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Abstract

Any functor from the category of C*-algebras to the category of locales
that assigns to each commutative C*-algebra its Gelfand spectrum must
be trivial on algebras of n-by-n matrices for n ≥ 3. The same obstruction
applies to the Zariski, Stone, and Pierce spectra. The possibility of spectra
in categories other than that of locales is briefly discussed.

A recent article [9] by Reyes shows that any functor CStarop → Top that
assigns to each commutative C*-algebra its Gelfand spectrum must be trivial
on the matrix algebras Mn(C) for n ≥ 3. More precisely, it shows that any
functorial extension of the Gelfand spectrum to noncommutative C*-algebras
must yield the empty space on the noncommutative C*-algebras Mn(C) for n ≥
3. This result shows in a strong way why the traditional notion of topological
space is inadequate to host a good notion of spectrum for such noncommutative
C*-algebras.

What remains open is whether less orthodox notions of space are also sus-
ceptible to Reyes’ theorem. In particular, there are notions of space, such as
that of a locale or a topos, in which the notion of point plays a subordinate role.
Indeed, one of the messages of locale theory and topos theory is that one can
have spaces with a rich topological structure, but without any points. Initially,
this might seem like an attractive way of circumventing Reyes’ result: perhaps
there can be a functor CStarop → Loc, extending the Gelfand spectrum for
commutative C*-algebras and assigning nontrivial locales to noncommutative
C*-algebras such as Mn(C) for n ≥ 3.

Unfortunately, the main result of this paper says that this is not the case: by
sharpening Reyes’ argument, one can show that any functor CStarop → Loc
which assigns to a commutative C*-algebra its Gelfand locale must yield the
trivial locale (i.e. the locale in which top and bottom element coincide) on the
matrix algebras Mn(C) for n ≥ 3. We obtain similar “no-go theorems” for
(ringed) toposes and even for quantales (certain structures which have been put
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forward as a noncommutative generalization of the notion of locale). Addition-
ally, we prove similar limitative results for Zariski, Stone and Peirce spectra.

This does not mean that it is hopeless to look for a good notion of spectrum
of a noncommutative C*-algebra or ring; but what these result do say is that
considerable creativity will be required, in particular in finding the right gener-
alisation of the notion of space. We end the paper by mentioning some positive
results in this direction.

1 Locale-theoretic preliminaries

Locales and topological spaces are closely related apart from a few subtle dif-
ferences. One of the most important is that in these categories limits are, in
general, computed differently. Initially one might hope that for this reason
Reyes’ result does not apply to locales, but it turns out that it does. The key
observation is that, although limits in spaces and locales differ in general, they
coincide for those spaces (locales) that arise as spectra.

Proposition 1. Both compact regular and compact completely regular locales
are closed under limits in Loc.

Proof. The product of compact (completely) regular locales is again (com-
pletely) regular and compact [4, III.1.6, III.1.7, IV.1.5]. The equalizer of f, g:A →
B is a closed sublocale of A whenever B is (completely) regular [4, III.1.3] and a
closed sublocale of a compact (completely) regular locale is again (completely)
regular and compact [4, III.1.2, IV.1.5].

Proposition 2. The limit in Loc of a diagram of coherent locales and coherent
morphisms is coherent. In addition, the mediating morphisms are coherent.

Proof. A (morphism of) locale(s) is coherent if it lies in the image of the functor
Idl:DLat → Frm, which is faithful and left adjoint to the forgetful functor [4,
II.2.11].

Corollary 3. Stone locales are closed under limits in Loc.

Proof. A locale is Stone when it is both compact regular and coherent. Any
continuous morphism between Stone spaces is coherent.

Corollary 4. The functors Spec: cCstarop → Loc and Idl:Boolop → Loc
which send commutative C*-algebras to their Gelfand spectra and boolean alge-
bras to their Stone spectra preserve all limits.

Proof. The functor Spec is part of a duality between commutative C*-algebras
and compact completely regular locales, and therefore certainly preserves all
limits as a functor to the category of such locales. But as these locales are
closed under limits, it also preserves all limits when regarded as a functor to the
category of all locales. The Stone case is completely analogous.
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2 Main results

A locale is trivial when it is an initial object in Loc, i.e. when it satisfies
0 = 1. In categories whose objects contain the matrix rings Mn(C), let us call
an object R Kochen–Specker when there is a morphism Mn(C) → R for some
n ≥ 3. Kochen–Specker objects in the category Ring of rings are those rings of
the form Mn(S) that allow a ring homomorphism C → S [8, 17.7]. The class of
Kochen–Specker objects always includes at least Mn(C) for n ≥ 3 themselves.
For our purposes it can often be widened; for example, by [2], Theorem 7 below
still holds when we include in the class of Kochen–Specker algebras the von
Neumann algebras without an M2(C) factor.

Lemma 5. If a functor F :Ringop → Loc is trivial on Mn(C) for all n ≥ 3,
then it is trivial on all Kochen–Specker rings.

Proof. If f : Mn(C) → R is a ring morphism, then Ff :FR → FMn(C) is a locale
morphism to the trivial locale, and so FR must be trivial.

Theorem 6. Any functor Cstarop → Loc that assigns to each commutative
C*-algebra its Gelfand spectrum must be trivial on all Kochen–Specker C*-
algebras.

Proof. For any C*-algebra A, let C(A) be the diagram of commutative C*-
subalgebras under inclusion. Define G(A) to be the limit in Loc of Spec(C)
with C ∈ C(X).

1. G is a functor Cstarop → Loc that assigns to each commutative C*-
algebra its Gelfand spectrum.

2. It is the terminal such functor.

3. Since Spec preserves limits, G(A) can equally well be computed by first
taking the colimit of C(A) in cCstar and then its Gelfand spectrum.

