
Distributed Strategic Interleaving with Load

Balancing

J. A. Bergstra a,b, C. A. Middelburg a,∗,1

aProgramming Research Group, University of Amsterdam, P.O. Box 41882,
1009 DB Amsterdam, the Netherlands

bDepartment of Philosophy, Utrecht University, P.O. Box 80126,
3508 TC Utrecht, the Netherlands

Abstract

In a previous paper, we developed an algebraic theory of threads, interleaving of
threads, and interaction of threads with services. In the current paper, we assume
that the threads and services are distributed over the nodes of a network. We ex-
tend the theory developed so far to the distributed case by introducing distributed
interleaving strategies that support explicit thread migration and see to load bal-
ancing or capability searching by implicit thread migration. The extension to the
distributed case provides insight into details of multi-threading that come up in a
networked environment.

Key words: thread algebra, distributed strategic interleaving, thread migration,
load balancing, capability searching

1 Introduction

The objective of this paper is to develop an algebraic theory of threads, in-
terleaving of threads, and interaction of threads with services that covers the
case where the threads and services are distributed over the nodes of a network
and both explicit thread migration and implicit thread migration take place.

∗ Corresponding author. Tel: +31 20 525 7583; fax: +31 20 525 7490.
Email addresses: J.A.Bergstra@uva.nl (J. A. Bergstra),

C.A.Middelburg@uva.nl (C. A. Middelburg).
1 This research was partly carried out while the second author was also at Eind-
hoven University of Technology, Division of Computer Science.

Preprint submitted to FGCS 2 August 2007

A thread is the behaviour of a deterministic sequential program under exe-
cution. Multi-threading refers to the concurrent existence of several threads
in a program under execution. Multi-threading is the dominant form of con-
currency provided by contemporary object-oriented programming languages
such as Java [17] and C# [18]. Arbitrary interleaving, on which theories about
concurrent processes such as ACP [2,14], CCS [20] and CSP [19] are based,
is not an appropriate abstraction when dealing with multi-threading. In the
case of multi-threading, some deterministic interleaving strategy is used. In [6],
we introduced a number of plausible deterministic interleaving strategies for
multi-threading. We proposed to use the phrase strategic interleaving for the
more constrained form of interleaving obtained by using such a strategy. Ser-
vices are the components of the execution environment of a thread with which
the thread interacts. Services can process actions performed by a thread and
return replies to the thread. In [6], we also introduced a feature for interac-
tion of threads with services. The algebraic theory of threads, interleaving of
threads, and interaction of threads with services is called thread algebra.

In the current paper, we assume that the threads and services are distributed
over the nodes of a network. We extend the theory developed so far to the dis-
tributed case by introducing distributed interleaving strategies that support
explicit thread migration and see to load balancing or capability searching by
implicit thread migration. These distributed interleaving strategies are adap-
tations of the simplest interleaving strategy introduced in [6], to wit pure
cyclic interleaving, 2 to the distributed case. The other interleaving strate-
gies from [6] can be adapted in a similar way. Load balancing and capability
searching are considered implicit forms of thread migration that may be part
of distributed interleaving strategies. Load balancing is intended for equal-
izing the execution speed of the different threads that exist concurrently in
a distributed system. Capability searching is intended for achieving that the
different threads that exist concurrently in a distributed system are executed
where the services needed are available.

A main assumption made in this paper is that, in the case where systems are
networks of nodes over which threads and services are distributed, a single
interleaving strategy determines how the threads that exist concurrently at
the different nodes are interleaved. This is a drastic simplification, as a result
of which intuition may break down. We believe however that some such sim-
plification is needed to obtain a manageable theory about the behaviour of
such systems – and that the resulting theory will sometimes be adequate and
sometimes be inadequate. Moreover, cyclic interleaving is a simplification of
the interleaving strategies actually used. Because of the complexity of those
strategies, we consider a simplification like this one desirable to start with.

2 Implementations of the pure cyclic interleaving strategy are usually called round-
robin schedulers.

2

Our work on thread algebra marks itself off from much work on the subject
of multi-threading because we abandon the usual point of view that arbitrary
interleaving is an appropriate abstraction when dealing with multi-threading.
The following points illustrate why that point of view is untenable: (i) whether
the interleaving of certain threads leads to deadlock depends on the interleav-
ing strategy used; (ii) sometimes deadlock takes place with a particular inter-
leaving strategy whereas arbitrary interleaving would not lead to deadlock and
vice versa. We give demonstrations of (i) and (ii) in [6] and [8], respectively.

The thread-service dichotomy made in thread algebra is useful for the following
reasons: (i) for services, a state-based description is generally more convenient
than an action-based description whereas it is the other way round for threads;
(ii) the interaction of threads with services is of an asymmetric nature. In [8],
evidence of both (i) and (ii) is produced by the established connections of
threads and services with processes as considered in an extension of ACP
with conditions introduced in [7].

Thread algebra is a design on top of an algebraic theory of the behaviour of
deterministic sequential programs under execution introduced in [5] under the
name Basic Polarized Process Algebra (BPPA). Prompted by the development
of thread algebra, it has been renamed to Basic Thread Algebra (BTA).

This paper is organized as follows. Before we take up interleaving strategies
for threads that are distributed over the nodes of a network, we review BTA
and guarded recursion in the setting of BTA (Sections 2 and 3). We also
discuss the approximation induction principle in this setting (Section 4). Af-
ter that, we introduce a very simple interleaving strategy for threads that
are distributed over the nodes of a network which supports explicit thread
migration (Section 5). Then, we provide a classification of services that will
be used in subsequent sections (Section 6). Following this, we introduce a
variation of the very simple interleaving strategy that prevents threads from
migrating while they keep locks on shared services (Section 7). Thereupon,
we introduce three variations of the second interleaving strategy that see to
load balancing by means of implicit migration (Sections 8, 9 and 10). Next,
we introduce a variation of the second interleaving strategy that takes care of
capability searching by means of implicit migration (Section 11). After that,
we introduce thread-service composition to allow for threads to be affected by
services (Section 12). Then, because it adds to the need for load balancing, we
introduce a basic form of thread forking (Section 13). Finally, we make some
concluding remarks and mention some options for future work (Section 14).

3

2 Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), introduced in [5] under
the name BPPA (Basic Polarized Process Algebra). BTA is a form of process
algebra which is tailored to the description of the behaviour of deterministic
sequential programs under execution. The behaviours concerned are called
threads.

In BTA, it is assumed that there is a fixed but arbitrary set of basic actions
A with tau 6∈ A. We write Aτ for A∪ {tau}. The members of Aτ are referred
to as actions.

The intuition is that each basic action performed by a thread is taken as a
command to be processed by a service provided by the execution environment
of the thread. The processing of a command may involve a change of state of
the service concerned. At completion of the processing of the command, the
service produces a reply value. This reply is either T or F and is returned to
the thread concerned.

Although BTA is one-sorted, we make this sort explicit. The reason for this
is that we will extend BTA with additional sorts in Section 5.

The algebraic theory BTA has one sort: the sort T of threads. BTA has the
following constants and operators:

• the deadlock constant D : T;
• the termination constant S : T;
• for each a ∈ Aτ , the binary postconditional composition operator £ a ¥ :

T×T → T.

Terms of sort T are built as usual. Throughout the paper, we assume that
there are infinitely many variables of sort T, including x, y, z.

We use infix notation for postconditional composition. We introduce action
prefixing as an abbreviation: a ◦ p, where p is a term of sort T, abbreviates
p £ a¥ p.

Let p and q be closed terms of sort T and a ∈ Aτ . Then p£ a ¥ q will perform
action a, and after that proceed as p if the processing of a leads to the reply
T (called a positive reply) and proceed as q if the processing of a leads to
the reply F (called a negative reply). The action tau plays a special role. Its
execution will never change any state and always lead to a positive reply.

BTA has only one axiom. This axiom is given in Table 1. Using the abbrevia-
tion introduced above, axiom T1 can be written as follows: x£ tau ¥y = tau◦x.

4

Table 1
Axiom of BTA
x £ tau ¥ y = x £ tau ¥ x T1

Table 2
Axioms for guarded recursion
〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP
E ⇒X = 〈X|E〉 if X ∈ V(E) RSP

The structural operational semantics of BTA can be found in [6,10].

3 Guarded Recursion

Each closed term of sort T from the language of BTA denotes a finite thread,
i.e. a thread of which the length of the sequences of actions that it can perform
is bounded. Guarded recursion gives rise to infinite threads. In this section,
we extend BTA with guarded recursion.

A guarded recursive specification over BTA is a set of recursion equations
E = {X = tX | X ∈ V }, where V is a set of variables of sort T and each tX
is a term of the form D, S or t £ a¥ t′ with t and t′ terms of sort T from the
language of BTA that contain only variables from V . We write V(E) for the
set of all variables that occur on the left-hand side of an equation in E. We
are only interested in models of BTA in which guarded recursive specifications
have unique solutions, such as the projective limit model of BTA presented
in [3].

We extend BTA with guarded recursion by adding constants for solutions
of guarded recursive specifications and axioms concerning these additional
constants. For each guarded recursive specification E and each X ∈ V(E),
we add a constant of sort T standing for the unique solution of E for X to
the constants of BTA. The constant standing for the unique solution of E for
X is denoted by 〈X|E〉. Moreover, we add the axioms for guarded recursion
given in Table 2 to BTA, where we write 〈tX |E〉 for tX with, for all Y ∈ V(E),
all occurrences of Y in tX replaced by 〈Y |E〉. In this table, X, tX and E
stand for an arbitrary variable of sort T, an arbitrary term of sort T from the
language of BTA and an arbitrary guarded recursive specification over BTA,
respectively. Side conditions are added to restrict the variables, terms and
guarded recursive specifications for which X, tX and E stand. The equations
〈X|E〉 = 〈tX |E〉 for a fixed E express that the constants 〈X|E〉 make up a
solution of E. The conditional equations E ⇒ X = 〈X|E〉 express that this
solution is the only one. RDP stands for recursive definition principle and RSP
stands for recursive specification principle.

5

Table 3
Approximation induction principle∧

n≥0 πn(x) = πn(y)⇒ x = y AIP

Table 4
Axioms for projection operators
π0(x) = D P0
πn+1(S) = S P1
πn+1(D) = D P2
πn+1(x £ a¥ y) = πn(x) £ a ¥ πn(y) P3

We will write BTA+REC for BTA extended with the constants for solutions
of guarded recursive specifications and axioms RDP and RSP.

4 Approximation Induction Principle

Closed terms of sort T from the language of BTA+REC that denote the
same infinite thread cannot always be proved equal by means of the axioms of
BTA+REC. In this section, we introduce the approximation induction prin-
ciple to remedy this.

The approximation induction principle, AIP in short, is based on the view
that two threads are identical if their approximations up to any finite depth
are identical. The approximation up to depth n of a thread is obtained by
cutting it off after performing a sequence of actions of length n.

AIP is the infinitary conditional equation given in Table 3. Here, following [5],
approximation of depth n is phrased in terms of a unary projection operator
πn. The axioms for the projection operators are given in Table 4. In this table,
a stands for an arbitrary member of Aτ .

Let T stand for either BTA, BTA+REC or any other extension of BTA in-
troduced in this paper. Then we will write T+AIP for T extended with the
projections operators πn and the axioms P0–P3 and AIP.

