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Abstract

We study a new proof principle in the context of constructive Zermelo-
Fraenkel set theory based on what we will call “non-deterministic induc-
tive definitions”. We give applications to formal topology as well as a
predicative justification of this principle.

1 Introduction

There is a distinctive foundational stance that has sometimes been called “gen-
eralised predicativity”, which is characterised by a rejection of impredicative
definitions combined with an acceptance of a wide variety of inductively de-
fined sets. The system which expresses this philosophy in its purest form is
Martin-Löf’s type theory [13].

Martin-Löf’s type theory is intended to be an open-ended framework and, as
a consequence, comes in different versions of varying strength. For the purposes
of this paper, the relevant system is the theory ML1W V from [11] and [18], with
one iterative universe closed under W-types and with the “extensional” rules
for the identity types, as in [13]. (We believe the arguments in this paper still
go through if one works with the intensional identity types and the axiom of
function extensionality. It is unclear to us what happens when we drop function
extensionality.) Occasionally, we will also consider the system ML1V, where
we drop the requirement that the iterative universe it is closed under W-types.

Working in ML1W V is hard, however, for several reasons: the syntax is
unfamiliar and complicated, and it lacks extensional constructs (like quotient
types). For this reason, people have sought systems which are easier to work
with, but can still be interpreted in type theory. The most prominent among
them is Peter Aczel’s constructive set theory CZF [1, 7].
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But constructive set theory has some difficulties in catching up on the type
theory, for there are some mathematical results, especially in what is called
formal topology, which can be proved in ML1W V, but not in CZF. Formal
topology is a particular approach to the subject of topology, which, by taking
the notion of a basis as the starting point, can be developed in a way which is
acceptable from the generalised predicative point of view. It should be one of
features of CZF that it can act as a set-theoretic foundation for formal topology,
but it does not quite live up to that.

The first problem one encounters is that formal topology makes heavy use of
inductive definitions, but CZF is unable to prove that these generate sets. This
was remedied early on by Peter Aczel, when he introduced the Regular Exten-
sion Axiom REA [3]. CZF + REA can still be interpreted in ML1W V and
allows one to prove the existence of a wide variety of inductively generated sets.
An alternative solution (the combination of WS and AMC) was proposed by
the author together with Ieke Moerdijk [9]. Indeed, in both extensions of CZF
one can prove the Set Compactness Theorem, which allows one to prove that
every inductively generated formal space is set-presented, which is an important
fact in formal topology.

But, unfortunately, it seems that CZF + REA and CZF + WS + AMC
are still not capable of capturing all the desired results in formal topology.
In particular, people have not managed to prove in these systems Palmgren’s
results from [16, 17] on points and coequalizers of formal spaces (see Section 5
below). We do not have a proof that this is impossible (although we are inclined
to think that it is).

In the meantime, various people have attempted to find set-theoretic prin-
ciples which would allow one to prove these other results. The subject of this
paper is the author’s proposal for such a principle, which he has dubbed NID,
for “non-deterministic inductive definitions”. The contention is that the NID
principle provides an elegant and relatively simple solution to proving all the
additional results in formal topology which go beyond these frameworks. More-
over, the principle is acceptable from a generalised predicative point of view,
because it is valid under the type-theoretic interpretation of CZF in ML1W V
(this will be proved in Section 6). Another proposal is due to Aczel, Ishihara,
Nemoto and Sangu (see [6]) and we compare our proposals in Section 7 of this
paper.

The contents of this paper are therefore as follows: in Section 2 we formulate
the NID principle and in Section 3 we prove some first applications, especially
to inductive and coinductive types. To get a more streamlined presentation of
applications of NID to formal topology, it turns out to be helpful to have a
formulation of the NID principle in terms of logic (an idea of Peter Aczel). This
reformulation we will develop in Section 4. In Section 5, then, we proceed to
develop the applications of the NID principle to formal topology. After that, in
Section 6, we will show that the NID principle is validated by the interpretation
of CZF in Martin-Löf’s type theory with one inductive universe closed under
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W-types. This section was inspired by earlier work by Aczel [5] and unpublished
notes by Ishihara. After that, in Section 7, we will compare our work with the
preprint [6]. Finally, we end this paper with formulating several questions which
have been left open in this paper.

The author would like to thank Hajime Ishihara for showing him some early
drafts of [6] and for very useful and enjoyable discussions, also with Erik Palm-
gren, during the author’s stay at the Institut Mittag-Leffler in Fall 2009. He
is also grateful to the Institut for awarding him a fellowship, as well as to the
referees for useful comments.

2 The NID principle

We work in CZF, unless expressly indicated otherwise.

Remark 2.1 Throughout this paper we will call a set A finite, if there is a
natural number n ∈ N and a surjection {1, . . . , n} → A. Such sets have also been
called K-finite (for Kuratowski-finite) or finitely enumerable to distinguish them
from other constructive notions of finiteness. An important and useful property
of these K-finite sets is that the collection Finpow(A) of K-finite subsets of a
set A can be proved to be a set in CZF.

We will write Pow(A) for the collection of all subsets of a set A. Of course,
this cannot be proved to be a set in CZF.

Definition 2.2 Let X be any set. By a rule on X, we will mean a pair (a, b)
with a and b subsets of X. A rule is called elementary if a is a singleton and
finitary if a is finite. If b is a singleton, the rule will be called deterministic. A
subset Y ⊆ X is closed under the rule (a, b), if

a ⊆ Y ⇒ b G Y.

Recall that b G Y is Sambin’s notation for: the intersection of b and Y is
inhabited. Therefore the intuitive meaning of a rule (a, b) is: if all elements of
a belong to the set, then at least one element from b should belong to the set.
Finally, if R is a set of rules on X, we will call a subset Y ⊆ X R-closed, if it
is closed under all rules in R, and write ClosR(X) for the class consisting of all
R-closed subsets of X.

Example 2.3 An example of a non-deterministic inductive definition is the
notion of a prime ideal in a unital, commutative ring. For if A is a commutative
ring with 1, then a prime ideal is a subset P ⊆ A which is closed under the
following rules:

{r, s}
{r + s}

r, s ∈ A
{s}
{rs}

r, s ∈ A
{rs}
{r, s}

r, s ∈ A
{1}
∅
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Definition 2.4 A subclass M of Pow(X), where X is a set, will be called set-
generated, if there is a subset G of M such that

(∀α ∈M)α =
⋃
{β ∈ G : β ⊆ α},

or, equivalently,

(∀α ∈M) (∀a ∈ α) (∃β ∈ G) a ∈ β ⊆ α.

