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Abstract

Non-well-founded trees are used in mathematics and computer science, for mod-
elling non-well-founded sets, as well as non-terminating processes or infinite data
structures. Categorically, they arise as final coalgebras for polynomial endofunctors,
which we call M-types. We derive existence results for M-types in locally cartesian
closed pretoposes with a natural numbers object, using their internal logic. These are
then used to prove stability of such categories with M-types under various topos-
theoretic constructions; namely, slicing, formation of coalgebras (for a cartesian
comonad), and sheaves for an internal site.

1 Introduction

The first appearance of the Anti-Foundation Axiom in set theory was in the
work of Forti and Honsell [14], after which its relevance to mathematics and
computer science was made clear by the work of Peter Aczel [3]. The Anti-
Foundation Axiom has the effect of enlarging the set-theoretic universe by
non-well-founded sets, thereby allowing a greater class of trees to represent
sets. Traditionally, the Axiom of Foundation allows sets to be represented only
by well-founded trees, but the Anti-Foundation Axiom extends this possibility
to all non-well-founded trees.
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In computer science, non-well-foundedness of trees enables one to describe
circular (and, more generally, non-terminating) phenomena. For this reason,
they have been used in the theory of concurrency and specification, as well as
in the study of semantics for programming languages with coinductive types
[10,11,18,29,4].

Categorically, non-well-founded trees over a signature form what we call its M-
type, that is the final coalgebra for the polynomial functor determined by the
signature itself, much like well-founded trees form its initial algebra, usually
called the W-type of the signature.

The relation between these different views on trees is well established in the
well-founded case. Aczel used Martin-Lof type theory with well-founded types
to give a model of his constructive set theory CZF, including e-induction [2].
Such a type theory, on the other hand, is known to have a sound interpre-
tation in locally cartesian closed categories with W-types (modulo coherence
problems for substitution: see [17] for a precise account). Finally, Moerdijk
and Palmgren have shown how to build a model of CZF in a IIW-pretopos
with a hierarchy of small maps (see [24]).

Although this threefold correspondence is not tight, it is apparent that well-
foundedness plays an equivalent role in each theory, and is preserved along
each side of the (ideal) triangle

CZF with Martin-Lof
e-induction | | type theory

‘ lcc pretopos }

with W-types

In fact, removing it altogether wouldn’t affect the correspondence itself. In
other words, the e-induction scheme in set theory, well-founded types in Martin-
Lof type theory and W-types in categories are additional elements which are
appended in turn to match each other’s presence. Therefore, it is reasonable
to expect that an analogous correspondence should arise when each theory
is equipped with non-well-founded structures. These amount to the Anti-
Foundation Axiom for constructive set theory, non-well-founded types in type
theory, and M-types in categories.

This paper is taking the first step towards establishing such a correspondence,
by studying in detail categories with M-types. In fact, this paper aims to do
for M-types what [23] and [16] have done for W-types. Further work along
these lines is contained in the paper [9].

In particular, we look at closure properties of categories with M-types, proving
that they are closed under slicing, formation of coalgebras (for a cartesian
comonad), and sheaves (for an internal site). These constructions have proved



useful in topos theory, leading to the formulation of various independence
results [15,28]. One would hope to apply the same techniques in order to derive
independence and consistency results for a non-well-founded constructive set
theory, such as CZF~+ AFA. Other work on this system has been undertaken
by Rathjen [25,26].

Analogously, one could use the stability properties in order to derive results
in type theory. For instance, stability under slicing enabled the second author
to show in [13] how M-types provide a categorical semantics for Martin-Lof
type theories with non-well-founded types.

The paper is organised as follows. In Section 2 we give a precise categorical
definition of an M-type, and establish a few properties of M-types along the
lines of [23] and [16]. Next, in Section 3 we recall the definition of a dependent
polynomial functor from [16], and prove that a category with M-types has fi-
nal coalgebras for all dependent polynomial functors, which is shown to imply
that categories with M-types are stable under slicing. We then show how these
results can be strengthened in presence of a natural numbers object. These are
essential preliminaries for the results in Section 4, where we derive existence
results for M-types. First, we show that the existence of fixpoints for a polyno-
mial functor implies the existence of an M-type, thereby improving on a result
by Abbott et al. [1]. Secondly, we sharpen a result by Santocanale [27], using
our techniques. These existence results are then helpful in showing stability
of categories with M-types: in Section 5 we prove closure under formation of
coalgebras, presheaves and sheaves, respectively.

We are grateful to Jaap van Oosten, Ieke Moerdijk and the anynomous referees
for their useful comments on earlier versions of this paper. One of these earlier
versions appeared as part of the first author’s PhD thesis [7].

2 M-types

Throughout the paper, £ will denote a locally cartesian closed category (lccc)
with finite disjoint coproducts.

Internal logic 2.1 Instead of chasing diagrams, we will frequently use the
internal logic of our basic category £. Since £ is a lccc with finite disjoint sums,
one can interpret: conjunction, universal quantification, implication, truth and
falsity (hence negation). So all of first-order (intuitionistic) logic, except for
disjunction and existential quantification.

Since & is a lcce, the pullback functor
fE/A—E/B

associated to a morphism f: B—— A has both adjoints: a left adjoint X, given
by composition with f, and a right adjoint II;. Writing X for the unique



morphism X——1, and identifying £/1 with £, this means that any such
f: B—— A determines an endofunctor

Pr=E8 /B8 /A g,

which is called the polynomial functor associated to f. The name derives from
the shape this functor assumes in the category Sets. Writing B, = f~'(a) for
the fibre of f over an element a € A, the value of Py on an object X in Sets
is

Pi(X) = SaeaXPe.
So elements are pairs (a,t), where a € A, and t: B,— X.

Given an endofunctor T:C——C on an arbitrary category C, there are two
categories one can define. First, there is the category of T-algebras, denoted by
T —alg, which is defined as follows. Objects are pairs consisting of an object X
together with a morphism x: 7X—— X in C (its structure map). A morphism
from (X, 2: TX— X) to (Y,y: TY ——Y") is a morphism p: X——Y in C such
that

TX 2Ty
x Yy

XT>Y

commutes. Of special importance is the initial object in this category, when-
ever it exists. This initial object (I, ) is then called the initial or free T-algebra.
As the name free T-algebra suggests, the idea is that the structure of I has
been freely generated so as to make it a T-structure. In fact, the language of
initial algebras is the right categorical language for studying inductively gen-
erated structures. However, to study coinduction and bisimulation, one should
turn to the dual of these notions.

