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1 Introduction

Martin-Löf’s type theory1 exists in two forms, differing in the formalisation
of the identity types. In [15] Per Martin-Löf formulated his type theory with
the extensional rules for the identity types, identifying judgmental and propo-
sitional equality. This rendered type-checking and well-formedness of formulas
undecidable. For this reason (among others2), he latter formulated intensional
rules for the identity type that do preserve the decidability of type-checking and
well-formedness of formulas. For this reason, the intensional version is adopted
by most implementations.

While the type theory with intensional identity fares better as a program-
ming language, it has drawbacks from the point of formalising constructive
mathematics. In the first place, intensional type theory does not identify exten-
sionally equal functions, while in mathematics one traditionally adopts a thor-
oughly extensional point of view. Secondly, the type theory lacks the ability to
build quotients, i.e., one cannot redefine the notion of equality on a certain type.
As building quotients is also common practice in the life of the mathematician,
this presents another problem for formalising constructive mathematics. In the
words of Martin Hofmann, intensional type theory lacks extensional constructs.

To overcome this problem, Hofmann introduced the notion of setoid [9]. In
a manner reminiscent of the distinction made by Bishop between presets and
sets, he considers besides the “pure types”, the types that come equipped with
an intrinsic notion of equality given by the equality rules, also setoids which are
types together with new notion of equality given by a definable equivalence rela-

∗Technische Universität Darmstadt, Fachbereich Mathematik, Schlossgartenstr. 7, 64289
Darmstadt, Germany. berg@mathematik.tu-darmstadt.de.

1In this paper we think of type theory as being formulated with Π, Σ, ×, +, 0, 1, N, W
and equality rules, but without universes. This theory is usually called MLW.

2For example, extensional type theory refutes Church’s Thesis. This is a rather surprising,
perhaps even undesirable, feature of a system that was meant to serve as a foundation for
constructive mathematics.
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tion.3 As shown by Hofmann, in this way one can overcome both problems: the
setoids model extensionality of functions, and allow one to build good quotients.

Despite the name, also extensional type theory lacks some extensional con-
structs. It identifies extensionally equal functions, but it does not always allow
one to build quotients. But also this problem can be overcome by considering
setoids, but this time over extensional type theory.

From a categorical point of view this can be understood as follows. The fact
that the setoids allow one to build “good” quotients means precisely that the
category of setoids forms a category that has quotients of equivalence relations
that are effective. In other words, the category is exact. In fact, the idea of
building setoids is similar to taking the exact completion (as Hofmann points
out himself). The exact completion is the universal way (in the appropriate,
that means: 2-categorical, sense) of making a cartesian category exact.

So in both the intensional and extensional case the category of setoids is not
just a category that allows one to model (dependent) product and sum types
and inductive types (i.e., is a ΠW -category in the terminology of this paper),
but is also exact. So in effect it is a ΠW -pretopos as we will call it, following
[17].

This paper compares the free ΠW -pretopos with the two categories of se-
toids. It sounds reasonable to think that these categories have to be very close.
For also the free ΠW -pretopos is basically a “syntactic” object: just as the free
group or ring, it is built from terms from the appropriate language, identifying
those terms that are provably equal in the theory. And this is what makes the
main result of the paper so surprising:

Theorem 1.1 The free ΠW -pretopos, the setoids over intensional type theory
and the setoids over extensional type theory are pairwise non-equivalent cate-
gories.

We will prove this result by comparing the amount of choice that is available in
each of these categories. In categorical language, we will compare the projectives
in these categories, both the internal and external ones.

Identifying the projectives in the two categories of setoids is comparatively
easy using the theory of exact completions. Therefore the larger portion of
the paper is concerned with studying the projectives in the free ΠW -pretopos.
Here the starting point is a result by Carboni who showed (in [4]), by combining
glueing with exact completion, that the finite types are (externally) projective
in the free locally cartesian closed pretopos.4 We extend this result by showing
that this holds for the free ΠW -pretopos as well, the novelty being that the

3Actually, Hofmann works with partial equivalence relations. I am told this is immaterial.
[I have to think about this.]

4By the finite types, we mean the objects in the finite type hierarchy over the natural
numbers, like N, N× N, NN, etcetera.
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argument works in the presence of inductive types (in the form of W-types) as
well.