RDP, RSP and AIP originate from work on ACP [2]. In the setting of ACP,
these principles were first formulated in [4]. Like in the setting of ACP, RSP
follows from RDP and AIP.

6

5 Distributed Strategic Interleaving of Threads

In this section, we take up the extension of BTA to a theory about threads
and distributed multi-threading by introducing a very simple distributed in-
terleaving strategy. The resulting theory is called TAdsi.

In order to deal with threads and services that are distributed over the nodes
of a network, it is assumed that there is a fixed but arbitrary finite set L of
locations such that L ⊆ N. The set LA of located basic actions is defined by
LA = {l.a | l ∈ L ∧ a ∈ A}. Henceforth, basic actions will also be called
unlocated basic actions. The members of LA ∪ {l.tau | l ∈ L} are referred to
as located actions.

Performing an unlocated action a is taken as performing a at a location still to
be fixed by the distributed interleaving strategy. Performing a located action
l.a is taken as performing a at location l. Performing an action a at location
l brings with it processing of a by a service at location l.

Threads that perform unlocated actions only are called unlocated threads and
threads that perform located actions only are called located threads. The be-
haviour of a distributed system of the kind considered in this paper is supposed
to be a located thread. However, the threads that exist concurrently at the
different locations in the system are unlocated threads.

It is assumed that the collection of all threads that exist concurrently at the
same location takes the form of a sequence of unlocated threads, called the local
thread vector at the location concerned. It is assumed that the collection of
local thread vectors that exist concurrently at the different locations takes the
form of a sequence of pairs, one for each location, consisting of a location and
the local thread vector at that location. Such a sequence is called a distributed
thread vector.

Distributed strategic interleaving operators turn a distributed thread vector
of arbitrary length into a single located thread. This single located thread
obtained via a distributed strategic interleaving operator is also called a dis-
tributed multi-thread. In this paper, we cover adaptations of the simplest
interleaving strategy, namely pure cyclic interleaving, which support explicit
thread migration and see to load balancing or capability searching by implicit
thread migration.

In the distributed case, cyclic interleaving basically operates as follows: at each
stage of the interleaving, the first thread in the first local thread vector in the
distributed thread vector gets a turn to perform an action at the location at
which the first local thread vector is and then the distributed thread vector
undergoes cyclic permutation. We mean by cyclic permutation of a distributed

7

thread vector that the first thread in the first local thread vector becomes the
last thread in the first local thread vector, all other threads in the first local
thread vector move one position to the left, the resulting local thread vector
becomes the last local thread vector in the distributed thread vector, and all
other local thread vectors in the distributed thread vector move one position
to the left. If a thread in one of the local thread vectors deadlocks, the whole
does not deadlock till all others have terminated or deadlocked. An important
property of this interleaving strategy is that it is fair in the sense that there
will always come a next turn for all active threads. This is a strong kind of
fairness. A weaker kind of fairness would for instance arise if there will always
come a next turn for all locations with active threads, but not for all active
threads at each of those locations.

Other plausible interleaving strategies for the case where threads and services
are not distributed are treated in [6]. They can also be adapted to the case
where threads and services are distributed.

When discussing interleaving strategies on distributed thread vectors, we use
the term current thread to refer to the first thread in the first local thread
vector in a distributed thread vector and we use the term current location
to refer to the location at which the first local thread vector in a distributed
thread vector is.

TAdsi has the sort T of BTA and in addition the following sorts:

• the sort LT of located threads ;
• the sort LTV of local thread vectors ;
• the sort DTV of distributed thread vectors.

To build terms of sort T, TAdsi has the constants and operators of BTA and
in addition the following operators:

• for each n ∈ N, the binary migration postconditional composition operator
£ mg(n) ¥ : T×T → T.

To build terms of sort LT, TAdsi has the following constants and operators:

• the deadlock constant D : LT;
• the termination constant S : LT;
• for each l ∈ L and a ∈ Aτ , the binary postconditional composition operator

£ l.a ¥ : LT× LT → LT;
• the unary deadlock at termination operator SD : LT → LT;
• the unary cyclic distributed strategic interleaving operator ‖ :DTV → LT.

To build terms of sort LTV, TAdsi has the following constants and operators:

8

• the empty local thread vector constant 〈 〉 : LTV;
• the unary singleton local thread vector operator 〈 〉 : T → LTV;
• the binary local thread vector concatenation operator y : LTV × LTV →

LTV.

To build terms of sort DTV, TAdsi has the following constants and operators:

• the empty distributed thread vector constant 〈 〉 : DTV;
• for each l ∈ L, the unary singleton distributed thread vector operator []l :

LTV → DTV;
• the binary distributed thread vector concatenation operator y : DTV ×

DTV → DTV.

Terms of the different sorts are built as usual for a many-sorted signature
(see e.g. [21,23]). Throughout the paper, we assume that there are infinitely
many variables of sort LT, including u, v, w, infinitely many variables of sort
LTV, including α, α1, α2, and infinitely many variables of sort DTV, including
β, β1, β2.

We introduce located action prefixing as an abbreviation: l.a ◦ p, where p is a
term of sort LT, abbreviates p £ l.a ¥ p.

The overloading of D, S, 〈 〉 and y could be resolved, but we refrain from doing
so because it is always clear from the context which constant or operator is
meant.

Essentially, the sort DTV includes all sequences of pairs consisting of a loca-
tion and a local thread vector. The ones that contain a unique pair for each
location are the proper distributed thread vectors in the sense that the cyclic
distributed interleaving strategy outlined above is intended for them. Improper
distributed thread vectors that do not contain duplicate pairs for some loca-
tion are needed in the axiomatization of this strategy. Improper distributed
thread vectors that do contain duplicate pairs for some location appear to have
more than one local thread vector at the location concerned. Their exclusion
would make it necessary for concatenation of distributed thread vectors to
be turned into a partial operator. The cyclic distributed interleaving strategy
never turns a proper distributed thread vector into an improper one or the
other way round. Similar remarks apply to the enriched distributed thread
vectors introduced in subsequent sections and will not be repeated.

Let p and q be closed terms of sort LT from the language of TAdsi, l ∈ L and
a ∈ Aτ . Then p £ l.a ¥ q will perform action a at location l, and after that
proceed as p if the processing of a leads to the reply T (called a positive reply)
and proceed as q if the processing of a leads to the reply F (called a negative
reply).

9

Table 5
Definition of the functions appl

appl(x, 〈〉) = 〈〉
appl(x, [α]l′ y β) = [αy 〈x〉]l y β if l = l′

appl(x, [α]l′ y β) = [α]l′ y appl(x, β) if l 6= l′

Table 6
Axioms for postconditional composition
u £ l.tau¥ v = u £ l.tau ¥ u LT1

Table 7
Axioms for deadlock at termination
SD(S) = D S2D1
SD(D) = D S2D2
SD(l.tau ◦ u) = l.tau ◦ SD(u) S2D3
SD(u £ l.a¥ v) = SD(u) £ l.a ¥ SD(v) S2D4

The deadlock at termination operator SD is an auxiliary operator used in the
axioms for cyclic distributed interleaving introduced below to turn termination
into deadlock. Let p be a closed term of sort LT from the language of TAdsi.
Then SD(p) behaves the same as p, except that it deadlocks whenever p would
terminate.

The cyclic distributed strategic interleaving operator serves for interleaving
of the threads in a proper distributed thread vector according to the strat-
egy outlined above, but with support of explicit thread migration. In the case
where a local thread vector of the form 〈p £ mg(n) ¥ q〉 y α with n ∈ L is
encountered as the first local thread vector, α becomes the last local thread
vector in the distributed thread vector and p is appended to the local thread
vector at location n. If n 6∈ L, then αy〈q〉 becomes the last local thread vector
in the distributed thread vector. The migration postconditional composition
operators have the same shape as the postconditional composition operators
introduced earlier. However, formally no action is involved in migration post-
conditional composition.

In the axioms for cyclic distributed interleaving introduced below, a binary
function appl (l ∈ L) from unlocated threads and distributed thread vectors
to distributed thread vectors is used which maps each unlocated thread x
and distributed thread vector β to the distributed thread vector obtained by
appending x to the local thread vector at location l in β. The functions appl

are defined in Table 5.

The axioms for postconditional composition on located threads, deadlock at
termination and cyclic distributed interleaving are given in Tables 6, 7 and 8.
In these tables, a stands for an arbitrary action from A. In these tables and all
subsequent tables with axioms for a distributed interleaving strategy, l1, . . . , lk
and l stand for arbitrary locations from L and n stands for an arbitrary natural

10

Table 8
Axioms for cyclic distributed interleaving
‖(〈〉) = S CDI1
‖([〈 〉]l1 y . . .y [〈 〉]lk) = S CDI2
‖([〈 〉]l y β) = ‖(β y [〈 〉]l) CDI3
‖([〈S〉y α]l y β) = ‖(β y [α]l) CDI4
‖([〈D〉y α]l y β) = SD(‖(β y [α]l)) CDI5
‖([〈tau ◦ x〉y α]l y β) = l.tau ◦ ‖(β y [αy 〈x〉]l) CDI6
‖([〈x £ a¥ y〉y α]l y β) = ‖(β y [αy 〈x〉]l) £ l.a ¥ ‖(β y [αy 〈y〉]l) CDI7
‖([〈x £ mg(n)¥ y〉y α]l y β) = l.tau ◦ ‖(appn(x, β y [α]l)) if n ∈ L CDI8
‖([〈x £ mg(n)¥ y〉y α]l y β) = l.tau ◦ ‖(β y [αy 〈y〉]l) if n 6∈ L CDI9

number. Axioms CDI1–CDI9 set out the details of the simple cyclic distributed
interleaving strategy introduced in this section in a clear and concise way.

To be fully precise, we should give axioms concerning the constants and op-
erators to build terms of the sorts LTV and DTV as well. We refrain from
doing so because the constants and operators concerned are the usual ones
for sequences – the singleton distributed thread vector operators involve an
implicit pairing of their operand with a location. 3 Similar remarks apply to
the sorts of local thread vectors and distributed thread vectors introduced in
subsequent sections and will not be repeated.

Guarded recursion can be added to TAdsi as it is added to BTA in Section 3.
We will write TAdsi+REC for the resulting theory. The merit of TAdsi+REC
is that it covers cyclic distributed interleaving of threads in which infinite
threads are involved.

The axioms for cyclic distributed strategic interleaving given in Table 8 con-
stitute a definition by recursion on the sum of the depths of all threads in the
distributed thread vector with case distinction on the structure of the first
thread in the first local thread vector. Hence, it is obvious that the axioms are
consistent and that every closed term of the sort LT from the language of TAdsi

is derivably equal to one that does not contain the cyclic distributed strate-
gic interleaving operator. Moreover, it follows easily that every projection of
a closed term of the sort LT from the language of TAdsi+REC is derivably
equal to one that does not contain the cyclic distributed strategic interleaving
operator. Similar remarks apply to the other distributed strategic interleaving
operators introduced in this paper and will not be repeated.

We refrain from giving the structural operational semantics of TAdsi. The tran-
sition rules for the postconditional composition operators on located threads
constitute a trivial adaptation of the transition rules for the postconditional
composition operators on unlocated threads. The transition rules for the dead-

3 This amounts to looking upon [α]l as syntactic sugar for 〈(l, α)〉.

11

lock at termination operator can be found in [6,10]. The transition rules for the
cyclic distributed strategic interleaving operator, as well as the transition rules
for the distributed strategic interleaving operators that will be introduced later
in this paper, are similar to the transition rules for the strategic interleaving
operator for cyclic interleaving found in [6,10]. However, the transition rules
for a distributed strategic interleaving operator are so much more involved
that they might be called unreadable. This implies that they cannot add to a
better understanding of the distributed interleaving strategy concerned.