So more important for us, is the second category one can define, that of T'-
coalgebras, denoted by T'—coalg. Objects are pairs consisting of an object X
together with a structure map x: X——T'X in C, and a morphism p: X——Y in
C is a morphism of T-coalgebras from (X,z: X—TX) to (Y,y:Y—TY),
when (Tp)x = yp. The terminal object in this category, when it exists, is
called the final or cofree T-coalgebra. The intuition is that this object has
been “coinductively” or “cofreely” generated.

A very important observation, usually called Lambek’s lemma [21], is that
the structure maps of initial algebras (and final coalgebras, by duality) are
isomorphisms. Therefore initial algebras and final coalgebras are fixpoints. A
fixpoint is an object X together with an isomorphism 7'X = X. Fixpoints can
be regarded as both algebras and coalgebras. We will also employ the following
terminology: a prefirpoint is an object X together with a monomorphism
TX—X.



So to any morphism f: B—— A in a lcce &, there might be associated its
initial Pr-algebra, and its final Pr-coalgebra. The initial Pf-algebra is called
the W-type for f and denoted by Wy; such W-types were extensively studied
in [23]. Here we will be interested in final Ps-coalgebras, or M-types for f,
denoted by M;. We say that & has W-types (or M-types), when all W-types
(resp. M-types) exist.

W- and M-types are fixpoints for the polynomial functor. In particular, the
structure map M;—— Py M, which will usually be called 7, or simply 7, has
an inverse, which will usually be called supy, or simply sup.

The category Sets has both W- and M-types. The M-type associated to a
function f is defined to be the set of trees in which nodes are labelled by
elements a € A and edges are labelled by elements b € B, in such a way
that the edges into a certain node labelled by a are enumerated by f~'(a), as
illustrated in the following picture:

fﬁl(a) = @ X / z| Y %
f_l(b) = {u’ U} a b g
f

o) = {zy,2}

This set has the structure of a Pj-coalgebra: 7: M;—— P;M; decomposes a
tree into its immediate subtrees, while its inverse sup puts them together.
The W-type associated to f consists of the trees of this form that are in
addition well-founded. To stress that M-types consist of all trees, not just the
well-founded ones, one calls the general trees non-well-founded.

To prove that the set of all such trees has the right universal property, one
should canonically associate such a tree to any element x € X in a coalgebra
v: X—— P;X. To this end, one proceeds to unfold the element x: one computes
v(z) = (a,t), and starts drawing a tree by drawing a root and labelling it by a,
and putting edges into this element, one for every element b € B,, and labelling
them accordingly. To the edge labelled by b, one attaches the unfolding of
the tree tb, so one computes y(tb), etcetera. By proceeding indefinitely, one
produces a tree from the element x. Its root has a as its label, and this element,
will be called, by abuse of terminology, the root p(z) of the element z. So, in
fact, p is the composite:



There is another intuition behind W-types and M-types, which relates them
more closely to computer science. One can regard a morphism f: B—— A as
specifying a signature: one term constructor for every a € A, having arity
B,. The W-type is then the free term algebra inductively generated by this
signature. The M-type consists of what is, in computer science, called the
infinite (or lazy) terms over this signature, coinductively generated by the
same data.

Examples of M-types 2.2 As an example of an M-type, consider the
functor T: E——& given by X +— X + 1. This functor is polynomial, as it
is Py where f is the left inclusion inl: 1——1 + 1. So the corresponding signa-
ture has one constant 0 (called zero), and one unary function symbol s (called
successor). Its associated W-type, whenever it exists, is the natural numbers
object. Intuitively, this is clear, as its elements are well-founded trees (i.e., in
this case, trees of finite depth) of the form

|
0 > ‘ 8
s
S
The corresponding M-type contains all of these, together with the only tree
of infinite depth

|

I

|
Y

which is called w or co. Its elements are called the lazy natural numbers (Inn’s),
and the idea is that each Inn is either 0 or a successor of a Inn, which is either
0 or the successor of a Inn, and this is allowed to proceed indefinitely.

Another example from computer science is that of streams. The object of
streams on an object A arises as the final coalgebra of the functor TX =
A x X + 1, which is polynomial. Its elements are sequences of elements of
A, possibly of infinite length. Those of finite length form the corresponding
W-type. More examples of importance in computer science can be found in
[18] and [29].

Examples of categories with M-types 2.3 Many well-known lcccs have
all M-types. For example, there is the following result from [20]:
Theorem 2.4 Any elementary topos with a natural numbers object has M-
types.

But there are examples that are not toposes. For example, the category of
PERs has all M-types (see [5]). And so do the category of assemblies (or w-
sets), and the category of H-valued sets for a Heyting algebra H (see [7]). Later



we will call categories that are locally cartesian closed, have finite disjoint
sums, a nno and M-types, [IM -categories. All the examples we have just given
are actually IIM-categories. They also possess W-types, and, actually, it is an
open problem to give a (non-syntactic) example of a category possessing M-
types, but not all W-types (syntactic categories as in [13] presumably do not
have W-types for proof-theoretic reasons).

Comonadic aspects of M-types 2.5 The category of Ps-coalgebras Pr—
coalg has a forgetful functor U to the underlying category £. If this category
& has M-types, this functor U has a right adjoint R. For any object X in &,
the functor Pf( defined by

PX(Y)=PF;(Y)x X

is polynomial, as it is determined by fy = f+!x: B+ X—— A + 1. Therefore
it has a final coalgebra RX = My, , which is a Ps-coalgebra, since there is
a natural transformation PfX —— Py. The assignment X +— RX is functorial
from £ to Py—coalg, for any t: X——Y determines a natural transformation
P x t: P}X — P}/ , and therefore a morphism Rt: RX— RY .