The contents of this paper as therefore as follows: in Section 2 we will briefly
recapitulate the theory of W-types in a categorical context as it appeared in the
work of Moerdijk and Palmgren [17]. For these W-types we derive two stability
properties: in Section 3 we will show that W-types are stable under glueing,5

making use of the theory of “dependent polynomial functors” developed by
Gambino and Hyland [7].6 In Section 4 we introduce the notion of exact com-
pletion, discuss its salient properties and prove stability of W-types under exact
completion. The latter result was essentially contained in the author’s paper [1],
but – unfortunately – not explicitly pointed out there. In Section 5 we prove
that in the free ΠW -pretopos all finite types are externally projective, while
they are not all internally projective (the latter follows from a folklore fact in
the metamathematics of intuitionism). This is used to compare the free ΠW -
pretopos with the two categories of setoids, where the situation is shown to be
different. It also follows from this comparison that the two categories of setoids
are distinct. Finally, we have added an appendix that recalls a few categorical
definitions.

Acknowledgments: the results reported in this paper were obtained when
the author was a PhD student in Utrecht visiting Sweden, and have also ap-
peared as a part of his PhD thesis [2]. He would like to thank his supervisor
Ieke Moerdijk for valuable assistance, and his hosts in Göteborg and Uppsala,
Thierry Coquand, Peter Dybjer and Erik Palmgren, as well as Per Martin-Löf,
for generously spending their time discussing type theory. The author would
also like to thank Thomas Streicher for helping him out on an essential point,
and he gratefully acknowledges the receipt of a travel grant from NWO which
allowed him to visit Sweden.

2 W-types

Convention: Throughout the paper E will denote a ΠN-category : a locally
cartesian closed category with disjoint sums and a natural numbers object.

Since the work of Seely [19] we know that Martin-Löf type theory can be
interpreted in a ΠN-category E (later problems related to substitution were
found, for which there exist several solutions, see [8, 11]). The interpretation
of the dependent types relies on the fact that for any map f :Y //X in such a
category E the pullback functor

f∗: C/X // C/Y
5For glueing along the global sections functor to Sets, this was already proved in [17]. We

expect the general result to be useful in the context of Algebraic Set Theory as well (see [3]).
6This is related to the type-theoretic account of general trees due to Petersson and Synek

[18].
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has both adjoints. The left adjoint Σf is given by composition and interprets
the dependent sums, while the right adjoint Πf which derives from the lccc
structure of E interprets the dependent products. In [17] this interpretation
was extended by Moerdijk and Palmgren to cover the W-types as well. Because
their interpretation might be less familiar, and W-types play such a prominent
rôle in this paper, we will discuss them in this section.

In type theory, W-types are thought of as inductively generated sets. One
can either think of them as free term algebras over a signature, or sets of well-
founded trees with a labelling of a particular kind. (It should be pointed out
that there are sets which deserve to be called inductively generated, but are not
of this form. We refer to [6] for a broader framework for inductive definitions
in type theory.)

Categorically, a W-type is an instance of an initial algebra. We recall the
general definition.

Definition 2.1 An algebra for an endofunctor T : E // E consists of an object
X in E together with a structure map x:TX //X. These T -algebras form a
category, with morphisms from (X,x:TX //X) to (Y, y:TY //Y ) given by
arrows p:X //Y in E such that the square

TX
Tp

//

x

��

TY

y

��

X p
// Y

commutes. Whenever it exists, the initial object in this category will be called
the initial T -algebra.

W-types are initial algebras for polynomial functors.

Definition 2.2 For any map f :Y //X in E , the polynomial functor Pf asso-
ciated to f is defined as the composite

E Y ∗
// E/Y

Πf
// E/X ΣX // E .

Whenever it exists, its initial algebra will be called the W-type associated to f ,
and will be denoted by Wf . If in E all W-types exist, it is said to have W-types.

In order to understand the notion of a polynomial functor, it helps to rewrite
Pf (X) as

Pf (X) = ΣA(X ×A //A)(f :B // A),

or even
Pf (X) = Σa∈AX

Ba ,

4



where Ba = f−1(a) is the fibre of f over a ∈ A. And to understand W-types, it
helps to compute these in the category of sets (which has all W-types).