Remark 2.5 Compare the notion of a set-generated frame: a frame X is set-
generated if there is a subset G ⊆ X such that

x =
∨
{g ∈ G : g ≤ x}

for every x ∈ X.

The NID principle now reads:

NID principle: For any set X and set of rules R on X, the class
ClosR(X) is set-generated.

Weaker principles can be obtained by requiring all the rules in R to be elemen-
tary or finitary: these will be called the elementary and finitary NID principle,
respectively. Clearly, NID implies finitary NID implies elementary NID.

Example 2.6 Hence finitary NID implies that the class of prime ideals in a
commutative ring with unit is set-generated.

Remark 2.7 Note that ClosR(X) can be proved to be a set using the Powerset
and Full Separation axioms. Therefore the NID principle is provable in IZF.

3 First applications

In this section we give some applications of the NID principle. The first is a bit
of a curiosity: it says that Fullness is a consequence of elementary NID (over
CZF−, which is CZF minus the Subset collection axiom).

Proposition 3.1 In CZF−, elementary NID implies Fullness.

Proof. Recall that Fullness is the statement that for any two sets A and B
there is a set Σ of total relations from A to B such that every total relation is
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refined by (i.e., contains) one in this set Σ. Therefore consider sets A and B
and consider the following set of non-deterministic rules on 1 +A+A×B:

{∗}
{a}

∗ ∈ 1, a ∈ A
{a}

{(a, b) : b ∈ B} a ∈ A

If I generates the closed sets for this elementary non-deterministic inductive
definition, then J = {I ∩ A × B : I ∈ I, ∗ ∈ I} is a full set of total relations
from A to B. For if R is a total relation from A to B, then 1 + A + R is a
subset of 1+A+A×B closed under the non-deterministic rules. So there is an
element I ∈ I with ∗ ∈ I and I ⊆ 1 +A+R. Then we have for J = I ∩A×B
that J ⊆ R and J ∈ J . �

The results below show that elementary NID is especially useful for proving
statements related to coinductive types and bisimulation. One problem which
elementary NID solves is the following: when one tries to show the consistency
of the Anti-Foundation Axiom in CZF along the lines of Aczel’s book [4], one
has to show that the bisimularity relation is ∆0 (or that the statement that two
graphs are bisimular “has a small truth-value”). Proving this in CZF seems
to be hard, if not impossible. But one can readily prove this in CZF extended
with elementary NID:

Proposition 3.2 If (A,R) and (B,S) are two graphs, then elementary NID
implies that the class of bisimulations from (A,R) to (B,S) is set-generated.
Therefore it also implies that the statement that (A,R) and (B,S) are bisimular
is equivalent to a bounded (or ∆0-)formula.

Proof. Recall that K ⊆ A×B is a bisimulation, if the following two statements
hold:

• whenever (a, b) ∈ K and (a, a′) ∈ R, there is a b′ ∈ B such that (a′, b′) ∈ K
and (b, b′) ∈ S, and

• whenever (a, b) ∈ K and (b, b′) ∈ S, there is an a′ ∈ A such that (a′, b′) ∈
K and (a, a′) ∈ R.

Therefore a bisimulation K is nothing but a closed subset of A × B for the
following non-deterministic inductive definition:

{(a, b)}
{(a′, b′) : (b, b′) ∈ S}

(a, a′) ∈ R
{(a, b)}

{(a′, b′) : (a, a′) ∈ R}
(b, b′) ∈ S

Since this non-deterministic inductive definition consists of elementary rules,
the statement of the proposition follows. �
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Proposition 3.3 If R is a (elementary, finitary) non-deterministic inductive
definition on a set X, then (elementary, finitary) NID implies that there is a
set F of R-closed subsets of X which is full: for every R-closed subset A of
X, there is an element F ∈ F such that A ⊆ F . Hence NID implies that the
minimal R-closed subsets of X form a set.

Proof. Suppose R is a non-deterministic inductive definition on a set X. If * is
an element not inX, thenR can also be considered as a non-deterministic induc-
tive definition on X ∪ {∗}. Assume that G generates for this non-deterministic
inductive definition on X ∪ {∗}. Then let

F = {F − {∗} : F ∈ G, ∗ ∈ F} ⊆ ClosR(X).

The set F is full, because if A is an R-closed subset of X, then A ∪ {∗} is an
R-closed subset of X ∪ {∗}. So there is an element F ∈ G with ∗ ∈ F and
F ⊆ A ∪ {∗}. Hence A ⊇ F − {∗} ∈ F .

Because F is full,

M = {A ∈ F : (∀F ∈ F) (F ⊆ A⇒ F = A)}

is the collection of all minimal R-closed sets, which is a set by bounded separa-
tion. �

Definition 3.4 Let f :B → A be a function. The polynomial functor Pf asso-
ciated to f is defined on sets as

Pf (X) = {(a ∈ A, t: f−1(a) → X)},

and on functions as
Pf (α)(a, t) = (a, αt).

A Pf -algebra is a set X together with function t:Pf (X) → X. A morphism
of Pf -algebras (X, s) → (Y, t) is a function α:X → Y such that the following
diagram commutes:

Pf (X)

s

��

Pf (α)
// Pf (Y )

t

��

X α
// Y.

The initial Pf -algebra, if it exists, is the W-type associated to f . The dual
notions are that of a Pf -coalgebra and an M-type associated to f .

In an impredicative metatheory such as IZF one can prove the existence of
W- and M-types. Indeed, if f :B → A is a function, then the M-type can be
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constructed as the collection of trees, with nodes labelled by elements a ∈ A
and edges labelled by elements b ∈ B, in such a way that f−1(a) enumerates
the edges pointing towards a node labelled by a ∈ A. The following picture
hopefully conveys the idea:

. . . . . . . . . . . .

•

u 44
44

44
a

v




•
x

•
y

��
��

��
�

•

z
ttttttttttt
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f−1(c) = {x, y, z}

. . .

a

x GGGGGGGGG b

y

c

z
yy

yy
yy

yy
y

c

If Mf is this collection of trees, the coalgebra morphism u:Mf → Pf (Mf ) takes
a tree and sends it to the pair (a, t), where a is the label of the root of the tree
and t is the function sending an element b ∈ f−1(a) to the tree attached to the
unique edge into the root with label b.

