class morphisms whose fibres are sets to be small. So a morphism represented by
α(x, y) from the object {x:φ(x)} to {y:ψ(y)} is a small map, when T proves

∀y (ψ(y)→ ∃a∀x ( xεa↔ α(x, y) ∧ φ(x) ) ).

The category with small maps obtained in this way will be denoted by

(E [T],S[T]).

Remark 3.8.2 Let (M, ε) be a structure (in the ordinary, set-theoretic sense) having
the signature of the language of set theory, modelling the set-theoretic axioms of
RST. By the same construction as in the previous example, but replacing everywhere
derivability in T by validity in M , we obtain a category with small maps (E [M ],S[M ])
from M .

The main results about these two examples are the following:

Proposition 3.8.3 For a set theory T extending RST, the class of small maps S[T]
in the syntactic category E [T] is representable and satisfies (PE) and (WE). More-
over, when

V [T] = {x : x = x}
is the class of all sets in (E [T],S[T]), then V [T] is the initial Ps-algebra, and for any
set-theoretic sentence φ:

V [T] |= φ⇔ T ` φ.
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Proof. We first describe a representation π:E //U of S[T]. U is the class of all
sets {x : x = x}, while

E = {x : ∃y ∃z (x = (y, z) ∧ yεz )}. (3.2)

The map π is the projection on the second coordinate (here and below we are implicitly
using some coding of n-tuples in set theory).

The description of the Ps-functor on (E [T],S[T]) is what one would think it is. For
an object X = {x:φ(x)} of E [T], the power class object Ps(X) is given by

{y : ∀xεy φ(x)},

showing that (PE) holds in the syntactic category. That S[T] satisfies (WE) as well
follows from Example 3 on page 5–4 of [6].

In view of the description of the Ps-functor above, it is clear that V [T] one of its fixed
points. Since T includes the Set induction scheme, V [T] is actually a fixed point for
Ps having no proper Ps-subalgebras. So it is the initial Ps-algebra by Theorem 3.7.3.

It is also easy to see that the membership relation induced on V [T] is given by E in
(3.2). In general, one can prove by induction on its complexity that any set-theoretic
formula φ(x1, . . . , xn) is interpreted by the subobject of V [T]n given by:

{x : ∃x1, . . . , xn (x = (x1, . . . , xn) ∧ φ(x1, . . . , xn) )}.

From this and the definition of morphisms in E [T] it follows that derivability in the
set theory T coincides with validity in the model V [T]. ¤

Proposition 3.8.4 Let (M, ε) be a structure (in the sense of model theory) mod-
elling RST. Then the class of small maps S[M ] in the category (E [M ],S[M ]) is
representable and satisfies (PE) and (WE). Moreover, when

V [M ] = {x : x = x}

is the class of all sets in (E [T],S[T]), then V [M ] is the initial Ps-algebra, and for
any set-theoretic sentence φ:

V [M ] |= φ⇔M |= φ.

Proof. As in Proposition 3.8.3. ¤

The last proposition makes clear how our categorical semantics extends the usual
set-theoretic one.

We can now use the syntactic category to obtain a strong completeness result for
RST.
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Theorem 3.8.5 For any set theory T extending RST there is a predicative category
with small maps (E ,S) such that for the initial Ps-algebra V in (E ,S) we have

V |= φ⇔ T ` φ

for every set-theoretic sentence φ. Therefore a set-theoretic sentence valid in every
initial Ps-algebra in a predicative category with small maps (E ,S) is a consequence of
the axioms of RST.

Proof. For the predicative category with small maps (E ,S) we take the exact com-
pletion of the syntactic category (E [T],S[T]) associated to T.

We claim that the image yV [T] of the initial Ps-algebra V [T] in the syntactic category
is the initial Ps-algebra V in E . Since the embedding y commutes with Ps (by
Proposition 3.6.7), the object yV [T] is still a fixed point for Ps in E . It does not
have any proper Ps-subalgebras, because y commutes with Ps and is bijective on
subobjects. Therefore it is the initial Ps-algebra V by Theorem 3.7.3.

Finally, the embedding y is a Heyting functor which is bijective on subobjects, so we
have for any set-theoretic sentence φ:

V |= φ⇔ V [T] |= φ⇔ T ` φ.

¤

To extend this strong completeness result to IZF and CZF we need to prove the
following proposition:

Proposition 3.8.6 Let (E [T],S[T]) be the syntactic category associated to a set the-
ory T extending RST. Then

1. T ` Full separation⇒ S[T] satisfies (M).

2. T ` Power set⇒ S[T] satisfies (PS).

3. T ` Infinity⇒ S[T] satisfies (NS).

4. T ` Fullness⇒ S[T] satisfies (F).

The same statements hold for the category of small maps (E [M ],S[M ]) induced by a
set-theoretic model (M, ε) of RST.

Proof. We verify the first statement and leave the others to the reader.

Suppose α(x, y) represents a morphism from the object {x:φ(x)} to {y:ψ(y)}, which
is monic. We define β(z) as

∃x, x′( z = (x, x′) ∧ φ(x) ∧ φ(x′) ∧ ∀y(ψ(y)→ (α(x, y)↔ α(x′, y))) ),
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and consider the two projections from {z : β(z)} to {x : φ(x)}. By definition these
projections are equalised by the monomorphism represented by α(x, y), and hence
they are the same. Therefore the following statement is provable in the set theory T:

∀x, x′, y((φ(x) ∧ φ(x′) ∧ ψ(y) ∧ α(x, y) ∧ α(x′, y))→ x = x′).

In other words, T proves that for any y such that ψ(y) holds, the class {x : φ(x) ∧
α(x, y)} is a subsingleton. In particular, T proves that it is a set, since the Full
separation scheme follows from T. Therefore the statement

∀y (ψ(y)→ ∃a∀x ( xεa↔ α(x, y) ∧ φ(x) ) ),

is derivable from T and the map represented by α(x, y) is small. ¤

We derive the promised completeness theorems:

Corollary 3.8.7 There is a predicative category with class maps (E ,S) with S sat-
isfying (NS), (M) and (PS) such that for the initial Ps-algebra V in (E ,S) we have

V |= φ⇔ IZF ` φ
for any set-theoretic sentence φ. Therefore a set-theoretic sentence valid in every
initial Ps-algebra in a predicative category with small maps (E ,S) with S satisfying
(NS), (M) and (PS) is a consequence of the axioms of IZF.

Corollary 3.8.8 There is a predicative category with small maps (E ,S) with S sat-
isfying (NS) and (F) such that for the initial Ps-algebra V in (E ,S) we have

V |= φ⇔ CZF ` φ
for any set-theoretic sentence φ. Therefore a set-theoretic sentence valid in every
initial Ps-algebra in a predicative category with small maps (E ,S) with S satisfying
(NS) and (F) is a consequence of the axioms of CZF.

Remark 3.8.9 Completeness theorems of this kind have been proved by various au-
thors, starting with Simpson in [106] (for IZF) and Awodey et al. in [9]. Subsequently,
predicative versions were proved in [13] and [55].

Our results improve on these in two respects: firstly, we obtain a completeness
theorem for the set theory CZF; secondly, we show completeness for both IZF and
CZF with respect to exact categories with small maps.

Appendices

In Section 9 we define the set theories RST, CZF and IZF, while in Section 10 we
recall the definition of a positive Heyting category.
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3.9 Set-theoretic axioms

Set theory is a first-order theory with one non-logical binary relation symbol ε. Since
we are concerned constructive set theories in this paper, the underlying logic will be
intuitionistic.

As is customary also in classical set theories like ZF, we will use the abbreviations
∃xεa (. . .) for ∃x (xεa ∧ . . .), and ∀xεa (. . .) for ∀x (xεa → . . .). Recall also that a
formula is called bounded, when all the quantifiers it contains are of one of these two
forms. Finally, a formula of the form ∀xεa ∃yεb φ ∧ ∀yεb ∃xεa φ will be abbreviated
as:

B(xεa, yεb)φ.

Both IZF and CZF are extensions of the following basic set of axioms, which for
convenience we have given a name: RST.

Extensionality: ∀x (xεa↔ xεb )→ a = b.

Empty set: ∃x ∀y ¬yεx.

Pairing: ∃x ∀y ( yεx↔ y = a ∨ y = b ).

Union: ∃x∀y ( yεx↔ ∃zεa yεz ).

Set induction: ∀x (∀yεx φ(y)→ φ(x))→ ∀xφ(x).

Bounded separation: ∃x∀y ( yεx ↔ yεa ∧ φ(y) ), for any bounded formula φ in
which x does not occur.

Strong collection: ∀xεa ∃y φ(x, y)→ ∃bB(xεa, yεb)φ.

The intuitionistic set theory IZF is obtained by adding to the axioms of RST the
following:

Infinity: ∃a (∃xxεa ) ∧ (∀xεa ∃yεa xεy ).

Full separation: ∃x ∀y ( yεx↔ yεa ∧ φ(y) ), for any formula φ in which a does not
occur.

Power set: ∃x∀y ( yεx↔ y ⊆ a ), where y ⊆ a abbreviates ∀z (zεy → zεa).

The set theory CZF, introduced by Aczel in [1], is obtained by adding to RST the
Infinity axiom, as well as a weakening of the Power set axiom called Subset collection:

Subset collection: ∃c ∀z (∀xεa ∃yεb φ(x, y, z)→ ∃dεcB(xεa, yεd)φ(x, y, z)).
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3.10 Positive Heyting categories

Definition 3.10.1 A category C is called cartesian, when it possesses all finite limits.
A functor is cartesian, when it preserves finite limits.

Definition 3.10.2 A map f :B //A in a category C is called a cover, if for any
factorisation f = mg in which m is a monomorphism, m is in fact an isomorphism. A
cartesian category C is called regular, when every map factors as a cover followed by
a monomorphism, and covers are stable under pullback. A functor is regular, when it
is cartesian and preserves covers.

The following lemma about regular categories does not seem to be as well known
as it should be:

Lemma 3.10.3 Consider following commutative diagram

A

²²

// // B

²²

// C

²²

X p
// // Y // Z

in a regular category C, where p is a cover, as indicated. When the entire diagram is
a pullback, and the left-hand square as well, then so is the right-hand square.

Proof. See [90, p. 40]. ¤

Definition 3.10.4 A regular category C is called coherent, when for each object X
in C the subobject lattice Sub(X) has finite joins, which are, moreover, stable under
pulling back along morphisms f :Y //X.

Definition 3.10.5 A coherent category C is called Heyting, when for each morphism
f :Y //X the functor

f ∗: Sub(X) // Sub(Y )

induced by pullback, has a right adjoint ∀f .

Heyting categories are rich enough to admit a sound interpretation of first-order
intuitionistic logic. This interpretation of first-order logic is called the internal logic of
Heyting categories. In this paper, we assume the reader is familiar with this internal
logic (if not, see [87]) and frequently exploit it.

Definition 3.10.6 A cartesian category C is called lextensive or positive, when it has
finite sums, which are disjoint and stable .
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Observe that a category that is positive and regular is automatically coherent.
Therefore we can axiomatise our basic notion of a positive Heyting category as follows:
E is a positive Heyting category, when

1. it is cartesian, i.e., it has finite limits.

2. it is regular, i.e., morphisms factor in a stable fashion as a cover followed by a
monomorphism.

3. it is positive, i.e., it has finite sums, which are disjoint and stable.

4. it is Heyting, i.e., for any morphism f :Y //X the induced pullback functor
f ∗: Sub(X) // Sub(Y ) has a right adjoint ∀f .



Chapter 4

Realizability

4.1 Introduction

This paper is the second in a series on the relation between algebraic set theory [76]
and predicative formal systems.1 The purpose of the present paper is to show how
realizability models of constructive set theories fit into the framework of algebraic set
theory. It can be read independently from the first part [21] (Chapter 3); however,
we recommend that readers of this paper read the introduction to [21] (Chapter 3),
where the general methods and goals of algebraic set theory are explained in more
detail.

To motivate our methods, let us recall the construction of Hyland’s effective topos
Eff [68]. The objects of this category are pairs (X,=), where = is a subset of N×X×X
satisfying certain conditions. If we write n ° x = y in case the triple (n, x, y) belongs
to this subset, then these conditions can be formulated by requiring the existence of
natural numbers s and t such that

s ° x = x′ → x′ = x
t ° x = x′ ∧ x′ = x′′ → x = x′′.

These conditions have to be read in the way usual in realizability [113]. So the first
says that for any natural number n satisfying n ° x = x′, the expression s(n) should
be defined and be such that s(n) ° x′ = x.2 And the second stipulates that for any
pair of natural numbers n and m with n ° x = x′ and m ° x′ = x′′, the expression
t(〈n,m〉) is defined and is such that t(〈n,m〉) ° x = x′′.

The arrows [F ] between two such objects (X,=) and (Y,=) are equivalence classes

1Its details are: B. van den Berg and I. Moerdijk, Aspects of Predicative Algebraic Set Theory
II: Realizability, and it has been accepted for publication in Theoretical Computer Science.

2For any two natural numbers n,m, the Kleene application of n to m will be written n(m), even
when it is undefined. When it is defined, this will be indicated by n(m) ↓. We also assume that
some recursive pairing operation has been fixed, with the associated projections being recursive.
The pairing of two natural numbers n and m will be denoted by 〈n,m〉. Every natural number n
will code a pair, with its first and second projection denoted by n0 and n1, respectively.
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of subsets F of N × X × Y satisfying certain conditions. Writing n ° Fxy for
(n, x, y) ∈ F , one requires the existence of realizers for statements of the form

Fxy ∧ x = x′ ∧ y = y′ → Fx′y′

Fxy → x = x ∧ y = y
Fxy ∧ Fxy′ → y = y′

x = x→ ∃y Fxy.
Two such subsets F and G represent the same arrow [F ] = [G] iff they are extension-
ally equal in the sense that

Fxy ↔ Gxy

is realized.

As shown by Hyland, the logical properties of this topos Eff are quite remark-
able. Its first-order arithmetic coincides with the realizability interpretation of Kleene
(1945). The interpretation of the higher types in Eff is given by HEO, the hered-
itary effective operations. Its higher-order arithmetic is captured by realizability in
the manner of Kreisel and Troelstra [112], so as to validate the uniformity principle:

∀X ∈ PN ∃n ∈ Nφ(X,n)→ ∃n ∈ N∀X ∈ PNφ(X,n).

The topos Eff is one in an entire family of realizability toposes defined over ar-
bitrary partial combinatory algebras (or more general structures modeling compu-
tation). The relation between these toposes has been not been completely clarified,
although much interesting work has already been done in this direction [101, 68, 83,
28, 66, 65] (for an overview, see [99]). The construction of the topos Eff and its
variants can be internalised in an arbitrary topos (we will always assume our toposes
to have a natural numbers object). This means in particular that one can construct
toposes by iterating (alternating) constructions of sheaf and realizability toposes to
obtain interesting models for higher-order intuitionistic arithmetic HHA. An exam-
ple of this phenomenon is the modified realizability topos, which occurs as a closed
subtopos of a realizability topos constructed inside a presheaf topos [98].

The purpose of this series of papers is to show that these results are not only valid
for toposes as models of HHA, but also for certain types of categories equipped with
a class of small maps suitable for constructing models of constructive set theories like
IZF and CZF. In the first paper of this series [21] (Chapter 3), we have axiomatised
this type of categories, and refer to them as “predicative categories with small maps”.
For the convenience of the reader their precise definition is recalled in Section 8, while
the axioms of the set theories IZF and CZF are reviewed in Section 7.

A basic result from [21] (Chapter 3) is the following:

Theorem 4.1.1 Every predicative category with small maps (E ,S) contains a model
(V, ε) of a weak set theory (to be precise, CZF without Subset collection). Moreover,

(i) (V, ε) is a model of IZF, whenever the class S satisfies the axioms (M) and
(PS).
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(ii) (V, ε) is a model of CZF, whenever the class S satisfies (F).3

To show that realizability models fit into this picture, we prove that predicative
categories with small maps are closed under internal realizability, in the same way
that toposes are. More precisely, relative to a given predicative category with small
maps (E ,S), we construct a “predicative realizability category” (EffE ,SE). The main
result of this paper will then be:

Theorem 4.1.2 If (E ,S) is a predicative category with small maps, then so is the
pair (EffE ,SE). Moreover, if (E ,S) satisfies one of the axioms (M), (F) or (PS),
then so does (EffE ,SE).

We show this for the pca N together with Kleene application, but we expect that this
result can be proved in the same way, when N is replaced by a pca A in E , provided
that both A and the domain of the application function {(a, b) ∈ A2 : a·b ↓} are small.
The proof of the theorem above is technically rather involved, in particular in the case
of the additional properties needed to ensure that the model of set theory satisfies
the precise axioms of IZF and CZF. However, once this work is out of the way, one
can apply the construction to many different predicative categories with small maps,
and show that familiar realizability models of set theory (and some unfamiliar ones)
appear in this way.

One of the most basic examples is that where E is the classical category of sets,
and S is the class of maps between sets whose fibres are all bounded in size by
some inaccessible cardinal. The construction underlying Theorem 4.1.2 then produces
Hyland’s effective topos Eff , together with the class of small maps defined in [76],
which in [78] was shown to lead to the Friedman-McCarty model of IZF [51, 89] (we
will reprove this in Section 5).

An important point we wish to emphasise is that one can prove all the model’s
salient properties without constructing it explicitly, using its universal properties
instead. We explain this point in more detail. A predicative category with small
maps consists of a category E and a class of maps S in it, the intuition being that the
objects and morphisms of E are classes and class morphisms, and the morphisms in S
are those that have small (i.e., set-sized) fibres. For such predicative categories with
small maps, one can prove that the small subobjects functor is representable. This
means that there is a power class object Ps(X) which classifies the small subobjects
of X, in the sense that maps B //Ps(X) correspond bijectively to jointly monic
diagrams

B U //oo X

with U //B small. Under this correspondence, the identity id:Ps(X) //Ps(X)
corresponds to a membership relation

∈X // // X × PsX.
3The precise formulations of the axioms (M), (PS) and (F) can be found in Section 8 as well.
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The model of set theory V that every predicative category with small maps con-
tains (Theorem 4.1.1) is constructed as the initial algebra for the Ps-functor. Set-
theoretic membership is interpreted by a subobject ε ⊆ V × V , which one obtains
as follows. By Lambek’s Lemma, the structure map for this initial algebra V is an
isomorphism. We denote it by Int, and its inverse by Ext:

PsV
Int

++
V.

Ext

ll

The membership relation

ε // // V × V
is the result of pulling back the usual “external” membership relation

∈V // // V × Ps(V )

along id× Ext.

Theorem 4.1.1 partly owes its applicability to the fact that the theory of the
internal model (V, ε) of IZF or CZF corresponds precisely to what is true in the
categorical logic of E for the object V and its external membership relation ∈. This,
in turn, corresponds to a large extent to what is true in the categorical logic of E for
the higher arithmetic types. Indeed, by the isomorphism Ext:V //Ps(V ) and its
inverse Int, any generalised element a:X //V corresponds to a subobject

Ext(a) // // X × V

with Ext(a) //X small, and for two such elements a and b, one has that

(i) a ∈ b iff a factors through Ext(b).

(ii) a ⊆ b iff the subobject Ext(a) of X × V is contained in Ext(b).

(iii) Ext(ω) ∼= N, the natural numbers object of E .

(iv) Ext(ab) ∼= Ext(a)Ext(b).

(v) Ext(Pa) ∼= Ps(Ext(a)).

(Properties (i) and (ii) hold by definition; for (iii)-(v), see the proof of Proposition
3.7.2.) Thus, for example, the sentence “the set of all functions from ω to ω is
subcountable” is true in (V, ε) iff the corresponding statement is true for the natural
numbers object N in the category E .

For this reason the realizability model in the effective topos inherits various prin-
ciples from the ambient category and one immediately concludes:
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Corollary 4.1.3 [51, 89] There is a model of IZF in which the following principles
hold: Countable Choice for Numbers (AC00), the Axiom of Relativised Dependent
Choice (RDC), the Presentation Axiom (PA), Markov’s Principle (MP), Church’s
Thesis (CT), the Uniformity Principle (UP), Unzerlegbarkeit (UZ), Independence
of Premisses for Sets and Numbers (IP), (IPω).

A precise formulation of these principles can be found in Section 7. For verifying
the validity of some of these principles one apparently needs the same principles
in the metatheory; this applies to the Axiom of Relativised Dependent Choice, the
Presentation Axiom and the Independence of Premisses principles.

Of course, in [51, 89] Corollary 4.1.3 has been proved directly by syntactic meth-
ods; however, it is a basic example which illustrates the general theme, and on which
there are many variations. For example, our proof of Theorem 4.1.2 is elementary (in
the proof-theoretic sense), hence can be used to prove relative consistency results. If
we take for E the syntactic category of definable classes in the theory CZF (see [21]
(Chapter 3)), we can deduce:

Corollary 4.1.4 [104] If CZF is consistent, then so is CZF combined with the con-
junction of the following axioms: Countable Choice for Numbers (AC00), Markov’s
Principle (MP), Church’s Thesis (CT), the Uniformity Principle (UP) and Unzer-
legbarkeit (UZ).

(We also recover the same result for IZF within our framework.) Again, we obtain
the validity of the Axiom of Relativised Dependent Choice, the Presentation Axiom
and the Independence of Premisses principles in the model, if we assume these in the
metatheory.

Another possibility is to mix Theorem 4.1.2 with the similar construction for
sheaves (see Chapter 5). We expect this to show that models of set theory (IZF or
CZF) also exist for various other notions of realizability, such as modified realizability
in the sense of [98, 29] or Kleene-Vesley’s function realizability [77]. We will discuss
this in some more detail in Section 5 below.

Inside Hyland’s effective topos, or more generally, in categories of the form EffE
(cf. Theorem 4.1.2), other classes of small maps exist, which are not obtained from
an earlier class of small maps in E by Theorem 4.1.2, but nonetheless satisfy the
conditions sufficient to apply our theorem from [21] (Chapter 3) yielding models of
set theory (cf. Theorem 4.1.1 above). Following the work of the first author in [18],
we will present in some detail one particular case of this phenomenon, based on the
notion of modest set [67, 70]. Already in [76] a class T inside the effective topos was
considered, consisting of those maps which have subcountable fibres (in some suitable
sense). This class does not satisfy the axioms from [76] necessary to provide a model
for IZF. However, it was shown in [18] that this class T does satisfy a set of axioms
sufficient to provide a model of the predicative set theory CZF.
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Theorem 4.1.5 [76, 18] The effective topos Eff and its class of subcountable mor-
phisms T form a predicative category with small maps. Moreover, T satisfies the
axioms (M) and (F).

We will show that the corresponding model of set theory (see Theorem 4.1.1) fits
into the general framework of this series of papers, and investigate some of its logical
properties, as well as its relation to some earlier models of Friedman, Streicher and
Lubarsky [52, 111, 84]. In particular, we prove:

Corollary 4.1.6 CZF is consistent with the conjunction of the following axioms:
Full separation, the subcountability of all sets, as well as (AC00), (RDC), (PA),
(MP), (CT), (UP), (UZ), (IP) and (IPω).

(The proof should be formalisable in ZF extended with the axiom of relativised
dependent choice (RDC).)

We conclude this introduction by outlining the contents of the rest of this paper.
As already mentioned, we review some basic definitions in the appendices: in Section
7 we list the set theoretic axioms and define the theories IZF and CZF, while in
Section 8 we review the definition of a predicative category with small maps and of
a class of display maps, and we recall several properties a class of small or display
maps may enjoy. With these definitions at hand, we describe in Section 2 of this
paper the category of assemblies in a fixed ambient predicative category with small
maps (E ,S). In Sections 2 and 3 we prove that this category of assemblies has
the structure of a category with display maps and that it satisfies some additional
properties. This enables us to apply a result from [21] (Chapter 3), to conclude that
the exact completion of this category of assemblies is a predicative category with
small maps (cf. Corollary 4.3.5). In Section 4, we prove that this exact completion
inherits additional properties from the ambient category, from which we conclude that
it contains a “realizability” model of IZF resp. CZF. This then concludes our general
construction, relative to the ambient pair (E ,S), of realizability models for IZF and
CZF, and completes the proof of our main Theorem 4.1.2. These Sections 2–4 form
the technical core of this paper: in fact, when compared to the impredicative, topos-
theoretic context, the main difficulty in our context was to identify a suitable class
of maps in the category of assemblies, modest enough to be formalisable within a
predicative category with small maps, and strong enough to be able to verify that
its exact completion inherits the axioms for small maps from the ambient category
(E ,S). This verification is noticably difficult, and different from the impredicative
context; cf. for example the proofs that the existence of W-types and the Fullness
axiom (a categorical counterpart of the Subset collection axiom of CZF) are inherited.
The rest of the paper is concerned with the analysis of some special cases and some
variations on the construction. In particular, in Section 5 we show that if the ambient
category is the classical category of Sets, the realizability model for IZF resulting
from our general construction coincides with the one introduced by McCarty [89].
Similar investigations for the model of CZF and for models related to various other
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notions of realizability are discussed briefly. In the final Section 6 we describe a
realizability model of CZF in which all sets are subcountable, and indicate how it
fits into our framework.

We would like to thank Thomas Streicher and Jaap van Oosten for comments on
an earlier version of this paper, and for making [99] available to us. We also thank
the referees for valuable comments.

4.2 The category of assemblies

Recall that our main aim (Theorem 4.1.2) is to construct for a predicative category
with small maps (E ,S) the realizability category (EffE ,SE), and show it is again a
predicative category with small maps. For this and other purposes, the description
of Eff as an exact (ex/reg) completion of a category of assemblies [37], rather than
Hyland’s original description, is useful. A similar remark applies to the effective topos
Eff [A] defined by an arbitrary pca A. In [21] (Chapter 3) we showed that the class
of predicative categories with small maps is closed under exact completion. More
precisely, we formulated a weaker version of the axioms (a “category with display
maps”; the notion is also recapitulated in Section 8), and showed that if (F , T ) is a
pair satisfying the weaker axioms, then in the exact completion F of F , there is a
natural class of arrows T , depending on T , such that the pair (F , T ) is a predicative
category with small maps (for a precise explanation, see the beginning of Section 3).
Therefore our strategy in this section will be to construct a category of assemblies rel-
ative to the pair (E ,S) and show it is a category with display maps (strictly speaking,
we only need to assume that (E ,S) is itself a category with display maps for this).
Its exact completion will then be considered in the next section.

In this section, (E ,S) is assumed to be a predicative category with small maps.
In particular, E is assumed to have a small natural numbers object.

We recall our recursion-theoretic conventions. For any two natural numbers n,m,
we denote the Kleene application of n to m by n(m), also when it is undefined;
to express that it is defined, we will sometimes write n(m) ↓. We also assume that
some recursive pairing operation has been fixed, with the associated projections being
recursive. The pairing of two natural numbers n and m will be denoted by 〈n,m〉.
Every natural number n will code a pair, with its first and second projection denoted
by n0 and n1, respectively. Note that all these notions are available in the internal
logic of E , as it contains Heyting Arithmetic HA.

Definition 4.2.1 An assembly (over E) is a pair (A,α) consisting of an object A in
E together with a relation α ⊆ N×A, which is surjective; i.e., the following sentence
is valid in the internal logic of E :

∀a ∈ A ∃n ∈ N (n, a) ∈ α.
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The natural numbers n such that (n, a) ∈ α are called the realizers of a, and we will
frequently write n ∈ α(a) instead of (n, a) ∈ α.

A morphism f :B //A in E is a morphism of assemblies (B, β) → (A,α) if the
statement

“There is a natural number r such that for all b and n ∈ β(b), the expres-
sion r(n) is defined and r(n) ∈ α(fb).”

is valid in the internal logic of E . A number r witnessing the above statement is
said to track (or realize) the morphism f . The resulting category will be denoted by
AsmE , or simply Asm.

We investigate the structure of the category AsmE .

AsmE has finite limits. The terminal object is (1, η), where 1 = {∗} is a one-point
set and n ∈ η(∗) for every n. The pullback (P, π) of f and g as in

(P, π) //

²²

(B, β)

f
²²

(C, γ) g
// (A,α)

can be obtained by putting P = B ×A C and

n ∈ π(b, c)⇔ n0 ∈ β(b) and n1 ∈ γ(c).

Covers in AsmE . A morphism f : (B, β) // (A,α) is a cover if, and only if, the
statement

“There is a natural number s such that for all a ∈ A and n ∈ α(a) there
exists a b ∈ B with f(b) = a and such that the expression s(n) is defined
and s(n) ∈ β(b).”

holds in the internal logic of E . From this it follows that covers are stable under
pullback in Asm.

AsmE has images. A morphism f : (B, β) // (A,α) is monic in Asm if, and only
if, the underlying morphism f :B //A is monic in E . (This means that if (R, ρ) is
a subobject of (A,α), then R is also a subobject of A.) Hence the image (I, ι) of a
map f : (B, β) // (A,α) as in

(B, β)
f

//

e
## ##HH

HH
HH

HH
H

(A,α)

(I, ι)
;;

m

;;vvvvvvvv
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can be obtained by letting I ⊆ A be the image of f in E , and

n ∈ ι(a)⇔ (∃b ∈ B) f(b) = a and n ∈ β(b).

One could also write: ι(a) =
⋃
b∈f−1{a} β(b).

We conclude that Asm is a regular category.

AsmE is Heyting. For any diagram of the form

(S, σ)
²²

²²

(B, β)
f

// (A,α)

we need to compute (R, ρ) = ∀f (S, σ). We first put R0 = ∀fS ⊆ A, and let ρ ⊆ N×R0

be defined by

n ∈ ρ(a)⇔ n0 ∈ α(a) and ∀b ∈ f−1{a},m ∈ β(b) (n1(m) ↓ and n1(m) ∈ σ(b) ).

If we now put
R = {a ∈ R0 : ∃nn ∈ ρ(a)}

and restrict ρ accordingly, the subobject (R, ρ) will be the result of universally quan-
tifying (S, σ) along f .

AsmE is positive. The sum (A,α) + (B, β) is simply (S, σ) with S = A+B and

n ∈ σ(s)⇔ n ∈ α(s) if s ∈ A, and n ∈ β(s) if s ∈ B.

We have proved:

Proposition 4.2.2 The category AsmE of assemblies relative to E is a positive Heyt-
ing category.

The next step is to define the display maps in the category of assemblies. The idea
is that a displayed assembly is an object (B, β) in which both B and the subobject
β ⊆ N × B are small. When one tries to define a family of such displayed objects
indexed by an assembly (A,α) in which neither A nor α needs to be small, one arrives
at the concept of a standard display map. To formulate it, we need a piece of notation.

Definition 4.2.3 Let (B, β) and (A,α) be assemblies and f :B //A be an arbitrary
map in E . We construct a new assembly (B, β[f ]) by putting

n ∈ β[f ](b)⇔ n0 ∈ β(b) and n1 ∈ α(fb).

Remark 4.2.4 Note that we obtain a morphism of assemblies of the form (B, β[f ])→
(A,α), which, by abuse of notation, we will also denote by f . Moreover, if f was al-
ready a morphism of assemblies it can now be decomposed as

(B, β)
∼= // (B, β[f ])

f
// (A,α).
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Definition 4.2.5 A morphism of assemblies of the form (B, β[f ]) → (A,α) will be
called a standard display map, if both f and the mono β ⊆ N × B are small in E
(since N is assumed to be small, the latter is equivalent to β → B being small, or
β(b) being a small subobject of N for every b ∈ B). A display map is a morphism of
the form

W
∼= // V

f
// U,

where f is a standard display map. We will write DE for the class of display maps in
AsmE .

Lemma 4.2.6 1. Suppose f : (B, β[f ]) // (A,α) and g: (C, γ) // (A,α) are mor-
phisms of assemblies and f is a standard display map. Then there is a pullback
square

(P, π[k]) h //

k
²²

(B, β[f ])

f
²²

(C, γ) g
// (A,α)

in which k is again a standard display map.

2. The composite of two standard display maps is a display map.

Proof. (1) We set P = B ×A C (as usual), and

n ∈ π(b, c)⇔ n ∈ β(b),

turning k into a standard display map. Moreover, this implies

n ∈ π[k](b, c)⇔ n0 ∈ β(b) and n1 ∈ γ(c),

which is precisely the usual definition of a pullback in the category of assemblies.

(2) Let (C, γ), (B, β) and (A,α) be assemblies in which γ ⊆ N × C and β ⊆ N × B
are small monos, and g:C //B and f :B //A be display maps in E . These data
determine a composable pair of standard display maps f : (B, β[f ]) // (A,α) and
g: (C, γ[g]) // (B, β[f ]), in which

n ∈ γ[g](c) ⇔ n0 ∈ γ(c) and n1 ∈ β[f ](gc)

⇔ n0 ∈ γ(c) and (n1)0 ∈ β(gc) and (n1)1 ∈ γ(fgc).

So its composite can be written as

(C, γ[g])
∼= // (C, δ[fg])

fg
// (A,α),

where we have defined δ ⊆ N× C by

n ∈ δ(c)⇔ n0 ∈ γ(c) and n1 ∈ β(gc).

¤
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Corollary 4.2.7 Display maps are stable under pullback and closed under composi-
tion.

Proof. Stability of display maps under pullback follows immediately from item 1
in Lemma 4.2.6. To show that they are also closed under composition, it suffices to
show (in view of Lemma 4.2.6 again) that a morphism f which can be written as a
composite

W
h // V

g

∼=
// U,

where h is a standard display map and g is an isomorphism, is a display map. Observe
that it follows from Lemma 4.2.6 that in this case there exists a pullback square

Q
p

∼=
//

q

²²

W

h
²²

U
g−1

∼= // V

in which q is a standard display map. Therefore f = qp−1 is a display map. ¤

We will use the proof that the display maps in assemblies satisfy collection to
illustrate a technique that does not really save an enormous amount of labour in this
particular case, but will be very useful in more complicated situations.

Definition 4.2.8 An assembly (A,α) will be called partitioned, if

n ∈ α(a),m ∈ α(a)⇒ n = m.

In a partitioned assembly (A,α) realizers for elements of A are unique, and we can
view α as a map A→ N.

Lemma 4.2.9 1. Every assembly is covered by a partitioned assembly. Hence ev-
ery morphism between assemblies is covered by a morphism between partitioned
assemblies.

2. A morphism f : (B, β) // (A,α) between partitioned assemblies is display iff f
is small in E.

3. Every display map between assemblies is covered by a display map between par-
titioned assemblies.

The definitions of the notions of a covering square and the covering relation between
maps from [21] (Chapter 3) are recalled in Section 8.

Proof. (1) If (A,α) is an assembly, then the subset α ⊆ N × A can be considered
as a partitioned assembly (α, δα), where n ∈ δα(m, a) iff n = m. This partitioned
assembly covers (A,α).
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(2) By definition every display map between partitioned assemblies has an underlying
map which is small. Conversely, if (B, β) is a partitioned assembly, the set β(b) is a
singleton, and therefore small. So the decomposition

(B, β)
∼= // (B, β[f ])

f
// (A,α).

shows that f is a display map, if the underlying morphism is small.

(3) If f : (B, β[f ]) // (A,α) is a standard display map between assemblies, then

(β[f ], δβ[f ]) //

f

²²

(B, β[f ])

f

²²

(α, δα) // (A,α)

is a covering square with a display map between partitioned assemblies on the left. ¤

Lemma 4.2.10 The class of display maps in the category AsmE of assemblies sat-
isfies the collection axiom (A7).

Proof. In view of Lemma 4.2.9, the general case follows by considering a display map
f : (B, β) // (A,α) between partitioned assemblies and a cover q: (E, η) // (B, β).
The fact that q is a cover means that there exists a natural number t such that

“For all b ∈ B, the expression t(βb) is defined, and
there exists an e ∈ E with q(e) = b and t(βb) ∈ η(e).”

(4.1)

We will collect all those natural numbers in an object

T = {t : t is a natural number satisfying (4.1)},
which can be turned into a partitioned assembly by putting θ(t) = t. Since q is a
cover it follows that T is an inhabited set, and that for the object

E ′ = {(e, b, t) : q(e) = b, t(βb) ↓, t(βb) ∈ η(e)},
the projection p:E ′ //B × T is a cover. So we can apply collection in E to obtain a
covering square

D

g

²²

h // E ′ p
// // B × T

f×T
²²

C
k

// // A× T,
where g is a small map. It is easy to see that from this diagram in E , we obtain two
covering squares in the category of assemblies

(D, δ)

g

²²

ph
// // (B × T, β × τ) // //

f×T
²²

(B, β)

f
²²

(C, γ)
k

// // (A× T, α× τ) // // (A,α),
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where we have set

γ(c) = (α× τ)(kc) and

δ(d) = (β × τ)(phd).

Since g is a display map between partitioned assemblies, we only need to verify that
the map (D, δ)→ (B, β) along the top of the above diagram factors as

(D, δ) l // (E, η)
q

// // (B, β).

We set l = π1h, because we can show that this morphism is tracked, as follows. If
h(d) = (e, t, b) for some d ∈ D, then the realizer of d consists of the element t, to-
gether with the realizer βb of b. By definition of E ′, the expression t(βb) is defined
and a realizer for e = (π1h)(d) = l(d). ¤

Proposition 4.2.11 The class of display maps in the category AsmE of assemblies
as defined above satisfies the axioms (A1), (A3-5), (A7-9), and (A10) for a class
of display maps, as well as (NE) and (NS).

Proof. Recall that the axioms are listed in Section 8.

(A1, 5) were proved in Corollary 4.2.7, and (A7) was proved in Lemma 4.2.10.

(A3, 4) The maps 0 // 1, 1 // 1 and 1 + 1 // 1 can be represented as standard
display maps. The same is true for the sum of two standard display maps.

(A8) We start with a diagram of the form

(S, σ[i])
²²

i
²²

(B, β[f ])
f

// (A,α),

in which both maps are standard display maps (this is sufficient to establish the
general case). In general, (R, ρ) = ∀f (S, σ) is computed as follows: first we put
R0 = ∀fS ⊆ A, and let ρ ⊆ N×R0 be defined by

n ∈ ρ(a) ⇔ n0 ∈ α(a) and

∀b ∈ f−1{a},m ∈ β[f ](b) (n1(m) ↓ and n1(m) ∈ σ[i](b) ).

Furthermore, we set
R = {a ∈ R0 : ∃nn ∈ ρ(a)}

and denote the inclusion R ⊆ A by j. Restricting ρ to R, the subobject (R, ρ) is the
result of universally quantifying (S, σ) along f . Since we are assuming that both i
and f are display maps, the same object can be described slightly differently.
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We define τ ⊆ N×R0 by

n ∈ τ(a)⇔ ∀b ∈ f−1{a},m ∈ β(b) (n(m) ↓ and n(m) ∈ σ(b) ).

Note that we have a bounded formula on the right (using that both f and N are
small). Now one can show that

R = {a ∈ R0 : (∃n ∈ N) [n ∈ τ(a)]},

and since the formula is bounded, it follows that j is a display map. Furthermore,
one can prove that the identity is an isomorphism of assemblies

(R, ρ) ∼= (R, τ [j]),

from which it follows that (R, ρ)→ (A,α) is a display map.

(A9) The product of an assembly (X,χ) with itself can be computed by taking
(X ×X,χ× χ), where

n ∈ (χ× χ)(x, y)⇔ n0 ∈ χ(x) and n1 ∈ χ(y).