Actually, it is not hard to see that the situation is comonadic, by (the
dual of) Beck’s Theorem (see [22]). Since the polynomial functor Py preserves
equalisers, the functor U creates them. Therefore the conditions of Beck’s
Theorem are certainly met, and we have proved:

Theorem 2.6 If & possesses all M-types, the category Ps—coalg is comonadic
over £.

The situation is therefore the perfect dual to that for W-types, as explained
in [16]. In fact, this dualisation was already mentioned in [12].

Covariant character of M-types 2.7 Given a pullback diagram in £

B/LB

q )

A/T>A7

we can think of o as a morphism of signatures, since the fibre over each a’ € A’
is isomorphic to the fibre over a(a’) € A. It is therefore reasonable to expect,
in such a situation, an induced morphism between My and My, when these
exist.

In fact, as already pointed out in [23], such a pullback square induces a
natural transformation a: Pp—— Py such that

pa = ap. (1)



Post-composition with & turns any Py-coalgebra into one for Py. In particular,
this happens for My, thus inducing a unique coalgebra homomorphism as in

Mf/ i Mf
Tf,l
Pf’<Mf’) Tf (2)

|

Pf(Mf')WPf(Mf)'

Contravariant aspects of M-types 2.8 As also pointed in [23], any com-

muting triangle
C———B
A

determines a natural transformation 7: Pf—— F,, and therefore a morphism
7 Mj—— M, satisfying the equation:

¥ (sup,t) = sup, (7 ot om,).

This assignment 7 — 7* is functorial in the obvious sense.
If 7 fits into an exact diagram
D—3C—">B
g

h f

in £/A, the M-type My can be constructed from the M-types for g and h.
For this purpose, write sup for the isomorphism P,M,—— M, and call S C
M, x M, a bisimulation, whenever sup,(t) Ssup, (t') implies that

a=a and for all d € D,:tmd S tmad.

We claim that B C M, x M,, as constructed from the pullback

B M,

I l

_—
My x M, o My, x My,

is the maximal bistimulation. B is obviously a bisimulation, and, actually, the
implication we need to check for B holds in both ways. To see that B is
maximal, let S be any bisimulation. As a bisimulation, S carries the structure
of a Pj-coalgebra, in such a way that both projections to M, are morphisms



of P,-coalgebras (indeed, this is what it means to be a bisimulation):

S P,S

p1| |P2

sup

This means that 7ip; = m;ps, and hence there is a map S—— M), such that

S M,

| l

—_—
M, x M, o My, x My,

commutes. Therefore S C B.

As B is the maximal bisimulation, it is both symmetric and transitive. For it
is easy to see that its opposite B° and the composite BB (as relations), are also
bisimulations. Therefore B defines an equivalence relation on {z € M, |xBz}.
When the quotient exists (e.g., if £ is a pretopos), it is the M-type My. A
detailed verification of this fact is left to the reader.

This result corresponds to Proposition 4.4 in [23], but one can see it is more
complicated: My cannot be constructed as the equaliser

* 77*
My My—= M,,.
T

The reader might also have noticed that in the context of the covariant aspects
of M-types, we have not given a result corresponding to Proposition 4.2 in the
same source (a kind of descent theorem for W-types). Actually, we have not
been able to prove a similar result for M-types without demanding various
choice principles in the internal logic. This is clearly less than satisfactory,
and the problem of finding good analogues to Proposition 4.2 for M-types
remains open.

3 Theory

In this section we develop the theory on which the applications in later sections
will rely. First, we show that there is an interesting class of functors on a
locally cartesian closed category &£ with finite disjoint coproducts, that has
final coalgebras, when all M-types exists in £. Then we present two related
applications of this fact. In the second part of this section, we derive sharper
statements under the assumption that £ possesses a natural numbers object.
This part relies on the possibility of formalising the notion of path in the
internal language of £.



Consider a not necessarily commuting triangle

B———4

N A
I

in £. Since £ is a lcce, one can define the dependent polynomial functor

Dy E/I—E/]
associated to the diagram, as follows:

Dy = 3,115

In terms of the internal language of &:

Df(Xi |Z € I) = (EaeAiHbeBaXﬁb |Z € I)-

In [16], the authors shows that the existence of all W-types implies the ex-
istence of initial algebras for all dependent polynomial functors. The corre-
sponding result for M-types is also correct, as we will show:

Theorem 3.1 If £ has all M-types, all dependent polynomial functors have
final coalgebras.

Proof. The final coalgebra E for Dy is obtained as an equaliser

E—<4—-M f #ﬁ M fxI-
One morphism, m, derives from the covariant properties of M-types: as f and
f x I fit into a pullback square

(id,auf) Bx]

B
lf lf xI
A

%A >< [’
(id,cx)

there is a morphism (A, a);: Mj— My, which is m. Defining n is more
complicated. First observe that M, x I has the structure of a Py, -coalgebra,
by the following rule:

(sup,(t), @) = ((a, ), (¢, ).

Therefore there is a morphism of Py -coalgebras n': My x I—— M/, which,
when precomposed with (id, ap): Ms—— My x I, yields n.

E is to be regarded as an object in £/I by composing e with ap (call the com-
posite €). To show that it is a Ds-coalgebra, we have to prove that sup,(t) € £

10



and b € B, imply tb € E and €(tb) = (3(b). To prove this, we need to show
first that the hypothesis implies that aptb = (b. This can be seen to be
correct, for sup,(t) € E means that m(sup,(t)) = n(sup,(t)) and therefore
m(tb) = n'(tb, 5b). Following both these values along

Mypxr—— Pror(Mysg) 2= A x -2 1,

we obtain the desired equality aptb = $b. Now it is easy to see that m(tb) =
n(tb), for

n(tb) = n'(tb, aptb) = n'(tb, Bb) = m(th),
and that €(tb) = aptb = (b.
Therefore E carries the structure of a Dy-coalgebra. We leave the verification
that is the final such to the reader. O

We now present two applications of this result. The first is the stability of
categories with M-types under slicing.

Proposition 3.2 If £ has M-types, so does every slice £/1. Moreover, M-
types are stable under reindexring, in the sense that for any x: J——1, the
pullback functor x*: E/I——E ] J preserves M-types (so, * My = My«s for any
fin&/I).