Henceforth, we will write TAdsi(A) for TAdsi with the set of basic actions A
fixed to be the set A.

6 A Classification of Services

In this section, we provide a useful classification of services present at each of
the locations over which the threads and services of a system are distributed.
This classification is a slightly adapted version of the classification given in [6]
and will be used in subsequent sections.

A major distinction is between target services and para-target services:

• A service is a target service if the result of the processing of commands
by the service is partly observable externally. Printing a document, sending
an email message, showing data on a display or writing persistent data in
permanent memory are typical examples of using a target service.

• A service is a para-target service if the result of the processing of commands
by the service is wholly unobservable externally. Setting a timer or transfer-
ring data by means of a Java pipe are typical examples of using a para-target
service.

In the case of para-target services, a further distinction is between private
services and shared services:

• A private service provides its service to a single thread only. A timer is
usually a private service. Private services exist to support a single thread in
creating intended behaviour in relation to target services.

• A shared service provides its service to all threads existing at some location.
A Java pipe is an example of a shared para-target service. Shared services
exist to support all threads existing at the same location in creating intended
behaviour in relation to target services.

To simplify matters, it will be assumed that all para-target services at some
location are either private or shared, thus disregarding the possibility that

12

a service provides its service to some of the threads existing at the location
only. This leaves us with execution architectures that provide target services,
shared services and private services.

Private services are called local services in [6]. We use the phrase private
service here because local service may be confusing in the current setting
where services are located.

The overall intuition about threads, target services and para-target services is
that:

• a thread is the behaviour of a sequential deterministic program;
• a distributed multi-threaded system consists of a number of threads, which

are interleaved according to some deterministic distributed interleaving strat-
egy and which interact with a number of services;

• the intentions about the resulting behaviour pertain only to interaction with
target services;

• interaction with para-target services takes place only in as far as it is needed
to obtain the intended behaviour in relation to target services.

One of the assumptions made in thread algebra is that para-target services
are deterministic. The exclusion of non-deterministic para-target services, like
the exclusion of non-deterministic interleaving strategies, is a simplification.
We believe however that this simplification is adequate in the cases that we
address: services that keep private data for a thread or shared data for a
number of threads. Of course, it is inadequate in cases where services such
as dice-playing services are taken into consideration. Another assumption is
that target services are non-deterministic. The reason for this assumption is
that the dependence of target services on external conditions make it appear
to threads that they behave non-deterministically.

Henceforth, to simplify matters, it is assumed that each thread has a unique
private service. This service has to move along with the thread if it migrates
to another location.

7 Distributed Strategic Interleaving and Locking

In this section, we introduce a variation of the distributed interleaving strategy
from Section 5 that prevents threads from migrating while they keep locks on
shared services. This results in a theory called TAlck

dsi.

In order to deal with locking of shared services, it is assumed that there is
a fixed but arbitrary finite set of foci F and a fixed but arbitrary finite set

13

of methods M. Each focus plays the role of a name of a service provided
by the execution environment that can be requested to process a command.
Each method plays the role of a command proper. We write FM for the set
{f.m | f ∈ F , m ∈ M}. For the set A of unlocated actions, we take the set
FM .

Performing an unlocated action f.m is taken as making a request to the service
named f at a location still to be fixed by the distributed interleaving strategy
to process command m. Performing a located action l.f.m is taken as making
a request to the service named f at location l to process command m.

It is also assumed that t, s1, s2, . . . ∈ F . The foci t, s1, s2, . . . play a special
role:

• for each thread, t is the focus of the unique private service of that thread;
• for each location, s1, s2, . . . are the foci of the services shared by all threads

from the local thread vector at that location.

We write Fs for the set {s1, s2, . . .} of shared service foci.

For each location, all threads from the local thread vector at that location
are supposed to be able to lock and unlock the services with foci from Fs at
that location. It is assumed that lock, unlock ∈ M. We write Ml for the set
{lock, unlock} of locking methods.

When processing a command, the services with foci from Fs do nothing but
changing a state and producing replies on the basis of the state. In every
state, either the processing of lock leads to a positive reply or the processing
of unlock leads to a positive reply, but not both, and if the processing of one of
them leads to a positive reply, then the processing concerned moves the service
to a state in which the processing of the other one leads to a positive reply.
In this way, successive lockings without intermediate unlocking is prevented.
It is assumed that initially the processing of lock leads to a positive reply.
Moreover, it is assumed that a request to process lock or unlock is rejected
by services with foci other than foci from Fs. Rejecting a request to process a
command brings with it deadlocking of the thread making the request.

If a thread successfully performs the action si.lock, it acquires the lock of
the service with focus si. It keeps the lock until it is released by performing
si.unlock. All threads are supposed to work as follows. For each focus si, all
commands si.m different from si.lock must be performed in a phase in which
the thread keeps the lock of the service with focus si. If all threads adhere to
this rule, it is guaranteed that a thread keeping the lock on a service has ex-
clusive access to that service. The distributed interleaving strategy introduced
in this section permits of no deviation from this rule.

14

Table 9
Definition of the functions appl

appl(x, 〈〉) = 〈〉
appl(x, [α]l′ y β) = [αy 〈x〉∅]l y β if l = l′

appl(x, [α]l′ y β) = [α]l′ y appl(x, β) if l 6= l′

In the presence of locking and unlocking of shared services, axiom CDI8 (Ta-
ble 8) is not satisfactory. A thread from the local thread vector at one location
should not be permitted to migrate to another location if the thread keeps the
lock of one or more shared services at the former location.

To deal with that, we have to enrich distributed thread vectors by replacing
each thread in each local thread vector by a pair consisting of the thread and
the set of all foci naming shared services on which the thread keeps a lock.

We mention that, when the interleaving of the threads in a distributed thread
vector makes a start, the threads are supposed to keep no lock.

TAlck
dsi has the same sorts as TAdsi(FM). To build terms of the sorts T, LT and

DTV, TAlck
dsi has the same constants and operators as TAdsi(FM). To build

terms of sort LTV, TAlck
dsi has the following constants and operators:

• the empty local thread vector constant 〈 〉 : LTV;
• for each F ⊆ Fs, the unary singleton local thread vector operator 〈 〉F :T →

LTV;
• the binary local thread vector concatenation operator y : LTV × LTV →

LTV.

That is, the operator 〈 〉 is replaced by the operators 〈 〉F .

Similar to the singleton distributed thread vector operators []l, the singleton
local thread vector operators 〈 〉F involve an implicit pairing of their operand
with a set of foci naming shared services.

In the axioms for cyclic distributed interleaving with locking introduced below,
a binary function appl (l ∈ L) from unlocated threads and distributed thread
vectors to distributed thread vectors is used which maps each unlocated thread
x and distributed thread vector β to the distributed thread vector obtained
by appending x to the local thread vector at location l in β and associating
the empty set as set of foci with x. The functions appl are defined in Table 9.

The axioms for cyclic distributed interleaving with locking are given in Ta-
ble 10. In this table and all subsequent tables with axioms for a distributed
interleaving strategy, f stands for an arbitrary focus from F , m stands for an
arbitrary method from M, and F stands for an arbitrary subset of Fs. Axiom
CDI7 of the strategy from the previous section is replaced by four axioms to
make distinction between lock actions, unlock actions and other actions. This

15

Table 10
Axioms for cyclic distributed interleaving with locking
‖(〈〉) = S CDIlck1
‖([〈 〉]l1 y . . .y [〈 〉]lk) = S CDIlck2
‖([〈 〉]l y β) = ‖(β y [〈 〉]l) CDIlck3
‖([〈S〉F y α]

l
y β) = ‖(β y [α]l) CDIlck4

‖([〈D〉F y α]
l
y β) = SD(‖(β y [α]l)) CDIlck5

‖([〈tau ◦ x〉F y α]l y β) = l.tau ◦ ‖(β y [αy 〈x〉F]l) CDIlck6
‖([〈x £ f.m ¥ y〉F y α]l y β) =
‖(β y [αy 〈x〉F]

l
) £ l.f.m ¥ ‖(β y [αy 〈y〉F]

l
)

if f 6∈ Fs ∨ (f ∈ F ∧m 6∈ Ml) CDIlck7a
‖([〈x £ f.lock ¥ y〉F y α]

l
y β) =

‖(β y [αy 〈x〉F∪{f}]l) £ l.f.lock ¥ ‖(β y [αy 〈x £ f.lock ¥ y〉F]l)
if f ∈ Fs \ F CDIlck7b

‖([〈x £ f.unlock ¥ y〉F y α]l y β) =
‖(β y [αy 〈x〉F\{f}]l) £ l.f.unlock ¥ ‖(β y [αy 〈y〉F]l)
if f ∈ F CDIlck7c

‖([〈x £ f.m ¥ y〉F y α]l y β) = SD(‖(β y [α]l))
if f ∈ Fs ∧ (f ∈ F ∨m 6= lock) ∧ (f ∈ Fs \ F ∨m = lock) CDIlck7d

‖([〈x £ mg(n)¥ y〉F y α]
l
y β) = l.tau ◦ ‖(appn(x, β y [α]l)) if n ∈ L ∧ F = ∅ CDIlck8

‖([〈x £ mg(n)¥ y〉F y α]
l
y β) = l.tau ◦ ‖(β y [αy 〈y〉F]

l
) if n 6∈ L ∨ F 6= ∅ CDIlck9

distinction must be made to keep track of the locks that the different threads
keep and to preclude the possibility of deviation from the rule that threads
must adhere to in order to guarantee exclusive access to locked services.

Guarded recursion can be added to TAlck
dsi as it is added to BTA in Section 3.

8 Distributed Strategic Interleaving and Load Balancing

In this section, we introduce a variation of the distributed interleaving strategy
from Section 7 with implicit migration of threads to achieve load-balancing.
This results in a theory called TAlba

dsi .

Immediately after the current thread has performed an action, implicit mi-
gration of that thread to another location may take place. Whether migration
really takes place, depends on three parameters of the strategy: k1, k2 and k3.
All three parameters are natural numbers greater than 0. The current thread
is implicitly migrated if the following conditions are fulfilled:

• the current thread is migration compatible;
• the current thread keeps no locks;
• the number of steps that the current thread has performed at its current

location is at least k1;

16

• the largest number of steps that the current thread will perform before
termination, deadlock or explicit migration is at least k2;

• the length of the local thread vector that contains the current thread, say
n, is greater than k3 and there is another local thread vector whose length
times 2 is less than n.

The purpose of these conditions is as follows:

• the first condition is to exclude migration of threads whose interaction with
services is in whole or in part bound to services at the locations they are;

• the second condition is to prevent threads from migrating while they keep
locks on shared services;

• the third condition is to guard threads against hopping around uselessly;
• the fourth condition is to preclude the possibility that threads are migrated

while they will necessarily terminate, deadlock or migrate explicitly soon;
• the last condition is to achieve that threads from locations with long local

thread vectors are migrated to locations with short local thread vectors.

If the current thread is implicitly migrated, then it will be migrated to the
first among the locations with a shortest local thread vector.