The W-type Wf associated to f consists of those trees in Mf that are well-
founded. In that case, the algebra morphism sup:Pf (Wf ) →Wf is the operation
which takes an element a ∈ A and a function t: f−1(a) → Wf and creates the
tree whose root is labelled by a and with the tree t(b) attached to the edge into
the root with label b ∈ f−1(a). (For more on W- and M-types, see [14, 8].)

As said, both objects can be constructed inside IZF: the M-type can be
built by regarding trees as suitable collections of paths 〈a0, b0, a1, b1, a2, . . . , an〉
with ai ∈ A, bi ∈ B and f(bi) = ai for all i < n. The W-type can then be
built by selecting the trees in the M-type that are well-founded, or as the least
Pf -subalgebra of u−1:Pf (Mf ) → Mf . As these constructions make use of the
power set axiom, it is not at all clear whether M- and W-types can be shown to
exist within CZF. But with the NID principle we can, as we will now show.

Theorem 3.5 Elementary NID implies that all M-types exist.

Proof. We try to mimick the impredicative construction explained above.

Let f :B → A be a function and let P be the collection of paths of odd length
of the form 〈a0, b0, a1, b1, a2, . . . , an〉 such that

1. every ai belongs to A,

2. every bi belongs to B and

3. for every i < n, we have f(bi) = ai.

Consider the following non-deterministic inductive definition R on P :

{〈a〉 : a ∈ A}
{σ = 〈a0, b0, . . . , an〉}
{σ ∗ 〈b, a〉 : a ∈ A} b ∈ f−1(an)
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Let M be the collection of those R-closed subsets m ⊆ P such that

1. there is a unique a ∈ A such that 〈a〉 ∈ m,

2. (∀σ = 〈a0, b0, . . . , an〉 ∈ m) (∀b ∈ f−1(an)) (∃!a ∈ A)σ ∗ 〈b, a〉 ∈ m,

3. m is closed under initial segments.

Elementary NID can used to justify the claim that M is a set, as follows. Note
that every such m ∈ M must be minimal: if A ⊆ m is also R-closed, then one
proves

(∀σ ∈ P )σ ∈ m⇒ σ ∈ A

by induction on the length of σ. Elementary NID implies that the minimal R-
closed subsets of X form a set (see Proposition 3.3), so M is a set by bounded
separation.

Claim: M is a Pf -coalgebra. Proof: Let m ∈ M. By 1, there is a unique
element a ∈ A such that 〈a〉 ∈ A. Then define for every b ∈ Ba,

t(b) = {σ ∈ P : 〈a, b〉 ∗ σ ∈ m}.

Obviously, t(b) ∈M, so we have defined an operation u:M→ Pf (M).

Claim: M is the final Pf -coalgebra. Proof: let v:X → Pf (X) be a Pf -coalgebra
and let v1:X → A be composition of v with the projection on the first coordi-
nate. By a path in X we mean a sequence 〈x0, b0, x1, . . . , xn〉 such that

1. every xi belongs to X,

2. every bi belongs to B and

3. for every i < n, if v(xi) = (ai, ti), then f(bi) = ai and xi+1 = t(bi).

Then define v̂:X →M by saying that

v̂(x) = {〈a0, b1, a1, . . . , an〉 ∈ P : there is a path 〈x0, b1, x1, . . . , xn〉 in X,
with x = x0 and v1(xi) = ai for all i < n}.

This is clearly well-defined and the unique Pf -coalgebra morphism from X to
M. �

Full NID can be used to prove that all W-types exist. This will follow from
the previous result together with:

Proposition 3.6 Let R be a deterministic inductive definition on a set X.
Then NID implies that the R-closed subsets of X are set-generated and there is
a least R-closed subset of X.
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Proof. Suppose R is a deterministic inductive definition on a set X. Clearly,
NID implies that the R-closed subsets of X are set-generated. Suppose * is
an element not in X and write X∗ = X ∪ {∗} and R∗ = R ∪ {(∅, {∗})}. The
R∗-closed subsets of X∗ are closed under small intersections, so if G∗ generates
the R∗-closed subsets of X∗, then

⋂
G∗ is the least R∗-closed subset of X∗. For

if A is R∗-closed, then ∗ ∈ A and therefore there is a G ∈ G∗ such that ∗ ∈ G
and G ⊆ A. Then

⋂
G∗ ⊆ G ⊆ A. Now M =

⋂
G∗ − {∗} is the least R-closed

subset of X. For if A ⊆ X is R-closed, then A ∪ {∗} ⊆ X∗ is R∗-closed, and
therefore

⋂
G∗ ⊆ A ∪ {∗}. �

Theorem 3.7 NID implies that all W-types exist.

Proof. Again, we try to mimick the impredicative construction explained
above.

Let f :B → A be a function. We have shown in Theorem 3.5 that elementary
NID implies that the corresponding M-type u:M → Pf (M) exists. By Lam-
bek’s lemma, u is an isomorphism, so has an inverse, which we will call sup.
Then consider the following deterministic inductive definition on M:

{t(b) : b ∈ Ba}
{supat}

a ∈ A, t:Ba →M

By Proposition 3.6, this inductive definition has a least fixed point. This least
fixed point is the W-type associated to f . �

Remark 3.8 We have shown that NID implies that for every (deterministic)
inductive definition Φ on a set X and every subset A of X the class I(Φ, A)
(the least Φ-closed subclass of X containing A) is actually a set. What it
does not seem to imply (at least, we failed to show that it does) is Aczel’s Set
Compactness Theorem [7]: this is the statement that there is a set B of subsets
of X such that, whenever a ∈ I(Φ, A) there is a Y ∈ B such that Y ⊆ A and
a ∈ I(Φ, Y ).

4 NID and logic

For developing the applications of the NID principle to formal topology it will
be convenient to reformulate this principle using concepts from logic.

4.1 Propositional case

In this section we will identify models of a propositional theory (over a set of
propositional letters P ) with subsets of P (where the elements that belong to

9



the subset are precisely those which are true in the model).