Proof. If I is an object in £ and f: B—— A a morphism over I, the dependent
polynomial functor associated to

B—'——4
K /
I

is precisely the polynomial functor associated to f in £/I, and therefore has
a final coalgebra.

To prove stability of M-types under reindexing, we use that polynomial func-
tors are indexed, in the sense that * Py = P, ;x*. Therefore there is a functor
x*: Py —coalg— P« —coalg, filling the square:

P, ;—coalg «%— P;—coalg

| |

E)J———E/I

But z*:£/I—&/J has a left adjoint ¥,, which can be seen to extend to
the level of coalgebras, where any P« s-coalgebra Y —— F,-¢Y is sent to the
transpose of:

Y%Px*fY*}Px*fl’*sz = :C*PfExY

11



Therefore z*: Py —coalg— P,y —coalg is a right adjoint, and preserves the
terminal object, which means that *My = M,.;. O

To present the second application of Theorem 3.1, which will be of considerable
importance later on, we first introduce the notion of a partial Ps-coalgebra: a
Pj-coalgebra whose structure map is only partially defined. More precisely, it
is a structure as follows

Y +t< D= PY,
where 4 is monic in €. A morphism between such structures (v,7) and (4, j)
consists of a pair (¢,) such that the following diagram commutes:

Y<—i<DL>PfY

10

So partial Pj-coalgebras form a category P;—pcoalg. Of course, there is an
obvious inclusion functor I: P;—coalg—— Pf—pcoalg which sends a “total”
Pjs-coalgebra v: Y —— P;Y to the partial Ps-coalgebra (v, id).

Proposition 3.3 If £ has M-types, the inclusion functor
I: Py —coalg— P;—pcoalg

has a right adjoint Coh.
Proof. Given a partial Ps-coalgebra

Y<—21<EL>PfY,

the idea is to build the maximal X C Y such that

(1) X C E, and
(2) whenever y(z) = (a,t) for some z € X, th € X for all b € B,.

Call a subobject X C Y with these properties coinductive. The right adjoint
Coh(v,7) will be the maximal coinductive subobject of Y, which can be con-
structed as a final coalgebra for a dependent polynomial functor.

Consider the diagram

F—25PY x4 B2y

I

Y+———F 5 PfY

(2

where the square is a pullback. This yields a dependent polynomial functor
D:E£/Y—E/Y defined as:

D = ¥,10,, (evpy)™,

12



or in terms of the internal language of £ as:

D(Xy\yEY)Z(Z H XuplyeY).

e By y(e)=(a,t),
beB,
Call its final coalgebra m: P—Y . A typical element p of P is p = sup,,o,
with m € E and ¢: B,— P, such that y(m) = (a,t). Therefore P is certainly
a Py-coalgebra. For such a p, mp = m and ¢ = ¢.

It would now not be difficult to show that this Ps-coalgebra P is the value on
(,14) for the right adjoint to the inclusion functor I. Instead, let us show that
our initial idea was correct: that P indeed defines the maximal coinductive
subobject of Y. Our first concern is therefore to show that P is a subobject of
Y, i.e. that 7 is monic. For this purpose, we define a D-coalgebra structure on
P xy P. This can be done, by mapping a pair (p = sup,,(¢),p’ = sup,,(¢))
such that 7p = 7p/, i.e. m = m/; to (m, (¢, ¢’)) € DP xy P. As both pro-
jection P xy P—— P are D-coalgebra morphisms, m must be monic. That is
coinductive is trivial, and the fact that it is the biggest such, follows from
finality of P. O

The results that we have obtained so far are fine as they are, but can be
formulated more sharply in presence of a natural numbers object. We will
now explore the precise details. So, from now on, our category £ will be locally
cartesian closed, have finite disjoint coproducts, and possess a natural numbers
object.

The key technical ingredient of these refinements is the notion of path. The
reader who is familiar with the mathematics of trees will probably not find this
surprising [11]. Our reason for introducing the notion of path is that it allows
us to identify properties of trees in a constructive way. Making an essential
use of the internal logic of a locally cartesian closed category with finite sums
and a natural numbers object N, this notion can defined, not just for the W-
and M-types, but for any partial Ps-coalgebra.

Assume we are given a partial Pj-coalgebra
Xtap—2s PrX.

A finite sequence of odd length (xg, by, 21, b1, ..., x,) is called a path in (7v,1),
if every z is in X, every by is in B, and for every k < n we have

(1) zx € D, and

(2) whenever y(xy) = (ag, tx), then by € B,, and thy, = xj41.

For an ordinary Pj-coalgebra, the first condition is of course vacuous. In the
particular case when X is the final coalgebra My, a path (mg,bo, ..., m,) in

this sense coincides precisely with a path in the usual sense in the non-well-
founded tree my. We will therefore say that such a path lies in mg, and by

13



extension, a path (zg, by, ..., x,) liesin 2y € X for any partial coalgebra (v, ).
All paths in a coalgebra (v, 7) are collected in the subobject

Paths(vy,i)—— (X + B+ 1)N.

More details on the formalisation of the notion of path, can be found in [6].

Any morphism of partial coalgebras (¢,): (v,i)— (0, 7)

X+ <«pD-2uPX

1

induces a morphism

(¢, 1)4: Paths(y,i1)— Paths(0, ) (3)

between the objects of paths in the respective partial coalgebras. A path
(%0, bo, - .., Tp) is sent by (¢, ¥). to (a(xg), b, . . ., a(zy,)). Furthermore, given
a path 7 = (0,00, ..,y») in Y and an xy such that ¥ (z¢) = v, there is a
unique path o starting with zy such that (¢,v).(0) = 7. (Proof: define
inductively for every k < n using the second condition in the definition of a
path, and put o = (xg, bo, ..., Tn).)

The language of paths allows us first of all to refine Theorem 3.1:

Theorem 3.4 If the M-type associated to f exists, then Dy has a final coal-
gebra.