This means that by writing ∆:X //X ×X for the diagonal map in E , the diagonal
map in assemblies can be decomposed as follows

(X,χ)
∼= // (X,µ[∆]) ∆ // (X,χ)× (X,χ),

where µ ⊆ N×X is the relation defined by

n ∈ µ(x)⇔ Always.

(A10) We need to show that in case f = me and f is display, m a mono and e a
cover, also m will be display. Without loss of generality, we may assume that f is a
standard display map f : (B, β[f ]) // (A,α). From Proposition 4.2.2, we know that
we can compute its image (I, ι) by putting I = Im(f) and

n ∈ ι(a)⇔ ∃b ∈ f−1{a}n ∈ β(b).

As the formula on the right is bounded, the map m: (I, ι) // (A,α) can be decom-
posed as an isomorphism followed by a standard display map:

(I, ι)
∼= // (I, ι[m]) m // (A,α).

(NE) and (NS) The natural numbers object in assemblies is the pair consisting of
N together with the diagonal ∆ ⊆ N× N. ¤
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4.3 The predicative realizability category

We will define the predicative realizability category (EffE ,SE) as the exact completion
of (AsmE ,DE). But in this connection the phrase exact completion has to be under-
stood slightly differently from what is customary in the literature. To explain the
difference, let us recall from [35] the construction of the (ordinary) exact completion
Fex/reg of a positive Heyting category F .

Objects of Fex/reg are the equivalence relations in F , which we will denote by
X/R when R ⊆ X ×X is an equivalence relation. Morphisms from X/R to Y/S are
functional relations, i.e., subobjects F ⊆ X × Y satisfying the following statements
in the internal logic of F :

∃y F (x, y),
xRx′ ∧ ySy′ ∧ F (x, y)→ F (x′, y′),
F (x, y) ∧ F (x, y′)→ ySy′.

There is a functor y:F //Fex/reg sending an object X to X/∆X , where ∆X is the
diagonal X → X ×X. This functor is a full embedding preserving the structure of a
positive Heyting category. When T is a class of display maps in F , one can identify
the following class of maps in Fex/reg:

g ∈ T ⇔ g is covered by a morphism of the form yf with f ∈ T .

In this paper, when we speak of the exact completion of a pair (F , T ), we will
mean the pair (F , T ) consisting of the full subcategory F of Fex/reg whose objects
are those equivalence relations i:R //X×X for which i belongs to T , together with
T . In [21] (Chapter 3) we proved the following result for such exact completions:

Theorem 4.3.1 If (F , T ) is a category with a representable class of display maps
satisfying (ΠE), (WE) and (NS), then its exact completion (F , T ) is a predicative
category with small maps.

In the rest of the section, we let (E ,S) be a predicative category with small maps.
For such a category we have constructed and studied the pair (AsmE ,DE) consisting
of the category of assemblies and its display maps. We now define (EffE ,SE) as the
exact completion of (AsmE ,DE) and prove our main theorem (Theorem 4.1.2) as an
application of Theorem 4.3.1. Much of the work has already been done in Section 2.
In fact, Proposition 4.2.11 shows that the only thing that remains to be shown are
the representability and the validity of axioms (ΠE) and (WE) for the display maps
in assemblies (see Section 8).

Proposition 4.3.2 The class of display maps in the category AsmE of assemblies is
representable.
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Proof. Let π:E //U be the representation for the small maps in E . We define two
partitioned assemblies (T, τ) and (D, δ) by

T = {(u ∈ U, p:Eu //N)},
τ(u, p) = 0,

D = {(u ∈ U, p:Eu //N, e ∈ Eu)},
δ(u, p, e) = pe.

Clearly, the projection ρ: (D, δ) // (T, τ) is a display map, which we will now show
is a representation.

Assume f : (B, β) // (A,α) is a display map between partitioned assemblies (in view
of Lemma 4.2.9 it is sufficient to consider this case). Since f is also a display map in
E we find a diagram of the form

B

f

²²

N

s

²²

k //loooo E

π
²²

A M g
//

h
oooo U,

where the left-hand square is covering and the right-hand one a pullback. This induces
a similar picture

(B, β)

f
²²

(N, ν)

s

²²

k′ //loooo (D, δ)

ρ

²²

(A,α) (M,µ)
g′

//

h
oooo (T, τ)

in the category of assemblies, where we have set:

g′(m) = (gm, βlk−1:Egm //N),

µ(m) = αh(m), so h is tracked and a cover,

k′(n) = (g′s(n), kn),

ν(n) = 〈µsn, δk′n〉, so the right-hand square is a pullback.

Here g′ is well defined, because N is a pullback and therefore the map k induces for
every m ∈M an isomorphism

Nm
k
∼=

// Egm.

It remains to prove that l is tracked, and that the left-hand square is a quasi-pullback.
For this, one unwinds the definition of ν:

ν(n) = 〈µsn, δk′n〉
= 〈µsn, δ(g′s(n), kn)〉
= 〈µsn, δ(gs(n), βlk−1, kn)〉
= 〈µsn, βlk−1kn〉
= 〈µsn, βln〉.
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From this description of ν, we see that l is indeed tracked (by the projection on the
second coordinate). To see that the square is a quasi-pullback, one uses first of all
that it is a quasi-pullback in E , and secondly that the realizers for an element in N
are the same as those of its image in the pullback (M×AB, µ×β) along the canonical
map to this object. ¤

Proposition 4.3.3 The display maps in the category AsmE of assemblies are expo-
nentiable, i.e., satisfy the axiom (ΠE). Moreover, if (ΠS) holds in E, then it holds
for the display maps in AsmE as well.

Proof. Let f : (B, β[f ]) // (A,α) be a standard display map and suppose that
g: (C, γ) // (A,α) is an arbitrary map with the same codomain. It suffices to prove
that the exponential gf exists in the slice over (A,α).

Since f is small, one can form the exponential gf in E/A, whose typical elements are
pairs (a ∈ A, φ:Ba

//Ca). If we set

n ∈ η(a, φ) ⇔ n0 ∈ α(a) and

(∀b ∈ Ba,m ∈ β(b)) [n1(m) ↓ and n1(m) ∈ γ(φb)],

E = {(a, φ) ∈ f g : (∃n ∈ N) [n ∈ η(a, φ)]},

the assembly (E, η) with the obvious projection p to (A,α) is the exponential gf in
assemblies. This shows validity of (ΠE) for the display maps in assemblies.

If g: (C, γ̂[g]) // (A,α) is another standard display map, the exponential can also be
constructed by putting

n ∈ η̂(a, φ) ⇔ (∀b ∈ Ba,m ∈ β(b)) [n(m) ↓ and n(m) ∈ γ̂(φb)],

Ê = {(a, φ) ∈ f g : (∃n ∈ N) [n ∈ η̂(a, φ)]}.

It is not hard to see that Ê = E, and the identity induces an isomorphism of assem-
blies (Ê, η̂[p]) = (E, η). This shows the stability of (ΠS). ¤

Proposition 4.3.4 The display maps in the category AsmE of assemblies satisfy the
axiom (WE). Moreover, if (WS) holds in E, then it holds for the display maps in
AsmE as well.

Proof. Let f : (B, β[f ]) // (A,α) be a standard display map. Since (WE) holds in
E , we can form Wf in E . On it, we wish to define the relation δ ⊆ N×Wf given by

n ∈ δ(supa(t)) ⇔ n0 ∈ α(a) and (∀b ∈ f−1{a},m ∈ β(b))
[n1(m) ↓ and n1(m) ∈ δ(tb)] (4.2)
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(we will sometimes call the elements n ∈ δ(w) the decorations of the tree w ∈ W ).
It is not so obvious that we can, but for that purpose we introduce the notion of an
attempt. An attempt is an element σ of Ps(N×Wf ) such that

(n, supa(t)) ∈ σ ⇒ n0 ∈ α(a) and

(∀b ∈ f−1{a},m ∈ β(b)) [n1(m) ↓ and (n1(m), tb) ∈ σ].

If we now put

n ∈ δ(w)⇔ there exists an attempt σ with (n,w) ∈ σ,

the relation δ will have the desired property. (Proof: the left-to-right direction in
(4.2) is trivial, the other is more involved. Given that the right-hand side holds,
we know that for every pair b ∈ f−1{a},m ∈ β(b) we have an attempt witnessing
that n1(m) ∈ δ(tb). By the collection axiom, one can find these attempts within a
certain set of attempts S. Now

⋃
S ∪ {(n, supa(t))} is an attempt witnessing that

n ∈ δ(supa(t)).)

The W-type in the category of assemblies is now given by (W, δ) where

W = {w ∈ Wf : (∃n ∈ N) [n ∈ δ(w)]}.

This shows the validity of (WE) for the display maps.

If A is small and (WS) holds in E , then Wf is small. Moreover, if α ⊆ N × A is
small, one can use the initiality of Wf to define a map d:Wf

//PsN by

d(supa(t)) = {n ∈ N : n0 ∈ α(a) and

(∀b ∈ f−1{a},m ∈ β(b)) [n1(m) ↓ and n1(m) ∈ d(tb)]}.

Clearly, n ∈ δ(w) iff n ∈ d(w), so δ is a small subobject of N×Wf . This shows that
(W, δ) is displayed, and the stability of (WS) is proved. ¤

To summarise, we have proved the first half of Theorem 4.1.2, which we phrase
explicitly as:

Corollary 4.3.5 If (E ,S) is a predicative category with small maps, then so is the
pair (EffE ,SE).

4.4 Additional axioms

To complete the proof of Theorem 4.1.2, it remains to show the stability of the addi-
tional axioms (M), (PS) and (F). That is what we will do in this (rather technical)
section. We assume again that (E ,S) is a predicative category with small maps.
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Proposition 4.4.1 Assume the class of small maps in E satisfies (M). Then (M)
is valid for the display maps in the category AsmE of assemblies and for the small
maps in the predicative realizability category EffE as well.

Proof. Let f : (B, β) // (A,α) be a monomorphism in the category of assemblies.
Then the underlying map f in E is a monomorphism as well. Therefore it is small,
as is the inclusion β ⊆ N×B. So the morphism f , which factors as

(B, β)
∼= // (B, β[f ]) // (A,α),

is a display map of assemblies.

Stability of the axiom (M) under exact completion Proposition 3.6.4 shows it holds
in EffE as well. ¤

Proposition 4.4.2 Assume the class of small maps in E satisfies (F). Then (F) is
valid for the display maps in the category AsmE of assemblies and for the small maps
in the predicative realizability category EffE as well.

Proof. It is sufficient to show the validity of (F) in the category of assemblies, for we
showed the stability of this axiom under exact completion in Proposition 3.6.25. So we
need to find a generic mvs in the category of assemblies for any pair of display maps
g: (B, β) // (A,α) and f : (A,α) // (X,χ). In view of Lemma 3.6.23 and Lemma
4.2.9 above, we may without loss of generality assume that g and f are display maps
between partitioned assemblies.

We apply (F) in E to obtain a diagram of the form

P // //

## ##HH
HH

HH
HH

HH Y ×X B //

²²

B

g

²²

Y ×X A //

²²

A

f
²²

Y s
// X ′

q
// // X,

where P is a generic displayed mvs for g. This allows us to obtain a similar diagram
of partitioned assemblies

(P̃ , π̃) // //

'' ''OOOOOOOOOOOO (Ỹ ×X B, υ̃ × β)

²²

// (B, β)

g

²²

(Ỹ ×X A, υ̃ × α) //

²²

(A,α)

f

²²

(Ỹ , υ̃)
s̃

// (X ′, χ′) q
// // (X,χ),
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where we have set

χ′(x′) = χ(qx′) for x′ ∈ X ′,

Ỹ = {(y, n) ∈ Y × N :

n realizes the statement that Py → Aqsy is a cover}
= {(y, n) ∈ Y × N :

(∀a ∈ Aqsy)(∃b ∈ Ba) [(y, b) ∈ P and n(α(a)) = β(b)]},
υ̃(y, n) = 〈χqsy, n〉 for (y, n) ∈ Ỹ ,

P̃ = Ỹ ×Y P
= {(y, n, b) ∈ Y × N×B : (y, n) ∈ Ỹ , (y, b) ∈ P},

π̃(y, n, b) = 〈υ̃(y, n), β(b)〉 for (y, n, b) ∈ P̃ .

One can easily verify that:

1. q is tracked and a cover.

2. s̃ is tracked and display, since Ỹ is defined using a bounded formula.

3. The inclusion (P̃ , π̃) ⊆ (Ỹ ×X B, υ̃ × β) is tracked.

4. It follows from the definition of Ỹ that the map (P̃ , π̃)→ (Ỹ ×X A, υ̃ × α) is a
cover.

We will now prove that (P̃ , π̃) is the generic mvs for g in assemblies.

Let R be an mvs of g over Z, as in:

(R, ρ) // i //

'' ''OOOOOOOOOOOO
(Z ×X B, ζ × β)

²²

// (B, β)

g

²²

(Z ×X A, ζ × α) //

²²

(A,α)

f
²²

(Z, ζ)
t

// (X ′, χ′) q
// // (X,χ).

Since every object is covered by a partitioned assembly (see Lemma 4.2.9), we may
assume (without loss of generality) that (Z, ζ) is a partitioned assembly. Now we
obtain a commuting square

(R̃, ρ̃)

²²

// (R, ρ)

²²

(Z̃, ζ̃)
d

// // (Z, ζ),
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in which we have defined

Z̃ = {(z,m, n) ∈ Z × N2 : m tracks i and

n realizes the statement that Rz → Aqtz is a cover}
= {(z,m, n) : (∀(z, b) ∈ R, k ∈ ρ(z, b)) [m(k) = (ζ × β)(z, b)]

and (∀a ∈ Aqtz)(∃b ∈ Ba) [(z, b) ∈ R and n(α(a)) ∈ ρ(z, b)]}
ζ̃(z,m, n) = 〈ζz,m, n〉 for (z,m, n) ∈ Z̃

R̃ = {(z,m, n, b) ∈ Z̃ ×B : (z, b) ∈ R and n(α(gb)) ∈ ρ(z, b)}
ρ̃(z,m, n, b) = 〈ζ̃(z,m, n), β(b)〉 for (z,m, n, b) ∈ R̃

It is easy to see that all the arrows in this diagram are tracked, and the projection
(Z̃, ζ̃) → (Z, ζ) is a cover. It is also easy to see that (R̃, ρ̃) is still an mvs of g in
assemblies. Note also that (R̃, ρ̃) and (Z̃, ζ̃) are partitioned assemblies.

Since the forgetful functor to E preserves mvss in general, and displayed ones between
partitioned assemblies in particular, R̃ is also a displayed mvs of g in E . Therefore
there is a diagram of the form

R̃

²²

l∗P

²²

//oo P

²²

Z̃ T
k

oooo

l
// Y

in E with tdk = sl. We turn T into a partitioned assembly by putting τ(t) = ζ̃(kt)
for all t ∈ T .

Claim: the map l:T //Y factors through Ỹ → Y via a map l̃:T // Ỹ which can be
tracked. Proof: if k(t) = (z,m, n) and l(t) = y for some t ∈ T , we set

l̃(t) = (y, (m ◦ n)1),

where m ◦ n is the code of the partial recursive function obtained by composing the
functions coded by m with n. We first have to show that this is well defined, i.e.,
l̃(t) ∈ Ỹ . Since P is an mvs in E , we can find for any a ∈ Aqsy an element b ∈ Ba with
(y, b) ∈ P . If we take such a b, it follows from Py = Plt ⊆ R̃kt, that (z,m, n, b) ∈ R̃,
and therefore n(α(a)) ∈ ρ(z, b). Moreover, it follows from the fact that (z,m, n) ∈ Z̃,
that (m ◦ n)1(α(a)) = β(b). This shows that l̃(t) ∈ Ỹ . That l̃ is tracked is now easy
to see.

As a result, we obtain a diagram of the form

(R̃, ρ̃)

²²

l̃∗(P̃ , π̃)

²²

//oo (P̃ , π̃)

²²

(Z̃, ζ̃) (T, τ)
k

oooo

l̃

// (Ỹ , υ̃).
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Given the definitions of ρ̃ and π̃, one sees that l̃∗(P̃ , π̃) → (R̃, ρ̃) is tracked. This
completes the proof. ¤

We are not able to show that the axiom (PS) concerning power types is inherited
by the assemblies. But the crucial point is that it will be inherited by its exact
completion, as we will now show.

Proposition 4.4.3 Assume the class of small maps in E satisfies (PS). Then (PS)
is valid in the realizability category EffE as well.

Proof. For the purpose of this proof, we introduce the notion of a weak power class
object. Recall that the power class object is defined as:

Definition 4.4.4 By a D-indexed family of subobjects of C, we mean a subobject
R ⊆ C ×D. A D-indexed family of subobjects R ⊆ C ×D will be called S-displayed
(or simply displayed), whenever the composite

R ⊆ C ×D //D

belongs to S. If it exists, a power class object PsX is the classifying object for the
displayed families of subobjects of X. This means that it comes equipped with a
displayed PsX-indexed family of subobjects of X, denoted by ∈X⊆ X × PsX (or
simply ∈, whenever X is understood), with the property that for any displayed Y -
indexed family of subobjects of X, R ⊆ X × Y say, there exists a unique map
ρ:Y //PsX such that the square

R
²²

²²

// ∈X
²²

²²

X × Y
id×ρ

// X × PsX

is a pullback.

If a classifying map ρ as in the above diagram exists, but is not unique, we call the
power class object weak. We will denote a weak power class object of X by Pws X.
We will show that the categories of assemblies has weak power class objects, which
are moreover “small” (i.e., the unique map to the terminal object is a display map).
This will be sufficient for proving the stability of (PS), as we will show in Lemma
4.4.5 below that real power objects in the exact completion are constructed from the
weak ones by taking a quotient.

Let (X,χ) be an assembly. We define an assembly (P, π) by

P = {(α ∈ PsX,φ:α //PsN) : (∀x ∈ α)(∃n ∈ N) [n ∈ φ(x)] and

(∃n ∈ N) (∀x ∈ α,m ∈ φ(x)) [n(m) ∈ χ(x)]},
π(α, φ) = {n ∈ N : (∀x ∈ α,m ∈ φ(x)) [n(m) ∈ χ(x)]}.
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We claim that this assembly together with the membership relation

(E, η) ⊆ (X,χ)× (P, π)

defined by

E = {(x ∈ X,α ∈ PsX,φ:α //PsN) : (α, φ) ∈ P and x ∈ α},
η(x, α, φ) = {n ∈ N : n0 ∈ φ(x) and n1 ∈ π(α, φ)}

is a weak power object in assemblies.

For let (S, σ) be a (standardly) displayed (Y, υ)-indexed family of subobjects of (X,χ).
This means that the underlying morphism f :S //Y is small, and σ = σ[f ] for a small
relation σ ⊆ N× S. Since f is small, we obtain a pullback diagram of the form

S
²²

²²

// ∈X
²²

²²

X × Y
id×s

// X × PsX

in E . We use this to build a similar diagram in the category of assemblies:

(S, σ)
²²

²²

// (E, η)
²²

²²

(X,χ)× (Y, υ)
id×s

// (X,χ)× (P, π),

where we have set

s(y) = (sy, λx ∈ sy.σ(x, y)).

One quickly verifies that with s being defined in this way, the square is actually a
pullback. This shows that (P, π) is indeed a weak power object.

If (X,χ) is a displayed assembly, so both X and χ ⊆ N × X are small, and (PS)
holds in E , then P and π are defined by bounded separation from small objects in
E . Therefore (P, π) is a displayed object. In the exact completion, the power class
object is constructed from this by taking a quotient (see Lemma 4.4.5 below), and is
therefore small. ¤

To complete the proof of the proposition above, we need to show the following lemma,
which is a variation on a result in [21] (Proposition 3.6.7).

Lemma 4.4.5 Let y: (F , T ) // (F , T ) be the exact completion of a category with
display maps. When Pws X is a weak power object for a T -small object X in F , then
the power class object in F exists; in fact, it can be obtained by quotienting yPws X
by extensional equality.
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Proof. We will drop occurences of y in the proof.

On Pws X one can define the equivalence relation

α ∼ β ⇔ (∀x ∈ X)[x ∈ α↔ x ∈ β].

As X is assumed to be T -small, the mono ∼⊆ Pws X × Pws X is small, and therefore
this equivalence relation has a quotient. We will write this quotient as PsX and prove
that it is the power class object of X in F . The membership relation between X and
PsX is given by

x ∈ [α]↔ x ∈ α,
which is clearly well defined. In particular,

∈X
²²

²²

// // ∈X
²²

²²

X ×Pws X X×q
// // X × PsX

is a pullback.

Let U ⊆ X × I // I be a T -displayed I-indexed family of subobjects of X. We need
to show that there is a unique map ρ: I //PsX such that (id× ρ)∗ ∈X= U .

Since U // I ∈ T , there is a map V // J ∈ T such that the outer rectangle in

V

f
²²

// // U
²²

²²

X × J //

²²

X × I

²²

J p
// // I,

is a covering square. Now also f :V //X × J ∈ T , and by replacing f by its image
if necessary and using the axiom (A10), we may assume that the top square (and
hence the entire diagram) is a pullback and f is monic.

So there is a map σ: J //Pws X in E with (id × σ)∗ ∈X= U , by the “universal”
property of Pws X in E . As

pj = pj′ ⇒ Vj = Vj′ ⊆ X ⇒ σ(j) ∼ σ(j′)

for all j, j ′ ∈ J , the map qσ coequalises the kernel pair of p. Therefore there is a map
ρ: I //PsX such that ρp = qσ:

V
²²

f
²²

// // U
²²

²²

// ∈X
²²

²²

X × J // //

²²

X × I

²²

// X × PsX

²²

J
p

// //

qσ
11

I
ρ

// PsX.
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The desired equality (id×ρ)∗ ∈X= U now follows. The uniqueness of this map follows
from the definition of ∼. ¤

The proof of this proposition completes the proof of our main result, Theorem 4.1.2.

4.5 Realizability models for set theory

Theorem 4.1.1 and Theorem 4.1.2 together imply that for any predicative category
with small maps (E ,S), the category (EffE ,SE) will contain a model of set theory.
As already mentioned in the introduction, many known constructions of realizability
models of intuitionistic (or constructive) set theory can be viewed as special cases
of this method. In addition, our result also shows that these constructions can be
performed inside weak metatheories such as CZF, or inside other sheaf or realizability
models.

To illustrate this, we will work out one specific example, the realizability model for
IZF described in McCarty [89] (we will comment on other examples in the remark
closing this section). To this end, let us start with the category Sets and fix an
inaccessible cardinal κ > ω. The cardinal κ can be used to define a class of small maps
S in Sets by declaring a morphism to be small, when all its fibres have cardinality
less than κ (these will be called the κ-small maps). Because the axiom (M) then
holds both in E and the category of assemblies, the exact completion Asm of the
assemblies is really the ordinary exact completion, i.e., the effective topos Eff . This
means we have defined a class of small maps in the effective topos. We will now verify
that this is the same class of small maps as defined in [76].

Lemma 4.5.1 The following two classes of small maps in the effective topos coincide:

(i) Those covered by a map f between partitioned assemblies for which the under-
lying map in E is κ-small (as in [76]).

(ii) Those covered by a display map f between assemblies (as above).

Proof. Immediate from Lemma 4.2.9, and the fact that the covering relation is tran-
sitive. ¤

By Theorem 4.1.1 we obtain:

Corollary 4.5.2 [76, 78] The effective topos contains a model V of IZF.

We investigate this model further in the following proposition, thus proving Corol-
lary 4.1.3.



128 CHAPTER 4. REALIZABILITY

Proposition 4.5.3 In V the following principles hold: (AC00), (RDC), (PA),
(MP), (CT). Moreover, V is uniform, and hence also (UP), (UZ), (IP) and (IPω)
hold.

Proof. The Axiom of Countable Choice for Numbers holds in V , because it holds in
the effective topos (recall the remarks on the relation between truth in V and truth
in the surrounding category from the introduction; in particular, that Int(N) ∼= ω).
The same applies to Markov’s Principle and Church’s Thesis (for Church’s Thesis it
is also essential that the model V and the effective topos agree on the meaning of
the T - and U -predicates). The axiom of Relativised Dependent Choice holds in the
effective topos and hence in V , if we assume it in the metatheory.

The Presentation Axiom holds, because (internally in Eff) every small object is cov-
ered by a small partitioned assembly (see Lemma 4.5.1 above), and the partitioned
assemblies are internally projective in Eff (using the axiom of choice; a more refined
argument would just use the Presentation axiom in the metatheory).

The Uniformity Principle, Unzerlegbarkeit and the Independence of Premisses prin-
ciples are immediate consequences of the fact that V is uniform (of course, Unzerleg-
barkeit follows immediately the Uniformity Principle; note that for showing that the
principles of (IP) and (IPω) hold, we use the same principles in the metatheory).

To show that V is uniform, we recall from [21] (Theorem 3.7.4) that the initial Ps-
algebra is constructed as a quotient of the W-type associated to a representation. In
Proposition 4.3.2, we have seen that the representation ρ can be chosen to be a mor-
phism between (partitioned) assemblies (D, δ) // (T, τ), where T is uniform (every
element in T is realized by 0). As the inclusion of Asm in Eff preserves W-types,
the associated W-type might just as well be computed in the category of assemblies.
Therefore it is constructed as in Proposition 4.3.4: for building the W-type associated
to a map f : (B, β) // (A,α), one first builds W (f) in Sets, and defines (by transfinite
induction) the realizers of an element supa(t) to be those natural numbers n coding
a pair 〈n0, n1〉 such that (i) n0 ∈ α(a) and (ii) for all b ∈ f−1{a} and m ∈ β(b), the
expression n1(m) is defined and a realizer of tb. Using this description, one sees that
a solution of the recursion equation f = 〈0, λn.f〉 realizes every tree. Hence W (ρ),
and its quotient V , are uniform in Eff . ¤

We will now show that V is in fact McCarty’s model for IZF, as was already
proved in [78]. For this, we will follow a strategy different from the one in [78]: we
will simply “unwind” the existence proof for V to obtain a concrete description. First,
we compute W = W (ρ) in assemblies (see the proof of Proposition 4.5.3 above). Its
underlying set consists of well-founded trees, with every edge labelled by a natural
number. Moreover, at every node the set of edges into that node should have car-
dinality less than κ. One could also describe it as the initial algebra of the functor
X 7→ Pκ(N×X), where Pκ(Y ) is the set of all subsets of Y with cardinality less than
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κ:

Pκ(N×W )
I

,,
W.

E
nn

Again, the realizers of a well-founded tree w ∈ W are defined inductively: n is a
realizer of w, if for every pair (m, v) ∈ E(w), the expression n(m) is defined and a
realizer of v.

The next step is dividing out, internally in Eff , by bisimulation:

w ∼ w′ ⇔ (∀(m, v) ∈ E(w)) (∃(m′, v′) ∈ E(w′))[ v ∼ v′] and vice versa.

The internal validity of this statement should be translated in terms of realizers. To
make the expression more succinct one could introduce the “abbreviation”:

n ° w′εw ⇔ (∃(m, v) ∈ E(w)) [n0 = m and n1 ° w′ ∼ v],

so that it becomes:

n ° w ∼ w′ ⇔ (∀(m, v) ∈ E(w))[n0(m) ↓ and n0(m) ° v εw′] and

(∀(m′, v′) ∈ E(w′)) [n1(m
′) ↓ and n1(m

′) ° v′ ε w].

By appealing to the Recursion Theorem, one can check that we have defined an
equivalence relation on W (ρ) in the effective topos (although this is guaranteed by
the proof of the existence theorem for V ). The quotient will be the set-theoretic
model V . So, its underlying set is W and its equality is given by the formula for ∼.
Of course, when one unwinds the definition of the internal membership ε ⊆ V × V ,
one obtains precisely the formula above.

Corollary 4.5.4 The following clauses recursively define what it means that a certain
statement is realized by a natural number n in the model V :

n ° w′εw ⇔ (∃(m, v) ∈ E(w)) [n0 = m and n1 ° w′ = v].

n ° w = w′ ⇔ (∀(m, v) ∈ E(w))[n0(m) ↓ and n0(m) ° v εw′] and

(∀(m′, v′) ∈ E(w′)) [n1(m
′) ↓ and n1(m

′) ° v′ ε w].

n ° φ ∧ ψ ⇔ n0 ° φ and n1 ° ψ.

n ° φ ∨ ψ ⇔ n = 〈0,m〉 and m ° φ, or n = 〈1,m〉 and m ° ψ.

n ° φ→ ψ ⇔ For all m ° φ,we have n ·m ↓ and n ·m ° ψ.

n ° ¬φ ⇔ There is no m such that m ° φ.

n ° ∃xφ(x) ⇔ n ° φ(a) for some a ∈ V.
n ° ∀xφ(x) ⇔ n ° φ(a) for all a ∈ V.

Proof. The internal logic of Eff is realizability, so the statements for the logical
connectives follow immediately. For the quantifiers one uses the uniformity of V . ¤

We conclude that the model V is isomorphic to that of McCarty [89], based on earlier
work by Friedman [51].
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Remark 4.5.5 There are many variations and extensions of the construction just
given, some of which we already alluded to in the introduction. First of all, instead of
working with a inaccessible cardinal κ, we can also work with the category of classes
in Gödel-Bernays set theory, and call a map small if its fibres are sets. (The slight
disadvantage of this approach is that one cannot directly refer to the effective topos,
but has to build up a version of that for classes first.)

More generally, one can of course start with any predicative category with a class
of small maps (E ,S). If (E ,S) satisfies condition (F), then so will its realizability
extension, and by Theorem 4.1.1, this will produce models of CZF rather than IZF.
For example, if (E ,S) is the syntactic category with small maps associated to the
the theory CZF (see [21] (Chapter 3)), the resulting realizability category (EffE ,SE)
will host a realizability model of CZF. The validity of the principles (AC00), (MP),
(CT), (UP), (UZ) in the model can be established in a similar manner as in Propo-
sition 4.5.3 (since these arguments can be formalised in CZF) and we obtain Corol-
lary 4.1.4 as a consequence. In fact, we expect an analysis like the comparison to
McCarty’s model given in [78] or above to show that this model is equivalent to
Rathjen’s syntactic version of a realizability model for CZF [104].

An alternative (or additional) idea would be to replace number realizability by
realizability for an arbitrary partial combinatory algebra A internal to E , provided
both the pca A and the domain of its application function {(a, b) ∈ A2 : a · b ↓}
are small. We are confident that no new complications would arise when developing
our account in this more general case. And very basic examples would arise in this
way, already in the “trivial” case where E is the topos of sheaves on the Sierpiński
space, in which case an internal pca A can be identified with a suitable map between
pca’s. The well-known Kleene-Vesley realizability [77] is in fact a special case of this
construction. More generally, one could start with a predicative category with small
maps (E ,S) and intertwine the construction of Theorem 4.1.2 with a similar result
for sheaves, announced in [24] (Chapter 2) and discussed in detail in Part III of this
series [25] (Chapter 5):

Theorem 4.5.6 Let (E ,S) be a predicative category with small maps satisfying (ΠS),
and C a small site with a basis in E. Then the category of sheaves ShE(C) carries a
natural class of maps SE [C], such that the pair (ShE(C),SE [C]) is again a predicative
category with small maps satisfying (ΠS). Moreover, this latter pair satisfies (M),
(F) or (PS), respectively, whenever the pair (E ,S) does.4

Thus, if C is a small site in E , and A a sheaf of pca’s on C, one probably obtains a
predicative category with small maps (E ′,S ′) = (EffShE(C)[A],SShE(C)[A]), as in the
case of Kleene-Vesley realizability [29].

Any open (resp. closed) subtopos defined by a small site in (E ′,S ′) would now
define another such pair (E ′′,S ′′), and hence a model of IZF or CZF if the conditions
of Theorem 4.1.1 are met by the original pair (E ,S). One might refer to its semantics

4See the footnote to Theorem 2.6.1 in Chapter 2 for a correction.
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as “relative realizability” (resp. “modified relative realizability”). It has been shown
by [29] that relative realizability [8, 109] and modified realizability [98] are special
cases of this, where ShE(C) is again sheaves on Sierpiński space (see also [99]).

4.6 A model of CZF in which all sets are subcount-

able

In this section we will show that CZF is consistent with the principle saying that
all sets are subcountable (this was first shown by Streicher in [111]; the account that
now follows is based on the work of the first author in [18]). For this purpose, we
consider again the effective topos Eff relative to the classical metatheory Sets. We
will show it carries another class of small maps.

Lemma 4.6.1 The following are equivalent for a morphism f :B //A in Eff .

1. In the internal logic of Eff it is true that all fibres of f are quotients of subobjects
of N (i.e., subcountable).

2. In the internal logic of Eff it is true that all fibres of f are quotients of ¬¬-closed
subobjects of N.

3. The morphism f fits into a diagram of the following shape

X × N

##GGG
GG

GG
GG

Yoooo // //

g

²²

B

f
²²

X // // A,

where the square is covering and Y is a ¬¬-closed subobject of X × N.

Proof. Items 2 and 3 express the same thing, once in the internal logic and once in
diagrammatic language. That 2 implies 1 is trivial.

1⇒ 2: This is an application of the internal validity in Eff of Shanin’s Principle [97,
Proposition 1.7]: every subobject of N is covered by a ¬¬-closed one. For let Y be a
subobject of X ×N in Eff/X. Since every object in the effective topos is covered by
an assembly, we may just as well assume that X is an assembly (X,χ). The subobject
Y ⊆ X ×N can be identified with a function Y :X ×N //PN for which there exists
a natural number r with the property that for every m ∈ Y (x, n), the value r(m) is
defined and codes a pair 〈k0, k1〉 with k0 ∈ χ(x) and k1 = n. One can then form the
assembly (P, π) with

P = { (x, n) ∈ X × N : n codes a pair 〈n0, n1〉 with n1 ∈ Y (x, n0) },
π(x, n) = {〈k0, k1〉 : k0 ∈ χ(x) and k1 = n},
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which is actually a ¬¬-closed subobject of X×N. P covers Y , clearly. Moreover, the
diagram

P // //

²²

²²

Z
²²

²²

X × N

))

X × N

uu
X

commutes. ¤

Let T be the class of maps having any of the equivalent properties in this lemma.

Remark 4.6.2 The morphisms belonging to T were called “quasi-modest” in [76]
and “discrete” in [70]. In the latter the authors prove another characterisation of T
due to Freyd: the morphisms belonging to T are those fibrewise orthogonal to the
subobject classifier Ω in Eff (Theorem 6.8 in loc.cit.).

Proposition 4.6.3 [76, Proposition 5.4] The class T is a representable class of small
maps in Eff satisfying (M) and (NS).

Proof. To show that T is a class of small maps, it is convenient to regard T as
Dcov (the class of maps covered by elements of D), where D consists of those maps
g:Y //X for which Y is a ¬¬-closed subobject of X ×N. It is clear that D satisfies
axioms (A1, A3-5) for a class of display maps, and (NS) as well (for (A5), one uses
that there is an isomorphism N×N ∼= N in Eff). It also satisfies axiom (A7), because
all maps g:Y //X in D are choice maps, i.e., internally projective as elements of
Eff/X. The reason is that in Eff the partitioned assemblies are projective, and every
object is covered by a partitioned assembly. So if X ′ is some partitioned assembly
covering X, then also X ′ × N is a partitioned assembly, since N is a partitioned
assembly and partitioned assemblies are closed under products. Moreover, Y ×X X ′

as a ¬¬-closed subobject of X ′×N is also a partitioned assembly. From this it follows
that g is internally projective. A representation π for D is obtained via the pullback

∈N // //

π
²²

∈N

²²

P¬¬(N) // // P(N).

Furthermore, it is obvious that all monomorphisms belong to T , since all the fibres
of a monic map are subsingletons, hence subcountable (internally in Eff).

Now it follows that T is a representable class of small maps satisfying (M) and (NS)
(along the lines of Proposition 3.2.14). ¤
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Proposition 4.6.4 [18] The class T satisfies (WS) and (F).

Proof. (Sketch.) We first observe that for any two morphisms f :Y //X and
g:Z //X belonging to D, the exponential (f g)X //X belongs to T . Without loss
of generality we may assume X is a (partitioned) assembly. If Y ⊆ X × N and
Z ⊆ X × N are ¬¬-closed subobjects, then every function h:Yx //Zx over some
fixed x ∈ X is determined uniquely by its realizer, and so all fibres of (f g)X //X
are subcountable.

To show the validity of (F), it suffices to show the existence of a generic T -displayed
mvss for maps g:B //A in D, with f :A //X also in D (in view of Lemma 3.2.15
and Lemma 3.6.23). Because f is a choice map, one can take the object of all sections
of g over X, which is subcountable by the preceding remark.

The argument for the validity of (WS) is similar. We use again that every composable
pair of maps g:B //A and f :A //X belonging to T fit into covering squares of
the form

B′

g′
²²

// // B

g

²²

A′ //

f ′

²²

A

f
²²

X ′
p

// // X,

with g′ and f ′ belonging to D. We may also assume that X ′ is a (partitioned) assem-
bly. The W-type associated to g′ in Eff/X ′ is subcountable, because every element
of W (g′)X′ in the slice over some fixed x ∈ X ′ is uniquely determined by its realizer.
The W-type associated to p∗g in the slice over X ′ is then a subquotient of W (g′)X′
(see the proof of Proposition 3.6.16), and therefore also subcountable. Finally, the
W-type associated to g in the slice over X is also subcountable, by descent for T .
¤

Theorem 4.6.5 The effective topos contains a model U of CZF and Full Separation,
refuting the power set axiom. In fact, the statement that all sets are subcountable is
valid in the model.

Proof. One obtains a model of CZF and Full separation by considering the initial
algebra U for the power class functor associated to T , which we will denote by Pt.

PtU
Int

++
U

Ext

ll

As we explained in the introduction, the statement that all sets are subcountable fol-
lows from the fact that, in the internal logic of the effective topos, all fibres of maps
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belonging to T are subcountable. But the principle that all sets are subcountable im-
mediately implies the non-existence of Pω, using Cantor’s Diagonal Argument. And
neither does P1 when 1 = {∅} is a set consisting of only one element. For if it would,
so would (P1)ω, by Subset Collection. But it is not hard to see that (P1)ω can be
reworked into the powerset of ω. ¤

Proposition 4.6.6 The choice principles (AC00), (RDC), (PA) are valid in the
model U . Moreover, as an object of the effective topos, U is uniform, and therefore
the principles (UP), (UZ), (IP) and (IPω) hold in U as well.

Proof. The proof is very similar to that of Proposition 4.5.3.

The Axioms of Countable Choice for Numbers and Relativised Dependent Choice U
inherits from the effective topos Eff . To see that in U every set is the surjective image
of a projective set, notice that every set is the surjective image of a ¬¬-closed subset
of ω, and these are internally projective in Eff .

To show that U is uniform it will suffice to point out that the representation can be
chosen to be of a morphism of assemblies with uniform codomain. Then the argument
will proceed as in Proposition 4.5.3. In the present case, the representation π can be
chosen to be of the form

∈N // //

π
²²

∈N

²²

P¬¬(N) // // P(N).