Definition 4.1 Let P be a collection of propositional letters. A game formula
(over P ) is a formula in propositional logic built using propositional letters
from P and infinitary disjunctions and conjunctions (but no implications and
negations). A game sequent (over P ) is a formula of the form ϕ → ψ where ϕ
and ϕ are game formulae. A game theory (over P ) is a set of game sequents.

An elementary game formula is a game formula in which no infinite con-
juctions occur. A game formula in which all conjunctions are finite is called
a finitary game formula. An elementary (finitary) game sequent is a game se-
quent ϕ → ψ in which the hypothesis ϕ is elementary (finitary). A collection
of elementary (finitary) game sequents is called an elementary (finitary) game
theory.

Theorem 4.2 Full NID implies that class of models of an (elementary, fini-
tary) game theory T over a set of propositional letters P is set-generated. The
same statements holds for elementary (finitary) NID and models of elementary
(finitary) game theories.

Proof. Let T be a game theory over a set of propositional letters P and let
S be the union of P with the collection of subformulae of T . Write S′ for the
collection of all (or all elementary, or all finitary) game formulas in S. We
consider the following non-deterministic inductive definition on S:

{
∧

i∈I ϕi}
{ϕi0}

∧
i∈I ϕi ∈ S, i0 ∈ I

{
∨

i∈I ϕi}
{ϕi : I ∈ I}

∨
i∈I ϕi ∈ S

{ϕi : i ∈ I}
{
∧

i∈I ϕi}
∧

i∈I ϕi ∈ S′
{ϕi0}

{
∨

i∈I ϕi}
∨

i∈I ϕi ∈ S, i0 ∈ I

{ϕ}
{ψ}

ϕ→ ψ ∈ T

Clearly, if M is a model of T , then {ϕ ∈ S : M |= ϕ} is a closed subset of S.

Conversely, if X is a closed subset of S, write M = {p ∈ P : p ∈ X}. Now one
proves by induction on the build-up of the game formula ϕ that (1) if ϕ ∈ S′

and M |= ϕ, then ϕ ∈ X, and that (2) if ϕ ∈ S and ϕ ∈ X, then M |= ϕ. So
M is model of T , because if ϕ→ ψ ∈ T , then

M |= ϕ⇒ ϕ ∈ X ⇒ ψ ∈ X ⇒M |= ψ.

So if G is a generating set for the non-deterministic inductive definition, then
{{p ∈ P : p ∈ X}: X ∈ G} generates the class of models of T . �
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Corollary 4.3 Full NID implies that the minimal models of a game theory T
over a set of propositional letters P form a set. The same statements holds for
elementary (finitary) NID and models of elementary (finitary) game theories.

Corollary 4.4 The statement that for every set of propositional letters and
game theory T the class of models is set-generated is equivalent to full NID. The
same statements holds for elementary (finitary) NID and models of elementary
(finitary) game theories.

Proof. In view of Theorem 4.2, it suffices to show that the statement implies full
NID. So suppose X is a set and Φ ⊆ Pow(X)× Pow(X) is a non-deterministic
inductive definition and consider the following propositional theory over X:

{
∧
α→

∨
β : (α, β) ∈ Φ }.

A model of this theory is the same as a Φ-closed subset of X, so the result
follows. �

4.2 First-order case

In this subsection we extend the notion of game sequent to first-order logic:

Definition 4.5 A game formula (over some signature Σ) is a formula built from
atomic formulas of the form R(t1, . . . , tn) with R ∈ Σ (but no equalities) using
infinitary disjunctions and conjunctions and existential and universal quantifi-
cation (but no implications or negations). A game sequent (over Σ) is the
(universal closure) of a formula of the form ϕ → ψ where ϕ and ϕ are game
formulae. A game theory (over Σ) is a set of game sequents.

Let Σ be a signature and R a set of relation symbols not occuring in Σ. We
will write Σ′ = Σ∪R. Assume moreover that M is a model in the signature Σ.
As usual, we will regard M ′ as a Σ′-expansion of M , if M ′ is a Σ′-model and
M ′ � Σ = M (where the latter means that M and M ′ have the same underlying
set and the interpretation of the symbols belonging to Σ in M ′ coincides with
their interpretation in M). If M is a collection of Σ′-expansions of M , we will
call the Σ′-expansion M0 with

RM0 =
⋃

M ′∈M
RM ′

for all R ∈ R the union of the family M.

Theorem 4.6 Full NID is equivalent to the statement:
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Suppose Σ and Σ′ are two signatures as above, M is a Σ-model and
T is a game theory over Σ′. Then there is a set M consisting of
Σ′-expansions of M which model T such that any Σ′-expansion of
M modelling T can be obtained as a union of elements from M.

Proof. (Sketch.) We really only have to prove that full NID implies the state-
ment, which we do by reducing it to the propositional case.

First of all, we introduce constants for all elements in M to obtain an extension
Σ′′ of the signature Σ′. These constants we can then use to eliminate existential
quantifiers in T in favour of infinite disjunctions and universal quantifiers in
favour of conjunctions. Writing P for the collection of atomic sentences in the
signature Σ′′, we now have a propositional game theory T ′ over P . Adding to
T ′ all atomic sentences true in M we get a theory T ′′ whose models are really
Σ′-structures M ′ which model T and are such that

RM ⊆ RM ′

for all relation symbols R in Σ. Then, if M generates the class of such models,

M′ = {M0 ∈M : RM = RM0 for all R ∈ Σ}

generates the class of Σ′-expansions modelling T . �

Corollary 4.7 Suppose Σ and Σ′ are two signatures as above, M is a Σ-model
and T is a game theory over Σ′. Call a Σ′-expansion M ′ of M minimal, if for
every other Σ′-expansion M ′′ on M for which we have

RM ′′
⊆ RM ′

for all R ∈ Σ′, we actually have RM ′′
= RM ′

for all R ∈ Σ′. Then full NID
implies that the collection of minimal Σ′-expansions of M forms a set.

Example 4.8 To illustrate the usefulness of the last result, consider the follow-
ing example. Let (P,≤) be a partial order. Note that the structure of a linear
order on P extending ≤ is the same thing as a (≤,∼,E)-expansion of (P,≤),
which models the set of finitary game sequents

p ∼ p

p ∼ q → q ∼ p

p ∼ q ∧ q ∼ r → p ∼ r

p ≤ q → pE q

pE p

pE q ∧ q E p → p ∼ q

pE q ∧ q E r → pE r

p ∼ q ∧ p′ ∼ q′ ∧ pE q → p′ E q′
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and for which ∼ coincides with the equality on P. Since every such model is
automatically minimal (in the sense of the previous corollary) by linearity, we
see that finitary NID implies that the collection of linear order structures on P
extending ≤ forms a set.