4. But for A = Mn(C) with n ≥ 3, the colimit of C(A) in cCstar yields the
0-dimensional C*-algebra; this is the Kochen–Specker theorem [6]. Hence
on these C*-algebras G yields the trivial locale.

5. If F :Cstarop → Loc is any other functor that assigns to each C*-algebra
its Gelfand spectrum, then finality of G guarantees maps FA → GA for
all C*-algebras A. Hence FA is trivial if A = Mn(C) for n ≥ 3.

Combining the above observations and the previous lemma yields the statement
of the theorem.

In a similar vein one proves the following three variations: for Gelfand
spectra in the category Neumann of von Neumann algebras and normal *-
homomorphisms; for Stone spectra in the category PBoolean of partial boolean
algebras and partial homomorphisms (see [6, 1]); and for Stone spectra in the
category OML of orthomodular lattices and their homomorphisms. Denote the
functor Cstar→ PBoolean taking projections by Proj.
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Theorem 7. Any functor Neumannop → Loc that assigns to each von Neu-
mann algebra its Gelfand spectrum must be trivial on all Kochen–Specker von
Neumann algebras.

Theorem 8. Any functor F :PBooleanop → Loc that assigns to each boolean
algebra its Stone spectrum must be trivial on Proj(Mn(C)) for n ≥ 3.

Theorem 9. Any functor OMLop → Loc that assigns to each boolean algebra
its Stone spectrum must be trivial on Proj(Mn(C)) for n ≥ 3.

The Pierce spectrum of a commutative ring, i.e. the Stone spectrum of its
boolean algebra of idempotents, requires the following slightly adapted proof.

Theorem 10. Any functor Ringop → Loc that assigns to each commutative
ring its Pierce spectrum must be trivial on all Kochen–Specker rings.

Proof. Define the functor G as before: it first considers the diagram C(R) of
all commutative subrings of a ring R, and then takes the limit of their Pierce
spectra. In addition, define three functors K, L, M : Neumannop → Loc: K is
simply the composite of G with the inclusion Neumann→ Ring, while L on a
von Neumann algebra A takes the diagram C(A) of commutative von Neumann
subalgebras of A, and then takes the limit of their Peirce spectra. Finally,
M also takes the diagram C(A) of commutative von Neumann subalgebras of
A, but then takes the limit of their Gelfand spectra (which coincides with the
Stone spectra on their projections). It is not hard to see that we have natural
transformations K ⇒ L and L ⇒ M . But since M results in the trivial locale
for Mn(C) for n ≥ 3 by Theorem 7, the same must be true for L, K and G.
And from here the argument proceeds as before.

For the Zariski spectrum we argue slightly differently (and nonconstruc-
tively) by reducing the result to the one by Reyes. Let us emphasize that this
proof strategy also applies to the previous theorems; but whereas they could
also be proven constructively, the Zariski spectrum functor cRing → Loc does
not preserve limits.

Theorem 11. Any functor Ringop → Loc that assigns to each commutative
ring its Zariski spectrum must be trivial on all Kochen–Specker rings.

Proof. Define the functor G as before, and note that we take a limit of a diagram
of coherent locales and coherent morphisms. As such a limit is coherent and
coherent locales are spatial (by the prime ideal theorem), its triviality on matrix
algebras Mn(C) for n ≥ 3 follows from the work of Reyes.

3 Discussion

Our main results prove an obstruction to direct functorial extensions of various
spectra, taking values in locales. There is also no hope for values in categories
of which compact completely regular locales are a subcategory that is closed
under limits.
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• The functor Sh:Loc → Topos that takes sheaves preserves limits [5,
C.1.4.8], so the obstruction for Loc also holds for Topos.

• The forgetful functor RingedTopos → Topos reflects initial objects, so
replacing Loc by the category of ringed toposes does not help either. The
same holds for ringed spaces, either topological or localic.

• The forgetful functor from the category Scheme of schemes to the cate-
gory Top of topological spaces reflects initial objects, so there is no use
in replacing locales by schemes.

• The category of compact (completely) regular locales is closed under limits
in the opposite of the category Quantale of unital quantales and their
homomorphisms [7, 4.4]. Using this adapted version of Proposition 1, the
proof of Theorem 6 also obstructs functors from taking values in quantales.
Similarly, involutive quantales are out of the question.

On the other hand, one could read our main results positively. They guide
the search for a ‘geometric’ spectrum of noncommutative algebras in two ways.
We discuss the Gelfand spectrum here, but the underlying ways to overcome
the obstacle of our main results hold in general. First, the obstruction can
be circumvented by not assigning the Gelfand spectrum to a commutative C*-
algebra directly.

• Assigning the quantale of closed linear subspaces to a C*-algebra encodes
the Gelfand spectrum of commutative C*-algebras indirectly, and does
indeed give a functor [7].

• The Bohrification construction [3, 1], which inspired most of the current
work, is not a direct extension of the Gelfand spectrum and hence escapes
the hypothesis of our main theorem.

Secondly, there is scope for a functorial spectrum taking values in categories
with traditional geometric objects but different morphisms.

• One could consider different morphisms between rings/algebras, and hence
take a different view of these objects, to obtain a functorial spectrum
resembling a space (see also the discussion in [9, p15]).

• For example, there is an interesting functor F from Cstar to the category
of quantum frames, that for commutative C*-algebras comes down to the
Gelfand spectrum [10]. This does not contradict the above results, because
there is no forgetful functor from quantum frames to either quantales or
locales: indeed, F (M3(C)) consists of closed right ideals of M3(C), and
therefore is not trivial.
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