So therefore π is a morphism between assemblies, where P¬¬(N) = ∇PN, i.e. the
set of all subsets A of the natural numbers, with A being realized by 0, say, and
∈N= {(n,A) : n ∈ A}, with (n,A) being realized by n. So π is indeed of the desired
form, and U will be uniform. Therefore it validates the principles (UP), (UZ), (IP)
and (IPω). ¤

Remark 4.6.7 It follows from results in [94] that the Regular Extension Axiom from
[6] also holds in U . For in [94], the authors prove that the validity of the Regular
Extension Axiom in U follows from the axioms (WS) and (AMC) for T . (AMC)
is the Axiom of Multiple Choice (see [94]), which holds here because every f ∈ T fits
into a covering square

Y // //

g

²²

B

f
²²

X // // A,

where g:Y //X is a small choice map, hence a small collection map over X.
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The model U has appeared in different forms in the literature, its first appearance
being in Friedman’s paper [52]. We discuss several of its incarnations.

We have seen above that for any strongly inaccessible cardinal κ > ω, the effective
topos carries another class of small maps S. For this class of small maps, the initial
Ps-algebra V is precisely McCarty’s realizability model for IZF. It is not hard to
see that T ⊆ S, and therefore there exists a pointwise monic natural transformation
Pt ⇒ Ps. This implies that our present model U embeds into McCarty’s model.

PtU //

Int

²²

PtV
²²

²²

PsV
Int

²²

U // // V

Actually, U consists of those x ∈ V that V believes to be hereditarily subcount-
able (intuitively speaking, because V and Eff agree on the meaning of the word
“subcountable”, see the introduction). To see this, write

A = {x ∈ V : V |= x is hereditarily subcountable}.
A is a Pt-subalgebra of V , and it will be isomorphic to U , once one proves that
is initial. It is obviously a fixed point, so it suffices to show that it has no proper
Pt-subalgebras (see Theorem 3.7.3). So let B ⊆ A be a Pt-subalgebra of A, and define

W = {x ∈ V : x ∈ A⇒ x ∈ B}.
It is not hard to see that this is a Ps-subalgebra of V , so W = V and A = B.

This also shows that principles like Church’s Thesis (CT) and Markov’s Principle
(MP) are valid in U , since they are valid in McCarty’s model V .

One could also unravel the construction of the initial algebra for the power class
functor from [21] (Theorem 3.7.4) to obtain an explicit description, as we did in Sec-
tion 5. Combining the explicit description of a representation π in Proposition 4.6.6
with the observation that its associated W-type can be computed as in assemblies,
one obtains the following description of W = Wπ in Eff . The underlying set con-
sists of well-founded trees where the edges are labelled by natural numbers, in such
a way that the edges into a fixed node are labelled by distinct natural numbers. So
a typical element is of the form supA(t), where A is a subset of N and t is a function
A → W . An alternative would be to regard W as the initial algebra for the functor
X 7→ [N ⇀ X], where [N ⇀ X] is the set of partial functions from N to X. The
decorations (realizers) of an element w ∈ W are defined inductively: n is a realizer of
supA(t), if for every a ∈ A, the expression n(a) is defined and a realizer of t(a).

We need to quotient W , internally in Eff , by bisimulation:

supA(t) ∼ supA′(t
′) ⇔ (∀a ∈ A) (∃a′ ∈ A′) [ta ∼ t′a′] and vice versa.
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To translate this in terms of realizers, we again use an “abbreviation”:

n ° x ε supA(t) ⇔ n0 ∈ A and n1 ° x ∼ t(n0).

Then the equivalence relation ∼⊆ W ×W is defined by:

n ° supA(t) ∼ supA′(t
′) ⇔ (∀a ∈ A) [n0(a) ↓ and n0(a) ° ta ε supA′(t

′)] and

(∀a′ ∈ A′) [n1(a
′) ↓ and n1(a

′) ° t′a′ ε supA(t)].

The quotient in Eff is precisely U , which is therefore the pair consisting of the un-
derlying set of W together with ∼ as equality. One can verify that the internal
membership is again given by the “abbreviation” above.

Corollary 4.6.8 The following clauses recursively define what it means that a certain
statement is realized by a natural number n in the model U :

n ° x ε supA(t) ⇔ n0 ∈ A and n1 ° x = t(n0).

n ° supA(t) = supA′(t
′) ⇔ (∀a ∈ A) [n0(a) ↓ and n0(a) ° ta ε supA′(t

′)] and

(∀a′ ∈ A′) [n1(a
′) ↓ and n1(a

′) ° t′a′ ε supA(t)].

n ° φ ∧ ψ ⇔ n0 ° φ and n1 ° ψ.

n ° φ ∨ ψ ⇔ n = 〈0,m〉 and m ° φ, or n = 〈1,m〉 and m ° ψ.

n ° φ→ ψ ⇔ For all m ° φ, one has n ·m ↓ and n ·m ° ψ.

n ° ¬φ ⇔ There is no m such that m ° φ.

n ° ∃xφ(x) ⇔ n ° φ(a) for some a ∈ U.
n ° ∀xφ(x) ⇔ n ° φ(a) for all a ∈ U.

From this it follows that the model is the elementary equivalent to the one used for
proof-theoretic purposes by Lubarsky in [84].

Remark 4.6.9 In an unpublished note [111], Streicher builds a model of CZF based
an earlier work on realizability models for the Calculus of Constructions. In our
terms, his work can be understood as follows. He starts with the morphism τ in the
category Asm of assemblies, whose codomain is the set of all modest sets, with a
modest set realized by any natural number, and a fibre of this map over a modest set
being precisely that modest set (note that this map again has uniform codomain).
He proceeds to build the W-type associated to τ , takes it as a universe of sets, while
interpreting equality as bisimulation. One cannot literally quotient by bisimulation,
for which one could pass to the effective topos.

When considering τ as a morphism in the effective topos, it is not hard to see
that it is in fact another representation for the class of subcountable morphisms T :
for all fibres of the representation π also occur as fibres of τ , and all fibres of τ are
quotients of fibres of π. Therefore the model is again the initial Pt-algebra for the
class of subcountable morphisms T in the effective topos.
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Appendices

In Section 7 we list the axioms of IZF and CZF, as well as some constructivist
principles, while in Section 8 we recall the definition of a predicative category with
small maps.

4.7 Set-theoretic axioms

Set theory is a first-order theory with one non-logical binary relation symbol ε. Since
we are concerned with constructive set theories in this paper, the underlying logic
will be intuitionistic.

As is customary also in classical set theories like ZF, we will use the abbreviations
∃xεa (. . .) for ∃x (xεa ∧ . . .), and ∀xεa (. . .) for ∀x (xεa→ . . .). Recall that a formula
is called bounded, when all the quantifiers it contains are of one of these two forms.

4.7.1 Axioms of IZF

The axioms of IZF (see e.g. [46]) are:

Extensionality: ∀x (xεa↔ xεb )→ a = b.

Empty set: ∃x ∀y ¬yεx.

Pairing: ∃x ∀y ( yεx↔ y = a ∨ y = b ).

Union: ∃x∀y ( yεx↔ ∃zεa yεz ).

Set induction: ∀x (∀yεx φ(y)→ φ(x))→ ∀xφ(x).

Infinity: ∃a (∃xxεa ) ∧ (∀xεa ∃yεa xεy ).

Full separation: ∃x ∀y ( yεx↔ yεa ∧ φ(y) ), for any formula φ in which a does not
occur.

Power set: ∃x∀y ( yεx↔ y ⊆ a ), where y ⊆ a abbreviates ∀z (zεy → zεa).

Strong collection: ∀xεa ∃y φ(x, y)→ ∃bB(xεa, yεb)φ.

In the last axiom, the expression

B(xεa, yεb)φ.

has been used as an abbreviation for ∀xεa ∃yεb φ ∧ ∀yεb ∃xεa φ.
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4.7.2 Axioms of CZF

The set theory CZF, introduced by Aczel in [1], is obtained by replacing Full sepa-
ration by Bounded separation and the Power set axiom by Subset collection:

Bounded separation: ∃x∀y ( yεx ↔ yεa ∧ φ(y) ), for any bounded formula φ in
which a does not occur.

Subset collection: ∃c ∀z (∀xεa ∃yεb φ(x, y, z)→ ∃dεcB(xεa, yεd)φ(x, y, z)).

4.7.3 Constructivist principles

In this paper we will meet the following constructivist principles associated to recur-
sive mathematics and realizability. In writing these down, we have freely used the
symbol ω for the set of natural numbers, as it is definable in both CZF and IZF. We
also used 0 for zero and s for the successor operation.

Axiom of Countable Choice for Numbers (AC00)

∀iεω ∃xεω ψ(i, x)→ ∃f :ω //ω ∀iεω ψ(i, f(i)).

Axiom of Relativised Dependent Choice (RDC)

φ(x0) ∧ ∀x (φ(x)→ ∃y (ψ(x, y) ∧ φ(y)))→
∃a∃f :ω // a (f(0) = x0 ∧ ∀i ∈ ω φ(f(i), f(si))).

Presentation Axiom (PA) Every set is the surjective image of a projective set
(where a set a is projective, if every surjection b→ a has a section).

Markov’s Principle (MP)

∀nεω [φ(n) ∨ ¬φ(n)]→ [¬¬∃n ∈ ω φ(n)→ ∃nεω φ(n)].

Church’s Thesis (CT)

∀nεω ∃mεω φ(n,m)→ ∃eεω ∀nεω ∃m, pεω [T (e, n, p) ∧ U(p,m) ∧ φ(n,m)]

for every formula φ(u, v), where T and U are the set-theoretic predicates which
numeralwise represent, respectively, Kleene’s T and result-extraction predicate
U .

Uniformity Principle (UP)

∀x∃yεω φ(x, y)→ ∃yεω ∀xφ(x, y).
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Unzerlegbarkeit (UZ)

∀x (φ(x) ∨ ¬φ(x))→ ∀xφ ∨ ∀x¬φ.

Independence of Premisses for Sets (IP)

(¬θ → ∃xψ)→ ∃x (¬θ → ψ),

where θ is assumed to be closed.

Independence of Premisses for Numbers (IPω)

(¬θ → ∃nεω ψ)→ ∃nεω (¬θ → ψ),

where θ is assumed to be closed.

4.8 Predicative categories with small maps

In the present paper, the ambient category E is always assumed to be a positive
Heyting category. That means that E is

(i) cartesian, i.e., it has finite limits.

(ii) regular, i.e., morphisms factor in a stable fashion as a cover followed by a
monomorphism.

(iii) positive, i.e., it has finite sums, which are disjoint and stable.

(iv) Heyting, i.e., for any morphism f :Y //X the induced pullback functor

f ∗: Sub(X) // Sub(Y )

has a right adjoint ∀f .

Definition 4.8.1 A diagram in E of the form

D

f
²²

// C

g

²²

B p
// A

is called a quasi-pullback, when the canonical map D //B ×A C is a cover. If p is
also a cover, the diagram will be called a covering square. When f and g fit into a
covering square as shown, we say that f covers g, or that g is covered by f .

A class of maps in E satisfying the following axioms (A1-9) will be called a class
of small maps :
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(A1) (Pullback stability) In any pullback square

D

g

²²

// B

f
²²

C p
// A

where f ∈ S, also g ∈ S.

(A2) (Descent) If in a pullback square as above p is a cover and g ∈ S, then also
f ∈ S.

(A3) (Sums) If X //Y and X ′ //Y ′ belong to S, then so does X+X ′ //Y +Y ′.

(A4) (Finiteness) The maps 0 // 1, 1 // 1 and 1 + 1 // 1 belong to S.

(A5) (Composition) S is closed under composition.

(A6) (Quotients) In a commuting triangle

Z

h ÃÃ
@@

@@
@@

@
f

// // Y

g
~~}}

}}
}}

}

X,

if f is a cover and h belongs to S, then so does g.

(A7) (Collection) Any two arrows p:Y //X and f :X //A where p is a cover and
f belongs to S fit into a covering square

Z

g

²²

// Y
p

// // X

f
²²

B
h

// // A,

where g belongs to S.

(A8) (Heyting) For any morphism f :Y //X belonging to S, the right adjoint

∀f : Sub(Y ) // Sub(X)

sends small monos to small monos.

(A9) (Diagonals) All diagonals ∆X :X //X ×X belong to S.

In case S satisfies all these axioms, the pair (E ,S) will be called a category with small
maps. Axioms (A4,5,8,9) express that the subcategories SX of E/X whose objects
and arrows are both given by arrows belonging to the class S, are full subcategories
of E/X which are closed under all the operations of a positive Heyting category.
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Moreover, these categories together should form a stack on E with respect to the
finite cover topology according to the Axioms (A1-3). Finally, the class S should
satisfy the Quotient axiom (A6) (saying that if a composition

C // // B // A

belongs to S, so does B //A), and the Collection Axiom (A7). This axiom states
that, conversely, if B //A belongs to S and

C // // B

is a cover (regular epimorphism), then locally in A this cover has a small refinement.

The following weakening of a class of small maps will play a rôle as well: a class
of maps satisfying the axioms (A1), (A3-5), (A7-9), and

(A10) (Images) If in a commuting triangle

Z

f ÃÃ
@@

@@
@@

@
e // // Y

~~

m
~~}}

}}
}}

}

X,

e is a cover, m is monic, and f belongs to S, then m also belongs to S.

will be a called a class of display maps.

Whenever a class of small maps (resp. a class of display maps) S has been fixed,
an object X will be called small (resp. displayed), whenever the unique map from X
to the terminal object is small (resp. a display map).

In this paper, we will see the following additional axioms for a class of small (or
display) maps S.

(M) All monomorphisms belong to S.

(PE) For any object X the power class object PsX exists.

(PS) Moreover, for any map f :Y //X ∈ S, the power class object PXs (f) //X in
E/X belongs to S.

(ΠE) All morphisms f ∈ S are exponentiable.

(ΠS) For any map f :Y //X ∈ S, a functor

Πf : E/Y // E/X

right adjoint to pullback exists and preserves morphisms in S.

(WE) For all f :X //Y ∈ S, the W-type Wf associated to f exists.
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(WS) Moreover, if Y is small, also Wf is small.

(NE) E has a natural numbers object N.

(NS) Moreover, N // 1 ∈ S.

(F) For any φ:B //A ∈ S over some X with A //X ∈ S, there is a cover
q:X ′ //X and a map y:Y //X ′ belonging to S, together with a displayed
mvs P of φ over Y , with the following “generic” property: if z:Z //X ′ is any
map and Q any displayed mvs of φ over Z, then there is a map k:U //Y and
a cover l:U //Z with yk = zl, such that k∗P ≤ l∗Q as (displayed) mvss of φ
over U .

A detailed explanation of these axioms can be found in [21] (Chapter 3). Here we just
recall the notion of a multi-valued section (mvs) from [21] (Subsection 3.7.7), which
is used in the formulation of (F). A multi-valued section (mvs) for a map φ:B //A,
over some object X, is a subobject P ⊆ B such that the composite P //A is a cover.
We write

mvsX(φ)

for the set of all mvss of a map φ over X. This set obviously inherits the structure
of a partial order from Sub(B), in such a way that any morphism f :Y //X induces
an order-preserving map

mvsX(φ) // mvsY (f ∗φ),

obtained by pulling back along f . We will call a mvs P ⊆ B of φ:B //A displayed,
when the composite P //A belongs to S. In case φ belongs to S, this is equivalent
to saying that P is a bounded subobject of B.

A category with small maps (E ,S) will be called a predicative category with small
maps, if S satisfies the axioms (ΠE), (WE), (NS) and in addition:

(Representability) The class S is representable, in the sense that there is a small
map π:E //U (a representation) of which any other small map f :Y //X is
locally (in X) a quotient of a pullback. More explicitly: any f :Y //X ∈ S
fits into a diagram of the form

Y

f

²²

B

²²

//oooo E

π
²²

X A //oooo U,

where the left-hand square is covering and the right-hand square is a pullback.

(Exactness) For any equivalence relation

R // // X ×X
given by a small mono, a stable quotient X/R exists in E .



Chapter 5

Sheaves

5.1 Introduction

This is the third in a series of papers on algebraic set theory,1 the aim of which is
to develop a categorical semantics for constructive set theories, including predicative
ones, based on the notion of a “predicative category with small maps”.2 In the first
paper in this series [21] (Chapter 3) we discussed how these predicative categories
with small maps provide a sound and complete semantics for constructive set theory.
In the second one [23] (Chapter 4), we explained how realizability extensions of such
predicative categories with small maps can be constructed. The purpose of the present
paper is to do the same for sheaf-theoretic extensions. This program was summarised
in [24] (Chapter 2), where we announced the results that we will present and prove
here.

For the convenience of the reader, and also to allow a comparison with the work
by other researchers, we outline the main features of our approach. As said, the
central concept in our theory is that of a predicative category with small maps. It
axiomatises the idea of a category whose objects are classes and whose morphisms are
functions between classes, and which is moreover equipped with a designated class
of maps. The maps in the designated class are called small, and the intuitive idea
is that the fibres of these maps are sets (in a certain axiomatic set theory). Such
categories are in many ways like toposes, and to a large extent the purpose of our
series of papers is to develop a topos theory for these categories. Indeed, like toposes,
predicative categories with small maps turn out to be closed under realizability and
sheaves. Moreover, they provide models of (constructive) set theories, this being
in contrast to toposes which are most naturally seen as models of a typed version
of (constructive) higher-order arithmetic. Furthermore, the notion of a predicative
category with small maps is proof-theoretically rather weak: this allows us to model

1This chapter has been submitted for publication as B. van den Berg and I. Moerdijk, Aspects
of Predicative Algebraic Set Theory III: Sheaves.

2Accessible and well-written introductions to algebraic set theory are [7, 9, 107].
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set theories which are proof-theoretically weaker than higher-order arithmetic, such
as Aczel’s set theory CZF (see [1]). But at the same time, the notion of a predicative
category with small maps can also be strengthened, so that it leads to models of
set theories proof-theoretically stronger than higher-order arithmetic, like IZF. The
reason for this is that one can impose additional axioms on the class of small maps.
This added flexibility is an important feature of algebraic set theory.

A central result in algebraic set theory says that the semantics provided by pred-
icative categories with small maps is complete. More precisely, every predicative
category with small maps contains an object (“the initial ZF-algebra” in the termi-
nology of [76], or “the initial Ps-algebra” in the terminology of [21] (Chapter 3)3)
which carries the structure of a model of set theory. Which set-theoretic axioms hold
in this model depends on the properties of the class of small maps and on the logic of
the underlying category: in different situations, this initial ZF-algebra can be a model
of CZF, of IZF, or of ordinary ZF. (The axioms of the constructive set theores CZF
and IZF are recalled in Section 2 below.) The completeness referred to above results
from the fact that from the syntax of CZF (or (I)ZF ), we can build a predicative
category with small maps with the property that in the initial ZF-algebra in this cat-
egory, precisely those sentences are valid which are derivable from the axiom of CZF
(see [21] (Chapter 3)). (Completeness theorems of this kind go back to [106, 9]. One
should also mention that one can obtain a predicative category with small maps from
the syntax of Martin-Löf type theory: Aczel’s interpretation of CZF in Martin-Löf
type theory goes precisely via the initial ZF-algebra in this category. In fact, our
proof of the existence of the initial ZF-algebra in any predicative category with small
maps in [21] (Chapter 3) was modelled on Aczel’s interpretation, as it was in [94].)

In algebraic set theory we approach the construction of realizability categories and
of categories of sheaves in a topos-theoretic spirit; that is, we regard these realizability
and sheaf constructions as closure properties of predicative categories with small
maps. For realizability this means that starting from any predicative category with
small maps (E ,S) one can build a predicative realizability category with small maps
(EffE , EffS) over it. Inside both of these categories, we have models of constructive
set theory (CZF say), as shown in the following picture. Here, the vertical arrows are
two instances of the same construction of the initial ZF-algebra, applied to different
predicative categories with small maps:

(E ,S)

²²

// (EffE , EffS)

²²

model of CZF // realizability model of CZF

Traditional treatments of realizability either regard it as a model-theoretic con-
struction (which would correspond to the lower edge of the diagram), or as a proof-
theoretic interpretation (defining a realizability model of CZF inside CZF, as in

3Appendix A in [76] contains a proof of the fact that both these terms refer to the same object.
In the sequel we will use these terms interchangably.
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[104], for instance): the latter would correspond to the left-hand vertical arrow in the
special case where E is the syntactic category associated to CZF. So in a way our
treatment captures both constructions in a uniform way.

That realizability is indeed a closure of predicative categories with small maps
was the principal result of [23] (Chapter 4). The main result of the present paper is
that the same is true for sheaves, leading to an analogous diagram:

(E ,S)

²²

// (ShE , ShS)

²²

model of CZF // sheaf model of CZF

The main technical difficulty in showing that predicative categories with small maps
are closed under sheaves lies in showing that the axioms concerning inductive types
(W-types) and an axiom called fullness (needed to model the subset collection axiom
of CZF) are inherited by sheaf models. The proofs of these facts are quite long and
involved, and take up a large part of this paper (the situation for realizability was
very similar).

To summarise, in our approach there is one uniform construction of a model out
of a predicative category with small maps (E ,S), which one can apply to different
kinds of such categories, constructed using syntax, using realizability, using sheaves,
or any iteration or combination of these techniques.

We proceed to compare our results with those of other authors. Early work on
categorical semantics of set theory (for example, [48] and [46]) was concerned with
sheaf and realizability toposes defined over Sets. The same applies to the book which
introduced algebraic set theory [76]. In particular, to the best of our knowledge,
before our work a systematic account was lacking of iterations and combinations of
realizability and sheaf interpretations. In addition these earlier papers were concerned
exclusively with impredicative set theories, such as ZF or IZF: the only exception
seems to have been an early paper [60] by Grayson, treating models of predicative set
theory in the context of what would now be called formal topology.

The first paper extending the methods of algebraic set theory to predicative sys-
tems was [94]. The authors of this paper showed how categorical models of Martin-Löf
type theory (with universes) lead to models of CZF extended with a choice principle,
which they dubbed the Axiom of Multiple Choice (AMC). They established how
such categorical models of type theory are closed under sheaves, hence leading to
sheaf models of a strengthening of CZF. They did not develop a semantics for CZF
per se and relied on a technical notion of a collection site, which we manage to avoid
here (moreover, there was a mistake in their treatment of W-types of sheaves; we
correct this in Section 4.4 below, see also [22]).

Two accounts of presheaf models in the context of algebraic set theory have been
written by Gambino [55] and Warren [114]. In [55] Gambino shows how an earlier
(unpublished) construction of a model of constructive set theory by Dana Scott can
be regarded as an initial ZF-algebra in a category of presheaves, and that one can
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perform the construction in a predicative metatheory as well. Warren shows in [114]
that many of the axioms that we will discuss are inherited by categories of coalgebras
for a Cartesian comonad, a construction which includes presheaf models as a special
case. But note that neither of these authors discusses the technically complicated
axioms concerning W-types and Fullness, as we will do in Sections 3 and 4 below.

In his PhD thesis [54], Gambino gave a systematic account of Heyting-valued
models for CZF (see also [56]). This work was in the context of formal topology (es-
sentially, sites whose underlying categories are posets). He has subsequently worked
on generalising this to arbitrary sites and on putting this in the context of algebraic
set theory (see [57], and [12] together with Awodey, Lumsdaine and Warren). In these
papers the authors work with a slightly different notion of a predicative category with
small maps (they assume full exactness, whereas we work with bounded exactness).
Again, we improve on this by proving stability under the sheaf construction of the
axioms for W-types and for fullness.

We conclude this introduction by outlining the organisation of our paper. In
Section 2 we recall the main definitions from [24, 21] (Chapters 2 and 3). We will
introduce the axioms for a class of small maps needed to obtain models of CZF and
IZF. We will discuss the fullness axiom, the axioms concerning W-types and the
axiom of multiple choice in some detail, as these are the most complicated technically
and our main results, which we formulate precisely in Section 2.5, are concerned with
these axioms.

In Section 3 we show that predicative categories with small maps are closed under
presheaves and that all the axioms that we have listed in Section 2 are inherited by
such presheaf models. An important part of our treatment is that we distinguish
between two classes of small maps: the “pointwise” and “locally” small ones. It turns
out that for certain axioms it is easier to show that they are inherited by pointwise
small maps while for other axioms it is easier to show that they are inherited by
locally small maps, and therefore it is an important result that these classes of maps
coincide.

We follow a similar strategy in Section 4, where we discuss sheaves: we again
distinguish between two classes of maps, where for some axioms it is easier to use one
definition, while for other axioms it turns out to be easier to use the other. To show
that these two classes coincide we use the fullness axiom and assume that the site has a
basis.4 This section also contains our main technical results: that sheaf models inherit
the fullness axiom, as well as the axioms concerning W-types.5 Strictly speaking our
results for presheaves in Section 3 are special cases of our results in Section 4. We
believe, however, that it is useful to give direct proofs of the results for presheaves,

4In [24] (Chapter 2) we claimed that (instead of fullness) the exponentiation axiom would suffice
to establish this result, but that might not be correct.

5One subtlety arises when we try to show that an axiom saying that certain inductives types are
small (axiom (WS) to be precise) is inherited by sheaf models: we show this using the axiom of
multiple choice. In fact, we suspect that something of this sort is unavoidable and one has to go
beyond CZF proper to show that its validity is inherited by sheaf models.
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and in many cases it is helpful to see how the proof goes in the (easier) presheaf case
before embarking on the more involved proofs in the sheaf case.

Finally, in Section 5 we give explicit descriptions of the sheaf models of construc-
tive set theory our results lead to. We also point out the connection to forcing for
classical set theories.

This will complete our program for developing an abstract semantics of construc-
tive set theory, in particular of Aczel’s CZF, as outlined [24] (Chapter 2). As a result
topos-theoretic insights and categorical methods can be used in the study of construc-
tive set theories. For instance, one can obtain consistency and independence results
using sheaf and realizability models or by a combination of these interpretations.
In future work, we will concentrate on derived rules and show how sheaf-theoretic
methods can be used to show that the fan rule as well as certain continuity rules are
admissible in (extensions of) CZF.

The main results of this paper were presented by the second author in a tutorial
on categorical logic at the Logic Colloquium 2006 in Nijmegen. We are grateful to
the organisers of the Logic Colloquium for giving one of the authors this opportu-
nity. The final draft of this paper was completed during a stay of the first author at
the Mittag-Leffler Institute in Stockholm. We would like to thank the Institute and
the organisers of the program in Mathematical Logic in Fall 2009 for awarding him
a grant which enabled him to complete this paper in such excellent working condi-
tions. In addition, we would like to acknowledge the helpful discussions we had with
Steve Awodey, Nicola Gambino, Jaap van Oosten, Erik Palmgren, Thomas Streicher,
Michael Warren, and especially Peter LeFanu Lumsdaine (see Remark 5.4.12 below).

5.2 Preliminaries

5.2.1 Review of Algebraic Set Theory

In this section we recall the main features of our approach to Algebraic Set Theory
from [24, 21] (Chapters 2 and 3).

We will always assume that our ambient category E is a positive Heyting category.
That means that E is

(i) Cartesian, i.e., it has finite limits.

(ii) regular, i.e., morphisms factor in a stable fashion as a cover followed by a
monomorphism.6

(iii) positive, i.e., it has finite sums, which are disjoint and stable.

6Recall that a map f :B → A is a cover, if the only subobject of A through which it factors,
is the maximal one; and that f is a regular epimorphism if it is the coequalizer of its kernel pair.
These two classes coincide in regular categories (see [73, Proposition A1.3.4]).
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(iv) Heyting, i.e., for any morphism f :Y //X the induced pullback functor

f ∗: Sub(X) // Sub(Y )

has a right adjoint ∀f .

This means that E is rich enough to interpret first-order intuitionistic logic. Such
a category E will be called a category with small maps, if it comes equipped with a
class of maps S satisfying a list of axioms. To formulate these, we use the notion of
a covering square.

Definition 5.2.1 A diagram in E of the form

D

f
²²

// C

g

²²

B p
// A

is called a quasi-pullback, when the canonical map D //B ×A C is a cover. If p is
also a cover, the diagram will be called a covering square. When f and g fit into a
covering square as shown, we say that f covers g, or that g is covered by f .

Definition 5.2.2 A class of maps in E satisfying the following axioms (A1-9) will
be called a class of small maps :

(A1) (Pullback stability) In any pullback square

D

g

²²

// B

f
²²

C p
// A

where f ∈ S, also g ∈ S.

(A2) (Descent) If in a pullback square as above p is a cover and g ∈ S, then also
f ∈ S.

(A3) (Sums) If X //Y and X ′ //Y ′ belong to S, then so does X+X ′ //Y +Y ′.

(A4) (Finiteness) The maps 0 // 1, 1 // 1 and 1 + 1 // 1 belong to S.

(A5) (Composition) S is closed under composition.

(A6) (Quotients) In a commuting triangle

Z

h ÃÃ
@@

@@
@@

@
f

// // Y

g
~~}}

}}
}}

}

X,

if f is a cover and h belongs to S, then so does g.
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(A7) (Collection) Any two arrows p:Y //X and f :X //A where p is a cover and
f belongs to S fit into a covering square

Z

g

²²

// Y
p

// // X

f
²²

B
h

// // A,

where g belongs to S.

(A8) (Heyting) For any morphism f :Y //X belonging to S, the right adjoint to
pullback

∀f : Sub(Y ) // Sub(X)

sends small monos to small monos.

(A9) (Diagonals) All diagonals ∆X :X //X ×X belong to S.

For further discussion of these axioms we refer to [21] (Chapter 3).

A pair (E ,S) in which S is a class of small maps in E will be called a category with
small maps. In such categories with small maps, objects A will be called small, if the
unique map from A to the terminal object is small. A subobject A ⊆ X will be called
a small subobject if A is a small object. If any of its representing monomorphisms
m:A→ X is small, they all are and in this case the subobject will be called bounded.

Remark 5.2.3 In the sequel we will often implicitly use that categories with small
maps are stable under slicing. By this we mean that for any category with small
maps (E ,S) and object X in E , the pair (E/X,S/X), with S/X being defined by

f ∈ S/X ⇔ ΣXf ∈ S,
is again a category with small maps (here ΣX is the forgetful functor E/X → E
sending an object p:A→ X in E/X to A and morphisms to themselves). Moreover,
any of the further axioms for classes of small maps to be introduced below are stable
under slicing, in the sense that their validity in the slice over 1 implies their validity
in every slice.

Remark 5.2.4 A very useful feature of categories of small maps, and one we will
frequently exploit, is that they satisfy an internal form of bounded separation. A
precise statement is the following: if φ(x) is a formula in the internal logic of E with
free variable x ∈ X, all whose basic predicates are interpreted as bounded subobjects
(note that this includes all equalities, by (A9)), and which contains existential and
universal quantifications ∃f and ∀f along small maps f only, then

A = {x ∈ X : φ(x)} ⊆ X

defines a bounded subobject of X. In particular, smallness of X implies smallness of
A.
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Definition 5.2.5 A category with small maps (E ,S) will be called a predicative cat-
egory with small maps, if the following axioms hold:

(ΠE) All morphisms f ∈ S are exponentiable.

(WE) For all f :X //Y ∈ S, the W-type Wf associated to f exists.

(NE) E has a natural numbers object N.

(NS) Moreover, N // 1 ∈ S.

(Representability) There is a small map π:E //U (the “universal small map”)
such that any f :Y //X ∈ S fits into a diagram of the form

Y

f

²²

B

²²

//oooo E

π
²²

X A //oooo U,

where the left hand square is covering and the right hand square is a pullback.

(Bounded exactness) For any equivalence relation

R // // X ×X
given by a small mono, a stable quotient X/R exists in E .

(For a detailed discussion of these axioms we refer again to [21] (Chapter 3); W-types
and the axiom (WE) will also be discussed in Section 2.3 below.)

In predicative categories with small maps one can derive the existence of a power
class functor, classifying small subobjects:

Definition 5.2.6 By a D-indexed family of subobjects of C, we mean a subobject
R ⊆ C ×D. A D-indexed family of subobjects R ⊆ C ×D will be called S-displayed
(or simply displayed), whenever the composite

R ⊆ C ×D //D

belongs to S. If it exists, the power class object PsX is the classifying object for
the displayed families of subobjects of X. This means that it comes equipped with
a displayed PsX-indexed family of subobjects of X, denoted by ∈X⊆ X × PsX
(or simply ∈, whenever X is understood), with the property that for any displayed
Y -indexed family of subobjects of X, R ⊆ X × Y say, there exists a unique map
ρ:Y //PsX such that the square

R
²²

²²

// ∈X
²²

²²

X × Y
id×ρ

// X × PsX

is a pullback.
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Proposition 5.2.7 (Corollary 3.6.11) In a predicative category with small maps all
power class objects exist.

Moreover, one can show that the assignment X 7→ PsX is functorial and that this
functor has an initial algebra.

Theorem 5.2.8 (Theorem 3.7.4) In a predicative category with small maps the Ps-
functor has an initial algebra.

The importance of this result resides in the fact that this initial algebra can be used
to model a weak intuitionistic set theory: if V is the initial algebra and E:V → PsV
is the inverse of the Ps-algebra map on V (which is an isomorphism, since V is an
initial algebra), then one can define a binary predicate ε on V by setting

xεy ⇔ x ∈V E(y),

where ∈V⊆ V × PsV derives from the power class structure on PsV . The resulting
structure (V, ε) models a weak intuitionistic set theory, which we have called RST
(for rudimentary set theory), consisting of the following axioms:

Extensionality: ∀x (xεa↔ xεb )→ a = b.

Empty set: ∃x ∀y ¬yεx.

Pairing: ∃x ∀y ( yεx↔ y = a ∨ y = b ).

Union: ∃x∀y ( yεx↔ ∃zεa yεz ).

Set induction: ∀x (∀yεx φ(y)→ φ(x))→ ∀xφ(x).

Bounded separation: ∃x∀y ( yεx ↔ yεa ∧ φ(y) ), for any bounded formula φ in
which a does not occur.

Strong collection: ∀xεa ∃y φ(x, y)→ ∃bB(xεa, yεb)φ, where B(xεa, yεb)φ abbrevi-
ates

∀xεa ∃yεb φ ∧ ∀yεb ∃xεa φ.

Infinity: ∃a (∃xxεa ) ∧ (∀xεa ∃yεa xεy ).

In fact, as shown in [21] (Chapter 3), the initial Ps-algebras in predicative categories
of small maps form a complete semantics for the set theory RST. To obtain complete
semantics for better known intuitionistic set theories, like IZF and CZF, one needs
further requirements on the class of small maps S. For example, the set theory IZF
is obtained from RST by adding the axioms

Full separation: ∃x ∀y ( yεx↔ yεa ∧ φ(y) ), for any formula φ in which a does not
occur.
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Power set: ∃x∀y ( yεx↔ y ⊆ a ), where y ⊆ a abbreviates ∀z (zεy → zεa).

And to obtain a sound and complete semantics for IZF one requires of ones predicative
category of small maps that it satisfies:

(M) All monomorphisms belong to S.

(PS) For any map f :Y //X ∈ S, the power class object PXs (f) //X in E/X
belongs to S.

The set theory CZF, introduced by Aczel in [1], is obtained by adding to RST a
weakening of the power set axiom called subset collection:

Subset collection: ∃c ∀z (∀xεa ∃yεb φ(x, y, z)→ ∃dεcB(xεa, yεd)φ(x, y, z)).

For a suitable categorical analogue, see Section 2.3 below.

For the sake of completeness we also list the following two axioms, saying that
certain Π-types and W-types are small. (The first therefore corresponds to the ex-
ponentiation axiom in set theory; we will say more about the second in Section 2.2
below.)

(ΠS) For any map f :Y //X ∈ S, a functor

Πf : E/Y // E/X

right adjoint to pullback exists and preserves morphisms in S.

(WS) For all f :X //Y ∈ S with Y small, the W-type Wf associated to f is small.

5.2.2 W-types

In a predicative category with small maps (E ,S) the axiom (ΠE) holds and therefore
any small map f :B //A is exponentiable. It therefore induces an endofunctor on
E , which will be called the polynomial functor Pf associated to f . The quickest way
to define it is as the following composition:

C ∼= C/1 B∗ // C/B Πf
// C/A ΣA // C/1 ∼= C.

In more set-theoretic terms it could be defined as:

Pf (X) =
∑
a∈A

XBa .

Whenever it exists, the initial algebra for the polynomial functor Pf will be called
the W-type associated to f .
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Intuitively, elements of a W-type are well-founded trees. In the category of sets,
all W-types exist, and the W-types have as elements well-founded trees, with an
appropriate labelling of its edges and nodes. What is an appropriate labelling is
determined by the branching type f :B //A: nodes should be labelled by elements
a ∈ A, edges by elements b ∈ B, in such a way that the edges into a node labelled by
a are enumerated by f−1(a). The following picture hopefully conveys the idea:

. . . . . . . . . . . .
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c

This set has the structure of a Pf -algebra: when an element a ∈ A is given, together
with a map t:Ba

//Wf , one can build a new element supat ∈ Wf , as follows. First
take a fresh node, label it by a and draw edges into this node, one for every b ∈ Ba,
labelling them accordingly. Then on the edge labelled by b ∈ Ba, stick the tree tb.
Clearly, this sup operation is a bijective map. Moreover, since every tree in the W-
type is well-founded, it can be thought of as having been generated by a possibly
transfinite number of iterations of this sup operation. That is precisely what makes
this algebra initial. The trees that can be thought of as having been used in the
generation of a certain element w ∈ Wf are called its subtrees. One could call the
trees tb ∈ Wf the immediate subtrees of supat, and w′ ∈ Wf a subtree of w ∈ Wf if
it is an immediate subtree, or an immediate subtree of an immediate subtree, or. . . ,
etc. Note that with this use of the word subtree, a tree is never a subtree of itself (so
proper subtree might have been a better terminology).

We recall that there are two axioms concerning W-types:

(WE) For all f :X //Y ∈ S, the W-type Wf associated to f exists.

(WS) Moreover, if Y is small, also Wf is small.

Maybe it is not too late to point out the following fact, which explains why these
axioms play no essential role in the impredicative setting:

Theorem 5.2.9 Let (E ,S) be a category with small maps satisfying (NS) and (M).

1. If S satisfies (PE), then it also satisfies (WE).

2. If S satisfies (PS), then it also satisfies (WS).

Proof. Note that in a category with small maps satisfying (M) and (PE) the object
Ps(1) is a subobject classifier. Therefore the first result can be shown along the lines
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of Chapter 3 in [76]. For showing the second result, one simply copies the argument
why toposes with nno have all W-types from [94]. ¤

In the sequel we will need the following result. We will write P+
s X for the object

of small inhabited subobjects of X:

P+
s X = {A ∈ PsX : ∃x ∈ X (x ∈ A)}.

Theorem 5.2.10 For any small map f :B → A in a predicative category with small
maps (E ,S), the endofunctors on E defined by

Φ = Pf ◦ Ps and Ψ = Pf ◦ P+
s

have initial algebras.

Remark 5.2.11 Before we sketch the proof of Theorem 5.2.10, it might be good to
explain the intuitive meaning of these initial algebras. In fact, they are variations
on the W-types explained above: they are also classes of well-founded trees, but the
conditions on the labellings of the nodes and edges are slightly different. It is still
the case that nodes are labelled by elements a ∈ A and edges with elements b ∈ B,
in such a way that if b ∈ B decorates a certain edge, then f(b) decorates the node it
points to. But whereas in a W-type, every node in a well-founded tree labelled with
a ∈ A has for every b ∈ f−1(a) precisely one edge into it labelled with b, in the initial
algebras for Φ there are set-many, and possibly none, and in the initial algebra for Ψ
there are set-many, but at least one.