5 Applications to formal topology

In this section we will illustrate the power of non-deterministic inductive def-
initions by applying them to formal topology. This is not the place, however,
to recap on the development of formal topology in the context of CZF (for
that, see [5] and [10]). Therefore this section will not be self-contained and will
presuppose some familiarity with the basic notions of formal topology.

Theorem 5.1 and Theorem 5.4 below were originally proved by Erik Palmgren
in the context of type theory (see [16, 17]). He used regular universes; we
prove these results using elementary and finitary NID, showing that the regular
universes can be avoided (see Corollary 7.4 below).

Recall that a point of a formal space (P,Cov) is an inhabited subset α ⊆ P
such that

(1) α is upwards closed,

(2) α is downwards directed,

(3) if S ∈ Cov(a) and a ∈ α, then S ∩ α is inhabited.

Theorem 5.1 Finitary NID implies that the collection of points of a set-presented
formal space is set-generated.

Proof. Suppose BCov is a presentation for the formal space (P,Cov). In that
case a point of the formal space (P,Cov) is nothing but a closed set for the
following non-deterministic inductive definition:

{p}
{q}

p ≤ q
{p, q}

{r ∈ P : r ≤ p, r ≤ q}
p, q ∈ P

{a}
↓ S S ∈ BCov(p)

,

where ↓ S = {r ∈ P : (∃s ∈ S) r ≤ s}. Since this non-deterministic inductive
definition is finitary, the result follows. �

Call a formal space flat, if all its points are minimal with respect to the
inclusion ordering (note that this is equivalent to saying that all its points are
maximal). Sambin has shown that all regular formal spaces are flat (see [19]).

Corollary 5.2 Finitary NID implies that flat, set-presented formal spaces have
a set of points.

13



Definition 5.3 A continuous map or a morphism of formal spaces F : (P,Cov) →
(Q,Cov′) is a relation F ⊆ P×Q such that:

(1) If F (p, q), p′ ≤ p and q ≤ q′, then F (p′, q′).

(2) For every q ∈ Q, the set {p : F (p, q)} is closed under the covering relation.

(3) For every p ∈ P there is a a cover S ∈ Cov(p) such that each p′ ∈ S is
related via F to some element q′ ∈ Q.

(4) For every q0, q1 ∈ Q and element p ∈ P such that F (p, q0) and F (p, q1),
there is a cover S ∈ Cov(p) such that every p′ ∈ S is related via F to an
element which is smaller than or equal to both q0 and q1.

(5) Whenever F (p, q) and T covers q, there is a sieve S covering p, such that
every p′ ∈ S is related via F to some q′ ∈ T .

Theorem 5.4 Elementary NID implies that the category of set-presented for-
mal spaces has all coequalizers.

Proof. See Proposition 7.9 in [6]: the key step amounts to showing that the
class of models of a certain elementary game theory is set-generated. �

Remark 5.5 In [12], Ishihara and Kawai use non-deterministic inductive def-
initions to show that coequalizers exist in the categories of basic pairs and
concrete spaces as introduced by Sambin [19, 20].

The following result is new.

Theorem 5.6 NID implies that the class of morphisms between two set-presented
formal spaces is set-generated.

Proof. Suppose BCov is a presentation for (P,Cov) and BCov′ is a presentation
for (Q,Cov′). Then a continuous morphism F : (P,Cov) → (Q,Cov′) is nothing
but a collection of propositional letters {F (p, q) : p ∈ P, q ∈ Q} satisfying the
following game sequents:

F (p, q) → F (p′, q′) for all p′ ≤ p and q ≤ q′∧
q′∈T

F (p, q′) → F (p, q) for all T ∈ BCov′(q)

∨
S∈BCov(p)

∧
p′∈S

∨
q′∈Q

F (p′, q′) for all p ∈ P

F (p, q0) ∧ F (p, q1) →
∨

S∈BCov(p)

∧
p′∈S

∨
q′≤q0, q1

F (p′, q′)

F (p, q) →
∨

S∈BCov(p)

∧
p′∈S

∨
q′∈T

F (p′, q′) for all T ∈ BCov′(q)

14



This shows the desired result. �

6 Justification of the NID principle

In order to show that the NID principle is acceptable from a generalised-
predicative perspective, we will show that is validated by Aczel’s interpretation
of CZF in Martin-Löf’s type theory as in [1, 2, 3] (provided type theory comes
equipped with an iterative universe closed under W-types). As the argument is
rather complex, we will proceed in several steps. In the Section 6.2 we will give
a first argument, inspired by Appendix A of [5]; it establishes slightly less than
what we just claimed, because it requires a strong form of the regular extension
axiom. In the Section 6.3 we will sharpen this argument to obtain the desired
result, exploiting ideas that Ishihara used to derive finitary NID in CZF +
RDC (see Corollary 7.4 below). But first we collect those properties of Aczel’s
interpretation that we will need for our proofs.

6.1 Properties of Aczel’s interpretation of CZF

The crucial property of Aczel’s interpretation that we will need is that it vali-
dates the Presentation Axiom PA (see [2]). Recall that a base (or a projective)
is a set A such that every surjection f :X → A has a section. (It follows from
the collection axiom that also every surjective map f :X → A from a class X to
a base A is split.) The presentation axiom says that every set is the surjective
image of a base.

The presentation axiom immediately has some interesting consequences.
Call a map g:D → C a base map, if both its codomain C and all its fibres
Dc = f−1(c) are bases.

Lemma 6.1 The presentation axiom PA implies that every map g:B → A fits
into a commuting square

D

h

��

q
// // B

g

��

C p
// // A

(1)

such that

1. p is surjective,

2. the induced map D → C ×A B is surjective and

3. h is a base map.
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Moreover, every such square is a collection square, in that for any a ∈ A and
any surjection l:E → Ba there is a c ∈ C with p(c) = a and a map k:Dc → E
such that l ◦ k = qc.

Proof. We just outline the construction. First one applies PA to cover A with
a base via a map p:C → A. Applying PA again we see that

for each c ∈ C there exists a base D and a cover q:D → Bp(c).