Proof. In the language of the (proof of) Theorem 3.1: we need to show that
E can be identified not only as an equaliser, but also using the language of
paths. We will only show how this can be done, and leave the verifications to
the reader. The idea is that 2 C My consists of those m € My such that any
path lying in m, say (mo, bo, . . ., my), satisfies the equation ap(m,) = 5(b,).
O

Moreover, its two applications, Proposition 3.2 and Proposition 3.3, respec-
tively, can be formulated more sharply:

Proposition 3.5 Suppose f is a morphism in E/I. If the M-type for Xrf
exists in £, then the M-type for f exists in E/I.

Proposition 3.6 The inclusion functor
I: Py —coalg—— Py —pcoalg

has a right adjoint Coh.

14



Proof. Here we need to show how to define the maximal coinductive subobject
Coh(7v,i) C X of a partial coalgebra

X<—i<DL>PfX

(in the language of Proposition 3.3). For this purpose, call an element z € X

coherent, when every path x = (xq, by, 1, b1, ..., x,) lying in z, has the prop-
erty that z,, € D. These coherent elements together form the object Coh(~, %),
which is the right adjoint defined on (v, 1). O

A particular example of this last result (Proposition 3.6) is worth treating
in more detail. A particular subcategory of partial coalgebras arises when we
have another endofunctor F' on £ and an injective natural transformation
m: Py ——F". In this case, any F-coalgebra y:Y —— F'Y can easily be turned
into the partial Py-coalgebra by pullback:

E';’}I)Pfy

I [

Y ——FY.

This determines a functor m: F' —coalg— Py —pcoalg, which is clearly faith-
ful.

Proposition 3.7 The adjunction I 4Coh of Proposition 3.3 restricts to an
adjunction m, 4 Coh m, where m,: Py —coalg— F —coalg takes x: X — P; X
to (X, mxx).

Proof. Consider a Pj-coalgebra (Z,7) and an F-coalgebra (X, x). Then, a
simple diagram chase, using the naturality of m, shows that F-coalgebra mor-
phisms from m.(Z, ) to (X, x) correspond bijectively to morphisms of partial
coalgebras from I(Z,v) to m(X, x), hence to Ps-coalgebra homomorphisms
from (Z,~) to Coh(m(X,x)), by Proposition 3.3. O

Another application of Proposition 3.6, whose relevance will become apparent
soon, is the following:

Proposition 3.8 Any prefizpoint o: PP X—— X has a subalgebra that is a
fixpoint.

Proof. Any prefixpoint a: Pf.X—— X can be seen as a partial Ps-coalgebra,
as follows:

X+2=<D = PfX'*d>PfX

Its coreflection Coh(id, a), as defined in Proposition 3.6, is a Ps-coalgebra
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v:Y—— P;Y (in fact, the largest) fitting in the following commutative square:

Yir—t X
’YJ Ioz
P fY >P—fz> P fX .
We need to show that v has an inverse. For this, consider the image under

I: Py —coalg— Py—pcoalg of the coalgebra Py(7y): PfYHP]?Y. The mor-
phism of partial coalgebras

PpY 4 py 0, pry

aPy ZJ prz' JPfaPJ%i

X ron PfX 5 PfX

transposes through the adjunction I 4 Coh to a morphism
¢: (PyY, Pry)— (Y, 7),

which is a right inverse of v: (Y, v)—— (PfY, Psy) by the universal property of
(Y, 7). Hence, we have v¢ = Pf(¢y) = id, proving that v and ¢ are mutually
inverse. O

4 Applications

In this section, we show the power of our techniques by sharpening results
from [1] and [27], respectively.

By Lambek’s lemma, M-types are a particular kind of fixpoints for polynomial
functors. Clearly, not every fixpoint is an M-type, but what turns out to be
correct is that the existence of a fixpoint for a polynomial functor implies the
existence of its corresponding M-type. This fact will make it far easier to show
preservation of M-types in the next section (closure under coalgebras for a
cartesian comonad and under sheaves). The first part of this section will be
devoted to its proof.

The idea behind the proof is in fact well-known. Assume the signature for
which we try to show the existence of an M-type has a specified constant. In
our context, this means that the map f: B—— A is pointed, i.e. there exists a
global element 1:1—— A such that the following is a pullback:

0 B
| )
IT>A

—
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For such a signature, one can recover the non-well-founded trees from the well-
founded ones: for the constant allows for the definition of truncation functions,
which cut a tree at a certain depth and replace all the term constructors at
that level by that specified constant. The way to recover non-well-founded
trees is then to consider sequences of trees (t,),-o such that each t, is the
truncation at depth n of t,, for all m > n. Each such sequence is viewed as
the sequence of approximations of a given tree. This is a familiar construction,
but what seems to be less familiar is the observation is that this construction
works starting from any Pj-fixpoint.

Lemma 4.1 If for some pointed f in £, Py has a fizpoint, then it also has a
final coalgebra.

Proof. Assume X is an algebra whose structure map sup: Pr.X—— X is an
isomorphism. Observe, first of all, that X has a global element

Lil— X, (4)

namely sup, (¢), where L is the point of f and ¢ is the unique map B, =
0— X.

Define, by induction, the following truncation functions tr,: X — X:

tro=LoX: X—1—X
trp+1 =sup oPy(tr,) osup ': X PrX PrX X

Using these maps, we can define an object M, consisting of sequences («,, €
X)pn>o with the property:

ap, = trp(a,,) for all n < m.

Now, we define a morphism 7: M—— P;M as follows. Given a sequence o =
(ay,) € M, observe that p(ay,) is independent of n and is some element a € A.
Hence, each «, is of the form sup,(t,) for some t,: B,— X, and we define
t: B,—— M by putting t(b),, = t,+1(b) for every b € B,; then 7(a) = (a,t).
Thus, M has the structure of a Ps-coalgebra, and we claim it is the terminal
one.