Proof. The proof of Theorem 5.2.10 is a variation on that of Theorem 3.7.4 and
therefore we will only sketch the argument.

Fix a universal small map π:E → U , and write

S = {(a ∈ A, u ∈ U, φ:Eu → Ba)}.

Let K be the W-type in E associated to the map g fitting into the pullback square

R

g

²²

// E

π

²²

S
proj

// U.

An element k ∈ K is therefore of the form sup(a,u,φ)t, where (a, u, φ) ∈ S is the label
of the root of k and t:Eu → K is the function that assigns to every element e ∈ Eu
the tree that is attached to the root of k with the edge labelled with e. Define the
following equivalence relation on K by recursion: sup(a,u,φ)t ∼ sup(a′,u′,φ′)t

′, if a = a′

and
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for all e ∈ Eu there is an e′ ∈ Eu′ such that φ(e) = φ′(e′) and t(e) ∼ t′(e′),
and for all e′ ∈ Eu′ there is an e ∈ Eu such that φ(e) = φ′(e′) and t(e) ∼
t′(e′).

(The existence of this relation ∼ can be justified using the methods of [17] or Chapter
3. See Theorem 3.7.4 for instance.) The equivalence relation is bounded (one proves
this by induction) and its quotient is the initial algebra for Φ.

The initial algebra for Ψ is constructed in the same way, but with S defined as

S = {(a ∈ A, u ∈ U, φ:Eu → Ba) : φ is a cover}.
¤

5.2.3 Fullness

In order to express the subset collection axiom, introduced by Peter Aczel in [1],
in diagrammatic terms, it is helpful to consider an axiom which is equivalent to it
called fullness (see [6]). For our purposes we formulate fullness using the notion of
a multi-valued section: a multi-valued section (or mvs) of a function φ: b // a is a
multi-valued function s from a to b such that φs = ida (as relations). Identifying s
with its image, this is the same as a subset p of b such that p ⊆ b // a is surjective.
For us, fullness states that for any such φ there is a small family of mvss such that
any mvs contains one in this family. Written out formally:

Fullness: ∃z (z ⊆ mvs(f) ∧ ∀xεmvs(f)∃cεz (c ⊆ x)).

Here, mvs(f) is an abbreviation for the class of all multi-valued sections of a function
f : b // a, i.e., subsets p of b such that ∀xεa ∃yεp f(y) = x.

In order to reformulate this diagrammatically, we say that a multi-valued section
(mvs) for a small map φ:B //A, over some object X, is a subobject P ⊆ B such
that the composite P //A is a small cover. (Smallness of this map is equivalent to
P being a bounded subobject of B.) We write

mvsX(φ)

for the set of all mvss of a map φ. This set obviously inherits the structure of a partial
order from Sub(B). Note that any morphism f :Y //X induces an order-preserving
map

f ∗: mvsX(φ) // mvsY (f ∗φ),

obtained by pulling back along f . To avoid overburdening the notation, we will
frequently talk about the map φ over Y , when we actually mean the map f ∗φ over
Y , the map f always being understood.

The categorical fullness axiom now reads:
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(F) For any φ:B //A ∈ S over some X with A //X ∈ S, there is a cover
q:X ′ //X and a map y:Y //X ′ belonging to S, together with an mvs P
of φ over Y , with the following “generic” property: if z:Z //X ′ is any map
and Q any mvs of φ over Z, then there is a map k:U //Y and a cover l:U //Z
with yk = zl such that k∗P ≤ l∗Q as mvss of φ over U .

It is easy to see that in a set-theoretic context fullness is a consequence of the
powerset axiom (because then the collection of all multi-valued sections of a map
φ: b → a forms a set) and implies the exponentiation axiom (because if z is a set
of mvss of the projection p: a × b → a such that any mvs is refined by one is this
set, then the set of functions from a to b can be constructed from z by selecting the
univalued elements, i.e., those elements that are really functions). Showing that in a
categorical context (F) follows from (PS) and implies (ΠS) is not much harder and
we will therefore not write out a formal proof.

In the sequel we will use the following two lemmas concerning the fullness axiom:

Lemma 5.2.12 Suppose we have the following diagram

Y2

f2
²²

β
// Y1

f1
²²

X2
//

!! !!B
BB

BB
BB

B X1

²²²²

X,

in which the square is a quasi-pullback and f1 and f2 are small. When P is a “generic”
mvs for a map φ:B //A over X living over Y1 (“generic” as in the statement of the
fullness axiom), then β∗P is also a generic mvs for φ, living over Y2.

Proof. A simple diagram chase. ¤

Lemma 5.2.13 Suppose we are given a diagram of the form

B0
// //

ψ
²²

B

φ

²²

A0
// //

i
²²

A

j
²²

X0 p
// // X,

in which both squares are covering and all the vertical arrows are small. If a generic
mvs for ψ exists over X0, then also a generic mvs for φ exists over X.

Proof. This was Lemma 3.6.23. ¤
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5.2.4 Axiom of multiple choice

For showing that (WS) is preserved by sheaf extension, we seem to need additional
axioms. In this paper, we will rely on the axiom of multiple choice (AMC) in the
sense of [27] (Chapter 7) (this version is slightly weaker than the version in [94]; see
Chapter 7 for a comparison) and show that in the presence of this axiom, (WS) is
preserved (that will be Theorem 5.4.19 below).

One can give a succinct formulation of the axiom of multiple choice using the
notion of a collection square.

Definition 5.2.14 A square

D
σ //

²²

B

²²

C ρ
// A

will be called a collection square, if it is a covering square and, moreover, the following
statement holds in the internal logic: for all a ∈ A and covers q:E → Ba there is a
c ∈ ρ−1(a) and a map p:Dc → E such that the triangle

E
q

ÃÃ
AA

AA
AA

AA

Dc

p
>>}}}}}}}}

σc
// Ba

commutes. Diagrammatically, one can express the second condition by asking that
any map X → A and any cover E → X ×A B fit into a cube

Y ×C D //

²²

ÄÄÄÄ
Ä

E // // X ×A B

²²

ÄÄÄÄ
Ä

D // //

²²

B

²²

Y // //

ÄÄÄÄ
Ä

X,
ÄÄÄÄÄ

C // // A

such that the face on the left is a pullback and the face at the back is covering.

(AMC) (Axiom of multiple choice) For any small map f :Y //X, there is a cover
q:A //X such that q∗f fits into a collection square in which all maps are small:

D

²²

// // A×X Y
q∗f

²²

// // Y

f

²²

C // // A q
// // X.

In the internal logic (AMC) is often applied in the following form:
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Lemma 5.2.15 In a predicative category with small maps in which (AMC) holds,
the following principle holds in the internal logic: any small map f :B //A between
small objects fits into a collection square

D
q

//

g

²²

B

f
²²

C p
// A

in which all maps and objects are small.

Proof. This will be proved in set-theoretic terms in Proposition 7.2.4. ¤

Proposition 5.2.16 Let (E ,S) be a predicative category with small maps. If S sat-
isfies the axioms (AMC) and (ΠS), then it satisfies the axiom (F) as well.

Proof. We argue internally and use Lemma 5.2.15. So suppose that AMC holds and
f :B → A is a small map between small objects. We need to find a small collection
of mvss {Py : y ∈ Y } such that any mvs of f is refined by one in this family.

We apply Lemma 5.2.15 to A→ 1 to obtain a covering square of the form

D
q

//

²²

A

²²

C // 1,

such that for any cover p:E → A we find a c ∈ C and a map t:Dc → E with pt = qc.
Now let Y be the collection of all pairs (c, s) with c in C and s a map Dc → B such
that fs = qc, and let Py be the image of the map s:Dc → B. Then Py is an mvs,
because the square above is covering, and Y is small, because (ΠS) holds.

So if n:Q→ B is any mono such that fn:Q→ B → A is a cover, then there exists an
element c ∈ C and a map g:Dc → Q such that fng = qc. Set s = ng and y = (c, s).
Then Py = Im(g) is contained in Q. ¤

5.2.5 Main results

After all these definitions, we can formulate our main result. Let A be either {(F)},
or {(AMC), (ΠS), (WS)}, or {(M), (PS)}.

Theorem 5.2.17 Let (E ,S) be a predicative category with small maps for which all
the axioms in A hold and let (C,Cov) be an internal Grothendieck site in E, such that
the codomain map C1 → C0 is small and a basis for the topology exists. Then in the
category of internal sheaves ShE(C) one can identify a class of maps making it into a
predicative category with small maps for which the axioms in A holds as well.
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In combination with Theorem 5.2.8 this result can be used to prove the existence
of sheaf models of various constructive set theories:

Corollary 5.2.18 Suppose that (E ,S) is a predicative category with small maps sat-
isfying the axiom (F) and suppose that (C,Cov) is an internal Grothendieck site in
E, such that the codomain map C1 → C0 is small and a basis for the topology exists.
Then the initial Ps-algebra in ShE(C) exists and is a model of CZF. If, moreover, the
axioms (M) and (PS) hold in E, then the initial Ps-algebra in ShE(C) is a model of
IZF.

5.3 Presheaves

In this section we show that predicative categories with small maps are closed under
presheaves. More precisely, we show that if (E ,S) is a predicative category with small
maps and C is an internal category in E , then inside the category PshE(C) of internal
presheaves one can identify a class of maps such that PshE(C) becomes a predicative
category with small maps. Our argument proceeds in two steps. First, we need to
identify a suitable class of maps in a category of internal presheaves. We take what we
will call the pointwise small maps of presheaves. To prove that these pointwise small
maps satisfy axioms (A1-9), we need to assume that the codomain map of C is small
(note that the same assumption was made in [114]). Subsequently, we show that the
validity in the category with small maps (E ,S) of any of the axioms introduced in
the previous section implies its validity in any category of internal presheaves over
(E ,S). To avoid repeating the convoluted expression “the validity of axiom (X) in a
predicative category with small maps implies its validity in any category of internal
presheaves over it”, we will write “(X) is inherited by presheaf models” or “(X) is
stable under presheaf extensions” to express this.

5.3.1 Pointwise small maps in presheaves

Throughout this section, we work in a predicative category with small maps (E ,S)
in which we are given an internal category C, whose codomain map

cod: C1 // C0
is small. Here we have written C0 for the object of objects of C and C1 for its object
of arrows. In addition, we will write PshE(C) for the category of internal presheaves,
and π∗ for the forgetful functor:

π∗: PshE(C) // E/C0.

In the sequel, we will use capital letters for presheaves and morphisms of presheaves,
and lower case letters for objects and morphisms in C.
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We will also employ the following piece of notation. For any map of presheaves
F :Y → X and element x ∈ X(a), we set

Y M
x : = { (f : b→ a ∈ C1, y ∈ Y (b)) : Fb(y) = x · f }.

(The capital letter M stands for the maximal sieve on b: for this reason, this piece
of notation is consistent with the one to be introduced in Section 4.4.) Occasionally,
we will regard Y M

x as a presheaf: in that case, its fibre at b ∈ C0 is

Y M
x (b) = { (f : b→ a ∈ C1, y ∈ Y (b)) : Fb(y) = x · f },

and the restriction of an element (f, y) ∈ Y M
x (b) along g: c→ b is given by

(f, y) · g = (fg, y · g).

A map of presheaves F :Y → X will be called pointwise small, if π∗F belongs to
S/C0 in E/C0. Note that for any such pointwise small map of presheaves and for any
x ∈ X(a) with a ∈ C0 the object Y M

x will be small. This is an immediate consequence
of the fact that the codomain map is assumed to be small.

Theorem 5.3.1 The pointwise small maps make PshE(C) into a category with small
maps.

Proof. Observe that finite limits, images and sums of presheaves are computed
“pointwise”, that is, as in E/C0. The universal quantification of A ⊆ Y along
F :Y //X is given by the following formula: for any a ∈ C0,

∀F (A)(a) = { x ∈ X(a) : ∀(f, y) ∈ Y M
x (y ∈ A) } (5.1)

This shows that PshE(C) is a positive Heyting category. To complete the proof, we
need to check that the pointwise small maps in presheaves satisfy axioms (A1-9).
We postpone the proof of the collection axiom (A7) (it will be Proposition 5.3.9).
The remaining axioms follow easily, as all we need to do is verify them pointwise. For
verifying axiom (A8), one observes that the universal quantifier in (5.1) ranges over
a small object. ¤

For most of the axioms that we introduced in Section 2, it is relatively straight-
forward to check that they are inherited by presheaf models. The exceptions are the
representability, collection and fullness axioms: verifying these requires an alternative
characterisation of the small maps in presheaves and they will therefore be discussed
in a separate section.

Proposition 5.3.2 The following axioms are inherited by presheaf models: (M),
bounded exactness, (NE) and (NS), as well as (ΠE), (ΠS) and (PS).
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Proof. The monomorphisms in presheaves are precisely those maps which are point-
wise monic and therefore the axiom (M) will be inherited by presheaf models. Sim-
ilarly, presheaf models inherit bounded exactness, because quotients of equivalence
relations are computed pointwise. Since the natural numbers objects in presheaves
has that of the base category E in every fibre, both (NE) and (NS) are inherited by
presheaf models.

Finally, consider the following diagram in presheaves, in which F is small:

B

G
²²

Y
F

// X.

The object P = ΠF (G) over an element x ∈ X(a) is given by the formula:

Px: = { s ∈ Π(f,y)∈Y M
x
G−1(y) : s is natural }.

This shows that (ΠE) is inherited by presheaf extensions. It also shows that (ΠS) is
inherited, because the formula

∀(f, y) ∈ Y M
x (b)∀g: c→ b (s(f, y) · g = s(fg, y · g))

expressing the naturality of s is bounded.

To see that (PS) is inherited, we first need a description of the Ps-functor in the
category of internal presheaves. This was first given by Gambino in [55] and works
as follows. If X is a presheaf and yc is the representable presheaf on c ∈ C0, then

Ps(X)(c) = {A ⊆ yc×X : A is a small subpresheaf },

with restriction along f : d→ c on an element A ∈ Ps(X)(c) defined by

(A · f)(e) = {(g: e→ d, x ∈ X(e)) : (fg, x) ∈ A}.

The membership relation ∈X⊆ X × PsX is defined on an object c ∈ C by: for all
x ∈ X(c) and A ∈ Ps(X)(c),

x ∈X A⇐⇒ (idc, x) ∈ A.

This shows that the axiom (PS) is inherited, because the formula

∀(f : b→ c, x) ∈ A∀g: a→ b [ (fg, x · g) ∈ A ]

expressing that A is a subpresheaf is bounded. ¤

Theorem 5.3.3 The axioms (WE) and (WS) are inherited by presheaf extensions.
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Proof. For this proof we need to recall the construction of polynomial functors and
W-types in presheaves from [93]. For a morphism of presheaves F :Y → X and a
presheaf Z, the value of

PF (Z) =
∑
x∈X

ZYx

on an object a of C0 is given by

PF (Z)(a) = { (x ∈ X(a), t:Y M
x → Z)},

where t is supposed to be a morphism of presheaves. The restriction of an element
(x, t) along a map f : b→ a is given by (x · f, f ∗t), where

(f ∗t)(g, y) = t(fg, y).

The presheaf morphism F induces a map

φ:
∑
a∈C0

∑

x∈X(a)

Y M
x

//
∑
a∈C0

X(a)

in E whose fibre over x ∈ X(a) is Y M
x and which is therefore small. The W-type in

presheaves will be constructed from the W-type V associated to φ in E .

A typical element v ∈ V is a tree of the form

v = supxt

where x is an element of some X(a) and t is a function Y M
x → V . For any such v,

one defines its root ρ(v) to be a. If one writes V (a) for the set of trees v such that
ρ(v) = a, the object V will carry the structure of a presheaf, with the restriction of
an element v ∈ V (a) along a map f : b // a given by

v · f = supx·ff
∗t.

The W-type associated to F in presheaves is obtained by selecting the right trees
from V , the right trees being those all whose subtrees are (in the terminology of [93])
composable and natural. A tree v = supx(t) is called composable if for all (f, y) ∈ Y M

x ,

ρ(t(f, y)) = dom(f).

A tree v = supx(t) is natural, if it is composable and for any (f, y) ∈ Y M
x (a) and any

g: b→ a, we have
t(f, y) · g = t(fg, y · g)

(so t is actually a natural transformation). A tree will be called hereditarily natural,
if all its subtrees (including the tree itself) are natural.

In [93, Lemma 5.5] it was shown that for any hereditarily natural tree v rooted in a
and map f : b→ a in C, the tree v·f is also hereditarily natural. So when W (a) ⊆ V (a)
is the collection of hereditarily natural trees rooted in a, W is a subpresheaf of V .
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A proof that W is the W-type for F can be found in the sources mentioned above.
Presently, the crucial point is that the construction can be imitated in our setting,
so that (WE) is stable under presheaves. The same applies to (WS), essentially
because W was obtained from V using bounded separation (in this connection it is
essential that the object of all subtrees of a particular tree v is small, see Theorem
3.6.13). ¤

5.3.2 Locally small maps in presheaves

For showing that the representability, collection and fullness axioms are inherited by
presheaf models, we use a different characterisation of the small maps in presheaves:
we introduce the locally small maps and show that these coincide with the pointwise
small maps. To define these locally small maps, we have to set up some notation.

Remark 5.3.4 The functor π∗: PshE(C) // E/C0 has a left adjoint, which is com-
puted as follows: to any object (X, σX :X → C0) and a ∈ C0 one associates

π!(X)(a) = {(x ∈ X, f : a→ b) : σX(x) = b},

which is a presheaf with restriction given by

(x, f) · g = (x, fg).

This means that π∗π!X fits into the pullback square

π∗π!X

²²

// C1
cod

²²

X σX

// C0.

From this one immediately sees that π! preserves smallness. Furthermore, the com-
ponent maps of the counit π!π

∗ → 1 are small covers (they are covers, because under
π∗ they become split epis in E/C0; that they are also small is another consequence of
the fact that the codomain map is assumed to be small).

In what follows, natural transformations of the form

π!B → π!A

will play a crucial rôle and therefore it will be worthwhile to analyse them more
closely. First, due to the adjunction, they correspond to maps in E/C0 of the form

B → π∗π!A.
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Such a map is determined by two pieces of data: a map r:B → A in E , and, for any
b ∈ B, a morphism sb:σB(b)→ σA(rb) in C, as depicted in the following diagram:

B

r

²²

s
//

σB

((C1
cod

²²

dom
// C0

A σA

// C0.

(5.2)

(Note that we do not have σAr = σB in general, so that it is best to consider r as a
map in E .) We will use the expression (r, s) for the map B → π∗π!A and (r, s)! for
the natural transformation π!B → π!A determined by a diagram as in (5.2).

In the following lemma, we collect the important properties of the operation
(−,−)!.

Lemma 5.3.5 1. Let r and s be as in diagram (5.2). Then (r, s)!: π!B → π!A is
a pointwise small map of presheaves iff r:B → A is small in E.

2. Assume r:B → A is a cover and σA:A → C0 is an arbitrary map. If we set
σB = σAr and sb = idσBb for every b ∈ B, then (r, s)!: π!B → π!A is a cover.

3. If (r, s):B → π∗π!A is a cover and σB(b) = dom(sb) for all b ∈ B, then also
(r, s)!:π!B → π!A is a cover.

4. If (r, s)!:π!B → π!A is a natural transformation determined by a diagram as in
(5.2) and we are given a commuting diagram

V

h
²²

p
// B

r

²²

W q
// A

in E, then these data induce a commuting square of presheaves

π!V
π!p //

(h,sp)!
²²

π!B

(r,s)!
²²

π!W π!q
// π!A,

with σV = σBp and σW = σAq. Moreover, if the original diagram is a pullback
(resp. a quasi-pullback or a covering square), then so is the induced diagram.

5. If (r, s)!:π!A → π!X and (u, v)!:π!B → π!X are natural transformations with
the same codomain and for every x ∈ X and every pair (a, b) ∈ A ×X B with
x = ra = ub there is a pullback square

k(a,b)

p(a,b)

²²

q(a,b)
// σB(b)

vb

²²

σA(a) sa
// σX(x)
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in C, then π! applied to the object σA×XB:A ×X B → C0 in E/C0 obtained by
sending (a, b) ∈ A×XB to k(a,b) is the pullback of (r, s)! along (u, v)! in PshE(C):

π!(A×X B)
(π2,q)!

//

(π1,p)!
²²

π!B

(u,v)!
²²

π!A (r,s)!

// π!X.

Proof. By direct inspection. ¤

Using the notation we have set up, we can list the two notions of a small map of
presheaves.

1. The pointwise definition (as in the previous section): a map F :B //A of
presheaves is pointwise small, when π∗F is a small map in E/C0.

2. The local definition (as in [76]): a map F :B //A of presheaves is locally small,
when F is covered by a map of the form (r, s)! in which r is small in E .

We show that these two classes of maps coincide, so that henceforth we can use
the phrase “small map” without any danger of ambiguity.

Proposition 5.3.6 A map is pointwise small iff it is locally small.

Proof. We have already observed that maps of the form (r, s)! with r small are
pointwise small, so all maps covered by one of this form are pointwise small as well.
This shows that locally small maps are pointwise small. That all pointwise small
maps are also locally small follows from the next lemma and the fact that the counit
maps π!π

∗Y → Y are covers. ¤

Lemma 5.3.7 If F :Z //Y and L:π!B //Y are maps of presheaves and F is a
pointwise small, then there is a quasi-pullback square of presheaves of the form

π!C

(k,l)!
²²

// Z

F
²²

π!B L
// Y,

with k small in E.

Proof. Let S be the pullback of F along L and cover S using the counit as in:

π!π
∗S // // S //

²²

π!B

L
²²

Z
F

// Y.
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We know the composite along the top is of the form (k, l)!. Because k is the composite
along the middle of the following diagram and both squares in this diagram are
pullbacks, k is the composite of two small maps and hence small.

C1 cod // C0

π∗S //

²²

π∗π!B

OO

π∗L
²²

// B

OO

π∗Z
π∗F

// π∗Y

¤

Corollary 5.3.8 Every pointwise small map is covered by one of the form (r, s)! in
which r is small. In fact, every composable pair (G,F ) of pointwise small maps of
presheaves fits into a double covering square of the form

π!C

(k,l)!
²²

// // Z

G

²²

π!B

(r,s)!
²²

// // Y

F
²²

π!A // // X,

in which k and r are small in E.

Proof. We have just shown that every pointwise small map is covered by one of the
form (r, s)! in which r is small, which is the first statement. The second statement
follows immediately from this and the previous lemma. ¤

Using this alternative characterisation, we can quickly show that the collection
axiom is inherited by presheaf models, as promised.

Proposition 5.3.9 The collection axiom (A7) is inherited by presheaf models.

Proof. Let F :M //N be a small map and Q:E //M be a cover. Without loss of
generality, we may assume that F is of the form (k, l)! for some small map k:X //Y
in E .

Let n be the map obtained by pullback in E/C0:

T
n // //

²²

X

²²

π∗E
π∗Q

// // π∗π!X.
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Then use collection in E to obtain a covering square as follows:

B
m //

d
²²

T
n // // X

k
²²

A p
// // Y.

Using Lemma 5.3.5.4 this leads to a covering square in the category of presheaves

π!B
π!m //

(d,lnm)!
²²

π!T //

π!n

))

E
Q

// // π!X

(k,l)!
²²

π!A π!p
// // π!Y,

thus completing the proof. ¤

Proposition 5.3.10 The representability axiom is inherited by presheaf models.

Proof. Let π:E //U be a universal small map in E , and define the following two
objects in E/C0:

U ′ = {(u ∈ U, c ∈ C0, p:Eu → C1) : ∀e ∈ Eu (cod(pe) = c)},
σU ′(u, c, p) = c,

E ′ = {(u, c, p, e) : (u, c, p) ∈ U ′, e ∈ Eu},
σE′(u, c, p, e) = dom(pe).

If r:E ′ → U ′ is the obvious projection and s:E ′ → C1 is the map sending (u, c, p, e)
to pe, then r and s fit into a commuting square as shown:

E ′

r

²²

s
//

σE′
((C1

cod
²²

dom
// C0

U ′ σU′
// C0.

We claim that the induced map (r, s)! in the category of presheaves is a universal
small map. To show this, we need to prove that any small map F can be covered by
a pullback of (r, s)!. Without loss of generality, we may assume that F = (k, l)! for
some small map k:X //Y in E .

Since π is a universal small map, there exists a diagram of the form

E

π

²²

V
moo

h

²²

i // X

k

²²

l // C1
cod

²²

U Wn
oo

j
// Y σY

// C0,
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in which the left square is a pullback and the middle one a covering square. From
this, we obtain a commuting diagram of the form

C0

V

h

²²

m′
//

li

((

σV

>>}}}}}}}}
E ′

r

²²

s
// C1

cod
²²

dom
``@@@@@@@

W
n′ //

σW

66U ′
σU // C0

by putting

σW = σY j,

n′w = (nw, σWw, λe ∈ Enw.lim−1e),

σV = σXi,

m′v = (n′hv,mv).

Together these two commuting diagrams determine a diagram in the category of
internal presheaves

π!E
′

(r,s)!
²²

π!V
π!m

′
oo

(h,li)!
²²

π!i // π!X

(k,l)!
²²

π!U
′ π!W
π!n

′
oo

π!j
// π!Y,

in which the left square is a pullback and the right one a covering square (by Lemma
5.3.5.4). ¤

Theorem 5.3.11 (Assuming C has chosen pullbacks.) The fullness axiom (F) is
inherited by presheaf models.

Proof. In view of Lemma 5.2.13 and Corollary 5.3.8, we only need to build generic
mvss for maps of the form (k, l)!:π!B → π!A in which k is small, where π!A is sliced
over some object of the form π!X via a map of the form (r, s)! in which r is small. To
construct this generic mvs, we have to apply fullness in E . For this purpose, consider
the objects

X ′ = π∗π!X = {(x ∈ X, f ∈ C1) : σX(x) = cod(f)},
A′ = {(a ∈ A, f ∈ C1) : σX(ra) = cod(f)},
B′ = {(b ∈ B, f ∈ C1, h ∈ C1) : σX(rkb) = cod(f), (f ∗lb)h = id}.

Note that A′ = X ′ ×X A. In the definition of B′, the map f ∗lb is understood to be
the map fitting, for any b ∈ B and f : d→ c with c = σX(rkb), in the double pullback
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diagram

f ∗σB(b) //

f∗lb
²²

σB(b)

lb
²²

f ∗σA(kb) //

f∗skb

²²

σA(kb)

skb

²²

d
f

// c

in C.
Note that if k′ and r′ are the obvious projections

B′ k′ // A′
r′ // X ′,

then they are both small. Therefore, using fullness in E , we find a cover n:W → X ′

and a small map m:Z //W , together with a generic mvs P ′ for k′ over Z, as depicted
in the following diagram.

P ′ // //

'' ''

Z ×X′ B′

²²

// B′

k′
²²

Z ×X′ A′ //

²²

A′

r′
²²

Z m
// W n

// X ′

Since X ′ = π∗π!X, the map n:W → X ′ is of the form (τ, t), with τ and t fitting into
the square

W

τ

²²

t // C1
cod

²²

X σX

// C0.

If we use the abbreviations γ = τm and c = tm, and put σW (w) = dom(tw) and
σZ(z) = dom(cz), we may construct a map π!m: π!Z → π!W , which is small (since
π! preserves smallness) and a map (τ, t)!:π!W → π!X which is a cover (by Lemma
5.3.5.2). The map (γ, c)! is composite of π!m with (τ, t)! and the results of pulling
back (r, s)! and (k, l)! along this map, can be computed using Lemma 5.3.5.5. The
first is Z ×X A with σZ×XA(z, a) = c∗zσA(a) as in the pullback square

c∗zσA(a)

c∗zsa

²²

// σA(a)

sa

²²

dom(cz) cz
// σX(ra)
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in C, and the second is Z ×X B with σZ×XB(z, b) = c∗zσB(b) as in the pullback square

c∗zσB(b) //

c∗zlb
²²

σB(b)

lb
²²

c∗zσA(kb)

c∗zskb

²²

// σA(kb)

skb

²²

dom(cz) cz
// σX(rkb),

also in C. As a result, we obtain the following diagram of presheaves, in which both
rectangles are pullbacks

π!(Z ×X B)

²²

// π!B

(k,l)!
²²

π!(Z ×X A)

²²

// π!A

(r,s)!
²²

π!Z
π!m //

(γ,c)!

11
π!W

(τ,t)!
// π!X.

We wish to define a subpresheaf of π!(Z ×X B) and prove that it is the generic mvs
of (k, l)!. Before we do this, observe that Z ×X′ A′ = Z ×X A and

Z ×X′ B′ = {(z ∈ Z, b ∈ B, h ∈ C1 : γ(z) = rk(b) and (c∗zlb)h = id}.

The crux of the proof is that one can therefore define a subpresheaf P of π!(Z ×X B)
by saying for any (z ∈ Z, b ∈ B, f : c→ d) ∈ π!(Z ×X B)(c),

(z, b, f : c → d) ∈ P (c) iff f factors through a map h such that (z, b, h) ∈
P ′.

In the remainder of this proof, we show that P is a generic mvs of (k, l)! in presheaves.
The inclusion of P in π!(Z ×X B) is bounded, because P is defined by a bounded
formula (note that h must have codomain d and the codomain map is small). Fur-
thermore, the induced map from P to π!(Z ×X A) is a cover, because P ′ → Z ×X′ A′
is a cover. Thus it remains to verify genericity.

To verify this, let E → π!W be any map and Q be an mvs of (k, l)! over E. Without
loss of generality, we may assume that E is of the form π!Y (since E can always be
covered using the counit). This leads to the following diagram of presheaves in which
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the rectangles are pullbacks:

Q // //

(( ((

•

²²

// π!B

(k,l)!
²²

•

²²

// π!A

(r,s)!
²²

π!Y //

(δ,d)!

22
π!W

(τ,t)!
// π!X.

Of course, we may assume that the pullbacks are computed using Lemma 5.3.5.5, so
that they are π!(Y ×X B) and π!(Y ×X A), respectively, with

σY×XA(y, a) = d∗yσA(a),

σY×XB(y, b) = d∗yσB(b).

This means that in E we have the following diagram, in which the rectangles are
pullbacks:

Y ×X′ B′

²²

// B′

k′
²²

Y ×X A //

²²

A′

r′
²²

Y //

(δ,d)

22W
n // X ′.

Observe that an element of Y ×X′ B′ is a triple (y ∈ Y, b ∈ B, h: c → d) with
δy = rkx and (d∗ylb)h = id. Therefore such a triple can also be regarded as an element
of π!(Y ×X B)(c) and one can define a subobject of Y ×X′ B′ by putting:

(y, b, h) ∈ Q′ iff (y, b, h) ∈ Q(c).

Indeed, this turns Q′ into an mvs of k′ over Y . Therefore, by the genericity of
P ′, there is a cover β:U //Y and a map α:U //Z, with (γ, c)α = (δ, d)β such
that α∗P ′ ≤ β∗Q′ as mvss of k′ over U . Write (ε, e) = (γ, c)α = (δ, d)β and set
σU(u) = dom(eu). Since cαu = dβu = eu for every u ∈ U , we have

σU(u) = dom(cαu) = σZ(αu) = dom(dβu) = σY (βu).

Therefore we obtain maps (β, id)!:π!U → π!Y and (α, id)!:π!U → π!Z such that
(γ, c)!(α, id)! = (δ, d)!(β, id)!. Lemma 5.3.5.2 implies that (β, id)! is a cover and there-
fore the proof will be finished, once we show that (α, id)∗! P ≤ (β, id)∗!Q.

To show this, consider an element (u, b, f : c→ d) ∈ π!(U ×X B)(c) for which we have
(u, b, f) ∈ (α, id)∗! P (c). This means that (αu, b, f) ∈ P (c) and f factors through some
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h: e → d with (αu, b, h) ∈ P ′. But then (u, b, h) ∈ α∗P ′ and hence (u, b, h) ∈ β∗Q′
and (βu, b, h) ∈ Q′. By definition of Q′ this means that (βu, b, h) ∈ Q(e), and hence
also (βu, b, f) ∈ Q(c), since Q is a presheaf. Therefore (u, b, f) ∈ (β, id)∗!Q(c) and the
proof is finished. ¤

5.4 Sheaves

In this section we continue to work in the setting of a predicative category with
small maps (E ,S) together with an internal category C in E whose codomain map is
small. To define a category of internal sheaves, we have to assume that the category
C comes equipped with a Grothendieck topology, so as to become a Grothendieck
site. There are different formulations of the notion of a site, all essentially equivalent
([74] provides an excellent discussion of this point), but for our purposes we find the
following (“sifted”) formulation the most useful.

Definition 5.4.1 Let C be an internal category whose codomain map in small. A
sieve S on an object a ∈ C0 consists of a small collection of arrows in C all having
codomain a and closed under precomposition (i.e., if f : b→ a and g: c→ b are arrows
in C and f belongs to S, then so does fg). Since we insist that sieves are small, there
is an object of sieves (a subobject of PsC1).

We call the set Ma of all arrows into a the maximal sieve on a (it is a sieve, since
we are assuming that the codomain map is small). If S is a sieve on a and f : b→ a is
any map in C, we write f ∗S for the sieve {g: c→ b : fg ∈ S} on b. In case f belongs
to S, we have f ∗S = Mb.

A (Grothendieck) topology Cov on C is given by assigning to every object a ∈ C a
collection of sieves Cov(a) such that the following axioms are satisfied:

(Maximality) The maximal sieve Ma belongs to Cov(a);

(Stability) If f : b → a is any map and S belongs to Cov(a), then f ∗S belongs to
Cov(b);

(Local character) If S is a sieve on a for which there can be found a sieve R ∈
Cov(a) such that for all f : b → a ∈ R the sieve f ∗S belongs to Cov(b), then S
belongs to Cov(a).

A pair (C,Cov) consisting of a category C and a topology Cov on it is called a site. If
a site (C,Cov) has been fixed, we call the sieves belonging to some Cov(a) covering
sieves. If S belongs to Cov(a) we say that S is a sieve covering a, or that a is covered
by S.
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Finally, a basis for a site (C,Cov) is a function BCov which yields, for every a ∈ C0,
a small collection of sieves BCov(a) such that:

S ∈ Cov(a)⇔ ∃R ∈ BCov(a):R ⊆ S.

Our first goal in this section is prove that any category of internal sheaves over a
predicative category with small maps (E ,S) is a positive Heyting category. The proof
of this relies on the existence of a sheafification functor (a left adjoint to the inclusion
of sheaves in presheaves), and since this functor is built by taking a quotient, we use
the bounded exactness of (E ,S). To ensure that the equivalence relation by which
we quotient is bounded, we will have to assume that the site has a basis. Next, we
have to identify a class of small maps in any category of internal sheaves over (E ,S).
We will define pointwise small and locally small maps of sheaves and we will insist
that these should again coincide (as happened in presheaves). For this to work out,
we again seem to need the assumption that the site has a basis; moreover, we will
assume that the fullness axiom holds in E (note that similar assumptions were made
in [60]). So, in effect, we will work in a predicative category with small maps (E ,S)
equipped with a Grothendieck site (C,Cov) such that:

1. The fullness axiom (F) holds in E .

2. The codomain map cod: C1 → C0 is small.

3. The site has a basis.

After we have shown that a category of sheaves can be given the structure of a
category with small maps, we prove that the validity of any of the axioms introduced
in Section 2 in (E ,S) implies its validity in any category of internal sheaves over it
(Theorems 4.8–4.11 and Theorem 4.17): we will say that the axiom is “inherited by
sheaf models”. There is one exception to this, however: we will not be able to show
that the axiom (WS) is inherited by sheaf models. We will discuss the problem and
provide a solution based on the axiom of multiple choice in Section 4.4 below (see
Theorem 5.4.18 and Theorem 5.4.19).

5.4.1 Sheafification

Our next theorem shows the existence of a sheafification functor, a Cartesian left
adjoint to the inclusion of sheaves in presheaves. The proof relies in an essential way
on the assumption of bounded exactness and on the fact that our site has a basis.

Theorem 5.4.2 The inclusion

i∗: ShE(C) // // PshE(C)

has a Cartesian left adjoint i∗ (a “sheafification functor”).
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Proof. We verify that it is possible to imitate the standard construction.

Let P be a presheaf. A pair (R, x) will be called a compatible family on a ∈ C0, if R
is a covering sieve on a, and x specifies for every f : b // a ∈ R an element xf ∈ P (b),
such that for any g: c // b the equality (xf ) · g = xfg holds. Because (ΠE) holds and
sieves are small, by definition, there is an object of compatible families. Actually, the
compatible families form a presheaf Comp(P ) with restriction given by

(R, x) · f = (f ∗R, x · f),

where (x · f)g = xfg.

We define an equivalence relation on Comp(P ) by declaring two compatible families
(R, x) and (T, y) on a equivalent, when there is a covering sieve S ⊆ R∩T on a with
xf = yf for all f ∈ S. Since the site is assumed to have a basis, this quantification over
the (large) collection of covering sieves S on a, can be replaced with a quantification
over the small collection of basic covering sieves on a. Therefore the equivalence
relation is bounded and has a quotient P+. This object P+ is easily seen to carry a
presheaf structure in such a way that the quotient map Comp(P )→ P+ is a morphism
of presheaves.

First claim: P+ is separated. Proof: Suppose two elements [R, x] and [S, y] of P+(a)
agree on a cover T . Pick representatives (R, x) and (S, y), and define:

Q = {f : b // a ∈ R ∩ S : xf = yf}.

Once we show that Q is covering, we are done. But this follows immediately from
the local character axiom for sites: for any f ∈ T , the sieve f ∗Q is covering, by
assumption.

Second claim: when P is separated, P+ is a sheaf. Proof: Let R be a covering sieve
on a, and let compatible elements pf ∈ P+(b) be given for every f : b // a ∈ R. Using
the collection axiom, we find for every f ∈ R a family of representatives (R(f,i), x(f,i))
of pf , with the variable i running through some inhabited and small index set If .
Therefore

S = { f ◦ g : f ∈ R, i ∈ If , g ∈ R(f,i) }
is small; in fact, it is a covering sieve, by local character.

We now prove that for any two triples (f ∈ R, i ∈ If , g ∈ R(f,i)) and (f ′ ∈ R, i′ ∈
If ′ , g

′ ∈ R(f ′,i′)) with fg = f ′g′, we must have x
(f,i)
g = x

(f ′,i′)
g′ . Since the elements pf

are assumed to be compatible, the equality

[R(f,i), x(f,i)] · g = pfg = pf ′g′ = [R(f ′,i′), x(f ′,i′)] · g′

holds. Hence the elements x
(f,i)
g and x

(f ′,i′)
g′ agree on a covering sieve. Since P is

assumed to be separated, this implies that the elements x
(f,i)
g and x

(f ′,i′)
g′ are in fact

identical.
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This argument shows that the definition zfg = x
(f,i)
g is unambiguous for fg ∈ S, and

also that (S, z) is a compatible family. As its equivalence class [S, z] is the glueing of
the family pf we started with, the second claim is proved.