Fix a function f :B //A. One intuition is to think of f as specifying a
signature, with a term constructor for every element a ∈ A of arity Ba, and the
W-type Wf as the free term algebra over this signature. But we find it more
suggestive to think of the elements of the W-types as well-founded trees of a
particular kind, by representing terms as trees. So for us the W-type for f is the
set of all well-founded trees in which nodes are labelled by elements a ∈ A and
edges are labelled by elements b ∈ B, in such a way that the edges into a certain
node labelled by a are enumerated by f−1(a), as in the following picture:

. . . . . . . . . . . .

•

u 44
44

44
a

v










•
x

•
y

��
��

��
�

•

z
ttttttttttt
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f−1(b) = {u, v}
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Let us first try to understand why this set has the structure of a Pf -algebra.
As the elements of Pf (Wf ) are pairs consisting of a pair a ∈ A and a function
t:Ba

//Wf , suppose we are given such a pair (a, t). A new well-founded tree
of the appropriate type can be constructed as follows: take a fresh node and
label it with a. Draw edges into this node, one for every b ∈ Ba and label these
accordingly. Then stick to the edge labelled by b ∈ Ba the well-founded tree
tb. The new tree, which is easily seen to belong to Wf , is usually denoted by
supa(t). This defines an operation sup:Pf (Wf ) //Wf , giving Wf the structure
of a Pf -algebra.

The fact that the trees in Wf are well-founded means that one could actu-
ally generate all of them by (transfinitely) repeating this sup-operation. This
construction terminates, because one has only a set of term constructors, and
the arities are also small, so there is only a set of trees with the appropriate
labelling, well-founded or not. The well-foundedness of the trees in Wf allows
one to define functions by recursion on this generation process. And this is
precisely what yields initiality of Wf .

W-types have two important properties. Firstly, they are fixed points in
that the structure map sup is an isomorphism. Furthermore, they have no
proper subalgebras: if m:A //Wf is a monomorphism such that sup ◦ Tm
factors through m, then m is an isomorphism. Actually, these properties are
shared by all initial algebras (this is called Lambek’s Lemma [13]). Note that
the second property expresses that one can prove properties of the elements of
Wf by induction.

As it turns out, these two properties characterise W-types uniquely, as was
proved in [1]. This can be quite helpful in showing that certain Pf -algebras are
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W-types.

Theorem 2.3 Let f :B //A be a morphism in an exact ΠN-category E. A Pf -
algebra (W, s:PfW //W ) is initial iff its structure map s is an isomorphism
and it has no proper Pf -subalgebras.

We close this section by defining two kinds of categories with W-types.

Definition 2.4 Let E be a ΠN-category. If E has W-types, it will be called a
ΠW -category. If E is also exact, it will be called a ΠW -pretopos.

In [17, 2] the notion of a ΠW -pretopos was put forward as an appropriate
predicative analogue of the notion of a topos.

3 Glueing

In the context of topos theory glueing is a well-known method of building new
toposes from old ones [22]. In this section we show that the same method applies
to ΠW -pretoposes.

Consider any cartesian functor F : E //F between ΠW -pretoposes. The cat-
egory Gl(F ) obtained by glueing along F has as objects triples (A,X,α), where
A and B are objects of E and F respectively and α:B //FA is a morphism
in F . We often write simply α:B //FA to denote this triple. Morphisms
(B, Y, β) // (A,X,α) are pairs (f :B //A, g:Y //X) such that

Y

β

��

g
// X

α

��

FB
Ff

// FA

commutes.

The main result of this section is that Gl(F ) is again a ΠW -pretopos. The
following lemma collects some easy facts about Gl(F ).

Lemma 3.1 Let F : E //F be a cartesian functor between ΠW -pretoposes.

1. Gl(F ) is a pretopos with nno.

2. (f, g) is monic iff both f and g are.

3. (f, g) is a cover iff both f and g are.
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Proof. We show that Gl(F ) is a pretopos with a natural numbers object.
First of all, Gl(F ) is cartesian, because finite limits are computed component-
wise. It also has finite sums, with the sum of X //FA and Y //FB given
by X + Y //FA+FB //F (A+B). These are moreover stable and disjoint.
Coequalisers of equivalence relations are also computed componentwise. There-
fore they exist in Gl(F ) and are stable. Finally, the nno in Gl(F ) is simply
N //FN.