To understand why load balancing strategic interleaving may be useful, assume
that: (i) time is divided into slices of equal length; (ii) during each slice, all
local thread vectors get a turn to perform an action of one thread. Thus, a
long local thread vector gives rise to slow execution per thread whereas a short
local thread vector gives rise to fast execution per thread. Load balancing will
equalize the execution speed of the threads in the different local thread vectors.

To deal with both locking and load balancing, we have to enrich distributed
thread vectors by replacing each thread in each local thread vector by a triple
consisting of the thread, the set of all foci naming services on which the thread
keeps a lock, and the minimum of k1 and the number of steps that the thread
has performed at the location it is.

We mention that, when the interleaving of the threads in a distributed thread
vector makes a start, the threads are supposed to keep no lock and to have
performed no steps at the location they are.

It is assumed that each method can be classified as either functional or non-
functional, so that the set Mfn ⊆ M of functional methods can be distin-
guished. Moreover, it is assumed that lock 6∈ Mfn and unlock 6∈ Mfn. A method
is a functional method if its processing by a shared service never change the
state of the shared service.

Migration compatibility is a criterion to exclude migration of threads whose
interaction with services is in whole or in part bound to services at the location

17

Table 11
Definition of the functions appl

appl(x, 〈〉) = 〈〉
appl(x, [α]l′ y β) = [αy 〈x〉0∅]l y β if l = l′

appl(x, [α]l′ y β) = [α]l′ y appl(x, β) if l 6= l′

they are. Interaction of threads with target services is always bound, interac-
tion of threads with their private service is never bound, and interaction of
threads with shared services using functional methods only is never bound.
However, interaction of threads with shared services may be bound if non-
functional methods are used. In this paper, a thread is considered migration
compatible if its interaction with services includes nothing but interaction with
private services and interaction with shared services using functional methods.
This makes migration compatibility rather restrictive.

We can take a less restrictive criterion instead if we assume that locked ses-
sions with shared services can also be classified as either functional or non-
functional. The criterion in question is complicated in such a way that it would
distract the attention from the main issues treated in this paper.

TAlba
dsi has the same sorts as TAlck

dsi. To build terms of the sorts T, LT and
DTV, TAlba

dsi has the same constants and operators as TAlck
dsi. To build terms

of sort LTV, TAlba
dsi has the following constants and operators:

• the empty local thread vector constant 〈 〉 : LTV;
• for each F ⊆ Fs and c ∈ N such that c ≤ k1, the unary singleton local

thread vector operator 〈 〉cF : T → LTV;
• the binary local thread vector concatenation operator y : LTV × LTV →

LTV.

That is, the operator 〈 〉F is replaced by the operators 〈 〉cF .

Similar to the singleton distributed thread vector operators []l, the singleton
local thread vector operators 〈 〉cF involve an implicit tupling of their operand
with a set of foci naming shared services and a natural number less than or
equal to k1.

In the axioms for cyclic distributed interleaving with load balancing introduced
below, a binary function appl (l ∈ L) from unlocated threads and distributed
thread vectors to distributed thread vectors is used which maps each unlocated
thread x and distributed thread vector β to the distributed thread vector
obtained by appending x to the local thread vector at location l in β and
associating the empty set as set of foci and zero as step count with x. The
functions appl are defined in Table 11.

Moreover, a unary function pv on distributed thread vectors is used which

18

Table 12
Definition of the functions mgcn and mgc
mgc0(x) = T

mgcn+1(S) = T

mgcn+1(D) = T

mgcn+1(tau ◦ x) = mgcn(x)
mgcn+1(x £ f.m ¥ y) = mgcn(x) ∧mgcn(y) if f = t ∨ (f ∈ Fs ∧m ∈Mfn)
mgcn+1(x £ f.m ¥ y) = F if f 6= t ∧ (f 6∈ Fs ∨m 6∈ Mfn)
mgcn+1(x £mg(n′)¥ y) = T

∧
n≥0 mgcn(x) = T⇒mgc(x) = T∨
n≥0 mgcn(x) = F⇒mgc(x) = F

permutes distributed thread vectors cyclicly with implicit migration as out-
lined above. The unary function pv on distributed thread vectors is defined
using a number of auxiliary functions:

• a unary function mgc from unlocated threads to Booleans, mapping each
unlocated thread that is migration compatible to T and each unlocated
thread that is not migration compatible to F;

• for each n ∈ N, a unary function npsn from unlocated threads to Booleans,
mapping each unlocated thread to T if the largest number of steps that it
will perform before termination, deadlock or explicit migration is at least
n, and to F otherwise (nps stands for number of potential steps);

• a unary function sltv from distributed thread vectors to pairs consisting of a
location and a local thread vector, mapping each distributed thread vector
to the pair consisting of the first among the locations with a shortest local
thread vector and the local thread vector at that location;

• a unary function loc from pairs consisting of a location and a local thread
vector to locations, mapping each such pair to its first component;

• a unary function tv from pairs consisting of a location and a local thread
vector to local thread vectors, mapping each such pair to its second compo-
nent;

• a unary function imc from distributed thread vectors to Booleans, map-
ping each distributed thread vector that fulfils the conditions for implicit
migration to T and each distributed thread vector that does not fulfil these
conditions to F.

The function mgc in turn is defined using, for each n ∈ N, an auxiliary unary
function mgcn from unlocated threads to Booleans, mapping each unlocated
thread whose approximation up to depth n is migration compatible to T and
each thread whose approximation up to depth n is not migration compatible
to F. The function mgc , as well as the auxiliary functions mgcn, are defined
in Table 12. The function pv , as well as the auxiliary functions npsn, sltv , loc,
tv and imc, are defined in Table 13. In the definition of sltv , l0 stands for a
fixed but arbitrary location from L.

19

Table 13
Definition of the functions npsn, sltv , loc, tv , imc, and pv
nps0(x) = T

npsn+1(S) = F

npsn+1(D) = F

npsn+1(tau ◦ x) = npsn(x)
npsn+1(x £ f.m ¥ y) = npsn(x) ∨ npsn(y)
npsn+1(x £ mg(n′)¥ y) = F

sltv(〈 〉) = (l0, 〈 〉)
sltv([α]l) = (l, α)
len(α1) ≤ len(α2)⇒ sltv([α1]l1 y [α2]l2 y β) = sltv([α1]l1 y β)
len(α1) > len(α2)⇒ sltv([α1]l1 y [α2]l2 y β) = sltv([α2]l2 y β)

loc((l, α)) = l

tv((l, α)) = α

imc(〈 〉) = F

imc([〈 〉]l y β) = F

imc([〈x〉k1
∅ y α]

l
y β) = mgc(x) ∧ npsk2

(x) ∧ len(α) > k3 ∧ 2 · len(tv(sltv(β))) < len(α)
imc([〈x〉cF y α]l y β) = F if F 6= ∅ ∨ c 6= k1

pv(〈 〉) = 〈 〉
pv([〈 〉]l y β) = β y [〈 〉]l
imc([〈x〉cF y α]

l
y β)⇒ pv([〈x〉cF y α]

l
y β) = apploc(sltv(β))(x, β y [α]l)

¬ imc([〈x〉cF y α]
l
y β)⇒ pv([〈x〉cF y α]

l
y β) = β y [αy 〈x〉cF]

l

In the definitions of npsn, sltv , imc and pv , as well as in many subsequent
definitions, we use the usual basic functions on Booleans and natural numbers.
Moreover, we write b ⇒ e, where b is a Boolean expression and e is an equation,
for the conditional equation b = T ⇒ e.

A simple unary function ic on natural numbers is used as well in the axioms
for cyclic distributed interleaving with load balancing introduced below. It is
defined by ic(c) = min(c + 1, k1) for all c ∈ N.

The axioms for cyclic distributed interleaving with load balancing are given in
Table 14. In this table and all subsequent tables with axioms for a distributed
interleaving strategy, c stands for an arbitrary natural number less than or
equal to k1. The differences with the axioms of the strategy from the previous
section are mainly found in axioms CDIlba6 and CDIlba7a–CDIlba7d. In those
axioms, pv is used to achieve the variant of cyclic permutation with implicit
migration outlined above.

Guarded recursion can be added to TAlba
dsi as it is added to BTA in Section 3.

The distributed interleaving strategy with implicit migration of which the
axioms are given in Table 14 does not count failed attempts of a thread to

20

Table 14
Axioms for cyclic distributed interleaving with load balancing
‖(〈〉) = S CDIlba1
‖([〈 〉]l1 y . . .y [〈 〉]lk) = S CDIlba2
‖([〈 〉]l y β) = ‖(β y [〈 〉]l) CDIlba3
‖([〈S〉cF y α]

l
y β) = ‖(β y [α]l) CDIlba4

‖([〈D〉cF y α]
l
y β) = SD(‖(β y [α]l)) CDIlba5

‖([〈tau ◦ x〉cF y α]l y β) = l.tau ◦ ‖(pv([〈x〉ic(c)
F y α]l y β)) CDIlba6

‖([〈x £ f.m ¥ y〉cF y α]
l
y β) =

‖(pv([〈x〉ic(c)
F y α]l y β)) £ l.f.m¥ ‖(pv([〈y〉ic(c)

F y α]l y β))
if f 6∈ Fs ∨ (f ∈ F ∧m 6∈ Ml) CDIlba7a

‖([〈x £ f.lock ¥ y〉cF y α]l y β) =
‖(β y [αy 〈x〉ic(c)

F∪{f}]l) £ l.f.lock ¥ ‖(pv([〈x £ f.lock ¥ y〉cF y α]
l
y β))

if f ∈ Fs \ F CDIlba7b
‖([〈x £ f.unlock ¥ y〉cF y α]l y β) =
‖(pv([〈x〉ic(c)

F\{f} y α]
l
y β)) £ l.f.unlock ¥ ‖(pv([〈y〉ic(c)

F y α]l y β))

if f ∈ F CDIlba7c
‖([〈x £ f.m ¥ y〉cF y α]l y β) = SD(‖(β y [α]l))

if f ∈ Fs ∧ (f ∈ F ∨m 6= lock) ∧ (f ∈ Fs \ F ∨m = lock) CDIlba7d
‖([〈x £ mg(n)¥ y〉cF y α]

l
y β) = l.tau ◦ ‖(appn(x, β y [α]l)) if n ∈ L ∧ F = ∅ CDIlba8

‖([〈x £ mg(n)¥ y〉cF y α]
l
y β) = l.tau ◦ ‖(β y [αy 〈y〉cF]

l
) if n 6∈ L ∨ F 6= ∅ CDIlba9

acquire a lock on a shared service as steps performed by the thread. Counting
the failed attempts is plausible as well. However, it results in looking at past
steps and future steps from a different angle because the number of potential
failed attempts in the future is generally indefinite.

Because it is assumed that lock is a non-functional method, it is impossible
that a thread is implicitly migrated to another location after repeated failed
attempts of the thread to acquire a lock on a shared service. At first sight,
continuing the attemps at another location after repeated failed attempts ap-
pears to make sense, but by doing so the thread runs the risk of hopping
around uselessly while attempting to acquire a lock. Therefore, we have not
considered the rather counter-intuitive assumption that lock is a functional
method.

Migration compatibility is defined such that interaction with services after
explicit migration is not taken into account, for that interaction is intended to
be with services at another location. Take a thread that cannot be migrated
implicitly because of interaction with a target service before termination, dead-
lock or explicit migration. If that thread would migrate back explicitly before
the interaction with a target service instead, then it could be migrated im-
plicitly. Thus, load balancing is feasible and useful because explicit migration
is present as an option.