To show this, given another coalgebra x: Y —— P;Y, we wish to define a map of
coalgebras p: Y—— M. This means defining maps p,,: Y — X for every n > 0,
with the property that p,, = tr,p,, for all n < m. Intuitively, p,, maps a state
of Y to its “unfolding up to level n”, which we can mimic in X. Formally, they
are defined inductively by

Po=1
Pni1=sup oPy(pn) o x.
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It is now easy to show, by induction on n, that p,, = tr,p,, for all m > n. For
n = 0, both sides of the equation become the constant map L. Supposing the
equation holds for a fixed n and any m > n, then for n+ 1 and any m > n we
have Pni1 = sup Pr(Bn)X = sup Pr(tr,pm)x = sup Py(tr,) sup™ sup Pr(Pm)X =
trn41Dm+1-

We leave to the reader the verification that p is the unique Pj-coalgebra mor-
phism from X to M. O

Theorem 4.2 If (pre)fizpoints exist in € for all Py (with f pointed), then £
has M-types.

Proof. Let f: B—— A be a map. We freely add a point to the signature
represented by f, by considering the composite

frB—Loasa41 (5)

(with the point j = L:1—— A + 1). Notice that the obvious pullback

BL)B

[

Ar——A+1

determines, by the covariant character of M-types explained in Section 2, a
(monic) natural transformation ¢;: P/— Py ; hence, by Proposition 3.7, the
functor (4).: Py—coalg— Py, —coalg has a right adjoint. Now observe that
Py, has a prefixpoint, by assumption, so a fixpoint by Proposition 3.8, hence
a final coalgebra by Lemma 4.1. This will be preserved by the right adjoint of
(41)«, hence Py has a final coalgebra. O

This proof gives a categorical counterpart of the standard set-theoretic con-
struction: add a dummy constant to the signature, build infinite trees by
sequences of approximations, then select the actual M-type by taking those
infinite trees which involve only term constructors from the original signature.
This last passage is performed by the coreflection functor of Proposition 3.7,
since coherent ones are trees with no occurrence of 1 at any point.

From this last theorem, we readily deduce the following result, first pointed
out to us by Abbott, Altenkirch and Ghani [1].

Corollary 4.3 If £ has W-types, then it has M-types.

Proof. When £ has W-types, it has a natural numbers object, namely the
W-type associated to the left inclusion inl: 1—— 1+ 1. Since the W-type asso-
ciated to a (pointed) map f is a fixpoint for Py, € also has all M-types by the
previous theorem. O
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The following existence result is also to be compared with the literature.
In [27], Santocanale proves the existence of M-types for maps of the form
f: B—— A where A is a finite sum of copies of 1. Notice that such an object
A has decidable equality, i.e. the diagonal A: A—— A x A has a complement
in the subobject lattice of A x A. We extend the statement above to all maps
whose codomain has decidable equality.

Proposition 4.4 Let £ be a lccc with finite disjoint coproducts and a nno,
and let f: B—— A be a morphism in £. If A has decidable equality, then the
M-type for f exists.

Proof. Without loss of generality, we may assume that f is pointed; in fact, if
we replace A by A} = A+ 1 and f by f, asin (5), then A, also has decidable
equality, and the existence of an M-type for the composite f, implies that of
an M-type for f (see the proof of Theorem 4.2). Then, by Proposition 3.8 and
Lemma 4.1, it is enough to show that P has a prefixpoint.

Let S be the object of all finite sequences of the form

<a07 b07al>b17 RIS an)

where f(b;) = a; for all i < n. (Like paths in a coalgebra, this object S can
be constructed using the internal logic of £.) Now, let V' be the object of all
decidable subobjects of S (these can be considered as functions S—1 + 1).
Define the map m: PV ——V taking a pair (a,t: B,—— V) to the subobject
P of S defined by the following clauses:

(1) (ap) € P iff ay = a.
(2) (ap,by) xo € P iff ay = a and o € t(by).
(Here, * is the symbol for concatenation.) P is obviously decidable, so m is
well-defined. To see that it is monic, suppose P = m(a,t) and P' = m(d/,t')
are equal. Then,

(a) e P= (a) € P = a=d|,
and, for every b € B, and o € 9,

o€t(b)<=(a,b)xoceP
< (a,byxc € P
o et'(b),

so t = t' and m is monic. Hence, (V,m) is a prefixpoint for Py and we are

finished. O

Remark 4.5 In the previous proof, to obtain the M-type for f from V', one
should first deduce a fixpoint V' from it, as in Proposition 3.8. This means
selecting the coherent elements of V', and these turn out to be those decidable
subobjects P of S satisfying the following properties:
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(1) (a) € P for a unique a € A4;
(2) if (ag, bo, . ..,an) € P, then there exists for any b, € B,, a unique a,1
such that (ag, by, - - ., Gn, by, 4ny1) € P.

Now, we should turn this fixpoint into the M-type for f (as in Lemma 4.1),
but this step is redundant, since our choice of V' is such that V' already is the
desired M-type.

It is an interesting question whether this result can be generalised even further.
However, it is our feeling that not all M-types can be proved to exist in general.
Unfortunately, many of the well-known lcccs have W-types as well, so these
do not provide counterexamples.

5 Closure properties

In this final section, we will study the stability of categories with M-types
under various categorical operations familiar from topos theory, like coalgebras
for a cartesian comonad and internal sheaves. For convenience, call a category
& which is locally cartesian closed, has finite disjoint coproducts, a natural
numbers object and all M-types, a IIM -category. Recall that we have shown
that ITM-categories are closed under slicing (in Proposition 3.2).

5.1 M-types and coalgebras

Here, we turn our attention to the construction of categories of coalgebras for
a cartesian comonad (G, €, ). See, for example, [22, Chapter VI], for the defi-
nition of a comonad and a coalgebra for a comonad. By a cartesian comonad,
we mean here that the functor G preserves finite limits (following [19]).

Theorem 5.1 If £ is a locally cartesian closed category with finite disjoint
sums and a natural numbers object, then so is Eg for a cartesian comonad

G = (G,¢€,6) on €E.