Using the fact that C is a base we find bases Dc and covers qc:Dc → Bp(c) as a
function of c ∈ C. This completes the construction. �

A more refined analysis shows that the interpretation validates the principle
that the class of bases is closed under exponentials (see [3, Theorem 3.6]). This
can be used to show that the following dependent choice principle for W-types
(see [15, 17]) is valid as well.

Theorem 6.2 Let f :B → A be a base map. Then the interpretation of CZF
in the type theory ML1W V validates the following dependent choice principle
for W-types:

If X is a set and for every a ∈ A there is a total relation

Ra ⊆ XBa ×X,

then there is a function h:Wf → X such that for every supat ∈Wf

one has (h ◦ t, h(supat)) ∈ Ra.

It also validates the “relativised” version of this principle where X can be a
class.

Proof. Cover X with a base via a map p:Y → X. Then we obtain for every
a ∈ A a total relation

Sa ⊆ Y Ba × Y

defined by
(s, y) ∈ Sa ⇐⇒ (p ◦ s, p(y)) ∈ Ra.

Since A, Y and the Ba are bases and, under the interpretation, bases are closed
under exponentials, we get for every a ∈ A a function σa:Y Ba → Y such that
Sa(s, σa(s)) for all s ∈ Y Ba . This gives Y the structure of a Pf -algebra and
hence we get a function g:Wf → Y such that g(supa(t)) = σa(g ◦ t).

Set h = p ◦ g. For every supa(t) ∈ Wf we have that Sa(g ◦ t, σa(g ◦ t)), hence
Ra(p ◦ g ◦ t, p(σa(g ◦ t))) and Ra(h ◦ t, h(supa(t))) as desired.
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The principle is also validated if X is a class, but here we only sketch the argu-
ment. First note that the relativised principle is valid in type theory (the proof
of [15, Theorem 7.2] never uses the fact that X is a small type). Observe also
that the interpretation of CZF in ML1W V validates the statement that Wf is
injectively presented (see the Lemma on page 47 of [3]). Hence the statement
follows as in [2, Theorem 5.6]. �

6.2 First proof

The aim of this subsection is to prove:

Theorem 6.3 Full NID follows from the axiom of dependent choice for W-
types, the presentation axiom and usREA.

We need to define usREA.

Definition 6.4 A set U is regular if it is transitive, i.e., a ∈ b ∈ U implies
a ∈ U , and for each a ∈ U and total relation R from a to U there exists b ∈ U
such that

(∀x ∈ a) (∃y ∈ b)R(x, y) ∧ (∀y ∈ b) (∃x ∈ a)R(x, y).

The set U is union-closed, if for every x ∈ U also
⋃
x ∈ U . And U is called

separative, if for any a, b ∈ U also {∅ : a ⊆ b} ∈ U .

The axiom usREA states: every set is a subset of a union-closed regular
separative set.

Proof. (Of Theorem 6.3.) SupposeR is a non-deterministic inductive definition
on a set X.

First, let
g:

∑
(a,b)∈R

a→ R

be the first projection. Using Lemma 6.1, we find a base map h and a collection
square of the form:

D

h

��

q
//
∑

(a,b)∈R a

g

��

C p
// R.

(2)

We will write incl1:C → C + 1 for the inclusion into the first component,
f = incl1 ◦ h:D → C + 1 and W = Wf .

Next, let U be a set which is regular, union-closed and separative, and contains
R, {x} for all x ∈ X, Dc for all c ∈ C and Wf .
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Lemma 6.5 Let u ∈ U .

1. If t:u→ U is any map with u ∈ U , then Im(t) ∈ U and
⋃

Im(t) ∈ U .

2. Ru = {(a, b) ∈ R : a ⊆ u} ∈ U .

Proof. The first point follows immediately from the fact that U is regular and
union-closed.

To show the second point, observe that if a ∈ U , then {(a, b) : a ⊆ u} ∈ U ,
because U is separative and regular. Hence we have a function t:R→ U which
sends (a, b) ∈ R to {(a, b) : a ⊆ u}. But then it follows from the first point that
Ru =

⋃
Im(t) ∈ U . �

We claim that
Σ = {u ∈ U : u is closed under R}

generates ClosR(X). To show this, let Y be R-closed and y ∈ Y . Our aim to is
to construct a σ ∈ Σ such that y ∈ σ and σ ⊆ Y . We will construct this set σ
just after equation (3).

Write
P = PowU (Y ) = {u ∈ U : u ⊆ Y }

and
T = {(u, v) : (∀(a, b) ∈ Ru) b G v}.

Lemma 6.6 (∀u ∈ P ) (∃v ∈ P ) (u, v) ∈ T .

Proof. Suppose u ∈ P , so u ∈ U and u ⊆ Y . Since Y is R-closed, we have:

(∀(a, b) ∈ Ru) (∃β ∈ U)β ∈ b ∩ Y.

Since Ru ∈ U and U is regular, there is a v ∈ U with v ⊆ Y such that

(∀(a, b) ∈ Ru) (∃β ∈ v)β ∈ b ∩ Y.

This proves the lemma. �

We are now ready to apply the axiom for dependent choice for W-types to Wf .

The set is P . R∗ ⊆ 1×P consists only of the pair (∗, {y}). For every
c ∈ C, the relation Rc ⊆ PDc × P consists of those pairs (φ, u) such
that (

⋃
Im(φ), u) ∈ T .
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By the lemma we just proved all the relations here are total, so the axiom of
dependent choice for W-types gives us a map φ:Wf → P such that for every
supc(t) ∈Wf we have

(φ ◦ t, φ(supc(t))) ∈ Rc. (3)

Let σ: =
⋃

Im(φ) ∈ U . By construction, σ ∈ U , y ∈ σ and σ ⊆ Y . So it remains
to show that σ ∈ Σ, that is, that σ is R-closed.

Suppose a ⊆ σ and (a, b) ∈ R. We need to show that σ G b. Our assumption
a ⊆ σ =

⋃
Im(φ) means that

(∀x ∈ a) (∃w ∈Wf )x ∈ φ(w).

Then, because (2) is a collection square, we obtain a c ∈ C and a map t:Dc →
Wf such that

(∀d ∈ Dc) q(d) ∈ (φ ◦ t)(d),

and therefore a ⊆
⋃

Im(φ ◦ t).