The following might be considered: a thread transformation that inserts load

21

balancing migration actions to obtain load balancing triggered by actions in-
stead of the distributed interleaving strategy. However, there appear to be no
obvious candidate for such a transformation. It can be done, but the state
space of the thread may explode.

9 Load Balancing with Implicit Migration Back

In the distributed interleaving strategy with load balancing from Section 8,
the current thread is implicitly migrated only if it is migration compatible.
Although it is a simple criterion, migration compatibility is undecidable. This
makes the distributed interleaving strategy with load balancing from Section 8
unconvincing. In this section, we introduce a variation of that strategy which
does without migration compatibility. This results in a theory called TAlbb

dsi .

The approach followed is to preclude the need for migration compatibility
on implicit migration of a thread by migrating the thread implicitly back
before interaction with a target service or interaction with a shared service
using a non-functional method can take place. Because locking is an instance
of interaction with a shared service using a non-functional method, implicit
migration back does not happen while the thread keeps one or more locks.

Immediately after the current thread has performed an action, implicit migra-
tion back may take place. The current thread is implicitly migrated back if
the following conditions are fulfilled:

• the most recent migration of the current thread was an implicit migration;
• the next action that the current thread will perform concerns an interaction

with a target service or an interaction with a shared service using a non-
functional method;

• the location at which the current thread is differs from the location from
which its oldest implicit migration that was not followed by an explicit
migration has taken place.

If the current thread is implicitly migrated back, it will be migrated to the
location from which its oldest implicit migration that was not followed by an
explicit migration has taken place.

Whether implicit migration of the current thread takes place, depends as be-
fore on the three parameters k1, k2 and k3. The current thread is implicitly
migrated if the following conditions are fulfilled:

• the second condition for implicit migration back is not fulfilled;
• the current thread keeps no locks;

22

• the number of steps that the current thread has performed at its current
location is at least k1;

• the largest number of steps that the current thread will perform before
termination, deadlock, explicit migration, interaction with a target service
or interaction with a shared service using a non-functional method is at
least k2;

• the length of the local thread vector that contains the current thread, say
n, is greater than k3 and there is another local thread vector whose length
times 2 is less than n.

To deal with implicit migration back, we have to enrich distributed thread
vectors by replacing each thread in each local thread vector by a quadruple
consisting of the thread, the set of all foci naming services on which the thread
keeps a lock, the minimum of k1 and the number of steps that the thread has
performed at the location it is, and the location from which the oldest implicit
migration of the thread that was not followed by an explicit migration has
taken place if it exists and the location at which the thread is otherwise. We
will use the term migration-back location to refer to this location.

We mention that, when the interleaving of the threads in a distributed thread
vector makes a start, the threads are supposed to keep no lock, to have per-
formed no steps at the location they are, and to have not been implicitly
migrated.

TAlbb
dsi has the same sorts as TAlba

dsi . To build terms of the sorts T, LT and
DTV, TAlbb

dsi has the same constants and operators as TAlba
dsi . To build terms

of sort LTV, TAlbb
dsi has the following constants and operators:

• the empty local thread vector constant 〈 〉 : LTV;
• for each F ⊆ Fs, c ∈ N such that c ≤ k1 and l ∈ L, the unary singleton

local thread vector operator 〈 〉c,l
F : T → LTV;

• the binary local thread vector concatenation operator y : LTV × LTV →
LTV.

That is, the operator 〈 〉cF is replaced by the operators 〈 〉c,l
F .

Similar to the singleton distributed thread vector operators []l, the singleton

local thread vector operators 〈 〉c,l
F involve an implicit tupling of their operand

with a set of foci naming shared services, a natural number less than or equal
to k1, and a location.

In the axioms for cyclic distributed interleaving with load balancing and im-
plicit migration back introduced below, a binary function appl,o (l, o ∈ L) from
unlocated threads and distributed thread vectors to distributed thread vectors
is used which maps each unlocated thread x and distributed thread vector β
to the distributed thread vector obtained by appending x to the local thread

23

Table 15
Definition of the functions appl,o

appl,o(x, 〈〉) = 〈〉
appl,o(x, [α]l′ y β) = [αy 〈x〉0,o

∅]
l
y β if l = l′

appl,o(x, [α]l′ y β) = [α]l′ y appl,o(x, β) if l 6= l′

vector at location l in β and associating the empty set as set of foci, zero as
step count and o as migration-back location with x. The functions appl,o are
defined in Table 15.

Moreover, a unary function pv on distributed thread vectors is used which
permutes distributed thread vectors cyclicly with implicit migration and im-
plicit migration back as outlined above. The unary function pv on distributed
thread vectors is defined using auxiliary functions npsn, sltv , loc, tv and imc
which are essentially the same as the ones used before in the case of the strat-
egy from Section 8, with the exception of the functions npsn and imc. The
functions npsn and imc become slightly different:

• for each n ∈ N, npsn maps each unlocated thread to T if the largest number
of steps that it will perform before termination, deadlock, explicit migration,
interaction with a target service or interaction with a shared service using
a non-functional method is at least n, and to F otherwise;

• imc maps each distributed thread vector that fulfils the adapted conditions
for implicit migration to T and each distributed thread vector that does not
fulfil these conditions to F.

We also use the following auxiliary functions:

• a unary function imgc from unlocated threads to Booleans, mapping each
unlocated thread that does not fulfil the second condition for implicit migra-
tion back to T and each unlocated thread that fulfils the second condition
for implicit migration back to F (imgc stands for initially migration com-
patible);

• a unary function imbc from distributed thread vectors to Booleans, map-
ping each distributed thread vector that fulfils the conditions for implicit
migration back to T and each distributed thread vector that does not fulfil
the conditions for implicit migration back to F.

The function pv , as well as the auxiliary functions npsn, sltv , loc, tv , imgc,
imbc and imc, are defined in Table 16. In the definition of sltv , l0 stands for
a fixed but arbitrary location from L.

The axioms for cyclic distributed interleaving with load balancing and implicit
migration back are given in Table 17. In this table, o stands for an arbitrary
location from L. There seems to be no essential difference with the axioms
of the strategy from the previous section. However, the defining equations of

24

Table 16
Definition of the functions npsn, sltv , loc, tv , imgc, imbc, imc, and pv
nps0(x) = T

npsn+1(S) = F

npsn+1(D) = F

npsn+1(tau ◦ x) = npsn(x)
npsn+1(x £ f.m ¥ y) = npsn(x) ∨ npsn(y) if f = t ∨ (f ∈ Fs ∧m ∈Mfn)
npsn+1(x £ f.m ¥ y) = F if f 6= t ∧ (f 6∈ Fs ∨m 6∈ Mfn)
npsn+1(x £ mg(n′)¥ y) = F

sltv(〈 〉) = (l0, 〈 〉)
sltv([α]l) = (l, α)
len(α1) ≤ len(α2)⇒ sltv([α1]l1 y [α2]l2 y β) = sltv([α1]l1 y β)
len(α1) > len(α2)⇒ sltv([α1]l1 y [α2]l2 y β) = sltv([α2]l2 y β)

loc((l, α)) = l

tv((l, α)) = α

imgc(S) = T

imgc(D) = T

imgc(tau ◦ x) = T

imgc(x £ f.m ¥ y) = T if f = t ∨ (f ∈ Fs ∧m ∈Mfn)
imgc(x £ f.m ¥ y) = F if f 6= t ∧ (f 6∈ Fs ∨m 6∈ Mfn)
imgc(x £ mg(n′)¥ y) = T

imbc(〈 〉) = F

imbc([〈 〉]l y β) = F

imbc([〈x〉c,l
F y α]l y β) = F

imbc([〈x〉c,o
F y α]

l
y β) = ¬ imgc(x) if l 6= o

imc(〈 〉) = F

imc([〈 〉]l y β) = F

imc([〈x〉k1,o
∅ y α]

l
y β) = imgc(x) ∧ npsk2

(x) ∧ len(α) > k3 ∧ 2 · len(tv(sltv(β))) < len(α)
imc([〈x〉c,o

F y α]l y β) = F if F 6= ∅ ∨ c 6= k1

pv(〈 〉) = 〈 〉
pv([〈 〉]l y β) = β y [〈 〉]l
imbc([〈x〉c,o

F y α]l y β)⇒ pv([〈x〉c,o
F y α]l y β) = appo,o(x, β y [α]l)

imc([〈x〉c,o
F y α]

l
y β)⇒ pv([〈x〉c,o

F y α]
l
y β) = apploc(sltv(β)),o(x, β y [α]l)

¬ imbc([〈x〉c,o
F y α]

l
y β) ∧ ¬ imc([〈x〉c,o

F y α]
l
y β)⇒

pv([〈x〉c,o
F y α]

l
y β) = β y [αy 〈x〉c,o

F]
l

the function pv used here (Table 16) show that in this case pv deals with the
variant of cyclic permutation with implicit migration and implicit migration
back outlined above.

Guarded recursion can be added to TAlbb
dsi as it is added to BTA in Section 3.

Like in the strategy with load balancing from Section 8, it is impossible that a
thread is implicitly migrated to another location after repeated failed attempts

25

Table 17
Axioms for cyclic distributed interleaving with load balancing and implicit migration
back
‖(〈〉) = S CDIlbb1
‖([〈 〉]l1 y . . .y [〈 〉]lk) = S CDIlbb2
‖([〈 〉]l y β) = ‖(β y [〈 〉]l) CDIlbb3
‖([〈S〉c,o

F y α]l y β) = ‖(β y [α]l) CDIlbb4
‖([〈D〉c,o

F y α]
l
y β) = SD(‖(β y [α]l)) CDIlbb5

‖([〈tau ◦ x〉c,o
F y α]

l
y β) = l.tau ◦ ‖(pv([〈x〉ic(c),o

F y α]l y β)) CDIlbb6
‖([〈x £ f.m ¥ y〉c,o

F y α]l y β) =
‖(pv([〈x〉ic(c),o

F y α]l y β)) £ l.f.m ¥ ‖(pv([〈y〉ic(c),o
F y α]l y β))

if f 6∈ Fs ∨ (f ∈ F ∧m 6∈ Ml) CDIlbb7a
‖([〈x £ f.lock ¥ y〉c,o

F y α]
l
y β) =

‖(β y [αy 〈x〉ic(c),o
F∪{f}]l) £ l.f.lock ¥ ‖(pv([〈x £ f.lock ¥ y〉c,o

F y α]l y β))

if f ∈ Fs \ F CDIlbb7b
‖([〈x £ f.unlock ¥ y〉c,o

F y α]
l
y β) =

‖(pv([〈x〉ic(c),o
F\{f} y α]

l
y β)) £ l.f.unlock ¥ ‖(pv([〈y〉ic(c),o

F y α]l y β))

if f ∈ F CDIlbb7c
‖([〈x £ f.m ¥ y〉c,o

F y α]
l
y β) = SD(‖(β y [α]l))

if f ∈ Fs ∧ (f ∈ F ∨m 6= lock) ∧ (f ∈ Fs \ F ∨m = lock) CDIlbb7d
‖([〈x £ mg(n)¥ y〉c,o

F y α]l y β) = l.tau ◦ ‖(appn,n(x, β y [α]l)) if n ∈ L ∧ F = ∅ CDIlbb8
‖([〈x £ mg(n)¥ y〉c,o

F y α]l y β) = l.tau ◦ ‖(β y [αy 〈y〉c,o
F]l) if n 6∈ L ∨ F 6= ∅ CDIlbb9

to acquire a lock on a shared service. Using implicit migration back, continuing
the attemps at another location after repeated failed attempts becomes rather
troublesome: it may undo a necessary implicit migration back that has taken
place before the first attempt to acquire the lock.