From the construction it is clear that for any presheaf P the sheaf P++ has to be its
sheafification. So we have shown that the construction of the sheafification functor
carries through in the setting we are working in; that this assignment is moreover
functorial as well as Cartesian is proved in the usual manner. ¤

Theorem 5.4.3 ShE(C) is a positive Heyting category.

Proof. The category of sheaves has finite limits, because these are computed point-
wise, as in presheaves. Using the following description of images and covers in cate-
gories of sheaves, one can easily show these categories have to be regular: the image
of a map F :Y //X of sheaves consists of those x ∈ X(a) that are “locally” hit by
F , i.e., for which there is a sieve S covering a such that for any f : b // a ∈ S there
is an element y ∈ Y (b) with F (y) = x · f . Therefore a map F :Y //X is a cover, if
for every x ∈ X(a) there is a sieve S covering a and for any f : b→ a ∈ S an element
y ∈ Y (b) such that F (y) = x · f (such maps are also called locally surjective).

The Heyting structure in sheaves is the same as in presheaves, so the universal quan-
tification of A ⊆ Y along F :Y //X is given by the formula (5.1). Indeed, from this
description it is readily seen that belonging to ∀F (A) is a local property.

The sums in sheaves are obtained by sheafifying the sums in presheaves. They are
still disjoint and stable, because the sheafification functor is Cartesian. ¤

5.4.2 Small maps in sheaves

We will now define two classes of maps in the categories of sheaves, those which are
pointwise small and those which are locally small. Using that (F) holds in E and the
fact that the site has a basis, we will then show that they coincide. But before we
define these two classes of maps, note that we have the following diagram of functors:

E/C0
π! //

ρ!

$$IIIIIIIII PshE(C)
π∗

oo

i∗

yyrrrrrrrrrr

ShE(C),
ρ∗

ddIIIIIIIII i∗

99rrrrrrrrrr

where the maps ρ∗ and ρ! are defined as the composites of π and i via the diagram.
So ρ∗ is the forgetful functor, ρ! is defined as

ρ!X = i∗π!X,
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and they are adjoint. It follows immediately from the maximality axiom for sites that
the components of the counit ρ!ρ

∗ // 1 are covers.

One final remark before we give the definitions. We have seen that any pair of
maps (r, s) in E making

B

r

²²

s
//

σB

((C1
cod

²²

dom
// C0

A σA

// C0.
commute determines a map (r, s)!:π!B → π!B of presheaves. Therefore it also deter-
mines a map i∗(r, s)!: ρ!B → ρ!A of sheaves, but note that now not all maps ρ!B → ρ!A
will be of this form, in contrast to what happened in the presheaf case.

Finally, the two classes of maps are defined as:

1. The pointwise definition: a morphism F :B //A of sheaves is pointwise small,
when ρ∗F is a small map in E/C0.

2. The local definition (as in [76]): a morphism F :B //A of sheaves is locally
small in case it is covered by a map of the form i∗(r, s)! where r is a small map
in E .

That these two classes of maps coincide will follow from the next two propositions,
both whose proofs use the fullness axiom.

Proposition 5.4.4 The sheafification functor i∗ preserves pointwise smallness: if F
is a (pointwise) small map of presheaves, then i∗F is a pointwise small map of sheaves.

Proof. To prove the proposition, it suffices to show that the (−)+-construction
preserves smallness. So let F :P //Q be a (pointwise) small morphism of presheaves
and q be an element of Q+(a), i.e. q = [R, x] where R is a sieve and (xf )f∈R is a family
of compatible elements. The fibre of F+ over q consists of equivalence classes of all
those compatible families (S, y) on a such that (S, F (y)) and (R, q) are equivalent
(by F (y) we of course mean the family given by F (y)f = F (yf )). Because every
such equivalence class is represented by a compatible family (S, y) where S is a basic
covering sieve contained in R and F (yf ) = xf for all f ∈ S, the fibre of F over q is
covered by the object: ∑

S∈BCov(a),S⊆R

∏

f∈S
F−1(xf ).

It follows from the fullness axiom in E that this object is small (actually, the expo-
nentiation axiom (ΠS) would suffice for this purpose) and then it follows from the
quotient axiom (A6) that the fibre of F over q is small as well. ¤
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Proposition 5.4.5 The pointwise small maps in sheaves are closed under covered
maps: if

X

F
²²

// A

G
²²

Y
P

// // B

is a covering square of sheaves (i.e., P and the induced map X → Y ×B A are locally
surjective) and F is pointwise small, then also G is pointwise small.

Proof. To make the proof more perspicuous, we will split the argument in two: first
we show closure of pointwise small maps under quotients and then under descent.

So suppose first that we have a commuting triangle of sheaves

Y
G // //

F ÃÃ
@@

@@
@@

@ X

H~~}}
}}

}}
}

B,

with F pointwise small and G locally surjective. Fix an element b ∈ B(c). The
fullness axiom in E implies that for any basic covering sieve S ∈ BCov(c) there is a
small generic family P S

b of mvss of the obvious (small) projection map

pSb :Y S
b = {(f : d→ c ∈ S, y ∈ Y (d)) : Fd(y) = b · f} // S,

such that any mvs of this map is refined by one in P S
b (recall that an mvs of pSb would

be a subobject L ⊆ Y S
b such that the composite L ⊆ Y S

b → S is a small cover).
Strictly speaking, the fullness axiom says that for every S ∈ BCov(c) such a generic
mvs exists, not necessarily as a function of S. This does follow, however, using the
collection axiom: for this axiom tells us that there is a small family {Pi : i ∈ ISb } of
such mvss for every S. So we can set P S

b =
⋃
i∈IS

b
Pi to get a generic mvs of pSb as a

function of S.

Call an element L ∈ P S
b compatible after G, if for any pair of elements (f : d → c, y)

and (f ′: d′ → c, y′) in L we have

∀g: e→ d, g′: e→ d′ ( fg = f ′g′ ⇒ Gd(y) · g = Gd′(y
′) · g′ ).

Note that there is a map

q:
∑

S∈BCov(c)

{L ∈ P S
b : L compatible after G } → H−1

c (b),

which one obtains by sending (S, L) to the glueing of the elements

{Gd(y) : (f : d→ c, y) ∈ L}
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in X. The domain of this map q is small, so the desired result will follow, once we
show that this map is a cover. For this we use the local surjectivity of G.

Local surjectivity of G means that for every x ∈ X(c) in the fibre over b ∈ B(c), there
is a basic covering sieve S ∈ BCov(c) such that

∀f : d→ c ∈ S ∃y ∈ Y (d) : Gd(y) = x · f.
But Gd(y) = x · f implies that Fd(y) = b · f , so

{(f : d→ c, y ∈ Y (d)) : Gd(y) = x · f}
is an mvs of pSb and therefore it is refined by an element of P S

b . Since this element
must be compatible after G, we have shown that q is a cover.

Second, suppose we have a pullback square of sheaves

X

F
²²

Q
// A

G
²²

Y
P

// // B,

where F is pointwise small and P and Q are locally surjective. Again, for any b ∈ B(c)
and basic covering sieve S of c, let pSb be the map

pSb :Y S
b = {(f : d→ c ∈ S, y ∈ Y (d)) : Pd(y) = b · f} // S,

as above. Furthermore, let mvs(pSb ) be the object of mvss of pSb and set

Y ′(c) =
∑

b∈B(c)

∑

S∈BCov(c)

mvs(pSb ),

X ′(c) =
∑

(b,S,L)∈Y ′(c)
{ k ∈

∏

(f :d→c,y)∈L
F−1
d (y) : k compatible after Q },

where we call k ∈∏
(f :d→c,y)∈L F

−1
d (y) compatible after Q, if for any (f : d→ c, y) and

(f ′: d′ → c, y′) in L we have

∀g: e→ d, g′: e→ d′ ∈ C (fg = f ′g′ ⇒ Qd(k(f,y)) · g = Qd′(k(f ′,y′)) · g′).
This leads to a commuting square in E/C0

X ′(c)
Q′c // //

F ′c
²²

A(c)

Gc

²²

Y ′(c)
P ′c

// // B(c),

in which P ′ and F ′ are the obvious projections and Q′ sends (b, S, L, k) to the glueing
of {Qd(k(f,y)) : (f, y) ∈ L}. The square is a pullback in which the map P ′ is a cover
(this uses the collection axiom) and F ′ is small, so that Gc is a small map by descent
(A2) in E/C0. This completes the proof. ¤
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Theorem 5.4.6 The pointwise small maps and locally small maps of sheaves coin-
cide.

Proof. That all locally small maps of sheaves are also pointwise small follows from
the previous two propositions. To prove that all pointwise small maps are also locally
small we use that the pointwise and locally small maps coincide in presheaves.

So consider a pointwise small map F :B //A of sheaves. Since i∗F is a pointwise
small map of presheaves, there is a small map of presheaves (k, l)! with k small in E
such that

π!X

(k,l)!
²²

// i∗B

i∗F
²²

π!Y // i∗A

is a covering square in presheaves. Applying sheafification i∗ and using that i∗i∗ ∼= 1,
we obtain a diagram of the desired form. ¤

Corollary 5.4.7 Any pointwise small map is covered by one of the form i∗(r, s)! with
r small in E. In fact, every composable pair (G,F ) of pointwise small maps of sheaves
fits into a double covering square of the form

ρ!C

i∗(k,l)!
²²

// // Z

G

²²

ρ!B

i∗(r,s)!
²²

// // Y

F
²²

ρ!A // // X,

in which k and r are small in E.

Proof. Immediate from the previous theorem and the corresponding result for
presheaves (Corollary 5.3.8). ¤

Henceforth we can therefore use the term “small map” without danger of ambigu-
ity. The first thing to do now is to show that the small maps in sheaves really satisfy
the axioms for a class of small maps.

Theorem 5.4.8 The small maps in sheaves satisfy axioms (A1-9).

Proof. Again, we postpone the proof of the collection axiom (A7) (it will be Theo-
rem 5.4.10). Because limits in sheaves are computed as in presheaves, (A1) and (A9)
are inherited from presheaves. Colimits in sheaves are computed by sheafifying the
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result in presheaves, hence the axioms (A3) and (A4) follow from Proposition 5.4.4.
That pointwise small maps are closed under covered maps was Proposition 5.4.5: this
disposes of (A2) and (A6). Pointwise small maps are closed under composition,
so (A5) holds as well. Finally, since universal quantification in sheaves is computed
as in presheaves, the axiom (A8) holds in sheaves, because it holds in presheaves. ¤

Theorem 5.4.9 The following axioms are inherited by sheaf models: bounded exact-
ness, representability, (NE), (NS), (ΠE), (ΠS), (M) and (PS).

Proof. Bounded exactness is inherited by sheaf models, since one can sheafify the
quotient in presheaves. Representability is inherited for the same reason: one sheafi-
fies the universal small maps in presheaves. Also the natural numbers object in
sheaves is obtained by sheafifying the natural numbers object in presheaves, so (NE)
and (NS) are inherited by sheaf models. Since Π-types in presheaves are computed
as in sheaves and (ΠE) and (ΠS) are inherited by presheaf models, they will also
be inherited by sheaf models. Finally, since monos in sheaves are pointwise, (M) is
inherited as well.

The Ps-functor in sheaves is obtained by quotienting the Ps-functor in presheaves
(see Proposition 5.3.2) by the following equivalence relation (basically, bisimulation
understood as in sheaves): if A,A′ ⊆ yc × X, then A ∼ A′ if for all (f : b → c, x) ∈
A(c), the sieve

{ g: a→ b : (fg, x · g) ∈ A′ }
covers b, and for all (f ′: b′ → c, x′) ∈ A′(c) the sieve

{ g′: a′ → b′ : (f ′g′, x′ · g′) ∈ A }

covers b′.

One easily verifies that this defines an equivalence relation in presheaves; moreover, it
is bounded, since the site is assumed to have a basis. Its quotient P has the structure
of a sheaf (as we have seen several times, to construct the glueing one uses the
collection axiom to select small collections of representatives from each equivalence
class). One defines the relation ∈X⊆ X × P on an object c ∈ C by putting for any
x ∈ X(c) and A ∈ Ps(X)(c),

x ∈ [A]⇐⇒ the sieve {f : d→ c : (f, x · f) ∈ A} covers c.

A straightforward verification establishes that this is indeed the power class object of
X in sheaves. Hence the axiom (PS) is inherited by sheaf models. ¤

In the coming two subsections we will discuss the collection and fullness axioms
and W-types in sheaf categories.
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5.4.3 Collection and fullness in sheaves

Theorem 5.4.10 The collection axiom (A7) is inherited by sheaf models.

Proof. Let F :M //N be small map and E:Y //M be a cover in sheaves (i.e. E
is locally surjective). Without loss of generality we may assume that K is of the form
i∗(k, l)!: ρ!B → ρ!A.

If the map Q:X → π!B of presheaves is obtained by pulling back the map i∗E along
the component of the unit 1→ i∗i∗ at π!B as in

X

Q

²²

// i∗Y

i∗E
²²

π!B // i∗ρ!B = i∗i∗π!B,

then this map Q also has to be locally surjective. This means that for the following
object in E

C =
∑

b∈B
{S ∈ Cov(c) : σB(b) = c and ∀f : d→ c ∈ S ∃x ∈ X(d) (Q(x) = (b, f))},

the obvious projection s0:C → B is a cover. Therefore we can apply the collection
axiom in E to obtain a covering square of the form:

V
s1 //

l
²²

C
s0 // // B

k
²²

U r0
// A,

(5.3)

with l small in E . We wish to apply the collection axiom again. For this purpose,
define the following two objects in E :

V ′ = { (v ∈ V, f ∈ C) : if s1(v) = (b, S), then f ∈ S },
W = { (v ∈ V, f : d→ c, x ∈ X(d)) : if s1(d) = (b, S),

then f ∈ S and Qd(x) = (b, f) },

and let s3:W → V ′ and s2:V
′ → V be the obvious projections. s3 is a cover (es-

sentially by definition of C), and the composite l′ = ls2 is small. So we can apply
collection to obtain a covering square in E

J
s4 //

m

²²

W
s3 // // V ′

l′
²²

I r1
// U,

(5.4)
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in which m is small. Writing r = r0r1 and s = s0s1s2s3s4, we obtain a commuting
square

J
s //

m

²²

B

k
²²

I r
// A,

with every j ∈ J determining an element b ∈ B, a sieve S on σB(b), an arrow f ∈ S
and an element x ∈ X(dom f) such that Q(x) = (b, f) ∈ π!B. Putting for such an
element j ∈ J , ρJ(j) = dom(f), tj = f, nj = lb ◦ f , and putting σI(i) = σA(ri) for
every i ∈ I, we obtain a square of presheaves:

π!J
(s,t)!

//

(m,n)!
²²

π!B

(k,l)!
²²

π!I π!r
// π!A.

To see that it commutes, we chase an element around the two sides of the diagram
and it suffices to do that for an element of the form (j, id). So

π!r(m,n)!(j, id) = π!r(mj, lb ◦ f) = (rmj, lb ◦ f),

and (k, l)!(s, t)!(j, id) = (k, l)!(sj, f) = (ksj, lb ◦ f).

We claim that sheafifying the square gives a covering square. Since r is a cover and
ρ! preserves these, this means that we have to show that the map from π!J to the
pullback of the above square is locally surjective. Lemma 5.3.5.4 tells us that we
may assume that the pullback is of the form π!(I ×A B) with σI×AB(i, b) = σB(b).
The induced map K: π!J //π!(I ×A B) sends (j, g) to ((mj, sj), f ◦ g), where f is
the element in C1 determined by j ∈ J as above. To show that this map is locally
surjective, it suffices to prove that every element ((i, b), id) ∈ π!(I ×AB) is locally hit
by K. The element i ∈ I determines an element r1i ∈ U , and since (5.3) is a covering
square, we find a v ∈ V with lv = r1i and s0s1v = b, hence a covering sieve S on
ρB(b). Moreover, since (5.4) is a covering square, we find for every f ∈ S an element
j ∈ J such that m(j) = i and s(j) = b. Then K(j, id) = ((i, b), f) = ((i, b), id) · f ,
which proves that K is locally surjective.

To complete the proof, we need to show that (s, t)!:π!J //π!B factors through
Q:X //π!B. There is a map (p, q): J // π∗X which sends every j ∈ J to the
x ∈ X(dom f) that it determines. Its transpose (p, q)! sends (j, id) to x ∈ X which
in turn is sent by Q to Q(x) = (sj, f) = (s, t)!(j, id). Therefore (s, t)! = Q(p, q)!. ¤

Theorem 5.4.11 (Assuming C has chosen pullbacks.) The fullness axiom (F) is
inherited by sheaf models.

Proof. In view of Lemma 5.2.13 and Corollary 5.4.7, it will suffice to show that there
exists a generic mvs for any map of the form i∗(k, κ)!: ρ!B // ρ!A, living over some
object of the form ρ!X via some map i∗(r, ρ)!: ρ!A // ρ!X, with k and r small.
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We first construct the generic mvs P . To this end, define:

S0 = {(a ∈ A,α: d→ c, S ∈ BCov(α∗σA(a))) : σX(ra) = c}
M0 = {(a ∈ A,α: d→ c, S ∈ BCov(α∗σA(a)), β ∈ S) : σX(ra) = c}
B0 = {(b ∈ B,α: d→ c, S ∈ BCov(α∗σA(kb)), β ∈ S, γ ∈ C1 :

σX(rkb) = c, α∗κb ◦ γ = β}

(In the definition of S0 and M0 we have used that any pair consisting of a map
α: d→ c ∈ C and element a ∈ A with σX(ra) = c determines a pullback diagram

α∗σA(a) //

α∗ρa

²²

σA(a)

ρa

²²

d α
// c

in C; in the definition of B0 we have used that any pair consisting of a map α: d →
c ∈ C and element b ∈ B with σX(rkb) = c determines a double pullback diagram

α∗σB(b) //

α∗κb

²²

σB(b)

κb

²²

α∗σA(kb) //

α∗ρkb

²²

σA(kb)

ρkb

²²

d α
// c

in C.) One easily checks that all the projections in the chain

B0
// M0

// S0
// A // X

are small.

For the construction of P , we first build a generic mvs for S0
//A over X. This

means we have a cover n:W //X and a small map m0:Z1
//W , together with a

generic mvs P1 for S0
//A over Z1, as in the diagram

P1
// //

'' ''

S1

²²

// S0

²²

A1

²²

// A

²²

Z1 m0

// W n
// // X,

where the rectangles are understood to be pullbacks. Next, we pull B0 → M0 → S0
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back along P1 → S0 and obtain the diagram

B1
//

²²

B0

²²

M1

²²

// M0

²²

P1
// S0.

Then we build a generic mvs for B1 → M1 over Z1. This we obtain over an object
Z2 via a small map Z2

//W ′ and a cover W ′ //Z1. Without loss of generality, we
may assume that the latter map W ′ → Z1 is the identity. (Proof: apply the collection
axiom to the small map Z1

//W and the cover W ′ //Z1 to obtain a small map
S //R covering the morphism Z1

//W . Lemma 5.2.12 tells us that there lives a
generic mvs for S0

//A over S as well. By another application of Lemma 5.2.12,
there lives a generic mvs for B1 → M1 over T , if T → S is the pullback of Z //W ′

along the map S //W ′.) So we may assume there is a small map m1:Z2
//Z1, such

that over Z2 there is a generic mvs P2 for B1 →M1, as in the following diagram

P2
// //

'' ''

B2

²²

// B1
//

²²

B0

²²

M2

²²

// M1
//

²²

M0

²²

Z2
m1 //

t

44Z1
m0 // W

n // // X,

where all the rectangles are supposed to be pullbacks. Fo convenience, write t =
nm0m1.

We make some definitions. First of all, let

Z = {(z2 ∈ Z2, δ: d→ c) : σX(t(z2)) = c and

(∀a ∈ At(z2)) (∃S ∈ BCov(δ∗σA(a)) (m1(z), a, δ, S) ∈ P1}.
Furthermore, we write m2:Z → Z2 for the obvious projection and put m = m0m1m2.
Finally, we let P3 be the pullback of P2 along m2.

We wish to construct a diagram of presheaves of the form:

P // //

''

π!(Z ×X B)

²²

// π!B

(k,κ)!
²²

π!(Z ×X A)

²²

// π!A

(r,ρ)!
²²

π!Z (m,µ)!

// π!W π!n
// π!X,
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which we can do by putting σZ(z2, δ) = cod(δ) and µ(z2,δ) = δ. Note that π!n is
a cover and (m,µ)! is small. In addition, P is defined by saying that an element
(z ∈ Z, b ∈ B, η: c→ d) ∈ π!(Z ×X B)(c) belongs to P (c) if

there is a sieve S ∈ BCov(µ∗zσA(kb)), a map β ∈ S and a map γ ∈ C1 such
that (z, b, µz, S, β, γ) belongs to P3 and η factors through γ.

By construction, the map P // π!(Z ×X A) is locally surjective. By sheafifying the
whole diagram, we therefore obtain an mvs i∗P for i∗(k, κ)! over ρ!Z in the category
of sheaves. The remainder of the proof will show it is generic.

To that purpose, let V // ρ!W be a map of sheaves and Q be an mvs for i∗(k, κ)! over
V . Let Y be the pullback in presheaves of V along the map π!W → ρ!W and cover
Y using the counit π!π

∗Y → Y . Writing Y = π∗Y , this means we have a commuting
square of presheaves

π!Y
(l,λ)!

//

²²

π!W

²²

V // ρ!W // ρ!W,

in which the vertical arrows are locally surjective and the top arrow is of the form
(l, λ)!. Finally, let Q be the pullback of Q along π!Y → V . This means we have the
following diagram of presheaves:

Q // //

''

π!(Y ×X B)

²²

// π!B

(k,κ)!
²²

π!(Y ×X A)

²²

// π!A

(r,ρ)!
²²

π!Y
(l,λ)!

// π!W π!n
// π!X, ,

where the rectangles are pullbacks, computed, as usual, using Lemma 5.3.5.5 (so
σY×XA(y, a) = λ∗yσA(a) and σY×XB(y, b) = λ∗yσB(b)). The map Q → π!(Y ×X A) is
locally surjective, and therefore

Q1 = { (y, a, λy, S ∈ BCov(λ∗yσA(a))) :

(∀β ∈ S) (∃b ∈ Ba) (∃γ ∈ C1) (y, b, γ) ∈ Q and λ∗yκb ◦ γ = β }
= { (y, a, λy, S ∈ BCov(λ∗yσA(a))) :

(∀β ∈ S) (∃b ∈ Ba) (∃γ ∈ C1) (y, b, γ) ∈ Q and (b, λy, S, β, γ) ∈ B0 }
is an mvs of S0 → A over Y . By the genericity of P1 this implies the existence of a
map v1:U1 → Z1 and a cover w1:U1 → Y such that m0v1 = lw1 and v∗1P1 ≤ w∗1Q1 as
mvss of S0 → A0 over U1. Note that this means that

(v1(u1), a, α, S) ∈ P1 =⇒ α = λw1(u1). (5.5)
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Next, define the subobject Q2 ⊆ v∗1B1 by saying for any element (u1 ∈ U1, b ∈ B,S ∈
BCov(λ∗w1(u1)σA(kb)), β ∈ S, γ ∈ C1) ∈ v∗1B1:

(u1, b, S, β, γ) ∈ Q2 ⇐⇒ (w1u1, b, γ) ∈ Q(dom(γ)).

It follows from (5.5) and the definition of Q1 that Q2 is a small mvs of B1 → M1

over U1. Therefore there is a map v2:U //Z2 and a cover w2:U //U1 such that
v1w2 = m1v2 and v∗2P2 ≤ w∗2Q2. Note that (5.5) implies that v2 factors through
m2:Z → Z2 via a map v:U → Z given by v(u) = (v2(u), λw1w2(u)).

If we put w = w1w2, then lw = lw1w2 = m0v1w2 = m0m1v2 = m0m1m2v = mv.
Since for each u ∈ U , σZ(vu) = dom(λwu) = σY (wu), we may put σU(u) = σZ(vu) =
σY (wu) and then π!w and π!v define maps π!U → π!Y and π!U → π!Z, respectively,
such that (l, λ)!π!w = (m,µ)!π!v. Because π!w is a cover, the proof will be finished,
once we show that (π!v)∗P ≤ (π!w)∗Q.

To show this, consider an element (u ∈ U, b ∈ B, η: c → d ∈ C) ∈ π!(U ×X B)(c) for
which we have (u, b, η) ∈ (π!v)∗P (c). This means that (vu, b, η) ∈ P (c) and hence
that there is a sieve S ∈ BCov(µ∗vuσA(kb)), a map β ∈ S and a map γ: e → d ∈ C1
such that (vu, b, µvu, S, β, γ) ∈ P3 and η factors through γ. The former means that
(v2u, b, µvu, S, β, γ) ∈ P2 and since v∗2P2 ≤ w∗2Q2, it follows that (w2u, b, S, β, γ) ∈
Q2. By definition this means that (wu, b, γ) ∈ Q(e). Since Q is a presheaf, also
(wu, b, η) ∈ Q(c) and hence (u, b, η) ∈ (π!w)∗Q(c). This completes the proof. ¤

5.4.4 W-types in sheaves

In this final subsection, we show that the axiom (WE) is inherited by sheaf models.
It turns out that the construction of W-types in categories of sheaves is considerably
more involved than in the presheaf case (in [22] we showed that some of the com-
plications can be avoided if the metatheory includes the axiom of choice). We then
go on to show that the axiom (WS) is inherited as well, if we assume the axiom of
multiple choice.

Remark 5.4.12 In [93] the authors claimed that W-types in categories of sheaves
are computed as in presheaves (Proposition 5.7 in loc.cit.) and can therefore be de-
scribed in the same (relatively easy) way. But, unfortunately, this claim is incorrect,
as the following counterexample shows. Let F : 1 → 1 be the identity map on the
terminal object. The W-type associated to F is the initial object, which, in gen-
eral, is different in categories of presheaves and sheaves. (This was noticed by Peter
Lumsdaine together with the first author.)

We fix a small map F :Y → X of sheaves. If x ∈ X(a) and S is a covering sieve
on a, then we put

Y S
x : = {(f : b→ a ∈ S, y ∈ Y (b)) : F (y) = x · f}.
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Observe that Y S
x is small and write ψ for the obvious projection

ψ:
∑

(S,x)

Y S
x → X ×C0 Cov.

Let Ψ = Pψ ◦ P+
s and let V be its initial algebra (see Theorem 5.2.10). Elements v of

V are therefore of the form sup(a,x,S)t with (a, x, S) ∈ X ×C0 Cov and t:Y S
x → P+

s V .
We will think of such an element v as a labelled well-founded tree, with a root labelled
with (a, x, S). To this root is attached, for every (f, y) ∈ Y S

x and w ∈ t(f, y), the
tree w with an edge labelled with (f, y). To simplify the notation, we will denote by
v(f, y) the small collection of all trees that are attached to the root of v with an edge
that has the label (f, y).

We now wish to define a presheaf structure on V . We say that a tree v ∈ V
is rooted at an object a in C, if its root has a label whose first component is a. If
v = sup(a,x,S)t is rooted at a and f : b → a is a map in C, then we can define a tree
v · f rooted at b, as follows:

v · f = sup(b,x·f,f∗S)f
∗t,

with
(f ∗t)(g, y) = t(fg, y).

This clearly gives V the structure of a presheaf. Note that

(v · f)(g, y) = v(fg, y).

Next, we define by transfinite recursion a relation on V :

v ∼ v′ ⇔ if the root of v is labelled with (a, x, S) and
the root of v′ with (a′, x′, S ′), then a = a′,
x = x′ and there is a covering sieve R ⊆
S ∩ S ′ such that for every (f, y) ∈ Y R

x we
have v(f, y) ∼ v′(f, y).

Here, the formula v(f, y) ∼ v′(f, y) is supposed to mean

∀m ∈ v(f, y), n ∈ v′(f, y) : m ∼ n.

In general, we will write M ∼ N for small subobjects M and N of V to mean

∀m ∈M,n ∈ N : m ∼ n.

In a similar vein, we will write for such a subobject M ,

M · f = {m · f : m ∈M}.
That the relation ∼ is indeed definable can be shown by the methods of [17] or
Chapter 3. By transfinite induction one can show that ∼ is symmetric and transitive,
and compatible with the presheaf structure (v ∼ w ⇒ v · f ∼ w · f).

Next, we define composability and naturality of trees (as we did in the presheaf
case, see Theorem 5.3.3).
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• A tree v ∈ V whose root is labelled with (a, x, S) is composable, if for any
(f : b→ a, y) ∈ Y S

x and w ∈ v(f, y), the tree w is rooted at b.

• A tree v ∈ V whose root is labelled with (a, x, S) is natural, if it is composable
and for any (f : b→ a, y) ∈ Y S

x and g: c→ b,

v(f, y) · g ∼ v(fg, y · g).

One can show that if v is natural, and v ∼ w, then also w is natural; moreover,
natural trees are stable under restriction. The same applies to the trees that are
hereditarily natural (i.e. not only are they themselves natural, but the same is true
for all their subtrees).

We shall write W for the object consisting of those trees that are hereditarily
natural. The relation ∼ defines an equivalence on W , for if a tree v = sup(a,x,S)t

is natural, then for all (f, y) ∈ Y S
x one has v(f, y) · id ∼ v(f · id, y · id), that is,

v(f, y) ∼ v(f, y), and therefore v ∼ v. By induction one proves that the equivalence
relation ∼ on W is bounded and hence a quotient exists. We denote it by W . It
follows from what we have said that the quotient W is a presheaf, but more is true:
one can actually show that W is a sheaf and, indeed, the W-type associated to F in
sheaves.

Lemma 5.4.13 Let w,w′ ∈ W be rooted at a ∈ C. If T is a sieve covering a and
w · f ∼ w′ · f for all f ∈ T , then w ∼ w′. In other words, W is separated.

Proof. If the label of the root of w is of the form (a, x, S) and that of w′ is of the
form (a, x′, S ′), then w · f ∼ w′ · f implies that x · f = x′ · f for all f ∈ T . As X is
separated, it follows that x = x′.

Consider

R = { g: b→ a ∈ (S ∩ S ′) : ∀(h, y) ∈ Y Mb
x·g [w(gh, y) ∼ w′(gh, y) ] }.

R is a sieve, and the statement of the lemma will follow once we have shown that it
is covering.

Fix an element f ∈ T . That w · f ∼ w′ · f holds means that there is a covering sieve

Rf ⊆ f ∗S ∩ f ∗S ′ such that for every (k, y) ∈ Y Rf

x·f we have w(fk, y) = (w · f)(k, y) ∼
(w′ ·f)(k, y) = w′(fk, y). In other words, Rf ⊆ f ∗R. So R is a covering sieve by local
character. ¤

Lemma 5.4.14 W is a sheaf.

Proof. Let S be a covering sieve on a and suppose we have a compatible family of
elements (wf ∈ W)f∈S. Using the collection axiom, we know that there must be a
span

S ← J → W
fj ←[ j 7→ wj
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with J small and [wj] = wfj
for all j ∈ J . Every wj is of form sup(aj ,xj ,Rj)

tj. If
fj = fj′ , then wj ∼ wj′ , so xj = xj′ . Thus the xj form a compatible family and, since
X is a sheaf, can be glued together to obtain an element x ∈ X(a). We claim that
the desired glueing is [w], where w = sup(a,x,R)t ∈ V is defined by:

R = {fjg : j ∈ J, g ∈ Rj},
t(h, y) =

⋃
j∈J
{tj(g, y) : fjg = h}

For this to make sense, we first need to show that w ∈ W , i.e., that w is hereditarily
natural. In order to do this, we prove the following claim.

Claim. Assume we are given (h, y) ∈ Y R
x , with h = fjg for some j ∈ J . Then

w(h, y) ∼ wj(g, y).

Proof. Since
w(h, y) =

⋃

j′∈J
{wj′(g′, y) : fj′g

′ = h},

it suffices to show that wj(g, y) ∼ wj′(g
′, y) if h = fj′g

′.

By compatibility of the family (wf ∈ W)f∈S we know that wj ·g ∼ wj′ ·g′ ∈ W(c). This
means that there is a covering sieve T ⊆ g∗Rj ∩ (g′)∗Rj′ such that for all (k, z) ∈ Y T

x·h,
we have (wj · g)(k, z) ∼ (wj′ · g′)(k, z). So if k: d→ c ∈ T , then

wj(g, y) · k ∼ wj(gk, y · k)

= (wj · g)(k, y · k)

∼ (wj′ · g′)(k, y · k)

= wj′(g
′k, y · k)

∼ wj′(g
′, y) · k.

Because W is separated (as was shown in Lemma 5.4.13), it follows that wj(g, y) ∼
wj′(g

′, y). This proves the claim. ¤

Any subtree of w is a subtree of some wj and therefore natural. Hence we only need
to prove of w itself that it is composable and natural. Direct inspection shows that
the tree that we have constructed is composable. For verifying that w is also natural,
let (h: c → a, y) ∈ Y R

x and k: d → c. Since h ∈ R, there are j ∈ J and g ∈ Rj such
that h = fjg. Then

w(h, y) · k ∼ wj(g, y) · k ∼ wj(gk, y · k) ∼ w(hk, y · k),

by using naturality of wj and the claim (twice).

It remains to show that [w] is a glueing of all the wf , i.e., that w · fj ∼ wj for all
j ∈ J . So let j ∈ J . First of all, x · fj = xj, by construction. Secondly, for every
g: c→ b ∈ Rj = (Rj ∩ f ∗jR) and y ∈ Y (c) such that F (y) = x · fjg, we have

(w · fj)(g, y) = w(fjg, y) ∼ wj(g, y).
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This completes the proof. ¤

Lemma 5.4.15 W is a PF -algebra.

Proof. We have to describe a natural transformation S:PFW →W . An element of
PFW(a) is a pair (x, t) consisting of an element x ∈ X(a) together with a natural
transformation G:Y Ma

x →W . Using collection, there is a map

Y Ma
x

t // P+
s W (5.6)

such that [w] = G(y, f), for all (f, y) ∈ Y Ma
x and w ∈ t(f, y). We define SxG to be

[ sup(a,x,Ma)t ].

One now needs to check that w is hereditarily natural. And then another verifica-
tion is needed to check that [w] does not depend on the choice of the map in (5.6).
Finally, one needs to check the naturality of S. These verifications are all relatively
straightforward and similar to some of the earlier calculations, and therefore we leave
all of them to the reader. ¤

Lemma 5.4.16 W is the initial PF -algebra.

Proof. We will show that S:PFW → W is monic and that W has no proper PF -
subalgebras; it will then follow from Theorem 26 of [17] (or Theorem 3.6.13) that W
is the W-type of F .

We first show that S is monic. So let (x,G), (x′, G′) ∈ PFX(a) be such that SxG =
Sx′G

′ ∈ W . It follows that x = x′ and that there is a covering sieve S on a such that
for all (h, y) ∈ Y S

x , we have G(h, y) = G′(h, y). We need to show that G = G′, so let
(f, y) ∈ Y Ma

x be arbitrary. For every g ∈ f ∗S, we have:

G(f, y) · g = G(fg, y · g) = G′(fg, y · g) = G′(f, y) · g.

Since f ∗S is covering, it follows that G(f, y) = G′(f, y), as desired.

The fact that W has no proper PF -subalgebras is a consequence of the inductive
properties of V (recall that V is an initial algebra). LetA be a sheaf and PF -subalgebra
of W . We claim that

B = {v ∈ V : if v is hereditarily natural, then [v] ∈ A}

is a subalgebra of V . Proof: Suppose v is a tree that is hereditarily natural. Assume
moreover that v = sup(a,x,S)t and for all (f, y) ∈ Y S

x and w ∈ t(f, y), we know that
[w] ∈ A. Our aim is to show that [v] ∈ A.
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For the moment fix an element f : b → a ∈ S. Since v · f has a root labelled by
(b, x·f,Mb) and (v·f)(g, y) = v(fg, y) for all (g, y) ∈ Y Mb

x·f , we have that [v]·f = Sx·fG,

where G(g, y) = [v(fg, y)] ∈ A. Because A is a PF -subalgebra of W this implies that
[v] · f ∈ A. Since this holds for every f ∈ S, while S is a covering sieve and A is a
subsheaf of W , we obtain that [v] ∈ A, as desired.

We conclude that B = V and hence A =W . This completes the proof. ¤

To wrap up:

Theorem 5.4.17 The axiom (WE) is inherited by sheaf models.

We believe that one has to make additional assumptions on ones predicative cat-
egory with small maps (E ,S) to show that the axiom (WS) is inherited by sheaf
models (the argument above does not establish this, the problem being that the ini-
tial algebra V will be large, even when the codomain of the map F :Y → X we have
computed the W-type of is small). We will now show that this problem can be cir-
cumvented if we assume that the axiom of multiple choice (AMC) holds in E . It is
quite likely that one can also solve this problem by using Aczel’s Regular Extension
Axiom: it implies the axiom (WS) and is claimed to be stable under sheaf extensions
(but, as far as we are aware, no proof of that claim has been published).

Theorem 5.4.18 The axiom (AMC) is inherited by sheaf models.

Proof. This will be Theorem 7.6.1. ¤

Theorem 5.4.19 (Assuming that (AMC) holds in E.) The axiom (WS) is inher-
ited by sheaf models.

Proof. We will continue to use the notation from the proof of the previous theorem.
So, again, we assume we have a small map F :Y → X of sheaves. Moreover, we let ψ
be the map in E and Ψ be the endofunctor on E defined above, we let V be its initial
algebra and ∼ be the symmetric and transitive relation we defined on V , and W the
W-type associated to F , obtained by quotienting the hereditarily natural elements in
V by ∼.

Assume that X is a small sheaf. Since (AMC) holds in E , it is the case that,
internally in E/C0, the map ψ fits into a collection square as shown

D
q

//

g

²²

∑
(S,x) Y

S
x

ψ

²²

C p
// X ×C0 Cov,
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in which all objects and maps are small in E/C0 (see Lemma 5.2.15). The W-type
U = Wg in E/C0 is small in E/C0, because we are assuming that (WS) holds in E
(and hence also in E/C0). The idea is to use this to show that W is small as well.

Every element u = supcs ∈ U determines an element in ϕ(u) ∈ V as follows: first
compute p(c) = (a, x, S). Then let for every (y, f) ∈ Y S

x the element t(y, f) be defined
by

t(y, f) = {(ϕ ◦ s)(d) : d ∈ q−1
c (y, f)}.

Then ϕ(u) = sup(a,x,S)t (so this is an inductive definition). We claim that for every
hereditarily natural tree v ∈ W there is an element u ∈ U such that v ∼ ϕ(u). The
desired result follows readily from this claim.

We prove the claim by induction: so let v = sup(a,x,S)t be a hereditarily natural el-
ement of V and assume the claim holds for all subtrees of v. Since all subtrees of v
are hereditarily natural as well, this means that for every (y, f) ∈ Y S

x and w ∈ t(y, f)
there is an element u ∈ U such that ϕ(u) = w. From the fact that the square above is
a collection square, it follows that there is a c ∈ C with p(c) = (a, x, S) together with
two functions: first one picking for every d ∈ Dc an element r(d) ∈ t(y, f) (because
t(y, f) is non-empty) and a second one picking for every d ∈ D an element s(d) ∈ U
such that ϕ(s(d)) ∼ r(d). It is not hard to see that v ∼ ϕ(supcs), using that v is
natural and therefore all elements in t(y, f) are equivalent to each other. ¤

This completes the proof of our main result, Theorem 5.2.17.