For showing 2 and 3, we use Proposition A.5. The if direction in 2 is direct,
while that direction in 3 follows from the fact that covers coincide with epis in
pretoposes. Since in a pretopos all morphisms factor as a cover followed by a
mono, this shows that in Gl(F ) this factorisation can be done componentwise.
As such factorisations are necessarily unique (up to compatible isomorphism),
the only if directions follow. �

In order to show thatGl(F ) has W-types, we rely on the theory of generalised
polynomial functors and their initial algebras, as developed by Gambino and
Hyland in [7].

Recall that in any lccc E pullback functors

f∗: E/X // E/Y

have left and right adjoints for all f :Y //X, called Σf and Πf , respectively.
Consider all possible compositions of such functors f∗, Σf and Πf , possibly for
different f . When such a composition has the same slice of E as domain and
codomain, the functor is called generalised polynomial.

In their paper, Gambino and Hyland prove:

Theorem 3.2 (See [7, Theorem 12].) All generalised polynomial functors on a
ΠW -category E have initial algebras in the appropriate slice.

One can prove an extension of Theorem 2.3 for initial algebras for generalised
polynomial functors: in an exact ΠN-category, a fixed point for a generalised
polynomial functor without proper subalgebras has to be the initial algebra.

We are now prepared to show the main result of this section.

Theorem 3.3 If F : E //F is a cartesian functor between ΠW -pretoposes,
then Gl(F ) is a ΠW -pretopos. Furthermore, there is a pair of adjoint func-
tors

E
F̂

22
⊥ Gl(F ),
P

ss

where P is a morphism of ΠW -pretoposes, F̂ is cartesian, and PF̂ ∼= 1. If F
is a morphism of ΠW -categories, then so is F̂ .
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Proof. We first describe P and F̂ . P is the forgetful functor, sending a triple
(A,X,α) to A, and F̂ sends an object A to the triple (A,FA, 1FA). Clearly,
P a F̂ and PF̂ ∼= 1.

All the remaining claims will follow from the concrete description of the ΠW -
pretopos structure of Gl(F ). As we have already shown Gl(F ) has the structure
of a pretopos with nno (in Lemma 3.1), we only need to prove it is locally
cartesian closed and has W-types.

First of all, Gl(F ) is cartesian closed, with the exponential (A,X,α)(B,Y,β)

being of the form (AB , Z, γ). The concrete values of Z and γ can be obtained
by forming the pullback

Z

γ

��

// XY

αY

��

F (AB)
θ

// FAFB

FAβ

// FAY ,

in which θ is the obvious comparison map.

Observe that for any object (A,X,α) inGl(F ), the slice categoryGl(F )/(A,X,α)
is again a glueing category. Indeed, it is Gl(G), where G is the composite

E/A FA // F/FA α∗
// F/X.

More explicitly, f :B //A is sent by G to the upper side of the pullback square

GB

σB

��

Gf
// X

α

��

FB
Ff

// FA.

(1)

As the composite of two cartesian functors, G is cartesian as well. Therefore
Gl(F ) is locally cartesian closed.

We now describe the W-types in Gl(F ). First we find an expression for the
polynomial functor associated to

φ = (f, g): (B, Y, β) // (A,X,α)

in Gl(F ). Let G: E/A //F/X be as above, and observe that there is a natural
transformation

τC :G(PfC //A) // (Pg(FC) //X)

in F/X, which is the composite of the comparison map from

G(PfC //A) = G(C ×A //A)(B
// A)

8



to
G(C ×A //A)G(B // A) = (PGf (FC) //X),

and the natural transformation PGf
//Pg induced by the commuting triangle

Y
g

!!CC
CC

CC
CC

��

GB
Gf

// X

obtained from (1) (see [17, Section 4.2]). Furthermore, for any object (C,Z, γ)
in Gl(F ), let PC

g (Z, γ) be defined as the pullback

PC
g (Z, γ) //

δ

��

Pg(Z)

Pg(γ)

��

G(PfC)
τC

// Pg(FC).