10 Handling Nodes with Different Processing Speeds

In Sections 8 and 9, load balancing is implicitly based on the assumption that
the speed with which actions are processed at the different locations are the
same. In this section, we introduce a variation of the distributed interleaving
strategy with load balancing and implicit migration back from Section 9 where
load balancing is based on the assumption that the speed with which actions
are processed at the different locations is not necessarily the same. This results
in a theory called TAlbs

dsi.

Like before, assume that time is divided into slices of equal length. Suppose
that during each slice, each local thread vector gets a turn to perform a number
of actions of one thread where that number depends upon the location of
the local thread vector. This means that the speed with which actions are
processed at the different locations is not necessarily the same. Clearly, the

26

execution speed of the threads in a local thread vector depends upon the
speed with which actions are processed. This must be dealt with in equalizing
the execution speed of the threads in the different local thread vectors of a
distributed thread vector.

It is assumed that there is an action processing capacity function apc from lo-
cations to natural numbers. This function is regarded to give for each location
the number of actions that are performed by the local thread vector at that
location during one turn.

To deal in load balancing with the situation that actions are processed with
different speeds at different locations, we consider the length of every local
thread vector in proportion to the number of actions that are performed by the
local thread vector during one turn. Moreover, we add the following condition
to the conditions for implicit migration:

• the local thread vector at the current location is not in the middle of a turn
to perform a number of actions.

The purpose of this additional condition is to take care that processing capac-
ity is not wasted.

We have to enrich distributed thread vectors once more. The new distributed
thread vectors are sequences of triples, one for each location, consisting of a
location, the local thread vector at that location, and the number of actions
that has been performed during one turn of that local thread vector after it
has performed the following action.

We repeat that, when the interleaving of the threads in a distributed thread
vector makes a start, the threads are supposed to keep no lock, to have per-
formed no steps at the location they are, and to have not been implicitly
migrated.

TAlbs
dsi has the same sorts as TAlbb

dsi . To build terms of the sorts T, LT and
LTV, TAlbs

dsi has the same constants and operators as TAlbb
dsi . To build terms of

sort DTV, TAlbs
dsi has the following constants and operators:

• the empty distributed thread vector constant 〈 〉 : DTV;
• for each l ∈ L and i ∈ N such that i ≤ apc(l), the unary singleton distributed

thread vector operator []il : LTV → DTV;
• the binary distributed thread vector concatenation operator y : DTV ×

DTV → DTV.

That is, the operator []l is replaced by the operators []il .

The singleton distributed thread vector operators []il involve an implicit tu-

27

Table 18
Definition of the functions appl,o

appl,o(x, 〈〉) = 〈〉
appl,o(x, [α]il′ y β) = [αy 〈x〉0,o

∅]
i

l
y β if l = l′

appl,o(x, [α]il′ y β) = [α]il′ y appl,o(x, β) if l 6= l′

pling of their operand with a location and a natural number.

In the axioms for cyclic distributed interleaving with load balancing and im-
plicit migration back in case of different processing speeds introduced below, a
binary function appl,o (l, o ∈ L) from unlocated threads and distributed thread
vectors to distributed thread vectors is used which maps each unlocated thread
x and distributed thread vector β to the distributed thread vector obtained by
appending x to the local thread vector at location l in β and associating the
empty set as set of foci, zero as step count and o as migration-back location
with x. The functions appl,o are defined in Table 18.

Moreover, a unary function pv on distributed thread vectors is used which
permutes distributed thread vectors cyclicly with implicit migration and im-
plicit migration back, dealing with the situation that actions are processed
with different speeds at different locations as outlined above. The unary func-
tion pv on distributed thread vectors is defined using auxiliary functions npsn,
sltv , loc, tv , imgc, imbc and imc which are the same or essentially the same
as the ones used before in the case of the strategy from Section 9, with the
exception of the functions sltv and imc. The functions sltv and imc become
slightly different:

• sltv maps each distributed thread vector to the pair consisting of: (i) the
first among the locations with a shortest local thread vector in proportion
to the number of actions that are performed by the local thread vector at
that location during one turn; (ii) the local thread vector at that location;

• imc maps each distributed thread vector that fulfils the adapted conditions
for implicit migration to T and each distributed thread vector that does not
fulfil these conditions to F.

The functions npsn, loc, tv and imgc are the ones defined before in Table 16.
The function pv , as well as the auxiliary functions sltv , imbc and imc, are
defined in Table 19. In the definition of sltv , l0 stands for a fixed but arbitrary
location from L.

The axioms for cyclic distributed interleaving with load balancing and implicit
migration back in case of different processing speeds are given in Table 20. In
this table, o stands for an arbitrary location from L and i stand for an arbitrary
natural number such that i ≤ apc(l). Most axioms of the strategy from the
previous section are now replaced by two axioms to make distinction between
the cases i 6= apc(l) and i = apc(l). This distinction must be made because

28

Table 19
Definition of the functions sltv , imbc, imc, and pv
sltv(〈 〉) = (l0, 〈 〉)
sltv([α]il) = (l, α)
len(α1) · apc(l2) ≤ len(α2) · apc(l1)⇒ sltv([α1]

i1
l1
y [α2]

i2
l2
y β) = sltv([α1]

i1
l1
y β)

len(α1) · apc(l2) > len(α2) · apc(l1)⇒ sltv([α1]
i1
l1
y [α2]

i2
l2
y β) = sltv([α2]

i2
l2
y β)

imbc(〈 〉) = F

imbc([〈 〉]il y β) = F

imbc([〈x〉c,l
F y α]

i

l y β) = F

imbc([〈x〉c,o
F y α]il y β) = ¬ imgc(x) if l 6= o

imc(〈 〉) = F

imc([〈 〉]il y β) = F

imc([〈x〉k1,o
∅ y α]

1

l
y β) =

imgc(x) ∧ npsk2
(x) ∧

len(α) > k3 · apc(l) ∧ 2 · len(tv(sltv(β))) · apc(l) < len(α) · apc(loc(sltv(β)))
imc([〈x〉c,o

F y α]i
l
y β) = F if F 6= ∅ ∨ c 6= k1 ∨ i 6= 1

pv(〈 〉) = 〈 〉
pv([〈 〉]il y β) = β y [〈 〉]1l
imbc([〈x〉c,o

F y α]i
l
y β)⇒ pv([〈x〉c,o

F y α]i
l
y β) = appo,o(x, β y [α]1l)

imc([〈x〉c,o
F y α]il y β)⇒ pv([〈x〉c,o

F y α]il y β) = apploc(sltv(β)),o(x, β y [α]1l)
¬ imbc([〈x〉c,o

F y α]i
l
y β) ∧ ¬ imc([〈x〉c,o

F y α]i
l
y β)⇒

pv([〈x〉c,o
F y α]il y β) = β y [αy 〈x〉c,o

F]il

permutation should only take place after the current thread has performed
apc(l) actions.

Guarded recursion can be added to TAlbs
dsi as it is added to BTA in Section 3.

In the strategy introduced here, different processing speeds at different loca-
tions are taken into account by giving the local thread vectors at different
locations different numbers of actions of one thread to perform during one
turn. Alternatively, they can be taken into account by giving the local thread
vectors at different locations one action of different numbers of threads to
perform during one turn.

11 Distributed Strategic Interleaving with Capability Searching

In preceding sections, it was assumed that the same services are available at
each location. In the case of execution architectures where this assumption
holds, distributed interleaving strategies with implicit migration of threads to
achieve load balancing are plausible. In the case of execution architectures
where this assumption does not hold, distributed interleaving strategies with

29

Table 20
Axioms for cyclic distributed interleaving with load balancing in case of different
processing speeds
‖(〈〉) = S CDIlbs1
‖([〈 〉]i1l1 y . . .y [〈 〉]iklk) = S CDIlbs2
‖([〈 〉]il y β) = ‖(β y [〈 〉]1l) CDIlbs3
‖([〈S〉c,o

F y α]il y β) = ‖(β y [α]1l) CDIlbs4
‖([〈D〉c,o

F y α]il y β) = SD(‖(β y [α]1l)) CDIlbs5

‖([〈tau ◦ x〉c,o
F y α]i

l
y β) = l.tau ◦ ‖([〈x〉ic(c),o

F y α]
i+1

l y β) if i 6= apc(l) CDIlbs6a

‖([〈tau ◦ x〉c,o
F y α]il y β) = l.tau ◦ ‖(pv([〈x〉ic(c),o

F y α]
1

l y β)) if i = apc(l) CDIlbs6b
‖([〈x £ f.m ¥ y〉c,o

F y α]il y β) =

‖([〈x〉ic(c),o
F y α]

i+1

l y β) £ l.f.m ¥ ‖([〈y〉ic(c),o
F y α]

i+1

l y β)
if (f 6∈ Fs ∨ (f ∈ F ∧m 6∈ Ml)) ∧ i 6= apc(l) CDIlbs7aa

‖([〈x £ f.m ¥ y〉c,o
F y α]il y β) =

‖(pv([〈x〉ic(c),o
F y α]

1

l y β)) £ l.f.m ¥ ‖(pv([〈y〉ic(c),o
F y α]

1

l y β))
if (f 6∈ Fs ∨ (f ∈ F ∧m 6∈ Ml)) ∧ i = apc(l) CDIlbs7ab

‖([〈x £ f.lock ¥ y〉c,o
F y α]i

l
y β) =

‖([〈x〉ic(c),o
F∪{f} y α]

i+1

l
y β) £ l.f.lock ¥ ‖([〈x £ f.lock ¥ y〉c,o

F y α]i+1

l
y β))

if f ∈ Fs \ F ∧ i 6= apc(l) CDIlbs7ba
‖([〈x £ f.lock ¥ y〉c,o

F y α]il y β) =

‖(β y [αy 〈x〉ic(c),o
F∪{f}]

1

l
) £ l.f.lock ¥ ‖(pv([〈x £ f.lock ¥ y〉c,o

F y α]1l y β))

if f ∈ Fs \ F ∧ i = apc(l) CDIlbs7bb
‖([〈x £ f.unlock ¥ y〉c,o

F y α]i
l
y β) =

‖([〈x〉ic(c),o
F\{f} y α]

i+1

l
y β) £ l.f.unlock ¥ ‖([〈y〉ic(c),o

F y α]
i+1

l y β)

if f ∈ F ∧ i 6= apc(l) CDIlbs7ca
‖([〈x £ f.unlock ¥ y〉c,o

F y α]i
l
y β) =

‖(pv([〈x〉ic(c),o
F\{f} y α]

1

l
y β)) £ l.f.unlock ¥ ‖(pv([〈y〉ic(c),o

F y α]
1

l y β))

if f ∈ F ∧ i = apc(l) CDIlbs7cb
‖([〈x £ f.m ¥ y〉c,o

F y α]i
l
y β) = SD(‖(β y [α]1l))

if f ∈ Fs ∧ (f ∈ F ∨m 6= lock) ∧ (f ∈ Fs \ F ∨m = lock) CDIlbs7d
‖([〈x £ mg(n)¥ y〉c,o

F y α]i
l
y β) = l.tau ◦ ‖(appn,n(x, β y [α]1l))

if n ∈ L ∧ F = ∅ CDIlbs8
‖([〈x £ mg(n)¥ y〉c,o

F y α]il y β) = l.tau ◦ ‖([〈y〉c,o
F y α]i+1

l y β)
if n 6∈ L ∨ F 6= ∅ ∧ i 6= apc(l) CDIlbs9a

‖([〈x £ mg(n)¥ y〉c,o
F y α]il y β) = l.tau ◦ ‖(β y [αy 〈y〉c,o

F]1l)
if n 6∈ L ∨ F 6= ∅ ∧ i = apc(l) CDIlbs9b

implicit migration of threads to achieve availability of services needed by the
thread are plausible. We say that such distributed interleaving strategies take
care of capability searching. In this section, we introduce a variation of the
distributed interleaving strategy from Section 7 with capability searching. This
results in a theory called TAcs

dsi.