Proof. Theorem 4.2.1 on page 173 of [19] gives us that &g is cartesian, in fact
locally cartesian closed, and that it has a natural numbers object. It also has
finite disjoint sums, since the forgetful functor U: Eg—— & creates colimits. O

The aim of this subsection is to prove that &g inherits M-types from &, in case
they exist in that category. Given a morphism f of coalgebras, this induces
a polynomial functor Py: Eq— &g, while its underlying map U f determines
the endofunctor Py on €. The two are related as follows:

Proposition 5.2 Let f:(B,3)—(A,«a) be a map of G-coalgebras. Then,
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there is an injective natural transformation

Sihf

o & e

8GTf>8G'

Proof. Recall from [19] that there is the following natural isomorphism
Ea/(A ) = (E/A)a, (6)

where G’ is a cartesian comonad on £/A, which is computed on an object
t: X—— A in £/A by taking the following pullback:

G'Xr—GX
GI{ lct (7)
Ar——GA.

Notice that both horizontal arrows in this pullback are monic, because €4 is
a retraction of the GG-coalgebra «.

Through the isomorphism (6), the object AxGX—— A corresponds to G’ (py: AX
X — A), whereas f corresponds to some map f’ in (£/A)q:. Therefore the ob-
ject P¢(GX) (i.e. the source of the exponential (AxGX— A)/ in the category
Ea/(A, a)) corresponds to the exponential (G'p;)f". Since U’: (£/A)—— & /A
preserves products because G’ does, there is the following chain of natural
bijections:
Y — &'V
vy — plljlf ,
UY x U/f/ — D1
UY xf)—m
Y x ff— (G'py)
Y — (G'p)".
So one deduces (G'py)! = &' (pY'") = &/ (pY7). The latter fits in the following
pullback square, which is an instance of (7):

G'((Ax X = AY)H-2LG((Ax X — AV

| |

A a GA.

Now notice that the top right entry of the diagram is exactly G Py (X), hence
the map 7 therein defines the X-th component of a natural transformation of
the desired form. O
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Theorem 5.3 Let f:(B,5)—(A,«) be a map of G-coalgebras. If the un-
derlying map U f has an M-type in &, then f has an M-type in Eg.
Proof. The natural transformation ¢ of Proposition 5.2 allows one to turn

any Pps-coalgebra into a partial Ps-coalgebra. In particular, for the M-type
T:M = Myj—— PysM in £, we obtain by pullback the partial Ps-coalgebra

E——GM
« Gt
PfGMTGPUfM,

whose coreflection C' = Coh(«, t), we claim, is final in Py—coalg. To see this,
consider another coalgebra (X, ). To give a morphism of Pj-coalgebras from
(X,7) to C is the same, through I 4Coh, as giving a map I X—(v,t) in &g
which is a morphism of partial Ps-coalgebras, which amounts to a morphism
1: X—— G M that makes the following commute:

X 7 PfX

(2 lpfd’

GM*)GPU]”M%P]@GM
Gt M

This transposes, through U 4G, to the following diagram in &

UX-LLUP X 25 PyUX
1ZJ lPUfﬁ
M . PysM.

(Here

7 UPf%PUfUZEG*n‘:
is the mate of i, as defined in Proposition 5.2, under the adjunction U -G.)
But finality of M implies that there is precisely one such ¢ for any coalgebra
(X,7), hence finality is proved. O

Corollary 5.4 If€ is a IIM -category and G = (G, €,6) is a cartesian comonad
on &, then the category Eg of (Filenberg-Moore) coalgebras for G is again a
[IM -category.

Remark 5.5 Notice that Corollary 5.4 could also be deduced by Theorem
4.2, in conjunction with Proposition 5.2. However, as the proof of Theorem

5.3 shows, one does not need to perform the whole construction, since the
coreflection step gives directly the final coalgebra.

Remark 5.6 In particular, this result shows stability of IIM-categories under
the glueing construction, since this is a special case of taking coalgebras for a
cartesian comonad (see [19]).
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5.2 M-types and presheaves

Now, we concern ourselves with the formation of presheaves for an internal
category in a IIM-category. Our aim is to show that the result is again a
[IM-category.

So consider an internal category C in a IIM-category £, with object of objects
Co. By using the fact that the category of presheaves Psh(C) is the category of
coalgebras for a cartesian comonad on the slice category £ /Cy (see for instance
[19], Example A.4.2.4 (b)), one gets at once

Proposition 5.7 The presheaf category Psh(C) is a IIM -category.

Unwinding the proof, it is possible to give a concrete description of the M-type
in presheaf categories, along the lines of the description of W-types in [24].
We will just give the description and leave the verifications to the reader.

First of all, we need to introduce the functor | - |: Psh(C)—— & which takes a
presheaf A to its “underlying set” |A| = {(a,C) | a € A(C)}. This is just the
composite of the forgetful functor U: Psh(C)——&/Cy with X¢,: £/Co—E.

Let f: B—— A be a morphism of presheaves. Then, the “fibre” B, of f over
a € A(C) for an object C' in C is a presheaf, whose value on D is described in
the internal language of £ as

Bo(D) ={(8,b) | B: D—C,a- = f(b)}

and restriction along a morphism §: D'— D is defined as
(8,b) - 6 = (80,0 - 5).
Now the presheaf morphism f also induces a map
f: 8 wcyela|Bal— | Al

whose fibre over (a,C) is precisely |B,|. Consider the M-type M in &: the
M-type M for f in presheaves will be built by selecting the right elements
from this M-type.

Elements T € My are of the form
T = Sup(a’C)t,

where (a,C) € |A| and t: B,— M. My can be considered as an object in
&/Cy, when one maps such a T to C, so write N'(C) for the fibre over C' € Cy.
N actually possesses the structure of a presheaf, because for any T' € N (C)
and a: C'—C,

T a=sup, ota,
where @’ = a -« and & is the obvious morphism |B,|—|B,|, defined by
sending (3, b) to (af,b).
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Out of this presheaf NV, one has to select the coherent elements (the trees called
natural in [23]). Call a tree S composable, when all subtrees T' = sup(, )t of
S satisfy

t(3,b) € N(dom(3)).

Call S coherent or natural, when all subtrees T' = sup, oyt of S in addition
satisfy that

t(3,0) -y =t(B7,b-7).

These notions can be defined using the language of paths: for a tree T' is a
subtree of a tree S, when there is a path in the tree S ending with the tree
T. Let M be the subobject of N consisting of the coherent elements. It is a
presheaf, and, as the reader can verify, the M-type for f in presheaves. So, in
effect, we have proved:

Theorem 5.8 Consider a map f: B—— A in Psh(C). If the induced map f
has an M-type in &, then f has an M-type in Psh(C).