5.5 Sheaf models of constructive set theory

Our main result Theorem 5.2.17 in combination with Theorem 5.2.8 yields the ex-
istence of sheaf models for CZF and IZF (see Corollary 5.2.18). For the sake of
completeness and in order to allow a comparison with classical forcing, we describe
this model in concrete terms. We will not present verifications of the correctness of
our descriptions, because they could in principle be obtained by unwinding the exis-
tence proofs, and other descriptions which differ only slightly from what we present
here can already be found in the literature.

To construct the initial Ps-algebra in a category of internal presheaves over a
predicative category with small maps (E ,S), letW be the initial algebra of the endo-
functor Φ = Pcod ◦Ps on E (see Theorem 5.2.10). Elements of w ∈ W are therefore of
the form supct, with c ∈ C0 and t a function from {f ∈ C1 : cod(f) = c} to PsW . We
think of such an element w as a well-founded tree, where the root is labelled with c
and for every v ∈ t(f), the tree v is connected to the root of w with an edge labelled
with f . The object W carries the structure of a presheaf, with W(c) consisting of
trees whose root is labelled with c, and with a restriction operation defined by putting
for any w = supct and f : d→ c,

w · f = supd t(f ◦ −).
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The initial Ps-algebra V in the category of presheaves is constructed from W by
selecting those trees that are hereditarily composable and natural:

• A tree w = supc(t) ∈ W is composable, if for any f : d → c and v ∈ t(f), the
tree v has a root labelled with d.

• A tree w = supc(t) ∈ W is natural, if it is composable and for any f : d → c,
g: e→ d and v ∈ t(f), we have v · g ∈ t(fg).

The Ps-algebra structure, or, equivalently, the membership relation on V , is given by
the formula (x, supct ∈ V)

x ∈ supct⇐⇒ x ∈ t(idc).
The easiest way to prove the correctness of the description we gave is by appealing
to Theorem 1.1 from [78] (or Theorem 3.7.3). This model was first presented in the
paper [55] by Gambino, based on unpublished work by Dana Scott.

The initial Ps-algebra in categories of internal sheaves is obtained as a quotient of
this object V. Roughly speaking, we quotient by bisimulation in a way which reflects
the semantics of a category of sheaves. More precisely, we take V as defined above
and we write: supct ∼ supct

′ if for all f : d→ c and v ∈ t(f), the sieve

{ g: e→ d : ∃v′ ∈ t′(fg) ( v · g ∼ v′ ) }
covers d and for all f ′: d→ c and v′ ∈ t′(f ′), the sieve

{ g: e→ d : ∃v ∈ t(f ′g) ( v′ · g ∼ v ) }
covers d. On the quotient the membership relation is defined by:

[v] ∈ [supct]⇐⇒ the sieve {f : d→ c : ∃v′ ∈ t(f) ( v · g ∼ v′ )} covers c.

To see that this is correct, one should verify that ∼ defines a bounded equivalence
relation and the quotient is a sheaf. Then one proves that it is the initial Ps-algebra
by appealing to Theorem 1.1 from [78] (or Theorem 3.7.3). The reader who wishes
to see more details, should consult [110].

Remark 5.5.1 It should be clear that the above is a generalisation of classical forcing
(as in [79], for example). Any poset P determines a site, by declaring that S covers
p whenever S is dense below p. In this case, the elements of V are a particular
kind of names (as they are traditionally called). One could regard composability and
naturality as saturation properties of names (so that, in effect, we only consider nice,
saturated names). It is not too hard to show that every name (in the usual sense)
is equal in a forcing model to such a saturated name, so that the models that we
have constructed are not different from the forcing models considered in (classical)
set theory.
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Chapter 6

Applications: derived rules

6.1 Introduction

This paper is concerned with Aczel’s predicative constructive set theory CZF and
with related systems for predicative algebraic set theory; it also studies extensions of
CZF, for example by the axiom of countable choice.1

We are particularly interested in certain statements about Cantor space 2N, Baire
space NN and the unit interval [0, 1] of Dedekind real numbers in such theories, namely
the compactness of 2N and of [0, 1], and the related “Bar Induction” property for
Baire space. The latter property states that if S is a set of finite sequences of natural
numbers for which

- for each α there is an n such that 〈α(0), α(1), ...., α(n)〉 belongs to S (“S is a
bar”),

- if u is a finite sequence for which the concatenation u ∗n belongs to S for all n,
the u belongs to S (“S is inductive”),

then the empty sequence 〈 〉 belongs to S. It is well-known that these statements,
compactness of 2N and of [0, 1] and Bar Induction for NN, cannot be derived in in-
tuitionistic set or type theories. In fact, they fail in sheaf models over locales, as
explained in [44]. Sheaf models can also be used to show that all implications in the
chain

(BI) =⇒ (FT ) =⇒ (HB)

are strict (where BI stands for Bar Induction for NN, FT stands for the Fan Theorem
(compactness of 2N) and HB stands for the Heine-Borel Theorem (compactness of the
unit interval), see [92]).

1This paper is available in preprint form as B. van den Berg and I. Moerdijk, Derived rules for
predicative set theory: an application of sheaves, from arXiv:1009.3553.
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On the other hand, one may also define Cantor space C, Baire space B, and
the unit interval I as locales or formal spaces. Compactness is provable for formal
Cantor space, as is Bar Induction for formal Baire space. Although Bar Induction
may seem to be a statement of a slightly different nature, it is completely analogous
to compactness, as explained in [44] as well. Indeed, the locales C and I have enough
points (i.e., are true topological spaces) iff the spaces 2N and [0, 1] are compact, while
the locale B has enough points iff Bar Induction holds for the space NN. The goal of
this paper is to prove that the compactness properties of these (topological) spaces
do hold for CZF (with countable choice), however, when they are reformulated as
derived rules. Thus, for example, Cantor space is compact in the sense that if S is
a property of finite sequences of 0’s and 1’s which is definable in the language of set
theory and for which CZF proves

for all α in 2N there is an n such that 〈α(0), α(1), ...., α(n)〉 belongs to S
(“S is a cover”),

then there are such finite sequences u1, ..., uk for which CZF proves that each ui
belongs to S as well as that for each α as above there are an n and an i such that
〈α(0), α(1), ...., α(n)〉 = ui. We will also show that compactness of the unit inter-
val and Bar Induction hold when formulated as derived rules for CZF and suitable
extensions of CZF, respectively.

This is a proof-theoretic result, which we will derive by purely model-theoretic
means, using sheaf models for CZF and a doubling construction for locales originating
with Joyal. Although our results for the particular theory CZF seem to be new,
similar results occur in the literature for other constructive systems, and are proved
by various methods, such as purely proof-theoretic methods, realizability methods or
our sheaf-theoretic methods.2 In this context it is important to observe that derived
rules of the kind “if T proves ϕ, then T proves ψ” are different results for different
T , and can be related only in the presence of conservativity results. For example, a
result for CZF like the ones above does not imply a similar result for the extension
of CZF with countable choice, or vice versa.

Our motivation to give detailed proofs of several derived rules comes from various
sources. First of all, the related results just mentioned predate the theory CZF, which
is now considered as one of the most robust axiomatisations of predicative constructive
set theory and is closely related to Martin-Löf type theory. Secondly, the theory of
sheaf models for CZF has only recently been firmly established (see [54, 56] and
[25] (Chapter 5)), partly in order to make applications to proof theory such as the
ones exposed in this paper possible. Thirdly, the particular sheaf models over locales

2For example, Beeson in [14] used a mixture of forcing and realizability for Feferman-style systems
for explicit mathematics. Hayashi used proof-theoretic methods for HAH, the system for higher-
order Heyting arithmetic corresponding to the theory of elementary toposes in [63], and sheaf-
theoretic methods in [64] for the impredicative set theory IZF, an intuitionistic version of Zermelo-
Fraenkel set theory. Grayson [61] gives a sheaf-theoretic proof of a local continuity rule for the
system HAH, and mentions in [60] that the method should also apply to systems without powerset.
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necessary for our application hinge on some subtle properties and constructions of
locales (or formal spaces) in the predicative context, such as the inductive definition of
covers in formal Baire space in the absence of power sets. These aspects of predicative
locale theory have only recently emerged in the literature [38, 4]. In these references,
the regular extension axiom REA plays an important role. In fact, one needs an
extension of CZF, which on the one hand is sufficiently strong to handle suitable
inductive definitions, while on the other hand it is stable under sheaf extensions. One
possible choice is the extension of CZF by small W-types and the axiom of multiple
choice AMC (see [27] (Chapter 7)).

The results of this paper were presented by the authors on various occasions:
by the second author on 11 July 2009 at the TACL’2009 conference in Amsterdam
and on 18 March 2010 in the logic seminar in Manchester and by the first author
on 7 May 2010 at the meeting “Set theory: classical and constructive”, again in
Amsterdam. We would like to thank the organizers of all these events for giving us
these opportunities.

6.2 Constructive set theory

Throughout the paper we work in Aczel’s constructive set theory CZF, or extensions
thereof. (An excellent reference for CZF is [6].)

6.2.1 CZF

CZF is a set theory whose underlying logic is intuitionistic and whose axioms are:

Extensionality: ∀x (xεa↔ xεb )→ a = b.

Empty set: ∃x ∀y ¬yεx.

Pairing: ∃x ∀y ( yεx↔ y = a ∨ y = b ).

Union: ∃x∀y ( yεx↔ ∃zεa yεz ).

Set induction: ∀x (∀yεxϕ(y)→ ϕ(x)
)→ ∀xϕ(x).

Infinity: ∃a (
(∃xxεa ) ∧ (∀xεa ∃yεa xεy )

)
.

Bounded separation: ∃x∀y (
yεx ↔ yεa ∧ ϕ(y)

)
, for any bounded formula ϕ in

which a does not occur.

Strong collection: ∀xεa ∃y ϕ(x, y)→ ∃bB(xεa, yεb)ϕ.

Subset collection: ∃c ∀z ( ∀xεa ∃yεb ϕ(x, y, z)→ ∃dεcB(xεa, yεd)ϕ(x, y, z)
)
.
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In the last two axioms, the expression

B(xεa, yεb)ϕ.

has been used as an abbreviation for ∀xεa ∃yεb ϕ ∧ ∀yεb ∃xεaϕ.

Throughout this paper, we will use denumerable to mean “in bijective correspon-
dence with the set of natural numbers” and finite to mean “in bijective correspon-
dence with an initial segment of natural numbers”. A set which is either finite or
denumerable, will be called countable.

In this paper we will also consider the following choice principles (countable choice
and dependent choice):

ACω (∀n ∈ N)(∃x ∈ X)ϕ(n, x)→ (∃f :N→ X)(∀n ∈ N)ϕ(n, f(n))

DC (∀x ∈ X) (∃y ∈ X)ϕ(x, y)→
(∀x0 ∈ X) (∃f :N→ X) [ f(0) = x0 ∧ (∀n ∈ N)ϕ(f(n), f(n+ 1)) ]

It is well-known that DC implies ACω, but not conversely (not even in ZF). Any
use of these additional axioms will be expressly indicated.

6.2.2 Inductive definitions in CZF

Definition 6.2.1 Let S be a class. We will write Pow(S) for the class of subsets of
S. An inductive definition is a subclass Φ of Pow(S)× S. A subclass A of S will be
called Φ-closed, if

X ⊆ A⇒ a ∈ A
whenever (X, a) is in Φ.

In CZF one can prove that for any inductive definition Φ on a class S and for any
subclass U of S there is a least Φ-closed subclass of S containing U (see [6]). We will
denote this class by I(Φ, U). However, for the purposes of predicative locale theory
one would like to have more:

Theorem 6.2.2 (Set Compactness) If S and Φ are sets, then there is a subset B of
Pow(S) such that for each set U ⊆ S and each a ∈ I(Φ, U) there is a set V ∈ B such
that V ⊆ U and a ∈ I(Φ, V ).

This result cannot be proved in CZF proper, but it can be proved in extensions
of CZF. For example, this result becomes provable in CZF extended with Aczel’s
regular extension axiom REA [6] or in CZF extended with the axioms WS and
AMC [27] (Chapter 7). The latter extension is known to be stable under sheaves
(see [94] and [27] (Chapter 7)), while the former presumably is as well. Below, we will
denote by CZF+ any extension of CZF which allows one to prove set compactness
and is stable under sheaves.
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6.3 Predicative locale theory

In this section we have collected the definitions and results from predicative locale
theory that we need in order to establish derived rules for CZF. We have tried to
keep our presentation self-contained, so that this section can actually be considered
as a crash course on predicative locale theory or “formal topology”. (In a predicative
context, locales are usually called “formal spaces”, hence the name. Some important
references for formal topology are [43, 38, 105, 4] and, unless expressly indicated
otherwise, the reader may find the results explained in this section in these sources.)

6.3.1 Formal spaces

Definition 6.3.1 A formal space is a small site whose underlying category is a pre-
order. By a preorder, we mean a set P together with a small relation ≤⊆ P × P
which is both reflexive and transitive. For the benefit of the reader, we repeat the
axioms for a site from [25] (Chapter 5) for the special case of preorders.

Fix an element a ∈ P. By a sieve on a we will mean a downwards closed subset
of ↓ a = {p ∈ P : p ≤ a}. The set Ma =↓ a will be called the maximal sieve on a. In
a predicative setting, the sieves on a form in general only a class.

If S is a sieve on a and b ≤ a, then we write b∗S for the sieve

b∗S = S ∩ ↓ b

on b. We will call this sieve the restriction of S to b.

A (Grothendieck) topology Cov on P is given by assigning to every object a ∈ P a
collection of sieves Cov(a) such that the following axioms are satisfied:

(Maximality) The maximal sieve Ma belongs to Cov(a).

(Stability) If S belongs to Cov(a) and b ≤ a, then b∗S belongs to Cov(b).

(Local character) Suppose S is a sieve on a. If R ∈ Cov(a) and all restrictions b∗S
to elements b ∈ R belong to Cov(b), then S ∈ Cov(a).

A pair (P,Cov) consisting of a preorder P and a Grothendieck topology Cov on it is
called a formal topology or a formal space. If a formal topology (P,Cov) has been
fixed, the sieves belonging to some Cov(a) are the covering sieves. If S belongs to
Cov(a) one says that S is a sieve covering a, or that a is covered by S.

The well-behaved formal spaces are those that are set-presented. Note that only
set-presented formal spaces give rise to categories of sheaves again modelling CZF
(see Theorem 6.4.3 below) and that it was a standing assumption in [25] (Chapter 5)
that sites had a basis in the following sense.
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Definition 6.3.2 A basis for a formal topology (P,Cov) is a function BCov assigning
to every a ∈ C0 a small collection BCov(a) of subsets of ↓ a such that:

S ∈ Cov(a)⇔ ∃R ∈ BCov(a):R ⊆ S.

A formal topology which has a basis will be called set-presented.

6.3.2 Inductively generated formal topologies

Definition 6.3.3 If P is a preorder, then a covering system is a map C assigning to
every a ∈ P a small collection C(a) of subsets of ↓ a such that the following covering
axiom holds:

for every α ∈ C(p) and q ≤ p, there is a β ∈ C(q) such that
β ⊆ q∗ ↓ α = {r ≤ q : (∃a ∈ α) r ≤ a}.

Every covering system generates a formal space. Indeed, every covering system
gives rise to an inductive definition Φ on P, given by:

Φ = {(α, a) : α ∈ C(a)}.

So we may define:

S ∈ Cov(a)⇔ a ∈ I(Φ, S).

Before we show that this is a Grothendieck topology, we first note:

Lemma 6.3.4 If S is a downwards closed subclass of ↓ a, then so is I(Φ, S). Also,
x ∈ I(Φ, S) iff x ∈ I(Φ, x∗S).

Proof. The class I(Φ, S) is inductively generated by the rules:

a∈S
a∈I(Φ,S)

α⊆I(Φ,S) α∈C(a)
a∈I(Φ,S)

Both statements are now proved by an induction argument, using the covering axiom.
¤

Theorem 6.3.5 Every covering system generates a formal topology. More precisely,
for every covering system C there is a smallest Grothendieck topology Cov such that

α ∈ C(a) =⇒↓ α ∈ Cov(a).

In CZF+ one can show that this formal topology is set-presented.
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Proof. Note that the Cov relation is inductively generated by:

a∈S
S∈Cov(a)

α∈C(a) (∀x∈α)x∗S∈Cov(x)
S∈Cov(a)

Maximality is therefore immediate, while stability and local character can be estab-
lished using straightforward induction arguments. Therefore Cov is indeed a topology.
The other statements of the theorem are clear. ¤

Theorem 6.3.6 (Induction on covers) Let (P,Cov) be a formal space, whose topology
Cov is inductively generated by a covering system C, as in the previous theorem.
Suppose P (x) is a property of basis elements x ∈ P, such that

∀α ∈ C(x)
(

((∀y ∈ α)P (y))→ P (x)
)
,

and suppose S is a cover of an element a ∈ P such that P (y) holds for all y ∈ S.
Then P (a) holds.

Proof. Suppose P has the property in the hypothesis of the theorem. Define:

S ∈ Cov∗(p)⇔ (∀q ≤ p)
(

((∀r ∈ q∗S)P (r))→ P (q)
)
.

Then one checks that Cov∗ is a topology extending C. So by Theorem 6.3.5 we have
S ∈ Cov(a) ⊆ Cov∗(a), from which the desired result follows. ¤

6.3.3 Formal Cantor space

We will write X<N for the set of finite sequences of elements from X. Elements of
X<N will usually be denoted by the letters u, v, w, . . .. Also, we will write u ≤ v if v
is an initial segment of u, |v| for the length of v and u ∗ v for the concatenation of
sequences u and v. If u ∈ X<N and q ≥ |u| is a natural number, then we define u[q]
by:

u[q] = {v ∈ X<N : |v| = q and v ≤ u}.

The basis elements of formal Cantor space C are finite sequences u ∈ 2<N (with
2 = {0, 1}), ordered by saying that u ≤ v, whenever v is an initial segment of u.
Furthermore, we put

S ∈ Cov(u)⇔ (∃q ≥ |u|)u[q] ⊆ S

and BCov(u) = {u[q] : q ≥ |u|}. Note that this will make formal Cantor space
compact by definition (where a formal space is compact, if for every cover S of p
there is a finite subset α of S such that ↓ α ∈ Cov(p)).

Proposition 6.3.7 Formal Cantor space is a set-presented formal space.
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Proof. We leave maximality and stability to the reader and only check local charac-
ter. Suppose S is a sieve on u for which a sieve R ∈ Cov(u) can be found such that
for all v ∈ R the sieve v∗S =↓ v ∩ S belongs to Cov(v). Since R ∈ Cov(u) there is
q ≥ |u| such that u[q] ⊆ R. Therefore we have for any v ∈ u[q] that ↓ v ∩ S covers
v and hence that there is a r ≥ q such that v[r] ⊆ S. Since the set u[q] is finite, the
elements r can be chosen as a function v. For p = max{rv : v ∈ u[q]}, it holds that

u[p] =
⋃

v∈u[q]
v[p] ⊆ S,

as desired. ¤

6.3.4 Formal Baire space

Formal Baire space B is an example of an inductively defined space. The underlying
poset has as elements finite sequences u ∈ N<N, ordered as for Cantor space above.
The Grothendieck topology is inductively generated by:

{{u ∗ 〈n〉 : n ∈ N}} ∈ C(u),

and therefore we have the following induction principle:

Corollary 6.3.8 (Bar Induction for formal Baire space) Suppose P (x) is a property
of finite sequences u ∈ N<N, such that

(
(∀n ∈ N)P (u ∗ 〈n〉))→ P (u),

and suppose that S is a cover of v in formal Baire space such that P (x) for all x ∈ S.
Then P (v) holds.

Note that this means that Bar Induction for formal Baire space is provable.

To show that formal Baire space is set-presented we seem to have to go beyond
CZF proper.3 One possibility is to work in CZF+ and appeal to Theorem 6.3.5. An
alternative approach uses ACω and the assumption that the “Brouwer ordinals” form
a set (here we define the Brouwer ordinals as the W-type associated to the constant
one map N→ 2, or as the initial algebra for the functor F (X) = 1 +XN).4 Because
we did not find this approach in the literature, we will describe it here as well.

Define BCov(〈 〉) be smallest subclass of Ps(N<N) such that:

{〈 〉} ∈ BCov(〈 〉)
∀i ∈ N: Si ∈ BCov(〈 〉)⇒ ⋃

i∈I〈i〉 ∗ Si ∈ BCov(〈 〉)
3So far as we are aware, it has not been proved that formal Baire space being set-presented is

independent from CZF. (But see footnote 5 in Chapter 8 – note added in Habilitation Thesis.)
4Incidentally, we also expect that the smallness of the Brouwer ordinals to be independent from

CZF proper, but, again, we do not know of a proof. (But see footnote 9 in Chapter 8 – note added
in Habilitation Thesis.)
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This inductive definition makes sense in CZF, also when the Brouwer ordinals form a
class. But if we assume that the Brouwer ordinals form a set, it follows that BCov(〈 〉)
is a set as well. Put:

S ∈ BCov(u) ⇔ ∃T ∈ BCov(〈 〉): u ∗ T ∈ BCov(u)

S ∈ Cov(u) ⇔ ∃T ∈ BCov(u):T ⊆ S.

Lemma 6.3.9 1. Every T ∈ BCov(u) is countable.

2. If T ∈ BCov(u) and we have for every v ∈ T an Rv ∈ BCov(v), then
⋃
v∈T Rv ∈

BCov(u).

3. If T ∈ BCov(u) and v ≤ u, then there is an S ∈ BCov(v) such that S ⊆ v∗ ↓ T .

Proof. It suffices to prove these statements in the special case where u = 〈 〉; in that
case, they follow easily by induction on T . ¤

Proposition 6.3.10 (ACω) (N<N,Cov) as defined above is an alternative presen-
tation of formal Baire space and therefore formal Baire space is set-presented, if the
Brouwer ordinals form a set.

Proof. We first show that we have a defined a formal space. Since maximality is
clear and stability follows from item 3 of the previous lemma, it remains to check
local character.

Suppose S is a sieve on u for which a sieve R ∈ Cov(u) can be found such that for
all v ∈ R the sieve v∗S belongs to Cov(v). Since R ∈ Cov(u) there is a T ∈ BCov(u)
such that T ⊆ R. Therefore we have for any v ∈ T that v∗S covers v and hence that
there is a Z ∈ BCov(v) such that Z ⊆ S. Since T is countable, we can use ACω or
the finite axiom of choice (which is provable in CZF) to choose the elements Z as a
function Zv of v ∈ T . Then let K =

⋃
v∈T Zv. K is covering by the previous lemma

and because

K =
⋃
v∈T

Zv ⊆ S,

the same must be true for S.

To easiest way to prove that we have given a different presentation of formal Baire
space is to show that Cov is the smallest topology such that

↓ {u ∗ 〈n〉 : n ∈ N} ∈ Cov(u).

Clearly, Cov has this property, so suppose Cov∗ is another. One now shows by induc-
tion on T ∈ BCov(u) that ↓ T ∈ Cov∗(u). This completes the proof. ¤
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6.3.5 Points of a formal space

The characteristic feature of formal topology is that one takes the notion of basic
open as primitive and the notion of a point as derived. In fact, the notion of a point
is defined as follows:

Definition 6.3.11 A point of a formal space (P,Cov) is an inhabited subset α ⊆ P
such that

(1) α is upwards closed,

(2) α is downwards directed,

(3) if S ∈ Cov(a) and a ∈ α, then S ∩ α is inhabited.

We say that a point α belongs to (or is contained in) an basic open p ∈ P, if p ∈ α,
and we will write ext(p) for the class of points of the basic open p.

If (P,Cov) is a formal space and ext(p) is a set for all p ∈ P, one can define a new
formal space pt(P,Cov), whose set of basic opens is again P, but now ordered by:

p ⊆ q ⇔ ext(p) ⊆ ext(q),

while the topology is defined by:

S ∈ Cov′(a)⇔ ext(a) ⊆
⋃
p∈S

ext(p).

The space pt(P,Cov) will be called the space of points of the formal space (P,Cov).
It follows immediately from the definition of a point that

p ≤ q ⇒ p ⊆ q,

S ∈ Cov(a) ⇒ S ∈ Cov′(a).

The other directions of these implications do not hold, in general. Indeed, if they do,
one says that the formal space has enough points. It turns out that one can quite
easily construct formal spaces that do not have enough points (even in a classical
metatheory).

Note that points in formal Cantor space are really functions α:N → {0, 1} and
points in formal Baire space are functions α:N → N. In fact, their spaces of points
are (isomorphic to) “true” Cantor space and “true” Baire space, respectively.

The following two results where already mentioned in the introduction and are
well-known in the impredicative settings of topos theory or intuitionistic set theory
IZF. Here we wish to emphasise that they hold in CZF as well.

Proposition 6.3.12 The following statements are equivalent:
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(1) Formal Cantor space has enough points.

(2) Cantor space is compact.

(3) The Fan Theorem: If S is a downwards closed subset of 2<N and

(∀α ∈ 2N) (∃u ∈ α) u ∈ S,

then there is a q ∈ N such that 〈 〉[q] ⊆ S.

Proof. The equivalence of (2) and (3) holds by definition of compactness and the
equivalence of (1) and (3) by the definition of having enough points. ¤

Proposition 6.3.13 The following statements are equivalent:

(1) Formal Baire space has enough points.

(2) Monotone Bar Induction: If S is a downwards closed subset of N<N and

(∀α ∈ NN) (∃u ∈ α) u ∈ S

and

(∀u ∈ N<N)
(
((∀n ∈ N) u ∗ 〈n〉 ∈ S)→ u ∈ S )

hold, then 〈 〉 ∈ S.

Proof. (1) ⇒ (2): If formal Baire space has enough points, then formal Baire space
and Baire space are isomorphic. Since Monotone Bar Induction is provable for formal
Baire space (Corollary 6.3.8), this yields the desired result.

(2)⇒ (1): Assume that Monotone Bar Induction holds and suppose that S ∈ Cov′(〈 〉)
is arbitrary. We have to show that S ∈ Cov(〈 〉). By definition, this means that we
have to show that 〈 〉 ∈ S, where S is inductively defined by the rules:

a∈S
a∈S

(∀n∈N)u∗〈n〉∈S
u∈S

(see the construction just before Lemma 6.3.4). However, since S is downwards closed
(by Lemma 6.3.4), a bar (because S is a bar and S ⊆ S) and inductive (by construc-
tion), we may apply Monotone Bar Induction to S to deduce that 〈 〉 ∈ S, as desired.

¤
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6.3.6 Morphisms of formal spaces

Points are really a special case of morphisms of formal spaces.

Definition 6.3.14 A continuous map or a morphism of formal spaces

F : (P,Cov)→ (Q,Cov′)

is a relation F ⊆ P ×Q such that:

(1) If F (p, q), p′ ≤ p and q ≤ q′, then F (p′, q′).

(2) For every q ∈ Q, the set {p : F (p, q)} is closed under the covering relation.

(3) For every p ∈ P there is a a cover S ∈ Cov(p) such that each p′ ∈ S is related
via F to some element q′ ∈ Q.

(4) For every q, q′ ∈ Q and element p ∈ P such that F (p, q) and F (p, q′), there is a
cover S ∈ Cov(p) such that every p′ ∈ S is related via F to an element which
is smaller than or equal to both q and q′.

(5) Whenever F (p, q) and T covers q, there is a sieve S covering p, such that every
p′ ∈ S is related via F to some q′ ∈ T .

To help the reader to make sense of this definition, it might be good to recall
some facts from locale theory. A locale is a partially ordered class A which finite
meets and small suprema, with the small suprema distributing over the finite meets.
In addition, a morphism of locales A → B is a map B → A preserving finite meets
and small suprema.

Every formal space (P,Cov) determines a locale Idl(P,Cov), whose elements are
the closed sieves on P, ordered by inclusion (a sieve S is closed, if it is closed under
the covering relation, in the following sense:

R ∈ Cov(a), R ⊆ S =⇒ a ∈ S.)
Every morphism of locales ϕ: Idl(P,Cov) → Idl(Q,Cov′) determines a relation F ⊆
P×Q by p ∈ ϕ(q), with q being the least closed sieve containing q. The reader should
verify that this relation F has the properties of a map of formal spaces and that every
such F determines a unique morphism of locales ϕ: Idl(P,Cov)→ Idl(Q,Cov′).

Together with the continuous maps the class of formal spaces organises itself into
a large category, with composition given by composition of relations and identity
I: (P,Cov)→ (P,Cov) by

I(p, q)⇐⇒ (∃S ∈ Cov(p)) (∀r ∈ S) r ≤ q.

(if the formal space is subcanonical (p =↓ p for all p ∈ P ), this simplifies to I(p, q) iff
p ≤ q). Note that in a predicative metatheory, this category cannot be expected to
be locally small.
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A point of a formal space (P,Cov) is really the same thing as a map 1→ (P,Cov),
where 1 is the one-point space ({∗},Cov′) with Cov′(∗) =

{{∗}}: if F : 1→ (P,Cov)
is a map, then α = {p ∈ P : F (∗, p)} is a point, and, conversely, if α is a point, then

F (∗, p)⇔ p ∈ α
defines a map. Moreover, these operations are clearly mutually inverse. This implies
that any continuous map F : (P,Cov)→ (Q,Cov′) induces a function

pt(F ): pt(P,Cov)→ pt(Q,Cov′)

(by postcomposition). Since this map is continuous, pt defines an endofunctor on the
category of those formal spaces on which pt is well-defined.

In addition, we have for any formal space (P,Cov) on which pt is well-defined a
continuous map F : pt(P,Cov) → (P,Cov) given by F (p, q) iff ext(p) ⊆ ext(q). This
map F is an isomorphism precisely when (P,Cov) has enough points. (In fact, F is
the component at (P,Cov) of a natural transformation pt⇒ id.)

6.3.7 Double construction

Although the Fan Theorem and Monotone Bar Induction are not provable in CZF,
we will show below that they do hold as derived rules. For that purpose, we use a
construction on formal spaces, which we have dubbed the “double construction” and
is due to Joyal.5 The best way to explain it is to consider the analogous construction
for ordinary topological spaces first.

Starting from a topological space X, the double construction takes two disjoint
copies of X, so that every subset of it can be considered as a pair (U, V ) of subsets
of X. Such a pair will be open, if U is open in X and U ⊆ V . Note that we do not
require V to be open in X: V can be an arbitrary subset of X.

The construction for formal spaces is now as follows: suppose (U,Cov) is a formal
space whose points form a set Q. The set of basic opens of D(U,Cov) is

{
D(u) : u ∈ U}

+
{{q} : q ∈ Q}

,

with the preorder generated by:

D(v) ≤ D(u) if v ≤ u in U,
{q} ≤ D(v) if v ∈ q,
{p} ≤ {q} if p = q.

In addition, the covering relation is given by

Cov′(D(u)) =
{{D(v) : v ∈ S} ∪ {{q} : v ∈ q, v ∈ S} : S ∈ Cov(u)

}
,

Cov′({q}) =
{{q}}.

5This construction is known in the impredicative case for locales, but here we wish to emphasise
that it works in a predicative setting for formal spaces as well.
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Proposition 6.3.15 D(U,Cov) as defined above is a formal space, which is set-
presented, whenever (U,Cov) is.

Proof. This routine verification we leave to the reader. Note that if BCov is a basis
for the covering relation Cov, then

BCov′(D(u)) =
{{D(v) : v ∈ S} : S ∈ Cov(u)

}
,

BCov′({q}) =
{{q}}

is a basis for Cov′. ¤

The formal space D(U,Cov) comes equipped with three continuous maps:

(U,Cov)
µ

// D(U,Cov)

π

²²

(U,Cov)discr
νoo

(U,Cov)

1. A closed map µ: (U,Cov) → D(U,Cov) given by µ(u, p) iff p = D(v) for some
v ∈ U with I(u, v).

2. A map π:D(U,Cov) → (U,Cov) given by π(p, u) iff there is a v ∈ U with
u = D(v) and I(v, u). Note that π ◦ µ = id.

3. Finally, an open map of the form ν: (U,Cov)discr → D(U,Cov). The domain of
this map (U,Cov)discr is the formal space whose basic opens are singletons {q}
(with the discrete ordering) and whose only covering sieves are the maximal
ones. The map ν is then given by ν({q}, u) iff u = {q}.

Remark 6.3.16 For topological spaces, the double construction can be seen as a kind
of mapping cylinder with Sierpiński space replacing the unit interval: the ordinary
mapping cylinder of a map f :Y → X is obtained by taking the space [0, 1]× Y +X
and then identifying points (0, y) with f(y) (for all y ∈ Y ). The double of a space X
is obtained from this construction by replacing the unit interval [0, 1] by Sierpiński
space and considering the canonical map Xdiscr → X.

6.4 Sheaf models

In [54] and [25] (Chapter 5) it is shown how sheaves over a set-presented formal
space give rise to a model of CZF. Moreover, since this fact is provable within CZF
itself, sheaf models can be used to establish proof-theoretic facts about CZF, such as
derived rules. We will exploit this fact to prove Derived Fan and Bar Induction rules
for (extensions of) CZF.
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We recapitulate the most important facts about sheaf models below. We hope this
allows the reader who is not familiar with sheaf models to gain the necessary informal
understanding to make sense of the proofs in this section. The reader who wants to
know more or wishes to see some proofs, should consult [54] and [25] (Chapter 5).

A presheaf X over a preorder P is a functor X:Pop → Sets. This means that X is
given by a family of sets X(p), indexed by elements p ∈ P, and a family of restriction
operations − ¹ q:X(p)→ X(q) for q ≤ p, satisfying:

1. − ¹ p:X(p)→ X(p) is the identity,

2. for every x ∈ X(p) and r ≤ q ≤ p, (x ¹ q) ¹ r = x ¹ r.

Given a topology Cov on P, a presheaf X will be called a sheaf, if it satisfies the
following condition:

For any given sieve S ∈ Cov(p) and family {xq ∈ X(q) : q ∈ S}, which
is compatible, meaning that (xq) ¹ r = xr for every r ≤ q ∈ S, there is
a unique x ∈ X(p) (the “amalgamation” of the compatible family) such
that x ¹ q = xq for all q ∈ S.

Lemma 6.4.1 If a formal space (P,Cov) is generated by a covering system C, then
it suffices to check the sheaf axiom for those families which belong to the covering
system.

Proof. Suppose X is a presheaf satisfying the sheaf axiom with respect to the
covering system C, in the following sense:

For any given element α ∈ C(a) and family {xq ∈ X(q) : q ∈ α}, which is
compatible, meaning that for all r ≤ p, q with p, q ∈ α we have (xp) ¹ r =
(xq) ¹ r, there exists a unique x ∈ X(a) such that x ¹ q = xq for all q ∈ α.

Define Cov∗ by:

S ∈ Cov∗(a) ⇔ if b ≤ a and {xq ∈ X(q) : q ∈ b∗S} is a compatible family,

then it can be amalgamated to a unique x ∈ X(b).

Cov∗ is a Grothendieck topology, which, by assumption, satisfies

α ∈ C(a) =⇒↓ α ∈ Cov∗(a).

Therefore Cov ⊆ Cov∗, which implies thatX is a sheaf with respect to the Grothendieck
topology Cov. ¤
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A morphism of presheaves F :X → Y is a natural transformation, meaning that
it consists of functions {Fp:X(p) → Y (p) : p ∈ P} such that for all q ≤ p we have a
commuting square:

X(p)
Fp

//

−¹q
²²

Y (p)

−¹q
²²

X(q)
Fq

// Y (q).

The category of sheaves is a full subcategory of the category of presheaves, so ev-
ery natural transformation F :X → Y between sheaves X and Y is regarded as a
morphism of sheaves.

The category of sheaves is a Heyting category and therefore has an “internal logic”.
This internal logic can be seen as a a generalisation of forcing, in that truth in the
model can be explained using a binary relation between elements p ∈ P (the “condi-
tions” in forcing speak) and first-order formulas. This forcing relation is inductively
defined as follows:

p ‖−ϕ ∧ ψ ⇔ p ‖−ϕ and p ‖−ψ
p ‖−ϕ ∨ ψ ⇔ {q ≤ p : q ‖−ϕ or q ‖−ψ} ∈ Cov(p)

p ‖−ϕ→ ψ ⇔ (∀q ≤ p) q ‖−ϕ⇒ q ‖−ψ
p ‖−⊥ ⇔ ∅ ∈ Cov(p)

p ‖−(∃x ∈ X)ϕ(x) ⇔ {q ≤ p : (∃x ∈ X(q)) q ‖−ϕ(x)} ∈ Cov(p)

p ‖−(∀x ∈ X)ϕ(x) ⇔ (∀q ≤ p) (∀x ∈ X(q)) q ‖−ϕ(x)

Lemma 6.4.2 Sheaf semantics has the following properties:

1. (Monotonicity) If p ‖−ϕ and q ≤ p, then q ‖−ϕ.

2. (Local character) If S covers p and q ‖−ϕ for all q ∈ S, then p ‖−ϕ.

3. If p is minimal (so q ≤ p implies q = p) and Cov(p) =
{{p}}, then forcing at

p coincides with truth.

Proof. By induction on the structure of ϕ. ¤

Using this forcing relation, one defines truth in the model as being forced by every
condition p ∈ P. If P has a top element 1, this coincides with being forced at this
element (by monotonicity).

One way to see sheaf semantics is as a generalisation of forcing for classical set
theory, which one retrieves by putting:

S ∈ Cov(p)⇔ S is dense below p.
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Forcing for this specific forcing relation validates classical logic, but in general sheaf
semantics will only validate intuitionistic logic. As a matter of fact, the category of
sheaves with its internal logic can be regarded as a model of a constructive set theory.

Theorem 6.4.3 If (P,Cov) is a set-presented formal space, then sheaf semantics
over (P,Cov) is sound for CZF, as it is for CZF extended with small W-types WS
and the axiom of multiple choice AMC. Moreover, the former is provable within
CZF, while the latter is provable in CZF + WS + AMC.

Proof. This is proved in [25, 27] (Chapters 5 and 7) for the general case of sheaves
over a site. For the specific case of sheaves on a formal space and CZF alone, this
was proved earlier by Gambino in terms of Heyting-valued models [54, 56]. ¤

The requirement that (P,Cov) is set-presented is essential: the theorem is false
without it (see [56]). Therefore we will assume from now on that (P,Cov) is set-
presented.

For the proofs below we need to compute various objects related to Cantor space
and Baire space in different categories of sheaves. We will discuss the construction
of N in sheaves in some detail: this will hopefully give the reader sufficiently many
hints to see why the formulas we give for the others are correct.

To compute N in sheaves, one first computes N in presheaves, where it is pointwise
constant N. The corresponding object in sheaves is obtained by sheafifying this object,
which means by twice applying the plus-construction (see [25] (Chapter 5) and [86]).
In case every covering sieve is inhabited, the presheaf N is already separated, so then
it suffices to apply the plus-construction only once. In that case, we obtain:

N(p) = {(S, ϕ) : S ∈ Cov(p), ϕ:S → N compatible}/ ∼,

with (S, ϕ) ∼ (T, ψ), if there is an R ∈ Cov(p) with R ⊆ S ∩ T and ϕ(r) = ψ(r) for
all r ∈ R, and (S, ϕ) ¹ q = (q∗S, ϕ ¹ q∗S).