The distributed interleaving strategy with capability searching has one pa-

30

Table 21
Definition of the functions appL

appL(x, 〈〉) = 〈〉
appL(x, [α]l y β) = [αy 〈x〉∅]l y β if l ∈ L

appL(x, [α]l y β) = [α]l y appL(x, β) if l 6∈ L

rameter: k. This parameter is greater then 0. Immediately after the current
thread has performed an action, implicit migration of that thread to another
location may take place. Whether migration really takes place, depends on
the services present at the current location. The current thread is implicitly
migrated if the following conditions are fulfilled:

• the action that the current thread will perform next has to be processed by
a service that is not present at the current location;

• the current thread keeps no locks.

If these conditions are fulfilled, then the current thread will be migrated to
the first among the locations where the least number of steps that its approx-
imation up to depth k must perform to encounter an action that has to be
processed by a service that is not present at that location is maximal. If the
first condition is fulfilled, but the second condition is not fulfilled, then the
current thread will deadlock on its next turn to perform an action.

Notice that the distributed interleaving strategy with capability searching does
not fit in with the view that interaction of threads with services may in whole
or in part be bound to services at the location the threads are.

It is assumed that there is a function foci from locations to sets of foci. This
function is regarded to give for each location the set of all foci naming services
present at that location. It is assumed that, for all f ∈ F \ {t}, there exists
an l ∈ L such that f ∈ foci(l). Moreover, it is assumed that, for all f ∈
F \ (Fs ∪ {t}), there exists a unique l ∈ L such that f ∈ foci(l). The last two
assumptions mean that each service is available somewhere and each target
service is available at no more than one location. We believe that the healtiness
of the distributed interleaving strategy introduced here is questionable without
these assumptions.

TAcs
dsi has the sorts, constants and operators of TAlck

dsi.

In the axioms for cyclic distributed interleaving with capability searching in-
troduced below, a binary function appL (L ⊆ L) from unlocated threads and
distributed thread vectors to distributed thread vectors is used which maps
each unlocated thread x and distributed thread vector β to the distributed
thread vector obtained by appending x to the first local thread vector at a
location from L in β and associating the empty set as set of foci with x. The
functions appL are defined in Table 21.

31

Table 22
Definition of the functions locs ′n, locsn, and pv
locs ′0(x) = L
locs ′n+1(S) = L
locs ′n+1(D) = L
locs ′n+1(tau ◦ x) = locs ′n(x)
locs ′n+1(x £ f.m ¥ y) = locs ′n(x) ∩ {l | f ∈ foci(l)} ∩ locs ′n(y)
locs ′n+1(x £ mg(n′)¥ y) = locs ′n(y)

locs0(x) = ∅
locs ′n+1(x) 6= ∅⇒ locsn+1(x) = locs ′n+1(x)
locs ′n+1(x) = ∅⇒ locsn+1(x) = locsn(x)

imc(〈 〉) = F

imc([〈 〉]l y β) = F

imc([〈S〉F y α]l y β) = F

imc([〈D〉F y α]l y β) = F

imc([〈tau ◦ x〉F y α]
l
y β) = F

imc([〈x £ f.m ¥ y〉F y α]
l
y β) = F if f ∈ foci(l) ∨ F 6= ∅

imc([〈x £ f.m ¥ y〉F y α]
l
y β) = T if f 6∈ foci(l) ∧ F = ∅

imc([〈x £ mg(n′)¥ y〉F y α]l y β) = F

pv(〈 〉) = 〈 〉
pv([〈 〉]l y β) = β y [〈 〉]l
imc([〈x〉F y α]

l
y β)⇒ pv([〈x〉F y α]

l
y β) = applocsk(x)(x, β y [α]l)

¬ imc([〈x〉F y α]
l
y β)⇒ pv([〈x〉F y α]

l
y β) = β y [αy 〈x〉F]

l

Moreover, a unary function pv on distributed thread vectors is used which
permutes distributed thread vectors cyclicly with implicit migration as out-
lined above. The unary function pv on distributed thread vectors is defined
using a number of auxiliary functions:

• for each n ∈ N, a unary function locs ′n from unlocated threads to sets of
locations, mapping each unlocated thread to the set of all locations at which
all services are present that may be needed to process the actions performed
by its approximation up to depth n;

• for each n ∈ N, a unary function locsn from unlocated threads to sets of
locations, mapping each unlocated thread to the set of all locations where
the least number of steps that its approximation up to depth n must perform
to encounter an action that has to be processed by a service that is not
present at the location is maximal;

• a unary function imc from distributed thread vectors to Booleans, mapping
each distributed thread vector that fulfils the adapted conditions for implicit
migration to T and each distributed thread vector that does not fulfil these
conditions to F.

The function pv , as well as the auxiliary functions locs ′n, locsn and imc, are
defined in Table 22.

32

Table 23
Axioms for cyclic distributed interleaving with capability searching
‖(〈〉) = S CDIcs1
‖([〈 〉]l1 y . . .y [〈 〉]lk) = S CDIcs2
‖([〈 〉]l y β) = ‖(β y [〈 〉]l) CDIcs3
‖([〈S〉F y α]

l
y β) = ‖(β y [α]l) CDIcs4

‖([〈D〉F y α]
l
y β) = SD(‖(β y [α]l)) CDIcs5

‖([〈tau ◦ x〉F y α]l y β) = l.tau ◦ ‖(pv([〈x〉F y α]l y β)) CDIcs6
‖([〈x £ f.m ¥ y〉F y α]l y β) =
‖(pv([〈x〉F y α]

l
y β)) £ l.f.m ¥ ‖(pv([〈y〉F y α]

l
y β))

if f ∈ foci(l) ∧ (f 6∈ Fs ∨ (f ∈ F ∧m 6∈ Ml)) CDIcs7a
‖([〈x £ f.lock ¥ y〉F y α]

l
y β) =

‖(pv([〈x〉F∪{f} y α]
l
y β)) £ l.f.lock ¥ ‖(pv([〈x £ f.lock ¥ y〉F y α]l y β))

if f ∈ foci(l) ∧ f ∈ Fs \ F CDIcs7b
‖([〈x £ f.unlock ¥ y〉F y α]l y β) =
‖(pv([〈x〉F\{f} y α]

l
y β)) £ l.f.unlock ¥ ‖(pv([〈y〉F y α]l y β))

if f ∈ foci(l) ∧ f ∈ F CDIcs7c
‖([〈x £ f.m ¥ y〉F y α]l y β) = SD(‖(β y [α]l))

if f 6∈ foci(l) ∨ (f ∈ Fs ∧ (f ∈ F ∨m 6= lock) ∧ (f ∈ Fs \ F ∨m = lock)) CDIcs7d
‖([〈x £ mg(n)¥ y〉F y α]

l
y β) = l.tau ◦ ‖(app{n}(x, β y [α]l)) if n ∈ L ∧ F = ∅ CDIcs8

‖([〈x £ mg(n)¥ y〉F y α]
l
y β) = l.tau ◦ ‖(pv([〈y〉F y α]

l
y β)) if n 6∈ L ∨ F 6= ∅ CDIcs9

The axioms for cyclic distributed interleaving with capability searching are
given in Table 23. Like with the axioms for the strategy from Section 8, the
differences with the axioms for the strategy from Section 7 are mainly found in
axioms CDIcs6 and CDIcs7a–CDIcs7d. In those axioms, pv is used to achieve
the variant of cyclic permutation with capability searching outlined above.

Guarded recursion can be added to TAcs
dsi as it is added to BTA in Section 3.

12 Interaction of Threads with Services

A thread may perform certain actions only for the sake of getting reply values
returned by para-target services and that way having itself affected by that
service. In this section, we introduce thread-service composition, which allows
for threads to be affected by para-target services in this way.

We introduce yet another sort: the sort PTS of para-target services. However,
we will not introduce constants and operators to build terms of this sort. PTS
is a parameter of theories with thread-service composition. PTS is considered
to stand for the set of all para-target services. It is assumed that each para-
target service can be represented by a function H :M+ → {T, F, B} with the
property that H(γ) = B⇒H(γ y 〈m〉) = B for all γ ∈M+ and m ∈M. This
function is called the reply function of the para-target service. A para-target

33

service fails to produce a reply in the case where it does not accept a request
to process a command (see also the next paragraph). This case is modelled by
its reply function producing B instead of T or F. Here, B stands for blocked.
Given a reply function H and a method m ∈ M, the derived reply function
of H after processing m, written ∂

∂m
H, is defined by ∂

∂m
H(γ) = H(〈m〉 y γ).

The connection between a reply function H and the para-target service rep-
resented by it can be understood as follows:

• if H(〈m〉) = T, the request to process command m is accepted by the
service, the reply is positive and the service proceeds as ∂

∂m
H;

• if H(〈m〉) = F, the request to process command m is accepted by the service,
the reply is negative and the service proceeds as ∂

∂m
H;

• if H(〈m〉) = B, the request to process command m is not accepted by the
service.

Henceforth, we will identify a reply function with the para-target service rep-
resented by it.

For each l ∈ L and f ∈ Fs, we introduce the binary thread-shared-service
composition operator /l.f : LT × PTS → LT. Intuitively, p /l.f H is the
thread that results from processing all located actions performed by thread p
that are of the form l.f.m by shared service H at location l. When a located
action performed by thread p is processed by shared service H at location l,
it is turned into the action l.tau and postconditional composition is removed
in favour of located action prefixing on the basis of the reply value produced.

Moreover, we introduce the binary thread-private-service composition operator
/t :T×PTS → T. Intuitively, p/tH is the thread that results from processing

all unlocated actions performed by thread p that are of the form t.m by the
private service H of thread p. When an unlocated action performed by thread
p is processed by the private service H of p, it is turned into the action tau and
postconditional composition is removed in favour of unlocated action prefixing
on the basis of the reply value produced.

The axioms for the thread-shared-service composition operators are given in
Table 24. In this table, l and l′ stand for arbitrary locations from L, f stands
for an arbitrary focus from Fs, f ′ stands for an arbitrary focus from F , m
stands for an arbitrary method from M, and n stands for an arbitrary natural
number. Axiom TSSC3 shows that the action l.tau is always accepted. Axioms
TSSC5 and TSSC6 make it clear that l.tau arises as the residue of processing
actions at location l. Therefore, l.tau is not connected to a particular focus
and is always accepted. Axiom TSSC7 expresses that deadlock takes place
when an action is not accepted.