5.8  M-types and sheaves

In this subsection, we wish to show that IIM-categories are closed under taking
internal sheaves. We approach this question in the following manner: we show
that 1IM-categories are closed under reflective subcategories with cartesian
reflector. It is well-known that in topos theory categories of sheaves are such
subcategories of the category of presheaves. Within a predicative metatheory,
the construction of a sheafification functor, a cartesian left adjoint for the
inclusion of sheaves in presheaves, runs into some problems. Solutions have
been proposed in [24] and [8]. Such issues are beyond the scope of this pa-
per and we will simply assume that this problem can be solved. Then closure
of IIM-categories under sheaves follows from closure under reflective subcate-
gories, because we have just shown that IIM-categories are closed under taking
presheaves for an internal site.

On cartesian reflectors and the universal closure operators they induce, the
reader could consult [19], Sections A4.3 and A4.4. Very briefly, the story is
like this. A category D is a reflective subcategory of a cartesian category &,
when the inclusion functor ¢: D—— & has a left adjoint L such that L: = 1.
Now the inclusion is automatically full and faithful.

When the reflector L is cartesian, as we will always assume, it induces an oper-
ator on the subobject lattice of any object X. The operator takes a subobject

m: X' ——X
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to the left side of the pullback square

(X)) ——iLX'

e

XT@LX.

This operation is order-preserving, idempotent (c¢(c(X’)) = ¢(X’)), inflation-
ary (X' < ¢(X’)) and commutes with pullback along arbitrary morphisms.
Such operators are called universal closure operators. In topos theory, every
universal closure operator derives from a cartesian reflector, but in the context
of IIM-categories that is probably not the case.

The objects in £ that come from D can be characterised in terms of the closure
operator ¢ as follows. Call a mono

m: X' ——X

dense, when its closure ¢(X’) is the maximal object X C X. An object Y in
£ is from D in case any triangle

X/ L}Y
X

with m a dense mono, can be filled uniquely by a map f. These objects are,
not accidentally, called the sheaves for the closure operator c.

In the aforementioned sections from [19], one can find a proof of the fact
that D is a locally cartesian closed category, and that the inclusion i: D—— &
preserves this structure. That D has finite disjoint sums and a natural numbers
object, is clear, because these can be computed in £ followed by applying the
reflector L. For our purposes, it is therefore sufficient to show:

Theorem 5.9 Let f: B—— A be a morphism in £. When f is a morphism of
sheaves, My is a sheaf.

Proof. Let M = M; be the M-type in &£ associated to f, and obtain the
sheaf LM by applying the reflector to M. The object P;(LM) is also a sheaf,
because the inclusion preserves the lcce structure. Because of the universal
property of L the diagram

M = iLM

Py(M) —pos Py (iLM) 2 iP;(LM)

can be filled. Therefore :LM has the structure of Pj-coalgebra in such a way
that 7,/ is a Py-coalgebra morphism. By finality of M, there is a Pf-coalgebra

25



morphism 7:¢LM—— M such that rny = 1. So nyrny = ny = 1ny and the
universal property of 1, immediately gives that also nyr =1. So M =iLM
and M is a sheaf. a

Remark 5.10 It would have been enough to require that the codomain of f
is a sheaf. This essentially because the sheaves form an exponential ideal in £.

Theorem 5.11 IfD is a reflective subcategory of a ILM -category € with carte-
sian reflector, D is also a I1IM -category.

Corollary 5.12 IfC is an internal site in a I1IM -category £ such that the in-
clusion of internal sheaves in presheaves has a cartesian left adjoint (a “sheafi-
fication functor”), then the category Sh(C) of internal sheaves for the site C
i & 1s a IIM -category.

Separated objects 5.13 Objects Y in &£ for which triangles

X/ L Y
X
X,

where m is a dense mono, have at most one filling are called separated with
respect to ¢. As it turns out, the full subcategory of such separated subobjects
Sep.(€) has M-types when &£ does, even when the universal closure operator
is not known to derive from a cartesian reflector.
Theorem 5.14 Let ¢ be a universal closure operator on a IIM -category £.
(1) Sep.(E) is a locally cartesian closed category.
(2) If f: B—— A has separated codomain, then My is separated.
(3) If ¢ is dense (so cx(L) = L forall X € &), then Sep.(E) is a ITIM -category

and the inclusion

Sep(E)—— &

preserves this structure.
Proof. Before proceeding to give the proof, we introduce a piece of nota-
tion. For an object X in &, write z =. 2’ for x,2/ € X, when (z,2') €
c¢(A: X— X x X). An object X is then separated, when

=0 =>x=2a

(see [19], Lemma 4.3.6).

1: Since ¢ commutes with intersection, it is clear that separated objects are
closed under finite limits. It is also not too hard to see that separated objects
are closed under the IlI-functor. To give an idea, let us show in some detail
why AP is separated, whenever A is. Consider two functions f,g € A® such
that f =. g. To prove f = g, pick an arbitrary b € B. Since b =, b, and

f:cg/\b:cb/_)fb:cgb/a
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fb =, gb. But A is separated, so fb = gb. As b was arbitrary, f = g.
2: In the same way, consider the M-type M in £ associated to f: B—— A,
where A is separated. To show that M is separated, define

S = {(sup, (), sup (') € M x M |sup,(t) =c sup, (1)}

S has the structure of a Py-coalgebra in such a way that composing S € M x M
with either of the two projections yields a Pj-coalgebra morphism. In other
words, S has the structure of a bisimulation on M. This is true, simply because
whenever sup,(t) =. sup, (t'), then a =. d’, and hence a = @', because A is
separated. And because one therefore also has that tb =. t'b for every b € B,,.
But because of finality of M, all bisimulations on M are contained in the
diagonal of M. Hence

sup,(t) =¢ sup, (') = sup,(t) = sup, ()

and M is separated.

3: In case c is dense, separated objects are closed under sums, and also the
nno is separated. The former one shows by a separation of cases, and for the
latter one shows by a double induction that for any n,m € N

n=.m=mn=m.
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