We will consider PC
g (Z, γ) as the object part of a functor F/FC //F/FPfC,

by composing δ with σPf C , the natural transformation σ being defined in (1).
This leads to the following expression for Pφ:

Pφ(C,Z, γ) = ( PC
g (Z, γ)

σPf Cδ
// FPfC ).

The initial algebra for Pφ is computed by first determining the W-type W for
f in E . Because this is a fixed point for Pf , the functor PW

g can be regarded as
an endofunctor on F/FW . As PW

g is a generalised polynomial functor, it has
an initial algebra (V, ψ) by Theorem 3.2. Now (W,V, ψ) is the W-type for φ in
Gl(F ).

The extension of Theorem 2.3 to dependent polynomial functors can be used
to show that (W,V, ψ) is the initial Pf -algebra, for it is a fixed point (by con-
struction) and has no proper subalgebras (use the characterisation of monos in
Lemma 3.1). It is also possible to show the initiality of (W,V, ψ) directly. �

Remark 3.4 It should be pointed out that the fact thatGl(F ) has the structure
of a ΠN-category belongs to the folklore of the subject (see e.g. [17, 12]). So this
theorem improves over known results in showing that it has W-types as well.

4 Exact completion

A crucial rôle in this paper is played by the notion of exact completion, which
can be understood as a categorical analogue of the setoids construction. In-
tuitively, the exact completion is the universal way of constructing an exact
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category out of a cartesian category. In more precise (2-categorical) terms it is
the following. Write Cart for the large 2-category of (small) cartesian categories
and cartesian functors and Exact for the large 2-category of (small) exact cate-
gories and exact functors. The exact completion of a given a cartesian category
C is an exact category Cex, together with a cartesian embedding y: C // Cex,
such that for any exact category D composition with y induces an equivalence
Exact(Cex,D) // Cart(C,D).

In the first part of this section, we will explain the theory of exact comple-
tions in so far as it is needed for our purposes. (Useful sources are [4, 16].)
Subsequently, we will prove the main theorem of the section:

Theorem 4.1 The exact completion Eex of an ΠW -category E is again an
ΠW -category. Moreover, the embedding y: E // Eex is a morphism of ΠW -
categories.

We start this section with an explicit description of the exact completion
Cex of a cartesian category C due to Joyal. Two parallel arrows

R
r0 //

r1
// X

in C form an pseudo-equivalence relation, when for any object A in C the image
of the induced function

Hom(A,R) // Hom(A,X)×Hom(A,X)

is an equivalence relation on the set Hom(A,X). These pseudo-equivalence
relations are the objects in the category Cex. A morphism from

RX

x0 //

x1
// X

to

RY

y0 //

y1
// Y

in Cex is an equivalence class of arrows f :X //Y in C for which there exists a
g:RX

//RY such that fxi = yig for i = 0, 1. Two such arrows f0, f1:X //Y
are equivalent if there exists an h:X //RY such that fi = yih for i = 0, 1.

The embedding y is given by the obvious functor y: C // Cex that sends an
object A in C to

A
1A //

1A

// A.

Besides being cartesian, the functor is evidently full and faithful. The proof
that the category thus constructed is exact and actually the exact completion
of C can be found in [5, 4].
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A key fact is that the objects in the exact completion that are in the image
of y can be characterised by the choice principles they satisfy. The following
definitions make this precise.

Definition 4.2 An object P in a category C is (externally) projective if for
any cover g:X //Y and any morphism f :P //Y , there exists a morphism
h:P //X such that gh = f . When C is cartesian, this is equivalent to: any
cover p:X //P has a section. An object X is covered by a projective, if there
exists a projective P and a cover f :P //X. A category C has enough projectives
if any object in C is covered by a projective.

Definition 4.3 In a cartesian category C, an object P is called internally
projective (or a choice object), when for any cover Y //X and any arrow
T × P //X, there exists a cover T ′ //T and map T ′ × P //Y such that
the square

T ′ × P //

����

Y

����

T × P // X

commutes.

In a ΠW -pretopos E an object P is internally projective iff the functor (−)P

preserves covers (see e.g. [14]). This is the same as saying that the following
scheme is valid in the internal logic of E for any object X:

∀p ∈ P ∃x ∈ X φ(p, x) → ∃f ∈ XP ∀p ∈ P φ(p, f(p)).