Also, for supc(t) ∈Wf we have

(φ ◦ t, φ(supc(t)) ∈ Rc,

hence (
⋃

Im(φ ◦ t), φ(supc(t)) ∈ T . But then, by definition of T , we get
φ(supc(t)) G b. Because φ(supc(t)) ⊆

⋃
Im(φ) = σ, the proof is finished.

�

6.3 Second proof

The proof in the previous subsection establishes a result which is weaker than
desired, because it relies on the existence of universes. In the present section we
eliminate these and replace them in favour of the relativised dependent choice
axiom for W-types. A first step towards this goal is isolating all the uses of
the regular universe in one proposition. We continue to use the same notation.
So X is a set and R is a non-deterministic inductive definition on X. Also the
maps f, g and h are as before.

Lemma 6.7 There is a set P ⊆ Pow(X) such that:

1. P contains all singletons.

2. If t:Dc → P is any map, then
⋃

Im(t) ∈ P.

3. If for some u ∈ P and A ⊆ X, we have (∀(a, b) ∈ Ru) (∃x ∈ A)x ∈ b,
then there is a v ∈ P with v ⊆ A such that (∀(a, b) ∈ Ru) (∃x ∈ v)x ∈ b.
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Proof. Let U be a big set which is regular, union-closed and separative and
which contains R, {x} for all x ∈ X and Dc for all c ∈ C. Then it follows from
Lemma 6.5 that P = {u ∈ U : u ⊆ X} has all the desired properties. �

To show that this collects all the uses of the universe that we need, we are
now going to prove that Lemma 6.7 together with the axiom of dependent choice
from W-types to sets is sufficient for establishing full NID.

So let

∆ = {k:Wf → P : (∀ supc(t) ∈Wf ) (k ◦ t, k(supc(t))) ∈ Rc}

Σ = {
⋃

Im(k) : k ∈ ∆}

where (φ, u) ∈ Rc iff (
⋃

Im(φ), u) ∈ T and T ⊆ P × P consists of those pairs
(u, v) such that

(∀(a, b) ∈ Ru) v G b.

Lemma 6.8 Σ ⊆ ClosR(X).

Proof. Suppose σ ∈ Σ, so σ =
⋃

Im(k) for some k ∈ ∆, and a ⊆ σ for some
(a, b) ∈ R. Hence

(∀x ∈ a) (∃w ∈Wf )x ∈ k(w).

By the collection square property, we obtain a c ∈ C and a map t:Dc → Wf

such that
(∀d ∈ Dc) q(d) ∈ (k ◦ t)(d).

It follows that a ⊆
⋃

Im(k ◦ t). For w = supct we have that (k ◦ t, k(w)) ∈ Rc

and therefore (
⋃

Im(k◦t), k(w)) ∈ T and k(w) G b. Since k(w) ⊆ σ, this finishes
the proof. �

Lemma 6.9 Σ generates ClosR(X).

Proof. Suppose Y ⊆ X is R-closed and y ∈ Y . Let P = {u ∈ P : u ⊆ Y }. We
first show that

(∀u ∈ P ) (∃v ∈ P ) (u, v) ∈ T .
So let u ∈ P , that is, u ∈ P and u ⊆ Y . Since Y is R-closed and u ⊆ Y , we
have:

(∀(a, b) ∈ Ru) (∃x ∈ Y )x ∈ b.
Precisely for this quantifier combination, P satisfies a fullness property: so we
obtain a v ∈ P with v ⊆ Y such that:

(∀(a, b) ∈ Ru) (∃x ∈ v)x ∈ b.

This is precisely what we want.

We are now going to apply dependent choice for W-types.
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The set is P . R∗ ⊆ 1×P consists just of the pair (∗, {y}). For every
c ∈ C, we take the relation Rc ⊆ PDc × P .

What we proved above shows that all relations Rc are total. The axiom of
dependent choice for W-types now gives us a map k:Wf → P in ∆. So
σ =

⋃
Im(k) ∈ Σ. Moreover, y ∈ σ and σ ⊆ Y by construction. �

We are now going to give a different proof of Lemma 6.7 using the axiom of
relativised dependent choice for W-types as in Theorem 6.2. Recall that Lemma
6.7 says:

Lemma 6.10 There is a set P ⊆ Pow(X) such that:

1. P contains all singletons.

2. If t:Dc → P is any map, then
⋃

Im(t) ∈ P.

3. If for some u ∈ P and A ⊆ X, we have (∀(a, b) ∈ Ru) (∃x ∈ A)x ∈ b,
then there is a v ∈ P with v ⊆ A, such that (∀(a, b) ∈ Ru) (∃x ∈ v)x ∈ b.

We first apply Lemma 6.1 to construct a base map k and a collection square

F

k

��

r // D

h

��

E // C.

Then we let φ:F + {0} → E + {0, 1} be k + l with l: {0} → {0, 1} the map
sending 0 to 0. Write P = Pow(Pow(X)) and define D ⊆ P × P to consists of
those pairs (U, V ) ∈ P 2 such that

for every u ∈ U and A ⊆ X, if we have (∀(a, b) ∈ Ru) (∃x ∈ A)x ∈ b,
then there is a v ∈ V with v ⊆ A, such that (∀(a, b) ∈ Ru) (∃x ∈
v)x ∈ b.

We wish to apply the axiom of relativised dependent choice for W-types to
obtain a map from Wφ to P .

The class is P = Pow(Pow(X)). R1 ⊆ 1×P consists just of the pair
(∗, {{x} : x ∈ X}). R0 ⊆ P × P is D. And, finally, for every e ∈ E,
we take the relation Re ⊆ PFe × P to consist of all (φ,U) such that

U = {
⋃

Im(m:Fe → Pow(X)) : (∀f ∈ Fe)m(f) ∈ φ(f)}.

We first need to check that all relations here are total.
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Lemma 6.11 (∀U ∈ P ) (∃V ∈ P ) (U, V ) ∈ D.

Proof. Fullness gives us, for every u ∈ U , a set V such that for all A ⊆ X, if we
have (∀(a, b) ∈ Ru) (∃x ∈ A)x ∈ b, then there is a v ∈ V with v ⊆ A, such that
(∀(a, b) ∈ Ru) (∃x ∈ v)x ∈ b. Applying the collection axiom to this statement
and U yields the desired conclusion. �

So the relativised dependent choice axiom for W-types gives us a map
ρ:Wφ → Pow(Pow(X)). Let P =

⋃
Im(ρ). P clearly satisfies properties 1

and 3, hence we only check property 2.