Remark 6.4.4 If P has a top element 1 (as often is the case), then elements of N(1)
correspond to continuous functions

(P,Cov)→ Ndiscr.

Remark 6.4.5 Borrowing terminology from Boolean-valued models [16], we could
call elements of N(p) of the form (Mp, ϕ) pure and others mixed (recall that Mp =↓ p
is the maximal sieve on p). As one sees from the description of N in sheaves, the pure
elements lie dense in this object, meaning that for every x ∈ N(p),

{q ≤ p : x ¹ q is pure} ∈ Cov(p).
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This, together with the local character of sheaf semantics, has the useful consequence
that in the clauses for the quantifiers

p ‖−(∃x ∈ N)ϕ(x) ⇔ {q ≤ p : (∃x ∈ N(q)) q ‖−ϕ(x)} ∈ Cov(p)

p ‖−(∀x ∈ N)ϕ(x) ⇔ (∀q ≤ p) (∀x ∈ N(q)) q ‖−ϕ(x)

one may restrict ones attention to those x ∈ N(q) that are pure.

We also have the following useful formulas:

2(p) = {(S, ϕ) : S ∈ Cov(p), ϕ:S → {0, 1} compatible}/ ∼,
2<N(p) = 2(p)<N,

2N(p) = 2(p)N,

N<N(p) = N(p)<N,

NN(p) = N(p)N.

All these objects come equipped with the obvious equivalence relations and restriction
operations. We will not show the correctness of these formulas, which relies heavily
on the following fact:

Proposition 6.4.6 [86, Proposition III.1, p. 136] The sheaves form an exponential
ideal in the category of presheaves, so if X is a sheaf and Y is a presheaf, then XY

(as computed in presheaves) is a sheaf.

From these formulas one sees that, if P has a top element 1, then 2N(1) can be
identified with the set of continuous functions (P,Cov)→ C to formal Cantor space
and NN(1) with the set of continuous functions (P,Cov)→ B to formal Baire space.
Also, in 2<N and N<N the “pure” elements are again dense. (But this is not true for
2N and NN, in general.)

6.4.1 Choice principles

For our purposes it will be convenient to introduce the following ad hoc terminology.

Definition 6.4.7 A formal space (P,Cov) will be called a CC-space, if every cover
has a countable, disjoint refinement (meaning that for every S ∈ Cov(p), there is a
countable α ⊆↓ p such that α ⊆ S, ↓ α ∈ Cov(p) and for all p, q ∈ α, either p = q or
↓ p∩ ↓ q is empty).

Example 6.4.8 Formal Cantor space is a CC-space and if ACω holds, then so is
formal Baire space (see Proposition 6.3.10). Also, doubles of CC-spaces are again
CC.
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Our main reason for introducing the notion of a CC-space is the following propo-
sition, which is folklore (see, for instance, [60]):

Proposition 6.4.9 Suppose (P,Cov) is a set-presented formal space which is CC and
is such that every sieve is inhabited. If DC or ACω holds in the metatheory, then the
same choice principle holds in Sh(P,Cov). Moreover, this fact is provable in CZF.

Proof. We check this for ACω, the argument for DC being very similar. So suppose
X is some sheaf and

p ‖−(∀n ∈ N)(∃x ∈ X)ϕ(n, x).

Using that the pure elements in N are dense (Remark 6.4.5), this means that for every
n ∈ N there is a cover S ∈ Cov(p) such that for all q ∈ S there is an x ∈ X(q) such
that

q ‖−ϕ(n, x).

Since the space is assumed to be CC, S =↓ α for a set α which is countable and
disjoint. Furthermore, since ACω holds, the x ∈ X(q) can be chosen as a function of
n ∈ N and for q ∈ α. Since α is disjoint, we can amalgamate the xq,n ∈ X(q) to an
element xn ∈ X(p) such that

p ‖−ϕ(n, xn).

So if we set f(n) = xn we obtain the desired result. ¤

6.4.2 Brouwer ordinals

Recall that we were not able to show that formal Baire space is set-presented in CZF,
but that it follows in CZF+, which we defined to be any extension of CZF in which
the set compactness theorem is provable and which is stable under sheaves. It also
follows from CZF + ACω + “The Brouwer ordinals form a set”, as we showed in
Section 3.4. The question arises whether this theory is stable under sheaves on formal
spaces and the purpose of this section is to show that the answer is affirmative, if we
restrict our attention to a particular class of formal spaces:

Theorem 6.4.10 Suppose (P,Cov) is a set-presented formal space which is CC and
is such that every sieve is inhabited. If the combination of ACω and smallness of the
Brouwer ordinals holds in the metatheory, then the same principles hold in Sh(P,Cov).
Moreover, this fact is provable in CZF.

The proof is this theorem is long and somewhat tangential to the rest of the paper,
so is probably best skipped on a first reading.

In view of Proposition 6.4.9 it suffices to show that the Brouwer ordinals are small
in Sh(P,Cov). To that purpose, we will give an explicit construction of the Brouwer
ordinals in this category, from which it can immediately be seen that the are small
(the description is a variation on those presented in [22] and Subsection 5.4.4).
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Let V be the class of all well-founded trees, in which

• nodes are labelled with triples (p, α, ϕ) with p an element of P, α a countable
and disjoint subset of ↓ p such that ↓ α ∈ Cov(p) and ϕ a function α→ {0, 1},
• edges into nodes labelled with (p, α, ϕ) are labelled with pairs (q, n) with q ∈ α

and n ∈ N,

in such a way that

• if a node is labelled with (p, α, ϕ) and q ∈ α is such that ϕ(q) = 0, then there
is no edge labelled with (q, n) into this node, but

• if a node is labelled with (p, α, ϕ) and q ∈ α is such that ϕ(q) = 1, then there
is for every n ∈ N a unique edge into this node labelled with (q, n).

Using that the Brouwer ordinals form a set, one can show that also V is a set. If v
denotes a well-founded tree in V , we will also use the letter v for the function that
assigns to labels of edges into the root of v the tree attached to this edge. So if (q, n)
is a label of one of the edges into the root of v, we will write v(q, n) for the tree that
is attached to this edge; this is again an element of V . Note that an element of V is
uniquely determined by the label of its root and the function we just described.

We introduce some terminology and notation: we say that a tree v ∈ V is rooted
at an element p in P, if its root has a label whose first component is p. A tree v ∈ V
whose root is labelled with (p, α, ϕ) is composable, if for any (q, n) with q ∈ α and
ϕ(q) = 1, the tree v(q, n) is rooted at q. We will write W for the set of trees that are
hereditarily composable (i.e. not only are they themselves composable, but the same
is true for all their subtrees).

Next, we define by transfinite recursion a relation ∼ on the V :

v ∼ v′ ⇔ If the root of v is labelled with (p, α, ϕ) and
the root of v′ with (p′, α′, ϕ′), then p = p′

and p is covered by those r ≤ p for which
there are (necessarily unique) q ∈ α and
q′ ∈ α′ such that (1) r ≤ q and r ≤ q′, (2)
ϕ(q) = ϕ′(q′) and (3) ϕ(q) = ϕ′(q′) = 1 im-
plies v(q, n) ∼ v′(q′, n) for all n ∈ N.

By transfinite induction one verifies that ∼ is an equivalence relation on both V
and W . Write W for the quotient of W by ∼. The following sequence of lemmas
establishes that W can be given the structure of a sheaf and is in fact the object of
Brouwer ordinals in the category of sheaves.

Lemma 6.4.11 W can be given the structure of a presheaf.
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Proof. Since by definition of ∼, all trees w ∈ W in an equivalence class are rooted
at the same element, we can say without any danger of ambiguity that an element
w ∈ W is rooted at p ∈ P. We will denote the collection of trees in W rooted at p by
W(p).

Suppose [w] ∈ W(p) and q ≤ p. If the root of w is labelled by (p, α, ϕ), then there
is a countable and disjoint refinement β of q∗ ↓ α (by stability and the fact that
(P,Cov) is a CC-space). For each r ∈ β there is a unique q ∈ α such that r ≤ q
(by disjointness), so one can define ψ: β → {0, 1} by ψ(r) = ϕ(q) and, whenever
ψ(r) = ϕ(q) = 1, v(r, n) = w(q, n). The data (q, β, ψ) and v determine an element
w′ ∈ W(q) and we put

[w] ¹ q = [w′].

One easily verifies that this is well-defined and givesW the structure of a presheaf. ¤

Lemma 6.4.12 W is separated.

Proof. Suppose T is a sieve covering p and w,w′ ∈ W(p) are such that [w] ¹ t =
[w′] ¹ t for all t ∈ T . We have to show w ∼ w′, so suppose (p, α, ϕ) is the label of
the root of w and (p′, α′, ϕ′) is the label of the root of w′. Since w′ is rooted at p′, we
have p = p′.

Let R consist of those r ∈↓ α∩ ↓ α′, for which there are q ∈ α, q′ ∈ α′ such that (1)
r ≤ q, q′, (2) ϕ(q) = ϕ′(q′) and (3) ϕ(q) = ϕ′(q′) = 1 implies w(q, n) ∼ w′(q′, n) for
all n ∈ N. R is a sieve, and the statement of the lemma will follow once we show that
it is covering.

Fix an element t ∈ T . Unwinding the definitions in [w] ¹ t = [w′] ¹ t gives us the
existence of a covering sieve S ⊆ t∗ ↓ α∩t∗ ↓ α′ such that S ⊆ t∗R. So R is a covering
sieve by local character. ¤

Lemma 6.4.13 W is a sheaf.

Proof. Let S be a covering sieve on p and suppose we have a compatible family
of elements (wq ∈ W)q∈S. Let α be a countable and disjoint refinement of S and
use ACω to choose for every element q ∈ α a representative (wq ∈ W)q∈α such that
[wq] = wq. For every q ∈ α the representative wq has a root labelled by something
of form (q, βq, ϕq). If we put β =

⋃
q∈α βq, then β is countable and disjoint and

↓ β covers p (by local character). If r ∈ β, then there is a unique q ∈ α such that
r ∈ βq (by disjointness), so therefore it makes sense to define ϕ(r) = ϕq(r) and
w(r, n) = wq(r, n).

We claim the element [w] ∈ W determine by the data (p, β, ϕ) and the function w
just defined is the amalgamation of the elements (wq ∈ W)q∈S. To that purpose, it
suffices to prove that [w] ¹ q = wq = [wq] for all q ∈ α. This is not hard, because if
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q ∈ α and r ∈ βq, then w(r, n) = wq(r, n), by construction. This completes the proof.
¤

Lemma 6.4.14 W is an algebra for the functor F (X) = 1 +XN.

Proof. We have to describe a natural transformation sup:F (W)→W . An element
of F (W)(p) is either the unique element ∗ ∈ 1(p) or a function t:N → W(p). In
the former case, we define supp(∗) to be the equivalence class of the unique element
in W determined by the data (p, {p}, ϕ) with ϕ(p) = 0. In the latter case, we use
ACω to choose a function t:N → W(p) such that [t(n)] = t(n) for all n ∈ N and we
define supp(t) to be the equivalence class of the element w determined by the data
(p, {p}, ϕ) with ϕ(p) = 1 and w(p, n) = t(n). We leave the verification that this
makes sup well-defined and natural to the reader. ¤

Lemma 6.4.15 W is the initial algebra for the functor F (X) = 1 +XN.

Proof. We follow the usual strategy: we show that sup:F (W) → W is monic and
that W has no proper F -subalgebras (i.e., we apply Theorem 26 of [17] or Theorem
3.6.13). It is straightforward to check that sup is monic, so we only show that W has
no proper F -subalgebras, for which we use the inductive properties of V .

Let I be a sheaf and F -subalgebra of W . We claim that

J = {v ∈ V : if v is hereditarily composable, then [v] ∈ I}

is such that if all immediate subtrees of an element v ∈ V belong to it, then so does
v itself.

Proof: Suppose v ∈ V is a hereditarily composable tree such that all its immediate
subtrees belong to J . Assume moreover that (p, α, ϕ) is the label of its root. We
know that for all n ∈ N and q ∈ α with ϕ(q) = 1, [v(f, y)] ∈ I and our aim is to show
that [v] ∈ I.

For the moment fix an element q ∈ α. Either ϕ(q) = 0 or ϕ(q) = 1. If ϕ(q) = 0, then
[v] ¹ q equals supq(∗) and therefore [v] ¹ q ∈ I, because I is a F -algebra. If ϕ(q) = 1,
then we may put t(n) = [v(q, n)] and [v] ¹ q will equal supq(t). Therefore [v] ¹ q ∈ I,
again because J is a F -algebra. So for all q ∈ α we have [v] ¹ q ∈ I. But then it
follows that [v] ∈ I, since I is a sheaf.

We conclude that J = V and I =W . ¤

This completes the proof of the correctness of our description of the Brouwer
ordinals and thereby of Theorem 6.4.10.
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6.5 Main results

In this final section we present the main results of this paper: the validity of various
derived rules for (extensions of) CZF.

Theorem 6.5.1 (Derived Fan Rule) Suppose ϕ(x) is a definable property of elements
u ∈ 2<N. If

CZF ` (∀α ∈ 2N) (∃u ∈ 2<N) (α ∈ u ∧ ϕ(u)) and

CZF ` (∀u ∈ 2<N) (∀v ∈ 2<N) (v ≤ u ∧ ϕ(u)→ ϕ(v)),

then CZF ` (∃n ∈ N) (∀v ∈ 〈 〉[n])ϕ(v).

Proof. We work in CZF. We pass to sheaves over the double of formal Cantor space
D(C), where there is a particular element π ∈ 2N(〈 〉) given by

π(n) = [〈 〉[n], λx ∈ 〈 〉[n].x(n)].

Under the correspondence of elements in 2N(〈 〉) with continuous functions D(C)→ C
this is precisely the map π from Section 3.7 (second map in the list).

From

Sh(D(C)) |= (∀α ∈ 2N) (∃u ∈ 2<N) (α ∈ u ∧ ϕ(u)),

it follows that

D(〈 〉) ‖−(∃u ∈ 2<N) (π ∈ u ∧ ϕ(u)).

Sheaf semantics then gives one a natural number n such that for every v ∈ 〈 〉[n] there
is a τv ∈ 2<N(v) such that

D(v) ‖−π ∈ τv ∧ ϕ(τv).

By further refining the cover if necessary, one may achieve that the τv are pure, i.e.,
of the form (Mv, uv). We will prove that this implies that ϕ(v) holds.

From

D(v) ‖−π ∈ τv,
it follows that v ≤ uv. Then validity of (∀u ∈ 2<N) (∀v ∈ 2<N) (v ≤ u∧ϕ(u)→ ϕ(v))
implies that D(v) ‖−ϕ(v). By picking a point α ∈ v and using the monotonicity of
forcing, one gets {α} ‖−ϕ(v) and hence ϕ(v). ¤

Remark 6.5.2 By using the fact that CZF has the numerical existence property
[102] we see that the conclusion of the previous theorem could be strengthened to:
then there is a natural number n such that CZF ` (∀v ∈ 〈 〉[n])ϕ(v). Indeed, there
is a primitive recursive algorithm for extracting this n from a formal derivation in
CZF.
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Remark 6.5.3 It is not hard to show that CZF proves the existence of a definable
surjection 2N → [0, 1]Cauchy from Cantor space to the set of Cauchy reals lying in the
unit interval. This, in combination with Theorem 6.5.1, implies that one also has a
derived local compactness rule for the Cauchy reals in CZF. It also implies that we
have a local compactness rule for the Dedekind reals in CZF + ACω and CZF +
DC, because both ACω and DC are stable under sheaves over the double of formal
Cantor space (see Proposition 6.4.9) and using either of these two axioms, one can
show that the Cauchy and Dedekind reals coincide.

Recall that we use CZF+ to denote any theory extending CZF which allows one
to prove set compactness and which is stable under sheaves.

Theorem 6.5.4 (Derived Bar Induction Rule) Suppose ϕ(x) is a formula defining a
subclass of N<N. If

CZF+ ` (∀α ∈ NN) (∃u ∈ N<N) (α ∈ u ∧ ϕ(u)) and

CZF+ ` (∀u ∈ N<N) (∀v ∈ N<N) (v ≤ u ∧ ϕ(u)→ ϕ(v)) and

CZF+ ` (∀u ∈ N<N) ((∀n ∈ N)ϕ(u ∗ n)→ ϕ(u)),

then CZF+ ` ϕ(〈 〉).

Proof. We reason in CZF+. We pass to sheaves over the double of formal Baire
space D(B), where there is a particular element π ∈ NN(〈 〉), given by

π(n) = [〈 〉[n], λx ∈ 〈 〉[n].x(n)].

(which corresponds to the “projection” D(B)→ B, as before). From

Sh(D(B)) |= (∀α ∈ NN) (∃u ∈ N<N) (α ∈ u ∧ ϕ(u)),

one gets

D(〈 〉) ‖−(∃u ∈ N<N) (π ∈ u ∧ ϕ(u)).

By the sheaf semantics this means that there is a cover S of 〈 〉 such that for every
v ∈ S there is a pure u ∈ N<N such that

D(v) ‖−π ∈ u ∧ ϕ(u).

Now D(v) ‖−π ∈ u implies v ≤ u and because sheaf semantics is monotone this in
turn implies D(v) ‖−ϕ(v). By choosing a point α ∈ v and using monotonicity again,
one obtains that {α} ‖−ϕ(v) and hence ϕ(v).

Summarising: we have a cover S such that for all v ∈ S the statement ϕ(v) holds.
Hence ϕ(〈 〉) holds by Corollary 6.3.8. ¤
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Theorem 6.5.5 (Derived Continuity Rule for Baire Space) Suppose ϕ(x, y) is a for-
mula defining a subset of NN × NN. If CZF+ ` (∀α ∈ NN) (∃!β ∈ NN)ϕ(α, β), then

CZF+ ` (∃f :NN → NN) [ ((∀α ∈ NN)ϕ(α, f(α))) ∧ f continuous ].

Proof. Again, we work in CZF+ and pass to sheaves over the double of formal
Baire space D(B), where there is the particular element π:D(B)→ B ∈ NN(〈 〉) (the
projection). Since

Sh(D(B)) |= (∃!β ∈ NN)ϕ(ρ, β),

there exists a (unique) continuous function ρ:D(B)→ B ∈ NN(〈 〉) such that

D(〈 〉) ` ϕ(π, ρ).

Consider the maps µ: B→ D(B) and ν: Bdiscr → D(B) from Section 3.7. The conti-
nuity of ρ implies that pt(ρµ) = pt(ρν):NN → NN; writing f = pt(ρµ), one sees that
f :NN → NN is continuous. Moreover, if α ∈ NN, then {α} ‖−ϕ(pt(π)(α), pt(ρ)(α)),
i.e. {α} ‖−ϕ(α, f(α)), and hence ϕ(α, f(α)). ¤

These proofs can be adapted in various ways to prove similar results for (extensions
of) CZF, for instance:

- Theorem 6.5.1 holds for any extension of CZF which is stable under sheaves
over the double of formal Cantor space, such as the extension of CZF with
choice principles like DC or ACω (because of Proposition 6.4.9).

- Also, if we extend CZF+ with choice principles, then both Theorem 6.5.4 and
Theorem 6.5.5 remain valid. These results also hold for the theory CZF + ACω

+ “The Brouwer ordinals form a set” (this follows from Proposition 6.3.10 and
Theorem 6.4.10).

- The same method of proof as in Theorem 6.5.5 should establish a derived con-
tinuity rule for the Dedekind reals and many other definable formal spaces.



220 CHAPTER 6. APPLICATIONS: DERIVED RULES



Chapter 7

Note on the Axiom of Multiple
Choice

7.1 Introduction

There is a distinctive stance in the philosophy of mathematics which is usually called
“generalised predicativity”.1 It is characterized by the fact that it does not accept
unconstructive and impredicative arguments, but it does allow for the existence of
a wide variety of inductively defined sets. Martin-Löf’s type theory [88] expresses
this stance in its purest form. For the development of mathematics, however, this
system has certain drawbacks: the type-theoretic formalism is involved and requires a
considerable time to get accustomed to, and the lack of extensionality leads to difficult
conceptual problems. Aczel’s interpretation of his constructive set theory CZF in
Martin-Löf’s type theory [1] overcomes both problems: the language of set theory
is known to any mathematician and CZF incorporates the axiom of extensionality.
For this reason, CZF has become the standard reference for a set-theoretic system
expressing the “generalised-predicative stance”.

Unfortunately, the story does not end here. It turns out that CZF is not quite
strong enough to formalise all the mathematics which one would like to be able to
formalise in it: there are results, in particular in formal topology, which can be
proved in type theory and are perfectly acceptable from a generalised-predicative
perspective, but which go beyond CZF. There seem to be essentially two reasons for
this: first of all, type theory incorporates the “type-theoretic axiom of choice” and
secondly, Martin-Löf type theory usually includes W-types which allows one to prove
the existence of more inductively defined sets than can be justified in CZF. It is the
purpose of this paper to suggest a solution to this problem.

Let’s take the second point first. Already in 1986, Peter Aczel suggested what
he called the Regular Extension Axiom (REA) to address this issue [3]. The main

1This paper, written together with Ieke Moerdijk, appears here for the first time.
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application of (REA) is that it allows one to prove the “Set Compactness Theorem”,
which is important in formal topology (see [4] and Chapter 6), but not provable in
CZF proper. Here we suggest to take the axiom (WS) instead: for every function
f :B → A the associated W-type W (f) is a set. (This is not the place to review the
basics of W-types, something which we have already done on several occasions: see,
for example, Chapter 3.) One advantage of this axiom (over (REA)) is that it directly
mirrors the type theory. In addition, (WS) is easy to formulate in the categorical
framework of algebraic set theory, so that one may use this extensive machinery to
establish its basic preservation properties (such as stability under exact completion,
realizability and sheaves), whereas for (REA) this is well-nigh impossible. It has
been claimed, quite plausibly, that (REA) has similar stability properties, but we
have never seen a proof of this claim.

As for the lack of choice in CZF, the axiom which would most directly mirror
the type theory would be the “presentation axiom”, which says that the category of
sets has enough projectives. The problem with this axiom, however, is that is not
stable under taking sheaves. Precisely for this reason, Erik Palmgren together with
the second author introduced in [94] an axiom called the Axiom of Multiple Choice
(AMC), which is implied by the existence of enough projectives and is stable under
sheaves. This axiom is a bit involved and it turns out that on almost all occasions
where one would like to use this axiom a slightly weaker and simpler principle would
suffice. This weaker principle is:

For any set X there is a set {pi:Yi ³ X : i ∈ I} of surjections onto X
such that for any surjection p:Y ³ X onto X there is an i ∈ I and a
function f :Yi → Y such that p ◦ f = pi.

It is this axiom which we will call (AMC) in this paper, whereas we will refer to the
original formulation in [94] as “strong (AMC)”. (Independently from us, Thomas
Streicher hit upon the same principle in [111], where it was called TTCAf .)

So this our suggestion: extend the theory CZF with the combination of (WS)
and (AMC). The resulting theory has the following properties:

1. It is validated by Aczel’s interpretation in Martin-Löf’s type theory (with one
universe closed under W-types) and therefore acceptable from a generalised-
predicative perspective.

2. The theory is strong enough to prove the Set Compactness Theorem and to
develop that part of formal topology which relies on this result.

3. The theory is stable under the key constructions from algebraic set theory, such
as exact completion, realizability and sheaves.

It is the purpose of this paper to prove these facts. As a result, CZF + (WS) +
(AMC) will be the first (and so far only) theory for which the combination of these
properties has been proved.
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It should be noted that establishing the first property for CZF + (WS) + (AMC)
is quite easy, because stronger axioms can be justified on the type-theoretic interpreta-
tion: (REA) can be justified on the type-theoretic interpretation (that was the main
result of [3]) and (REA) implies (WS) (see [6, page 5–4]), whereas (AMC) follows
from the presentation axiom (that is obvious) and the presentation axiom is justified
on the type-theoretic interpretation (see [2]). Therefore it remains to establish the
last two properties in the list.

The contents of this paper are therefore as follows. First, we will show in Section
2 that the Set Compactness Theorem follows from the combination of (WS) and
(AMC). Then we will proceed to show that these axioms are stable under exact
completion (Section 3), realizability (Section 4), presheaves (Section 5) and sheaves
(Section 6). (Of course, stability under presheaves is a special case of stability under
sheaves, but a direct proof of stability under presheaves is considerably simpler and
acts as a good warm-up exercise for the proof in the sheaf case.) Throughout these
sections we assume familiarity with the framework for algebraic set theory developed
in [24, 21, 23, 25] (Chapters 2–6). Finally, in Section 7 we will discuss the relation
of our present version of (AMC) with the earlier and stronger formulation from [94]
and with Aczel’s Regular Extension Axiom.

7.2 The Set Compactness Theorem

The purpose of this section is to prove that, in CZF, the combination of (WS)
and (AMC) implies the Set Compactness Theorem. To state this Set Compactness
Theorem, we need to review the basics of the theory of inductive definitions in CZF,
which will be our metatheory in this section.

Definition 7.2.1 If X is a class, we will denote by Pow(X) the class of subsets of
X and if X is a set, we will denote by Surj(X) the class of surjections onto X.

Definition 7.2.2 Let S be a set. An inductive definition on S is a subset Φ of
Pow(S)× S. If Φ is an inductive definition, then a subclass A of S is Φ-closed, if

X ⊆ A⇒ a ∈ A

whenever (X, a) is in Φ.

Within CZF one can prove that for every subclass U of S there is a least Φ-closed
subclass of S containing U (see [6]); it is denoted by I(Φ, U). The Set Compactness
Theorem is the following statement:

There is a set B of subsets of S such that for each class U ⊆ S and each
a ∈ I(Φ, U) there is a set V ∈ B such that V ⊆ U and a ∈ I(Φ, V ).
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Note that this result immediately implies that I(Φ, U) is a set whenever U is. As said,
the Set Compactness Theorem is not provable in CZF proper, but we will show in
this section that it becomes provable when we extend CZF with (WS) and (AMC).

To prove the result it will be convenient to introduce the notion of a collection
square. In the definition we write for any function f :B → A and each a ∈ A,

Ba = f−1(a) = {b ∈ B : f(b) = a},

as is customary in categorical logic.

Definition 7.2.3 A commuting square in the category of sets

D
q

//

g

²²

B

f
²²

C p
// A

will be called a collection square, if

1. the map p is a surjection,

2. the inscribed map D → B ×A C is a surjection (meaning that for each pair of
elements b ∈ B, c ∈ C with f(b) = p(c) there is at least one d ∈ D with q(d) = b
and g(d) = c),

3. and for each a ∈ A and each surjection e:E ³ Ba there is a c ∈ p−1(a) and a
map h:Dc → E such that the triangle

E
e

ÃÃ ÃÃ
AA

AA
AA

AA

Dc

h
>>}}}}}}}}

q¹Dc

// // Ba

commutes.

Proposition 7.2.4 (AMC) implies that any function f :B //A fits into a collec-
tion square

D
q

//

g

²²

B

f
²²

C p
// A.

Proof. Note that for the strong version of (AMC), this is really Proposition 4.6 in
[94].
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(AMC) implies that:

(∀a ∈ A) (∃α ∈ Pow(Surj(Ba))) every surjection onto Ba is refined by one in α.

We may now apply the collection axiom to this statement: this gives us a surjection
p:C ³ A together with, for every c ∈ C, an inhabited collection Zc ⊆ Pow(Surj(Ba))
such that:

(∀c ∈ C) (∀α ∈ Zc) every cover of Bp(c) is refined by an element of α.

Let Tc =
⋃
Zc. Then clearly:

(∀c ∈ C) every surjection onto Bp(c) is refined by an element of Tc.

So set D = {(c ∈ C, t ∈ Tc, x ∈ dom(t))} and let g be the projection on the first
coordinate and q(c, t, x) = t(x). All the required verifications are now very easy and
left to the reader. ¤

Theorem 7.2.5 The combination of (WS) and (AMC) implies the Set Compact-
ness Theorem.

Proof. Let S be a set and Φ be an inductive definition on S. Our aim is to construct
a set B of subsets of S such that for each class U ⊆ S and each a ∈ I(Φ, U) there is
a set V ∈ B such that V ⊆ U and a ∈ I(Φ, V ).

Write Ψ = {(X, a, b) : (X, a) ∈ Φ, b ∈ X} and consider the map h: Ψ → Φ given
by projection on the first two coordinates. By composing this map with the sum
inclusion Φ→ Φ + S, we obtain a map we call f .

(AMC) implies that f fits into a collection square with a small map g on the left,
as in:

D
q

//

g

²²

Ψ

f
²²

C p
// Φ + S.

We take the W-type W (g) associated to g and, because (WS) holds, W (g) is a set.
We wish to regard elements of W (g) as proofs.

To that purpose, define a map conc:W (g) → S assigning to every element of W (g)
its conclusion by case distinction, as follows:

conc(supc(t)) =

{
p(c) if p(c) ∈ S,
a if p(c) = (X, a) ∈ Φ.

In addition, define a function ass:W (g)→ Pow(S) assigning to every element of W (g)
its set of assumptions by induction, as follows:

ass(supc(t)) =

{ {p(c)} if p(c) ∈ S,⋃
d∈g−1(c) ass(td) otherwise.
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Finally, call an element supc(t) ∈ W (g) well-formed, if p(c) = (X, a) ∈ Φ implies that
for all d ∈ Dc the conclusion of t(d) is π3q(d) ; call it a proof, if it and all its subtrees
are well-formed. Note that the collection of proofs is a set, because it is obtained
from W (g) by bounded separation.

The proof will be finished once we show that:

I(Φ, U) = {x ∈ S : there is a proof all whose assumptions belong to U

and whose conclusion is x}.
Because from this expression it follows that the set B = {ass(w) : w ∈ W (g)} has the
desired property.

We have to show that

J(Φ, U) = {x ∈ S : (∃w ∈W (g))w is a proof, ass(w) ⊆ U and conc(w) = x}.
is Φ-closed, contains U and is contained in every Φ-closed subclass of S which contains
U . To see that J(Φ, U) contains U , note that an element supc(t) with p(c) = s ∈ S
is a proof whose sole assumption is s and whose conclusion is s. To see that it is
Φ-closed, let (X, a) ∈ Φ and suppose that

(∀b ∈ X) b ∈ J(Φ, U);

in other words, that

(∀b ∈ X) (∃w ∈W (g))w is a proof, ass(w) ⊆ U and conc(w) = x.

Now we use the collection square property to obtain a c ∈ C with p(c) = (X, a) ∈ Φ
and a map t:Dc → W (g) such that for all d ∈ Dc, td is a proof with ass(td) ⊆
U and conc(td) = qd. Hence supc(t) is a proof with assumptions contained in U and
conclusion a and therefore a ∈ J(Φ, U), as desired.

It remains to show that J(Φ, U) contains every Φ-closed subclass A containing U . To
this purpose, we prove the following statement by induction:

For all w ∈ W (g), if w is a proof and ass(w) ⊆ U , then conc(w) ∈ A.

So let w = supc(t) ∈ W (g) be a proof such that ass(w) ⊆ U . For every d ∈ Dc, td is
a proof with ass(td) ⊆ U , so we have conc(td) ∈ A by induction hypothesis. Now we
make a case distinction as to whether p(c) belongs to S or Φ:

• If p(c) ∈ S, then w is a proof whose sole assumption is pc and whose conclusion is
pc. Then it follows from ass(w) ⊆ U that pc ∈ U ⊆ A. Hence conc(w) = pc ∈ A,
as desired.

• In case p(c) = (X, a) ∈ Φ, we have to show a = conc(w) ∈ A and for that it
suffices to show that b ∈ A for all b ∈ X, since A is Φ-closed. But for every
b ∈ X, there is a d ∈ Dc with p(d) = (X, a, b) and, since w is well-formed,
b = conc(td) ∈ A.

This completes the proof. ¤
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7.3 Stability under exact completion

In the following sections we will show that (AMC) and (WS) are stable under exact
completion, realizability, presheaves and sheaves, respectively. We will do this in the
setting of algebraic set theory as developed in our papers [21, 23, 25] (Chapters 3–5)
and to that purpose, we reformulate (AMC) in categorical terms.

Definition 7.3.1 We call a square

D
q

//

g

²²

B

f
²²

C p
// A

a covering square, if both p and the canonical map D → B ×A C are covers. We will
call it a collection square, if, in addition, the following statement holds in the internal
logic: for all a ∈ A and covers e:E ³ Ba there is a c ∈ p−1(a) and a map h:Dc → E
such that the triangle

E
e

ÃÃ
AA

AA
AA

AA

Dc

h
>>}}}}}}}}

pc=p¹Dc

// Ba

commutes. Diagrammatically, one can express the second condition by asking that
any map X → A and any cover E ³ X ×A B fit into a cube

Y ×C D //

²²

ÄÄÄÄ
Ä

E // // X ×A B

²²

ÄÄÄÄ
Ä

D // //

²²

B

²²

Y // //

ÄÄÄÄ
Ä

X,
ÄÄÄÄÄ

C // // A

such that the face on the left is a pullback and the face at the back is covering.

In categorical terms the axiom now reads:

Axiom of Multiple Choice (AMC): For any small map f :Y //X, there is a
cover q:A //X such that q∗f fits into a collection square in which all maps
are small:

D

²²

// // A×X Y
q∗f

²²

// // Y

f

²²

C // // A q
// // X.
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We now proceed to show this axiom is stable under exact completion. We work
in the setting of [21] (Chapter 3) and use the same notation and terminology. In
particular, (E ,S) will be a category with display maps in the sense of [21] (Chapter
3) and if we say that (AMC) holds in (E ,S), we will mean that (AMC) holds with
the phrase “small map” replaced by “display map”.

Lemma 7.3.2 The embedding y: E → E preserves collection squares.

Proof. Recall from Theorem 3.5.2 that y has the following properties:

1. y is full and faithful,

2. y is covering, i.e., every object in E is covered by one in the image of y,

3. y preserves pullbacks,

4. y preserves and reflects covers.

From items 3 and 4 it follows that y preserves covering squares.

To show that y preserves collection squares, suppose that we have a collection square

D
σ //

²²

B

²²

C ρ
// A

in E , a map X → yA and a cover E ³ yB ×yA X. Using item 2, we find a cover
q: yX ′ → X and a cover yE ′ → (idyB ×yA q)

∗E. Then we may apply the collection
square property in E to obtain a diagram of the desired shape. ¤

Lemma 7.3.3 Suppose we have a commuting diagram of the following shape

F
β

// //

²²

D
σ // //

²²

B

²²

E α
// // C ρ

// // A,

where both squares are covering. If one of the two inner squares is a collection square,
then so is the outer square.

Proof. Covering squares compose (Lemma 3.2.4), so the outer square is covering.
From now on, we reason in the internal logic. Assume that left square is a collection
square. Suppose a ∈ A and q:T ³ Ba. Since ρ is a cover, we find a c ∈ C such that
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ρ(c) = a, and because the square on the left is collecton, we find an element e ∈ E
together with a map p:Fe → σ∗cT such that the following diagram commutes:

σ∗cT //

σ∗c q
²²²²

T

q
²²²²

Fe

p
=={{{{{{{{

βe

// Dc σc
// Ba.

Since (σβ)e = σcβe, this yields the desired result. The case where the right square is
a collection square is very similar, but easier. ¤

Note that it follows from this lemma that (AMC) could also have been formulated
as follows: every small map f is a covered by a small map f ′ which is the right edge
in a collection square in which all maps are small (the same is true for display maps,
see Lemma 3.2.11). This will make the proof of the following result slightly easier:

Proposition 7.3.4 The axiom of multiple choice (AMC) is stable under exact com-
pletion.

Proof. Suppose that (AMC) holds in E and f :B → A is a small map in E . By
definition this means that f is a covered by a map of the form yf ′ with f ′ display in
E . Since f ′ is display in E and (AMC) holds in E , we may cover f ′ by a map f ′′ in E
which fits in a collection square in which all maps are display. That the same holds
for f in E now follows from Lemma 7.3.2. ¤

Note that in [21] (Chapter 3) we were unable to show that the axioms (ΠS) and
(WS) are stable under exact completion. In the presence of (AMC), however, we
can.

Proposition 7.3.5 In the presence of (AMC), the exponentiation axiom (ΠS) is
stable under exact completion.

Proof. Over (AMC) the exponentiation axiom is equivalent to fullness (see Propo-
sition 5.2.16), so this follows from the stability of the fullness axiom under exact
completion (Proposition 3.6.25). ¤

Proposition 7.3.6 In the presence of (AMC), the axiom (WS) is stable under
exact completion.

Proof. Since the functor y preserves W-types (see the proof of Theorem 3.6.18), we
know that W-types for maps of the form yg with g a display map in E are small in
E . From the proof of the stability of (AMC) under exact completion, it follows that
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for every small map f :B → A in E there is a cover q:A′ ³ A such that q∗f fits into
a collection square with such a map yg on the left. It is a consequence of the proof
of Proposition 3.6.16 that the W-type associated to q∗f is small and a consequence
of Proposition 4.4 in [93] that the W-type associated to f is small. ¤

7.4 Stability under realizability

In this section we show that the axiom of multiple choice is stable under realizability.
Recall from [23] (Chapter 4) that the realizability category over a predicative category
of small maps E is constructed as the exact completion of the category of assemblies.
Within the category of assemblies we identified a class of maps, which was not quite
a class of small maps. In a predicative setting the correct description of these display
maps (as we called them) is a bit involved, but for the full subcategory of partitioned
assemblies the description is quite simple: a map f : (B, β)→ (Aα) of partitioned as-
semblies is small, if the underlying map f in E is small. In many ways questions about
assemblies can be reduced to (simpler) questions about the partitioned assemblies:
essentially this is because the inclusion of partitioned assemblies in assemblies is full,
preserves finite limits and is covering (i.e., every assembly is covered by a partitioned
assembly). Moreover, every display map between assemblies is covered by a display
map between partitioned assemblies. For more details, we refer to [23] (Chapter 4).

Proposition 7.4.1 The axiom of multiple choice (AMC) is stable under realizabil-
ity.

Proof. We show that (AMC) holds in the category of assemblies over a predicative
category of classes E , provided that it holds in E . The result will then follow from
Proposition 7.3.4 above.

Suppose f is a display map of assemblies. We want to show that f is covered by
a map which fits into a collection square in which all maps are display. Without
loss of generality, we may assume that f is a display map of partitioned assemblies
(B, β) → (A,α). For such a map, the underlying map f in E is small. We may
therefore use the axiom of multiple choice in E to obtain a diagram of the form

F
q

// //

²²

D
s // //

²²

B

f
²²

E p
// // C r

// // A,

in which the square on the left is a collection square in which all maps are small and
the one on the right is a covering square. We obtain a similar diagram in the category
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of (partitioned) assemblies

(F, φ)
q

// //

²²

(D, δ) s // //

²²

(B, β)

f
²²

(E, ε) p
// // (C, γ) r

// // (A,α),

by defining γ(c) = αr(c), ε(e) = αrp(c), δ(d) = βs(d) and φ(f) = βsq(f). It is clear
that both squares are covering, so it remains to check that the one on the left is a
collection square.