The axioms for the thread-private-service composition operator are given in

34

Table 24
Axioms for thread-shared-service composition
S /l.f H = S TSSC1
D /l.f H = D TSSC2
(l′.tau ◦ u) /l.f H = l′.tau ◦ (u /l.f H) TSSC3
(u £ l′.f ′.m¥ v) /l.f H = (u /l.f H) £ l′.f ′.m¥ (v /l.f H) if l 6= l′ ∨ f 6= f ′ TSSC4
(u £ l.f.m ¥ v) /l.f H = l.tau ◦ (u /l.f

∂
∂mH) if H(〈m〉) = T TSSC5

(u £ l.f.m ¥ v) /l.f H = l.tau ◦ (v /l.f
∂

∂mH) if H(〈m〉) = F TSSC6
(u £ l.f.m ¥ v) /l.f H = D if H(〈m〉) = B TSSC7

Table 25
Axioms for thread-private-service composition
S /t H = S TPSC1
D /t H = D TPSC2
(tau ◦ x) /t H = tau ◦ (x /t H) TPSC3
(x £ f.m ¥ y) /t H = (x /t H) £ f.m ¥ (y /t H) if f 6= t TPSC4
(x £ t.m¥ y) /t H = tau ◦ (x /t

∂
∂mH) if H(〈m〉) = T TPSC5

(x £ t.m¥ y) /t H = tau ◦ (y /t
∂

∂mH) if H(〈m〉) = F TPSC6
(x £ t.m¥ y) /t H = D if H(〈m〉) = B TPSC7
(x £ mg(n)¥ y) /t H = (x /t H) £ mg(n)¥ (y /t H) TPSC8

Table 25. In this table, f stands for an arbitrary focus from F , m stands for
an arbitrary method from M, and n stands for an arbitrary natural number.
Axiom TPSC3 shows that the action tau is always accepted. Axioms TPSC5
and TPSC6 make it clear that tau arises as the residue of processing unlocated
actions. Therefore, tau is not connected to a particular focus and is always ac-
cepted. Axiom TPSC7 expresses that deadlock takes place when an action is
not accepted. Axiom TPSC8 makes it clear that thread-private-service com-
position is not affected by thread migration.

Let T stand for either TAlck
dsi, TAlba

dsi , TAlbb
dsi , TAlbs

dsi or TAcs
dsi. Then we will write

T + TSC for T extended with the thread-shared-service composition opera-
tors, the thread-private-service composition operator, and the axioms from
Tables 24 and 25.

In TAlba
dsi+TSC, we do not have something like ‖(β1 y [〈x〉cF]

l
y β2) /l.f H =

‖(β1 y [〈x /f H〉cF]
l
yβ2).

4 This fails because both explicit migration and load
balancing may add threads to the local thread vector at location l. For sim-
ilar reasons, we do not have such equations in TAlbb

dsi +TSC or TAlbs
dsi+TSC

either. This shows the key difference with the multi-level interleaving strate-
gies from [8,10].

4 The right-hand side of this equation is not a legitimate term from the language
of TAlba

dsi+TSC. The addition of the useless thread-shared-service operators /f is
simple.

35

Table 26
Additional axioms for thread forking
‖([〈x £ nt(z)¥ y〉cF y α]l y β) = l.tau ◦ ‖(pv([〈x〉ic(c)

F y αy 〈z〉0∅]l y β)) CDIlba10
(x £ nt(z)¥ y) /t H = (x /t H) £ nt(z /t H) ¥ (y /t H) TPSC9
πn+1(x £ nt(z) ¥ y) = πn(x) £ nt(πn(z))¥ πn(y) P4

13 Thread Forking

The presence of thread forking adds to the need for load balancing, for the
length of some local thread vectors may in that case increase solely by thread
forking. In this section, we introduce a basic form of thread forking. We will
do so like in [6].

We introduce the ternary forking postconditional composition operator
£ nt() ¥ : T × T × T → T. The forking postconditional composition

operator has the same shape as the other postconditional composition oper-
ators. Formally, no action is involved in forking postconditional composition.
However, for an operational intuition, in p£ nt(r) ¥ q, nt(r) can be considered
a thread forking action. It represents the act of forking off thread r. Like with
real actions, a reply is produced. We consider the case where forking off a
thread will never be blocked or fail. In that case, it always produces a positive
reply. The action tau arises as the residue of forking off a thread.

If thread forking is added to TAlba
dsi , then one additional axiom is needed: axiom

CSIlba10 from Table 26. If thread forking is added to TAlba
dsi+TSC, then two

additional axioms are needed: axioms CSIlba10 and TPSC9 from Table 26.
If thread forking is added to TAlba

dsi+TSC+AIP, then three additional axioms
are needed: axioms CSIlba10, TPSC9 and P4 from Table 26. If thread forking
is added to TAlck

dsi, TAlbb
dsi , TAlbs

dsi or TAcs
dsi, then an obvious variation on axiom

CDIlba10 is needed.

In [6], we treat several interleaving strategies for threads that support a ba-
sic form of thread forking. All of them deal with cases where forking may be
blocked and/or may fail. We believe that perfect forking is a suitable abstrac-
tion when dealing primarily with load balancing. In [6], nt(r) was formally
considered a thread forking action. We experienced afterwards that this leads
to unnecessary complications in expressing definitions and results concerning
models for thread algebras featuring thread forking.

14 Conclusions

In [6], we have pursued the object to develop a theory about threads, inter-
leaving of threads and interaction of threads with services that is useful for:

36

(i) gaining insight into the semantic issues concerning the multi-threading re-
lated features found in contemporary object-oriented programming languages
such as Java and C#; (ii) simplified formal description and analysis of pro-
grams in which multi-threading is involved. In [9], we have extended the theory
developed in [6] with features that allow for details of multi-threading that
come up where it is intertwined with object-orientation to be dealt with. In
this paper, we have extended the theory developed in [6] with features that al-
low for details that come up with distributed multi-threading to be dealt with.
The features include explicit thread migration, load balancing and capability
searching. We have taken load balancing and capability searching for implicit
forms of thread migration that are part of distributed interleaving strategies.

To our knowledge, there is no other work on the theory of threads and multi-
threading that covers distributed multi-threading. Moreover, we are not aware
of other work on the theory of threads and multi-threading that is based on
strategic interleaving. Although a deterministic interleaving strategy is always
used for thread interleaving, it is the practice in work in which the semantics
of multi-threaded programs is involved to look upon thread interleaving as
arbitrary interleaving, see e.g. [1,13].

The work presented in this paper can be extended in several directions. We
mention only malcode migration and implicit migration in grids. We think
of an extension in the direction of malcode migration that opens a semanti-
cal perspective on issues of computer viruses. It is customary to look upon
computer viruses from a syntactical perspective, see e.g. [11,12]. We agree
with [22] that being a computer virus is basically a property of behaviours of
programs and hence semantical by nature. We think of an extension in the
direction of implicit migration in grids that results in a theory relevant to
grid computing [15,16]. A great deal of work in the field of grid computing has
been done on the development of software for initial implementations of a grid.
Little work has been done on the development of mathematical models and
theories relevant to grid computing. We believe that an extension of the work
presented in this paper in the direction of implicit migration in grids might be
a useful contribution to the field of grid computing. Such an extension might
call for data interchange between threads distributed over different locations
to be taken into account.

References

[1] E. Ábrahám, F. S. de Boer, W. P. de Roever, M. Steffen, A compositional
operational semantics for JavaMT, in: N. Dershowitz (Ed.), Verification: Theory
and Practice, Vol. 2772 of Lecture Notes in Computer Science, Springer-Verlag,
2003, pp. 290–303.

37

[2] J. C. M. Baeten, W. P. Weijland, Process Algebra, Vol. 18 of Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press, Cambridge,
1990.

[3] J. A. Bergstra, I. Bethke, Polarized process algebra and program equivalence, in:
J. C. M. Baeten, J. K. Lenstra, J. Parrow, G. J. Woeginger (Eds.), Proceedings
30th ICALP, Vol. 2719 of Lecture Notes in Computer Science, Springer-Verlag,
2003, pp. 1–21.

[4] J. A. Bergstra, J. W. Klop, Process algebra: Specification and verification in
bisimulation semantics, in: M. Hazewinkel, J. K. Lenstra, L. G. L. T. Meertens
(Eds.), Proceedings Mathematics and Computer Science II, Vol. 4 of CWI
Monograph, North-Holland, 1986, pp. 61–94.

[5] J. A. Bergstra, M. E. Loots, Program algebra for sequential code, Journal of
Logic and Algebraic Programming 51 (2) (2002) 125–156.

[6] J. A. Bergstra, C. A. Middelburg, Thread algebra for strategic interleaving, to
appear in Formal Aspects of Computing. Preliminary version: Computer Science
Report 04-35, Department of Mathematics and Computer Science, Eindhoven
University of Technology.

[7] J. A. Bergstra, C. A. Middelburg, Splitting bisimulations and retrospective
conditions, Information and Computation 204 (7) (2006) 1083–1138.

[8] J. A. Bergstra, C. A. Middelburg, Thread algebra with multi-level strategies,
Fundamenta Informaticae 71 (2/3) (2006) 153–182.

[9] J. A. Bergstra, C. A. Middelburg, A thread calculus with molecular dynamics,
Computer Science Report 06-24, Department of Mathematics and Computer
Science, Eindhoven University of Technology (August 2006).

[10] J. A. Bergstra, C. A. Middelburg, A thread algebra with multi-level strategic
interleaving, Theory of Computing Systems 41 (1) (2007) 3–32.

[11] F. Cohen, Computer viruses – theory and experiments, Computers and Security
6 (1987) 22–35.

[12] F. Cohen, A Short Course on Computer Viruses, 2nd Edition, John Wiley and
Sons, New York, 1994.

[13] C. Flanagan, S. N. Freund, S. Qadeer, S. A. Seshia, Modular verification of
multithreaded programs, Theoretical Computer Science 338 (1/3) (2005) 153–
183.

[14] W. J. Fokkink, Introduction to Process Algebra, Texts in Theoretical Computer
Science, An EATCS Series, Springer-Verlag, Berlin, 2000.

[15] I. Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann, San Francisco, 1999.

[16] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid: Enabling scalable
virtual organizations, Journal of High Performance Computing Applications
15 (3) (2001) 200–222.

38

[17] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language Specification, 2nd
Edition, Addison-Wesley, Reading, MA, 2000.

[18] A. Hejlsberg, S. Wiltamuth, P. Golde, C# Language Specification, Addison-
Wesley, Reading, MA, 2003.

[19] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, Englewood
Cliffs, 1985.

[20] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs,
1989.

[21] D. Sannella, A. Tarlecki, Algebraic preliminaries, in: E. Astesiano, H.-
J. Kreowski, B. Krieg-Brückner (Eds.), Algebraic Foundations of Systems
Specification, Springer-Verlag, Berlin, 1999, pp. 13–30.

[22] H. Thimbleby, S. Anderson, P. Cairns, A framework for modelling trojans and
computer virus infection, Computer Journal 41 (7) (1999) 444–458.

[23] M. Wirsing, Algebraic specification, in: J. van Leeuwen (Ed.), Handbook of
Theoretical Computer Science, Vol. B, Elsevier, Amsterdam, 1990, pp. 675–
788.

39