Thinking of categories as theories, an object P is therefore internally projective
iff the axiom of choice “relative to P” is derivable. By contrast, an object P is
externally projective iff the axiom of choice “relative to P” is valid as a derived
rule.

Note that we are adopting the following convention:

Convention: If we write projective, we mean externally projective.

The following two results characterise the objects in the image of the em-
bedding y and the categories that arise as exact completions. Proofs can be
found in [4].

Proposition 4.4 The objects in the image of y: C // Cex are, up to isomor-
phism, the projectives of Cex.

Proposition 4.5 An exact category C is an exact completion if and only if it
has enough projectives and the projectives are closed under finite limits. In that
case, C is the exact completion of the full subcategory of its projectives.
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These two results imply that in exact completions the external and internal
projectives coincide.

Proposition 4.6 [10] In an exact completion Cex of a cartesian category C the
external and internal projectives coincide.

Proof. The fact that in an exact completion the terminal object 1 is projective
is easily seen to imply that an internal projective is also externally projective.
An external projective is also internally projective, because in an exact comple-
tion, every object is covered by an external projective and external projectives
are closed under products. �

We will now prove the main result of this section.

Theorem 4.7 The exact completion Eex of an ΠW -category E is again an ΠW -
category, and hence a ΠW -pretopos. Moreover, the embedding y: E // Eex is a
morphism of ΠW -categories.

Proof. The proof of this statement for ΠN-categories can be found in [4].
Therefore it remains to do the following two things: to show that Eex has W-
types and to show that W-types are preserved by the embedding y.

By Theorem 39 in [1], that Eex has W-types follows from the fact that E has
“weak W-types” (in the sense of [1]). That ordinary W-types are particular
instances of weak W-types is shown in the lemma below.

We now show that y preserves W-types. Because y preserves Π, it is clear that
whenever W is the W-type for a morphism f :B //A in E , its image yW is a
fixed point for the functor Pyf in Eex. So by Theorem 2.3 it remains to show
that yW has no proper Pyf -subalgebras.

Let m:X // yW be a Pyf -subalgebra. Since every object in Eex is covered by a
projective, and the projectives in Eex are the objects from E , there is a cover q of
the form q:yY //X. Now PyfyY is projective in Eex (because it is isomorphic
to yPfY ), and therefore the following diagram can be filled:

PyfyY
Pyf q

//

��

PyfX

��

//
Pyf m

// PyfyW

∼=
��

yY
q

// // X //
m

// yW.

As y is fully faithful, this means that yY carries the structure of a Pf -algebra
in E . Moreover, the map mq is a morphism of Pf -algebras in E . But then it
follows from the initiality of W in E that this morphism mq has a section s.
Hence m is an isomorphism. �
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To complete the proof of the theorem above we show that ordinary W-types
are also weak W-types in the sense of [1].

Lemma 4.8 Let E be a ΠN-category. A W-type Wf for a morphism f :B //A
is also a “weak W-type” for f in the sense of [1].

Proof. We use terminology and notation from [1].

Let f :B //A be an arrow in E and Wf the associated W-type. This can easily
be turned into quadruple

w = (Wf , Pf (Wf ) //A, sup, ev)

with the structure of a weak Pf -algebra. For this to be the weak W-type two
conditions have to be satisfied. The first condition says that the third compo-
nent of this quadruple has to be an isomorphism, which is clearly the case here.
The second condition says that every weak Pf -subalgebra t:x // w needs to
have a section. To verify this, let x = (X,X∗, σX , εX) be a weak Pf -algebra
and t = (t, t∗):x // w be a weak Pf -subalgebra morphism in E . Because t is
a weak Pf -subalgebra, there is a morphism r: (A∗X)f //X∗ in E/A such that
t∗r = (A∗t)f . Now (X,σXΣAr:PfX //X) is a Pf -algebra and t is a morphism
of Pf -algebras from this algebra to Wf . Hence t has a section u in the category
of Pf -algebras, and s = (u, r(A∗u)f ) is a section of t. �

5 Three different ΠW -pretoposes

In this final section of the paper we show our main result:

Theorem 5.1 The free ΠW -pretopos, the setoids over intensional type theory
and the setoids over extensional type theory are pairwise non-equivalent cate-
gories.