So suppose we have a map t: (X,χ)→ (C, γ) and a cover

h: (M,µ) ³ (X,χ)×(C,γ) (D, δ) = (X ×C D, κ)

in the category of assemblies. Without loss of generality, we may assume that both
(X,χ) and (M,µ) are partitioned assemblies and (X ×C D, κ) is the partitioned
assembly with κ(x, d) = 〈χ(x), δ(d)〉. Define

X ′ = {(x ∈ X,n ∈ N) : n realizes the surjectivity of h},
M ′ = {(m ∈M,n ∈ N) : (π1h(m), n) ∈ X ′ and n · κ(h(m)) = µ(m)},

and consider the diagram

M ′ h′ // X ′ ×C D //

²²

D

²²

X ′
tπ0

// C

with h′(m,n) = (π1h(m), n, π2h(m)). By definition of X ′, the map h′ is a cover, so
we may apply the collection square property in E to obtain a map w:Y → E and a
covering square of the form

w∗F

l
²²

k′ // M ′ h′ // X ′ ×C D

²²

Y v
// X ′.

Writing u = π1v:Y → X and υ(y) = 〈χu(y), π1v(y)〉, we obtain a similar covering
diagram

w∗(F, φ)

l
²²

k // (M,µ) h // (X ×C D, κ)

²²

(Y, υ) u
// (X,χ)

in the category of assemblies:



232 CHAPTER 7. NOTE ON THE AXIOM OF MULTIPLE CHOICE

1. The map u is a cover, essentially because π1:X
′ → X is.

2. The map k = π0k
′ is tracked, because the realizer of an element z in w∗(F, φ)

is the pairing of the realizers of its images (hk)(z) and l(z). From the latter,
one can compute (by taking the second component) the second component n of
(vl)(z). One may now compute the realizer of k(z) by applying this n to the
realizer of (hk)(z) (by definition of M ′).

3. The square is a quasi-pullback, with the surjectivity of the unique map to the
pullback being realized by the identity.

This concludes the proof. ¤

In [23] (Chapter 4) we were unable to show that the axioms (ΠS) and (WS) are
stable under realizability. This was because we were unable to show that they were
stable under exact completion. But as that was our only obstacle, we now have:

Proposition 7.4.2 In the presence of (AMC), the axioms (ΠS) and (WS) are
stable under realizability.

Proof. Since both (ΠS) and (WS) are inherited by the category of assemblies
(Proposition 4.4.2 and Proposition 4.3.4), this follows from Proposition 7.3.5 and
Proposition 7.3.6, respectively. ¤

7.5 Stability under presheaves

In this section we will show that (AMC) is preserved by presheaf extensions. (That
(WS) is preserved by presheaf extensions was Theorem 5.3.3). We work in the setting
of [25] (Chapter 5) and use the same notation and terminology as in that paper. In
particular, (E ,S) is a predicative category with small maps and C is an internal
category in E whose codomain map cod: C1 → C0 is small.

Lemma 7.5.1 (Compare Lemma 5.3.5.4) If (r, s)!:π!B → π!A is a natural transfor-
mation determined by a diagram of the form

B

r

²²

s
//

σB

''C1
cod

²²

dom
// C0

A σA

// C0
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and we are given a collection square

V
p

//

h
²²

B

r

²²

W q
// A

in E, then these data induce a collection square of presheaves

π!V
π!p //

(h,sp)!
²²

π!B

(r,s)!
²²

π!W π!q
// π!A

with σV = σBp and σW = σAq.

Proof. We have to consider a map f :X → π!A and a cover e:E → f ∗π!B. However,
without loss of generality, we may assume that f is of the form (k, l): π!X → π!A and
e is of the form E → π!(X ×A B), as in

E
e // // π!(X ×A B)

(y,j)!
//

(x,i)!
²²

B

(r,s)!
²²

π!X
(k,l)!

// π!A

(see Lemma 5.3.5.5). Let Q be the result in E of pulling back π∗E along the unit
X ×A B → π∗π!(X ×A B):

Q

d
²²²²

c // π∗E

π!e
²²²²

X ×A B // π∗π!(X ×A B).

Using that the original square was a collection square, we obtain a cube as follows:

Y ×C D z //

m

²²

n
ÄÄÄÄ

Ä
Q d // // X ×A B

x

²²

yÄÄÄÄ
Ä

V
p

// //

h

²²

B
r

²²

Y
b // //

a

ÄÄÄÄ
Ä

X,

kÄÄÄÄÄ

W q
// // A
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with a covering square at the back and a pullback on the left. Again using Lemma
5.3.5, we obtain a similar cube in presheaves:

π!(Y ×C D)
π!z //

(m,idz)!

²²

(n,jdz)!
wwoooo

π!Q
π!d // // π!(X ×A B)

(x,i)!

²²

(y,j)!
wwoooo

π!V π!p
// //

(h,sp)!

²²

π!B

(r,s)!

²²

π!Y
π!b // //

(a,lb)!
wwooooo

π!X.

(k,l)!
wwooooo

π!W π!q
// // π!A

Since π!d = e ◦ ĉ, this shows that the collection square property is preserved as in the
statement of the lemma. ¤

Proposition 7.5.2 The axiom of multiple choice (AMC) is stable under taking
presheaves.

Proof. It suffices to consider a small map (k, l)!:π!B → π!A. Using (AMC) in E
we see that k is covered by a map k′ which is the right edge in a collection square in
which all maps are small. Using Lemma 5.3.5 and the previous lemma, we see that
the same is true for (k, l)! in the category of presheaves. ¤

7.6 Stability under sheaves

In this section we will show that (AMC) is preserved by sheaf extensions. (Theorem
5.4.19 shows that (WS) is preserved by sheaf extensions in the presence of (AMC).).
We continue to use notation and terminology from [25] (Chapter 5). In particular,
(E ,S) is a predicative category with small maps satisfying (F) and (C,Cov) is an
internal site in E which has a basis and whose codomain map cod: C1 → C0 is small.

Theorem 7.6.1 The axiom of multiple choice (AMC) is preserved by sheaf exten-
sions.

Proof. Note that for strong (AMC) this was proved in Section 10 of [94].

In this proof we assume that the underlying category C has chosen pullbacks, some-
thing we may do without loss of generality. Consider a small map

i∗(k, κ)!: ρ!Y → ρ!X

of sheaves. It suffices to show that for every such map there is a cover such that pulling
back the map along that cover gives a map which is the right edge in a collection
square in which all maps are small.
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Using (AMC) in E , we know that there is a cover p: I → X in E such that p∗k fits
into a collection square in which all maps are small:

B

m

²²

w // // J

p∗k
²²

q
// // Y

k
²²

A v
// // I p

// // X.

Now we make a host of definitions. Define σI = σXp, σA = σXpv, σJ = σY q, σB =
σY qw, µb = κqwb. Furthermore, we define an object S fibred over A: Sa consists of
pairs (γ, ϕ) with γ a map in C1 with codomain σA(a) and ϕ a map assigning to every
b ∈ Ba a sieve S ∈ BCov(γ∗σB(b)), where we implicitly take the following pullback
in C1:

γ∗σB(b) //

²²

σB(b)

µb

²²

• γ
// σA(a).

We also define an object M fibred over S, with the fibre over (a, γ, ϕ) consisting of
pairs b ∈ Ba and α ∈ ϕ(b). We obtain a square as follows:

S
h // //

n

²²

B

m
²²

M g
// // A,

in which all maps are small and the horizontal ones are covers.

We apply (AMC) again, but now to n. Strictly speaking, one would obtain a cover
r:M0 →M such that such that r∗n fits into the righthand side of a collection square
in which all maps are small. However, by applying collection to the small map vg
and the cover r, we see that we may assume (without loss of generality of course)
that r = id. So from now on we work under this assumption and assume that n is the
righthand edge of a collection square. The result is a diagram of the following shape:

D

s

²²

f
// M

n

²²

h // B

m

²²

w // J

p∗k
²²

q
// Y

k
²²

C e
// S g

// A v
// I p

// X,

where the first and third square (from the left) are collection squares. Note that
all maps in this diagram except for p and q are small. For convenience, we write
o = vge, t = whf .

We wish to construct a diagram of the following shape in presheaves:

π!D

(s,σ)!
²²

(t,θ)!
// π!J

π!q //

(p∗k,κq)!
²²

π!Y

(k,κ)!
²²

π!C (o,ω)!

// π!I π!p
// π!X.
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Understanding the right square should present no problems: but note that it is a pull-
back with a cover at the bottom. The remainder of the proof explains the left square
and shows that its sheafification is a collection square in the category of sheaves. That
would complete the proof.

Every element c ∈ C determines an element e(c) = (a, γ, ϕ) ∈ S. We put ωc = γ and
σC(c) = dom(γ). Note that this turns (o, ω)! into a cover. Similarly, every d ∈ D
determines an element f(d) = (b, γ, ϕ, α) ∈ M . We put αd = α, σD(d) = dom(α),
σd = π1 ◦ α and θd = π2 ◦ α, where π1 and π2 are the legs of the pullback square

γ∗σB(b)

π1

²²

π2 // σB(b)

µb

²²

• γ
// σA(mb).

in C. Note that this turns the left square into a covering square of presheaves.

In order to show that the sheafification of the left square is a collection square,
suppose that we have a map z:V → ρ!I and a cover c:Q→ z∗ρ!J of sheaves. Let W
be the pullback in presheaves of V along π!(I)→ ρ!(I) and cover W using the counit
π!π

∗W → W . Writing L = π∗W , this means that we have a commuting square of
presheaves

π!L
(r,ρ)!

//

²²

π!(I)

²²

V z
// ρ!(I)

in which the vertical arrows are locally surjective and the top arrow is of the form
(r, ρ)!. Finally, let E:P → π!L be the pullback of e:Q → z∗ρ!Y along π!(L ×I J) →
z∗ρ!J . We obtain a diagram of presheaves of the following form:

P
E // π!(L×I J) //

²²

π!(J)

²²

// π!Y

(k,κ)!
²²

π!L
(r,ρ)!

// π!(I) π!p
// π!X.

Of course, we assume that the pullback π!(L×I J) is computed in the usual manner,
with σL×IJ(l, j) = ρ∗l σJ(j).

Since e is locally surjective, the same applies to E. Reasoning in the internal logic,
this means that the following statement holds:

(∀l ∈ L) (∀j ∈ Jr(l)) (∃S ∈ BCov(ρ∗l σJ(j)) (∀α ∈ S) (∃p ∈ P )E(p) = ((l, j), α).

Using the collection square property, we find for every l ∈ L an element a ∈ A with
v(a) = r(l) together with a function ϕ ∈ Πb∈BaBCov(ρ∗l (σB(b))) such that:

(∀b ∈ Ba) (∀α ∈ ϕ(b)) (∃p ∈ P )E(p) = ((l, w(b)), α).



7.6. STABILITY UNDER SHEAVES 237

Again using the collection square property, we find for every l ∈ L an element c ∈ C
with e(c) = (a, ρl, ϕ) and a function ψ:Dc → P such that

(∀d ∈ Dc)E(ψ(d)) = ((l, t(d)), αd).

Therefore we obtain a diagram of the shape in E :

U ×C D
ÄÄÄÄ

Ä

²²

b // L×I J

²²

ÄÄÄÄ
Ä

D // //

²²

J

²²

U
η

// //

ε
ÄÄÄÄ

Ä
L,

rÄÄÄÄ
Ä

C o
// // I

with

U = {(l ∈ L, c ∈ C,ψ:Dc → P ) : o(c) = r(e), ωc = ρl and

(∀d ∈ Dc)E(ψ(d)) = ((l, t(d)), αd)},

η, ε the obvious projections and b(l, d, ψ) = (l, t(d)). We now obtain a diagram of
presheaves of the shape

π!(U ×C D)
(b,β)!

//

²²

wwoooo
π!(L×I J)

²²

wwoooo

π!D
(t,θ)!

// //

(s,σ)!

²²

π!(J)

²²

π!U
π!η // //

π!ε

wwoooooo
π!L,

(r,ρ)!wwoooooo

π!C
(o,ω)!

// // π!I

with σU(c, l, ψ) = dom(ωc) = σC(c) = dom(ρl) = σL(l). Of course, the pullback on
the left is computed in the customary manner with σU×CD(l, d, ψ) = σD(d), and the
unique map (b, β)! filling the diagram is given by β(l,d,ψ) = αd.

We now show that the sheafification of the square at the back is covering. First
observe that π!l is a cover, since l is. Therefore we only need to show that the square
at the back is “locally” a quasi-pullback. To that end, suppose we have an element
((l, c, ψ), π1) in U and element ((l, j), id) ∈ π!(L ×I J), where π1 is the projection
obtained as in

σL×IJ(l, j)

π1

²²

π2 // σJ(j)

κqj

²²

• ωc=ρl

// σI((p
∗k)(j)).

If e(c) = (a, ωc, ϕ), then we find a b ∈ Ba with w(b) = j. Writing T = ϕ(b) ∈
BCov(σL×IJ(l, j)), we find for every α ∈ T an element d ∈ Dc with f(d) = (b, ωc, ϕ, α).
Projecting ((l, d, ψ), id) ∈ π!(U×CD) to π!(L×IJ) yields ((l(t), t(d)), αd) = ((l, j), id)·
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α and projecting ((l, d, ψ), id) ∈ π!(U ×C D) to π!U yields ((l, c, ψ), π1 ◦ αd) =
((l, c, ψ), π1) · α. This shows that the square at the back is “locally” covering. (We
have used here that every element in an object of the form π!Z is a restriction of one
of the form (z, id) and that it therefore suffices for proving that a map Q:R→ π!Z is
locally surjective to show that every element of the form (z, id) is “locally hit” by Q.)

To complete the proof we need to show that (b, β)! factors through E:P → π!(L×I J).
But to define a map G:π!(U ×C D)→ P is, by the adjunction, the same thing as to
give a map U ×C D → P , which we can do by sending (l, d, ψ) to ψ(d). To show that
(b, β)! = E ◦G, it suffices to calculate:

(E ◦G)((l, d, ψ), id) = E(ψ(d))

= ((l, t(d)), αd)

= (b, β)!((l, d, ψ), id).

This completes the proof. ¤

7.7 Relation of AMC to other axioms

The following statement was called (AMC) in [94]:

Strong (AMC): For any set X there is an inhabited set {pi:Yi ³ X : i ∈ I} of
surjections onto X such that for any i ∈ I and surjection p:Z ³ Yi there is an
j ∈ I and a surjection f :Yj ³ Yi factoring through p.

(Adding the natural requirement on f that pi ◦ f = pj would result in an equivalent
axiom.)

As the name strong (AMC) suggests, it implies our present version of (AMC).
Here, as elsewhere in this section, our metatheory is CZF.

Proposition 7.7.1 Strong (AMC) implies (AMC).

Proof. Suppose X is a set and {pi:Yi ³ X : i ∈ I} is an inhabited set of surjections
as in strong (AMC). Let S be the set of surjections from some Yi onto X. We claim
that S is a set of surjection witnessing (AMC) in the sense of this paper. To show
this, let f :Z ³ X be any surjection. Since I is inhabited, we can pick an element
i ∈ I and construct the pullback:

T
g

// //

²²²²

Yi

pi

²²²²

Z
f

// // X.
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Using the property of {pi : i ∈ I}, we find a j ∈ J and a surjection h:Yj ³ Yi factor-
ing through g. Then pi ◦ h ∈ S factors through f . ¤

We expect the converse to be unprovable in CZF. However, there is an axiom
scheme suggested by Peter Aczel in [5] which implies that our present version of
(AMC) and strong (AMC) are equivalent. This axiom scheme is:

The Relation Reflection Scheme (RRS): Suppose R,X are classes and R ⊆
X × X is a total relation. Then there is for every subset x ⊆ X a subset
y ⊆ X with x ⊆ y such that (∀a ∈ y) (∃b ∈ y) (a, b) ∈ R.

Our proof of this fact relies on the following lemma:

Lemma 7.7.2 Suppose ϕ(x, y) is a ∆0-predicate such that

ϕ(x, y) ∧ y ⊆ y′ → ϕ(x, y′).

Then, if
(∀x ∈ a) (∃y)ϕ(x, y),

there is a function f : a→ V such that ϕ(x, f(x)) for all x ∈ a.

Proof. First use collection to find a set b such that

(∀x ∈ a) (∃y ∈ b)ϕ(x, y).

Then put f(x) =
⋃{y ∈ b : ϕ(x, y)}. ¤

Proposition 7.7.3 Strong (AMC) follows from (AMC) and (RRS).

Proof. Fix a set X. We define a relation R ⊆ Pow(Surj(X)) × Pow(Surj(X)) by
putting

(α, β) ∈ R iff for every f :Y → X ∈ α and every surjection g:Z → Y there
are h:T → X ∈ β, p:T ³ Y and k:T → Z fitting into a commutative
diagram as follows:

T

k
²²

h //

p

ÃÃ ÃÃ
@@

@@
@@

@@
X

Z g
// Y.

f

OO

It follows from (AMC) that R is total: for if α is any set of surjections onto X, then
(AMC) implies that for every f :Y → X ∈ α there is a set of surjections onto Y
such that any such is refined by one in this set. By applying the previous lemma to
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this statement, we find for every f ∈ α a set Af of surjections with this property. We
find our desired β as β = {f ◦ g : g ∈ Af}.
By applying (RRS) to R, we obtain a set M ⊆ Pow(Surj(X)) with the properties
that {idX :X → X} ∈ M and (∀α ∈ M) (∃β ∈ M) (α, β) ∈ R. Put N =

⋃
M . It

is straightforward to check that N is a set of surjections witnessing strong (AMC). ¤

Note that the following was shown in [94]:

Theorem 7.7.4 [94, Theorem 7.1(ii)] The regular extension axiom (REA) follows
from the combination of strong (AMC) and (WS).

We expect this theorem to fail if one replaces strong (AMC) with our present version
of (AMC). (In fact, this is the only application of strong (AMC) we are aware of
that probably cannot be proved using our weaker version.) We do not consider this
a serious drawback of our present version of (AMC) or our proposal to extend CZF
with (WS) and this axiom, because the main (and, so far, only) application of (REA)
is the Set Compactness Theorem, which, as we showed in Section 2, is provable using
(WS) and the present version of (AMC).

7.8 Conclusion

We have shown that CZF + (WS) + (AMC) is system which is acceptable from a
constructive and generalised-predicative standpoint, which is strong enough to prove
the Set Compactness Theorem and which is stable under various constructions in
algebraic set theory, such as exact completion, realizability and sheaves. As a result,
the methods from [26] (Chapter 6) are applicable to it and show that the system
satisfies various derived rules, such as the derived Fan Rule and the derived Bar
Induction Rule.

The question remains to which extent CZF + (WS) + (AMC) is capable of
formalising all existing formal topology. It might be that in this respect it is still
not entirely adequate. For, although it does allow one to prove the Set Compact-
ness Theorem, which plays a prominent role in [4], for example, there are results on
coequalizers and points [100, 71] which do seem to go beyond this system as well.
We believe that these results deserve further logical analysis and that, although not
entirely adequate as a set-theoretic foundation for formal topology, the system we
suggested is a step in the right direction.



Chapter 8

Ideas on constructive set theory

8.1 Constructive set theory: the very idea

Someone who writes down a formal system and calls it a “constructive set theory”
can have various aims, ranging from the very modest to the more ambitious.1 The
aims of Myhill, the first person to do anything of the sort, were relatively modest.
As he states in his [96], he sees his task as follows: after Bishop in his book [30]
developed a coherent body of constructive mathematics, based on a coherent vision
of what a set is, it is the task of the logician to analyse this conception and lay down
in a formal axiomatic framework what are, on this conception, the properties of sets.
This can be less straightforward than it sounds and very often one is forced to give
more clear-cut answers to philosophical questions than the mathematicians would be
inclined to do. For instance, Myhill argues that Bishop’s conception of what a set
is, is essentially predicative, but, as far as I am aware, Bishop never discusses the
issue of predicativity. One could call this modest project empiricist : it starts from an
existing body of theory and tries to work back to the foundational conception that
could have inspired it.

Aczel’s work on constructive set theory is more ambitious (see [1, 2, 3]). He sees
the type theory developed by Martin-Löf as giving a precise analysis of the basic
notion of constructive mathematics: that of a construction. Because of this, he can
argue for the acceptability of certain set-theoretic axioms on other grounds than that
they are accepted by constructive mathematicians. In fact, he writes down a formal
system for set theory and then interprets the set theory in type theory. In this way he
is able to give precise answers to the question what makes his set theory constructive
and what is the constructive content of theorems proved in his set theory. Probably
for this reason, his set theory has now become the standard in the area. For the
purposes of this survey, we could call this approach rationalist : it starts from a
precise expression of ones philosophical position and argues for a certain axiomatic
system for set theory because it can be justified in terms of this philosophy.

1This paper appears here for the first time.

241
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It turns out that frequently more axioms can be justified on the rationalist per-
spective than seem to be needed in practice and, as a result, empiricist and rationalist
tendencies may pull one in different directions. Often, one has an empiricist arguing
against the inclusion of a certain principle on the ground that it is not needed in the
practice of constructive mathematics, while a rationalist argues that there is no point
in avoiding the principle, because it is perfectly justifiable. The differences between
Myhill’s system CST and Aczel’s system CZF can be understood in this light. To
see this, let us now have a look at these theories.

Myhill’s set theory CST in essence is the following theory formulated in intuition-
istic logic:

Extensionality: Two sets are equal, if they have the same elements.

Empty set: There is a set having no elements.

Pairing: For every two sets a, b there is a set {a, b} whose elements are precisely a
and b.

Union: For every set a there is a set
⋃
a whose elements are precisely the elements

of elements of a.

Bounded separation: If a is a set and ϕ(x) is a bounded formula in which a does
not occur, then there is a set {x ∈ a : ϕ(x)} whose elements are precisely those
elements x of a that satisfy ϕ(x).

Replacement: If a is a set and ϕ(x, y) is a formula such that

(∀x ∈ a) (∃!y)ϕ(x, y),

then there is a set consisting precisely of those y such that ϕ(x, y) holds for
some x ∈ a.

Infinity: There is a set ω whose elements are precisely the natural numbers.

Full induction: The set ω satisfies the full induction axiom: if ϕ(x) is any formula
for which ϕ(0) holds and for which ϕ(n) implies ϕ(n + 1), then ϕ(n) holds for
all n ∈ ω.

Exponentiation: For any two sets a, b there is a set ab whose elements are precisely
the functions from b to a.

(This is not literally Myhill’s set theory, but it is bi-interpretable with it.) Aczel
added the following axioms, because he found he could justify those as well:

Strong collection: ∀xεa ∃y ϕ(x, y)→ ∃bB(xεa, yεb)ϕ for any formula ϕ(x, y), where
B(xεa, yεb)ϕ abbreviates

∀xεa ∃yεb ϕ ∧ ∀yεb ∃xεaϕ.
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Set induction: ∀x (∀yεxϕ(y)→ ϕ(x))→ ∀xϕ(x) for any formula ϕ(x).

Subset collection: ∃c ∀z (∀xεa ∃yεb ϕ(x, y, z) → ∃dεcB(xεa, yεd)ϕ(x, y, z)) for any
formula ϕ(x, y, z).

The resulting set theory is called CZF for constructive Zermelo-Fraenkel set the-
ory. The distinctive character of Aczel’s project can be seen here: Set Induction is
completely absent from Myhill’s set theory and, indeed, plays no role in the work
of the ordinary mathematician. Strong Collection is a strengthening of Replace-
ment and Subset Collection strengthens Exponentiation, but Replacement and Ex-
ponentiation suffice for the daily needs of the constructive mathematician (for the
metamathematican the situation is very different: in my work with Ieke Moerdijk,
for example, we could make good use of Strong Collection and even Subset Collection,
see [21, 25] (Chapters 3 and 5)). Only quite recently a genuine application of Subset
collection was found: Aczel has shown that it can used to prove that in CZF the
Dedekind reals form a set (a proof has appeared in [39]; Lubarsky [85] has shown
that the Exponentiation Axiom does not suffice for that purpose). Nevertheless, it
seems fair to say that Strong Collection and Subset Collection are useful only for
metamathematical purposes.

But what happens if one does not try to justify strong axioms, but instead pursues
the “minimalist” philosophy to its very extreme and attempts to capture just what
is needed to formalise constructive mathematics as it is practised? In [52], Friedman
introduced his set theory B, which is extremely weak proof-theoretically, but still,
he claims, suffices for the formalisation of Bishop’s constructive mathematics. B is
obtained from CST by making three changes:

1. Weaken Replacement to

Abstraction: If ϕ(x, y1, . . . , yn) is a bounded formula and a is a set, then so
is {{x ∈ a : ϕ(x, y1, . . . , yn} : y1, . . . , yn ∈ x}.

2. Add bounded dependent choice, which is dependent choice for bounded formu-
las.

3. Weaking Full Induction to Induction:

Induction: The set ω satisfies the induction axiom: if x is any set such that
0 ∈ x holds and n ∈ x implies n+ 1 ∈ x, then ω ⊆ x.

It is last change which is the crucial one: by making this change, the result is a system
which is equiconsistent with Heyting arithmetic HA. (In [52], Friedman conjectures
that it is conservative over HA for arithmetical sentences. This was later proved by
Beeson, see the historical note on page 321 of [15].) As far as I am aware, no one
has undertaken a detailed verification that all of Bishop-style constructive can be
formalised in B (although Friedman mentions some unpublised work to that effect
in [52]), but Friedman’s claim that it could be done is generally accepted. And the
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same is true for the idea that among the constructive set theories which would allow
one to do this, B is the weakest.

8.2 Constructive set theory as a

constructive formal theory

If someone proposes a constructive theory T, a natural question to ask is whether it
has any of the following properties:

• Disjunction property: if T ` ϕ ∨ ψ, then T ` ϕ or T ` ψ.

• Numerical existence property: if T ` ∃n ∈ Nϕ(n), then there is a numeral n
such that T ` ϕ(n).

• Existence property: if T ` ∃xϕ(x), then there is a formula ψ(x) such that
T ` ∃!xψ(x) ∧ ∀x(ψ(x)→ ϕ(x)).

• Church’s Rule: if T ` ∀m ∈ N ∃n ∈ Nϕ(m,n), then there is a computable
function f :N→ N such that T ` ∀m ∈ Nϕ(m, f(m)).

• Continuity Rule: if T ` ∀x ∈ R ∃y ∈ Rϕ(x, y), then there is a continuous
function f :R→ R such that T ` ∀x ∈ Rϕ(x, f(x)).

Some people consider these properties essential for calling a system constructive, but
I think that is debatable (Kreisel, for one, argued against it). In fact, CZF, currently
considered as the standard constructive set theory, is conjectured not to have the
existence property, but no one considers that a serious threat to its status. CZF
does enjoy the other properties, however, as Rathjen has shown [102].2

Before we discuss the problem whether CZF has the existence property any fur-
ther, let us consider the case of impredicative constructive set theories, where the
situation is much better understood. Write IZF for the extension of CZF with the
Full Separation and the Power Set Axioms. Moreover, let IZFR be this set theory
with Replacement instead of Strong Collection.3 The classical results are:

• CST has all these properties. (Myhill [96])

• IZFR has all these properties. (Myhill [95])

• IZF has the disjunction and numerical existence property (Beeson [15]), but
not the set existence property (Friedman [53]).

2The continuity rule does not appear in the paper, but could probably be established using the
same methods. See also [26] (chapter 6).

3As a matter of fact, IZFR is an interesting theory which has not been studied very much.
Particularly intriguing is Friedman’s conjecture that IZF proves the consistency of IZFR; what is
known is that they do not have the same provably recursive functions, see [53].
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It is felt that the reason why IZFR enjoys the set existence property, while IZF
does not, is the following: all axioms of IZFR are explicit set existence axioms (they
postulate the existence of a set with a property P , where the property P defines the set
whose existence is postulated uniquely), whereas the Collection Axiom is not. If this
intuition is correct, then it is unlikely that CZF has the set existence property, not
just because it includes the Collection Axiom, but also because it contains the Subset
Collection Axiom. Unfortunately, Friedman’s proof that IZF does not have the set
existence property cannot be easily adapted to give a proof that also CZF does not
have this property, because it seems to make essential use of the impredicative features
of IZF. So this problem, which I feel is the main outstanding problem concerning
CZF, and probably rather difficult, remains open.4

8.3 Constructive set theory as a

foundation for formal topology

Another reason why CZF has become a standard point of reference is because it has
been suggested that it should provide a good foundation for a particular way of doing
topology constructively, namely by means of formal topology. It does not require
a big stretch of the imagination to guess that for a predicativist topology presents
some unique problems. For a classical mathematician the notion of a topological
space requires two iterations of the power set to be defined: so one can see that
in a setting where one does not rely on the Power Set Axiom things need to be
rethought considerably. In a nutshell, the solution is to work only with bases for ones
topological spaces and not mention points (hence also “pointfree topology”). A lot
of pointfree topology has been developed in the context of topos theory, where it is
also called locale theory, which is constructive, but impredicative. The challenge now
is to develop this theory in a predicative metatheory as well.

At present, a lot of work done by constructivists is done in the setting of formal
topology. One of the most striking aspects of this work, at least for the metamath-
ematician, is that it makes use of inductive definitions in a way which goes beyond
CZF proper. As Thomas Streicher remarked to me, this shows that, although formal
topology may make ones proofs more constructive, it does not necessarily make them
cheap from a proof-theoretic point of view. In this formal topology is markedly differ-
ent from Bishop-style constructive mathematics, which, as we saw, can be formalised
in a system conservative over Heyting arithmetic.

Still, inductive definitions are rather natural from a constructive point of view and

4There is an interesting intermediate possibility, which is suggested by a paper of Diller [42]: does
CZF have the following property:

• Approximate existence property: if T ` ∃xϕ(x), then there is a formula ψ(x) defining an
inhabited set such that T ` ∀x(ψ(x)→ ϕ(x)).

This strikes me as unlikely, but who knows?
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Myhill and Friedman did discuss them at some length, in particular in connection
with Bishop’s theory of Borel sets. Both argue that this theory does not require any
inductive definitions and that the initial impression that it does is really deceptive (in
fact, later a treatment of measure theory [31] was found which is more convincingly
constructive and manages to avoid inductive definitions altogether, thus making the
whole discussion rather academic). But after a lengthy discussion on how to avoid
inductive definitions in the formalisation of Bishop, Myhill writes, rather surprisingly:
“Nonetheless it is of interest, and very natural from a constructive point of view, to
take Bishop’s inductive definitions at face value and not worry about such tricks any
more.”

The challenge was taken up by Peter Aczel, who introduced in [3] a new axiom,
the Regular Extension Axiom or REA, whose purpose it was to allow for many
inductively defined sets in the context of CZF. (Another proposal was made by the
author together with Ieke Moerdijk, see [27] (Chapter 7), where we also discuss the
relative benefits of the proposals.) In addition, Aczel showed how this axiom could be
justified on his type-theoretic interpretation, so that its constructive merits would be
beyond dispute. That such a thing could be done is not surprising, since the liberal
use of inductive definitions is characteristic of the “generalised predicative” view of
mathematics, which is embodied in Martin-Löf’s type theory.

As said, nowadays inductive definitions are mainly used in formal topology. Re-
markably, it does not seem to have been proved that this is really necessary. In
particular, the author is not aware of a formal proof that such a crucial statement
as that formal Baire space is set-presented is independent from CZF.5 Even more
remarkably, it seems that REA does not solve all the problems: for there seem to be
results in formal topology (see in particular [100, 71]), which have been proved in the
context of Martin-Löf type theory and therefore are acceptable from a “generalised
predicative” perspective, but are probably not provable in CZF extended with REA.
(The word probably should be emphasised, because we do not have a formal proofs
that this is the case.) Various solutions have been proposed by Aczel, Ishihara and
the author (all of it unpublished), but a lot has to be clarified before we can identify
an adequate set-theoretic foundation for formal topology.

Part of the problem is that it may be too early to say. Ideally, formal topology
would consist of a coherent body of theory and results, comparable to Bishop’s book.
But as I am writing this text, probably too little has been developed to analyse in the
empiricist manner (as Myhill did with Bishop’s book) the set theory that it requires.

5It might follow from Rathjen’s result that Bar Induction increases the proof-theoretic strength
of CZF [103]: for if it holds also predicatively that sheaves over formal Baire space model Bar
Induction, then the statement that formal Baire space is set-presented should also increase the
proof-theoretic strength of CZF.
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8.4 Constructive set theory as a

predicative formal theory

Another motivation for studying CZF is to understand better the “generalised pred-
icative” point of view. A lot is known about impredicative constructive systems like
IZF and higher-order arithmetic, mainly because a lot of work was done on these
systems in the seventies and eighties (often in the context of topos theory), but we
lack a good understanding of what is distinctive of the predicative point of view.
Some questions which naturally arise are:

What are the differences between CZF and IZF? What are the mathe-
matical limits of predicativity? What is the “upper limit” of generalised
predicativity? Is there some system which would include precisely those
methods which could be justified on this perspective?

I feel it would be particularly interesting to see mathematical theorems provable
in IZF but not in CZF, or logical principles consistent with CZF but refutable in
IZF. (That there must be such follows immediately from the fact CZF is proof-
theoretically much weaker than IZF.) At present, I see three methods for finding
such results.

1. Use proof theory. In [62] it is shown that the proof-theoretic ordinal of CZF is
the Howard-Bachmann ordinal. It follows immediately from this that there are
Friedman-style independence results for CZF: miniaturisations of the extended
Kruskal theorem or the graph minor theorem are not provable in CZF by a wide
margin. The problem here is that results of this type will become provable when
one throws in enough inductive definitions (in the form of REA, for instance),
which is possible on (and indeed the defines) the generalised predicative point
of view.

2. Exploit that predicatively one cannot show the existence of a set-presented
boolean locale. This exploits the following difference between CZF and IZF:

• IZF + LEM is proof-theoretically as strong as IZF. In fact, IZF + LEM
= ZF and there is a double-negation translation of ZF in IZF (Friedman
[50]).

• CZF + LEM is proof-theoretically much stronger than CZF. In fact,
CZF + LEM = ZF and ZF proves the consistency of CZF. Therefore
there can be no double-negation translation of ZF in CZF.

So if CZF could prove the existence of any set-presented boolean formal space,
one could use it define a boolean-valued model of CZF + LEM inside CZF,
which contradicts these proof-theoretic results (this argument can already be
found in [60]; see also [56]).
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3. Use the “Lubarsky-Streicher-van den Berg model” (as it has been called in [99];
but in a sense it already goes back to [52]). It is a model of CZF + REA and
even models the impredicative Full Separation Axiom. It does refute the Power
Set Axiom, however, because it believes that all sets are “subcountable” (the
surjective image of a subset of the natural numbers) and these two statements
are incompatible by Cantor’s diagonal argument. Another principle which holds
in the model is the following General Uniformity Principle:

∀x∃yεaϕ(x, y)→ ∃yεa ∀xϕ(x, y).

This principle is also inconsistent with the Power Set Axiom.6

Curi has used the compatibility of the “generalised predicative” point of view with
the General Uniformity Principle (hence the third method) in [41] to prove that
certain locale-theoretic results concerning the Stone-Čech-compactification that are
valid topos-theoretically (or in IZF), fail in CZF extended with REA (although
I believe the second method could be used for that purpose as well). It would be
interesting to see more results of this type.

To get a better handle on the idea of generalised predicativity, I believe that the
most promising route is to try to vary the construction of the “Lubarsky-Streicher-van
den Berg model”. If one takes the concrete description of the model in [84] or [23]
(Chapter 4) as a starting point, one could try to see if the same model construction
works, if one considers only those well-founded trees which belong to a specific com-
plexity class, for example, if one considers only hyperarithmetical trees. In addition,
a detailed proof-theoretic analysis of the model (what do we need in the metatheory
to establish its various properties) might be worthwhile.

Playing of generalised predicativity and impredicative methods like this makes it
hard to suppress the question (in a Kreiselian spirit): are there any mathematical
benefits to be gained from working predicatively? To be perfectly honest, at present
I do not see any clear answer to this question and that is a bit disturbing. Part of
the problem is that many ideas for extracting computational content from construc-
tive proofs that work for CZF work equally well for IZF (think of realizability or
term extraction algorithms as in [91]). A related question is: are there examples of
interesting “synthetic theories” (in the spirit of synthetic differential geometry and
synthetic domain theory) that are inconsistent with IZF, but consistent with CZF?
At present there are none, but perhaps one could cook up something like a “synthetic
metarecursion theory”. But I guess I’d better, in the interest of the reader, leave the
suggestion at this, move on to less speculative matters and just note that there is a
nagging question here to which I do not have a real answer.

6In this connection Jaap van Oosten asked the following interesting question: is the General
Uniformity Rule a derived rule for CZF? My guess is that it is and that this would be another
difference between CZF and IZF.
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8.5 The proof theory of constructive set theory

Since Friedman started working on the proof theory of constructive set theory in 1977,
the following picture has emerged:

Set theory Arithmetical theory Type theory Ordinal
B, T1 PA, ACA0 ML0 ε0

CZF−, CST, T2 Σ1
1 −AC ML1 γ1

CZF− + INAC ATR0 ML Γ0

CZF, KPω, T3 ID1 ML1V ψ(εΩ+1)
CZF + REA, KPi ∆1

2-CA + BI ML1WV Known.
CZF + Full Separation, T4 PA2 Unknown.

Here, theories which have the same proof-theoretic strength appear on the same line
and stronger theories appear in rows lower than weaker theories. Let me explain some
of the items in the table, or give references:

• The set theories of the form Ti are due to Friedman and appear in [52]. CZF− is
CZF with the Set Induction Axiom removed, and INAC is (roughly speaking)
the statement that every set is contained in a Grothendieck universe (for the
precise definitions, see [40]). KPω is Kripke-Platek set theory with the Axiom
of Infinity, while KPi is Kripke-Platek set theory with the statement that every
set is contained in an admissible set.

• ACA0 and ATR0 are two of the five main systems in Reverse Mathematics
(see [108]), while PA2 is full second-order arithmetic (“analysis”). For the
definitions of Σ1

1 −AC and ID1, see [15]. Finally, the system ∆1
2-CA + BI is

explained in [72].

• ML0 is Martin-Löf type theory without any universes or W-types. ML1 adds
one universe U and ML an infinite sequence Ui of them with each Ui contained
in Ui+1. ML1V adds one universe V , together with a rule allowing recursion
on this universe. To obtain ML1WV, we require that inside this “recursive
universe” V we have W-types.

• ψ(εΩ+1) is the Howard-Bachmann ordinal and it seems that the ordinal of CZF+
REA is known, but nameless.

So it seems that most of the questions in this area have been answered. In particular,
Friedman’s question (in [52]) whether, for example, his set theory T3, or CZF for
that matter, is not just equiconsistent with ID1, but also proves the same arithmetical
sentences as some intuitionistic version of ID1, has been answered in the positive by
Gordeev (see [59]).7 His proof relies heavily on cut-elimination techniques; it would

7Note, by the way, that it follows from this that CZF does not prove that the Brouwer ordinals
are a set, thus answering a question in [26] (Chapter 6).
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be interesting to see whether also “soft” proof-theoretic methods could be used to
establish this result. In addition, the question whether CZF extended with Full Sep-
aration and HA2 prove the same arithmetical sentences might still be open. It might
also be interesting to construct a set-theoretic system which has the same strength
as Π1

1-CA0: this system is the only one of the Big Five from Reverse Mathematics
which is at least as strong as PA and which does not occur in the table.
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