Lemma 6.12 P satisfies property 2.

Proof. Suppose s:Dc → P is any map. Then

(∀d ∈ Dc) (∃w ∈Wφ) s(d) ∈ ρ(w).

By the collection square property, there is an e ∈ E together with a map t:Fe →
Wφ such that

(∀f ∈ Fe) (s ◦ r)(f) ∈ (ρ ◦ t)(f).

Then
⋃

Im(s) =
⋃

Im(s ◦ r) ∈ P. �

We conclude:

Theorem 6.13 Full NID follows from the presentation axiom and the axiom
of relativised dependent choice for W-types.

Corollary 6.14 The NID principle is valid on the type-theoretic interpretation
of CZF in ML1W V.

7 Comparison with related work

Originally this section was devoted to comparing the NID principle to some ideas
developed by Peter Aczel and Hajime Ishihara in slides for talks and unpublished
notes. However, after the author submitted this paper, their ideas coalesced in
the SGA principle and the preprint [6], written together with Takako Nemoto
and Yasushi Sangu. So now it makes more sense to relate our work with what
happens in [6].

As it turns out, the relationship is very close: their SGA principle is equiv-
alent to finitary NID. This section will be devoted to a proof of this fact.
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Definition 7.1 Let S be a set and X be a subclass of Pow(S). Recall that X
is set-generated, if there is a set G ⊆ X such that

(∀α ∈ X) (∀s ∈ α) (∃β ∈ G) s ∈ β ⊆ α.

X will be called strongly set-generated, if there is a set G ⊆ X such that

(∀α ∈ X) (σ ∈ Finpow(α)) (∃β ∈ G)σ ⊆ β ⊆ α.

Here Finpow(α) is the set of finite subsets of α (see Remark 2.1).

Definition 7.2 The set generated axiom (abbreviated as SGA) is a principle
which says that for each set S and each subset Z of Finpow(S)×Pow(Pow(S)),
the class

M(Z):= {α ∈ Pow(S) : (∀(σ,Γ) ∈ Z)σ ⊆ α→ (∃U ∈ Γ)U ⊆ α}

is strongly set-generated.

Theorem 7.3 SGA and finitary NID are equivalent in CZF.

Proof. It is easy to see that SGA implies finitary NID: for if R is a set of
finitary, non-deterministic rules on a set S, we put

Z: = {(a, {{x} : x ∈ b}) : (a, b) ∈ R}.

Then ClosR(S) = M(Z), so SGA implies that ClosR(S) is set-generated.

We now prove the converse. Let S be a set and Z ⊆ Finpow(S)×Pow(Pow(S)).
Write

S∗ : =
⋃
{Γ : (σ,Γ) ∈ Z} ∪ Finpow(S) ⊆ Pow(S)

(which is a set by the union and replacement axioms) and consider the following
finitary, non-deterministic definition R on S∗:

{σ}
Γ

(σ,Γ) ∈ Z
{U}
{{u}} u ∈ U ∈ S∗

{{s} : s ∈ σ}
{σ}

σ ∈ Finpow(S)

By finitary NID, there is a set G∗ which generates ClosR(S∗). Put

G: = {{s ∈ S : {s} ∈ γ} : γ ∈ G∗}.

We first prove G ⊆ M(Z). So suppose α = {{s ∈ S : {s} ∈ γ} with γ ∈ G∗,
and suppose (σ,Γ) ∈ Z with σ ⊆ α. This implies that for every s ∈ σ we have
{s} ∈ γ. Hence we have σ ∈ γ by applying the third rule. Then, by the first
rule, we know that there is a set U ∈ γ with U ∈ Γ. So it follows by the second
rule that for every u ∈ U we have {u} ∈ γ, whence u ∈ α. So U ⊆ α, as desired.
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Now we prove that G strongly generates M(Z). Suppose α ∈ M(Z) and σ ∈
Finpow(α). We need to find a β ∈ G with σ ⊆ β ⊆ α. To this purpose, consider

γ: = S∗ ∩ Pow(α)

(which is a set by bounded separation). It is easy to see that γ belongs to
ClosR(S∗). So because G∗ generates, there is an element δ ∈ G∗ with δ ⊆ γ
and σ ∈ δ. Write

β: = {s ∈ S : {s} ∈ δ}.

By construction, β ∈ G. Moreover, σ ⊆ β, for if s ∈ σ, then we have {s} ∈ δ,
because σ ∈ δ and δ is closed under the second rule; therefore s ∈ β by defini-
tion. And, finally, we have β ⊆ α, because if s ∈ β, then {s} ∈ δ ⊆ γ ⊆ Pow(α);
hence s ∈ α. �

Corollary 7.4 The axiom of relativised dependent choice RDC implies finitary
NID. Hence finitary NID is validated on the type-theoretic interpretation of CZF
in ML1V.

Proof. The first statement follows from the previous result in combination with
Theorem 5.1 in [6]. The second statement follows from the fact that RDC is
validated on the type-theoretic interpretation of CZF in ML1V (see [2] and
[18]). �

Remark 7.5 Since CZF and ML1V have the same proof-theoretic strength
(see [11]), it follows that finitary NID does not increase the proof-theoretic
strength of CZF.

On the other hand, it seems plausible that CZF extended with the statement
that all W-types exist has the same proof-theoretic strength as ML1W V and
CZF + REA. If that is true, then it would follow from Theorem 3.7 and
Corollary 6.14 that CZF + NID also has this strength; consequently, CZF
+ NID would proof-theoretically be a much stronger system than CZF, and
finitary NID would not imply full NID.

8 Conclusion and open questions

We have introduced a new proof principle, the NID principle, and shown how
it can be used to obtain results in the context of the constructive set theory
CZF, especially in formal topology. We are convinced that these results cannot
be obtained in CZF extended with either REA or a combination of AMC and
WS, but we do not have a proof of this fact.
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We also believe that elementary NID cannot be proved in CZF and that
elementary NID does not imply finitary NID, but also here we lack proofs. An-
other question which we have left open is whether the NID principle is stable
under such constructions from algebraic set theory as exact completion, realiz-
ability and sheaves. Again, this seems to us very likely to be true, but we have
not tried very hard to find proofs.
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