The idea is study the projectivity (both internal and external) of the finite types
in these various categories. That investigation will lead to the following table:

Category all finite types all finite types
externally projective internally projective

Free ΠW -pretopos yes no
Extensional setoids yes yes
Intensional setoids no no

From the validity of this table the main result follows immediately.
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5.1 The free ΠW -pretopos

To show that all the finite types are externally projective in the free ΠW -
pretopos we extend an argument due to Carboni [4].

Theorem 5.2 If B:D // E is the unique morphism of ΠW -categories from the
free ΠW -category to the free ΠW -pretopos, all the objects in the image of B are
projective.

Proof. The idea behind the proof is to combine Theorem 4.7 with Theorem
3.3.

Let E be the free ΠW -pretopos, and Eex be its exact completion. Theorem
4.7 implies that the canonical embedding y: E // Eex is a morphism of ΠW -
categories. The ΠW -pretopos F obtained by glueing along y comes equipped
with a pair of adjoint functors to E

E
ŷ

++
> F ,
P

jj

in view of Theorem 3.3. This theorem also tells us that P is a morphism of
ΠW -pretoposes, ŷ is a morphism of ΠW -categories, and P ŷ ∼= 1.

Since F is a ΠW -pretopos, we obtain by initiality of E a morphism S: E //F of
ΠW -pretoposes such that PS ∼= 1. Also by initiality, we obtain a morphism of
ΠW -categories B:D // E from the free ΠW -category to the free ΠW -pretopos
such that ŷB ∼= SB.

Using the characterisation of covers in Lemma 3.1 and the fact that y is full
and faithful, one shows that the projectivity of objects of the form yX in Eex

implies that of objects of the form ŷX in F . Moreover, since S as a morphism
of ΠW -pretoposes preserves covers, those objects X in E whose images under
S are projective are themselves projective. The isomorphism ŷB ∼= SB shows
that the objects in the image of B are of that kind, and therefore the statement
of the theorem is proved. �

That not all finite types are internally projective, and NN in particular,
follows immediately from a well-known result in the metamathematics of intu-
itionism due to Troelstra.

Proposition 5.3 If F is a ΠW -pretopos in which NN is internally projective,
then Church’s Thesis is false in the internal logic of F . Hence NN is not inter-
nally projective in the free ΠW -pretopos.

Proof. If NN is internally projective in a ΠW -pretopos F , its internal logic will
model HAω + AC1,0 + EXT . It is a well-known result of Troelstra [21] (see
also [20]) that this theory refutes Church’s Thesis.
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Because the validity of statements in the internal logic is preserved by mor-
phisms of ΠW -pretoposes, validity of the negation of Church’s Thesis in the
free ΠW -pretopos would imply validity of the negation of Church’s Thesis in
all ΠW -pretoposes. But since Church’s Thesis is valid in the effective topos,
for instance, this is impossible. Therefore NN is not internally projective in the
free ΠW -pretopos. �

Note that this result implies that the free ΠW -pretopos is not an exact
completion, since in this category the external and internal projectives do not
coincide (cf. Proposition 4.6).

5.2 Extensional setoids

We now study the setoids over extensional type theory. For that purpose, we
recall the setoids construction. Objects in this category are closed types X
together with an equivalence relation, meaning a type R(x, y) in the context
x ∈ X, y ∈ X with proof terms for reflexivity, symmetry and transitivity. A
morphism of setoids from (X,R) to (Y, S) is an equivalence class of closed terms
t of type X → Y preserving the equivalence relation (meaning that there is a
closed term of type Πx, y ∈ X.R(x, y) → S(tx, ty)). Such terms s and t are
considered equivalent, when there is a closed term of type Πx: ∈ X.S(sx, tx).

The similarity to exact completions is obvious. Indeed, for extensional type
theory the setoids construction leads to an exact completion: it is the exact
completion of the category whose objects are closed types X and morphisms
from a type X to a type Y are equivalence classes of closed terms of type
X → Y , quotiented by provable equality (either judgmental or propositional:
they coincide for extensional type theory). Let us call this category D.

Theorem 5.4 The category D is a ΠW -category and the category of setoids
over extensional type theory is equivalent to the exact completion of D. Therefore
the extensional setoids form a ΠW -pretopos in which all the finite types are both
externally and internally projective.

Proof. There is little to prove: that D is a ΠW -category is basically due to
Seely [19], and the projectivity, both external and internal, of all finite types in
an exact completion of a ΠW -category follows immediately from the results in
Section 4.

So we only need to find a natural correspondence between pseudo-equivalence
relations in D and extensional setoids. Any extensional setoid (X,R) determines
a pseudo-equivalence relation

Σx, y ∈ X.R(x, y) //
// X
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in D, and any pseudo-equivalence relation

R
r0 //

r1
// X

in D determines the extensional setoid

(X,Σx, y ∈ X.Id(r0(x), r1(y))).

Using the properties of the extensional identity type, these constructions are
quickly seen to yield a natural isomorphism. �

5.3 Intensional setoids

We will write Setoids for the category of setoids over intensional type theory.

Theorem 5.5 The category Setoids is a ΠW -pretopos, in which not all finite
types are either externally or internally projective. In particular, NN is neither
externally nor internally projective in this category.

Proof. That Setoids is a ΠW -pretopos is proved in detail in [17, Section 7].

We show first that the terminal object in Setoids is projective, since it is a “pure
type”. By the pure types we mean those setoids consisting of a closed type
equipped with its intensional identity type as equivalence relation. It follows
from the type-theoretic axiom of choice that these pure types are projective.
Among these pure types we find 1 = N1 with its intensional equality, which is
the terminal object in the category of setoids. Therefore the terminal object
in Setoids is projective, and hence the internal projectives in Setoids are also
externally projective.

We will now derive a contradiction from the assumption that the object NN

in Setoids is projective. This object is the type N → N together with the
“extensional” equality relation

EXTEQ(f, g) := Πn ∈ N. Id(N, fn, gn).

This object is covered by the pure type N → N , so if it were projective, this
cover would have a section. This would imply that there is a definable operation
s ∈ (N → N) → (N → N) such that the following types are provably inhabited:

Πf ∈ N → N.EXTEQ(f, sf),
Πf, g ∈ N → N.EXTEQ(f, g) → INTEQ(sf, sg),

where

INTEQ(f, g) := Id(N → N, f, g).
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Such an s cannot exist, because if it would, one could use it to decide extensional
equality of closed terms of type N → N , which is known to be impossible. For
let p, r be closed terms of type N → N , and observe that we have the following
string of equivalences: the type EXTEQ(p, r) is inhabited, iff INTEQ(sp, sr)
is inhabited, iff sp and sr are convertible. But as convertibility of terms is
decidable, we obtain a contradiction (the author is grateful to Thomas Streicher
for helping him out on this).

Wrapping up, we see that NN is not projective in Setoids, and, a fortiori, not
internally projective either. �

A Categorical terminology

In this appendix we give definitions of a few categorical notions which are used
in this paper. Readers who want to know more, or see a proof of Proposition
A.5, are recommended to consult [12, Part A1]

Definition A.1 A category C is cartesian if it possesses all finite limits. A
functor between cartesian categories is cartesian if it preserves finite limits.

Definition A.2 Two parallel arrows

R
r0 //

r1
// X

in a category C form an equivalence relation when for any object A in C the
induced function

Hom(A,R) // Hom(A,X)2

is an injection defining an equivalence relation on the set Hom(A,X). A mor-
phism q:X //Q is the quotient of the equivalence relation, if the diagram

R
r0 //

r1
// X

q
// Q

is both a pullback and a coequaliser. In this case, the diagram is called exact.
It is called stably exact, when for any p:P //Q the diagram

p∗R
p∗r0 //

p∗r1

// p∗X
p∗q

// P

is also exact.
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Definition A.3 A cartesian category C is exact, when any equivalence relation
fits into a stably exact diagram. An exact category that also has finite sums
which are both stable and disjoint, is called a pretopos. A functor between
exact categories is exact, if it is cartesian and preserves quotients of equivalence
relations.

Definition A.4 A morphism f :Y //X is a cover if any monomorphismm:A //X
such that f = mg for some g:Y //A is an isomorphism.

Proposition A.5 In an exact category covers are stable under pullback and
every morphism factors as a cover followed by a mono. Moreover, in a pretopos
epis and covers coincide
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