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1. Introduction

A thread is the behavior of a deterministic sequential program under execution. Multi-threading refers to
the concurrent existence of several threads in a program under execution. Multi-threading is the dominant
form of concurrency provided by recent object-oriented programming languages such as Java [3] and
C# [16]. Arbitrary interleaving, on which theories about concurrent processes such as ACP [6] are based,
is not the appropriate intuition when dealing with multi-threading. In the case of multi-threading, some
deterministic interleaving strategy is used. In [10], we introduced a number of plausible deterministic
interleaving strategies for multi-threading. We also proposed to use the phrase strategic interleaving for
the more constrained form of interleaving obtained by using such a strategy.

The following remarks about deadlocks illustrate why arbitrary interleaving is not the appropriate
intuition when dealing with multi-threading: (a) whether the interleaving of certain threads leads to
deadlock depends on the deterministic interleaving strategy used; (b) sometimes deadlock takes place
with a particular deterministic interleaving strategy whereas arbitrary interleaving would not lead to
deadlock, and vice versa.

The strategic interleaving of a thread vector constitutes a multi-thread. In conventional operating
system jargon, a multi-thread is called a process. Several multi-threads may exist concurrently on the
same machine. Multi-processing refers to the concurrent existence of several multi-threads on a machine.
Such machines may be hosts in a network, and several host behaviors may exist concurrently in the same
network. And so on and so forth. Strategic interleaving is also present at these other levels.

In the current paper, we extend the theory developed so far with features to cover multi-level strategic
interleaving. An axiomatic description of the features concerned, as well as a structural operational
semantics, is provided. There is a dependence on the interleaving strategy considered. We extend the
theory only for the simplest case: cyclic interleaving. Other plausible interleaving strategies are treated
in [10]. They can also be adapted to the setting of multi-level strategic interleaving.

Threads proceed by performing steps, in the sequel called basic actions, in a sequential fashion.
Performing a basic action is taken as making a request to a certain service provided by the execution
environment to process a certain command. The service produces a reply value which is returned to the
thread concerned. A service may be local to a single thread, local to a multi-thread, local to a host, or
local to a network. In this paper, we introduce thread-service composition in order to bind certain basic
actions of a thread to certain services.

Both threads and services look to be special cases of a more general notion of process, and thread-
service composition looks to be a special kind of parallel composition of processes. Therefore, it is
interesting to know the connections of threads and services with processes as considered in theories
about concurrent processes such as ACP. In this paper, we show that threads and services can be viewed
as processes that are definable over an extension of ACP with conditions introduced in [12], and that
thread-service composition on those processes can be expressed in terms of operators of that extension.

The thread-service dichotomy made in this paper is useful for the following reasons: (a) for services,
a state-based description is generally more convenient than an action-based description whereas it is the
other way round for threads; (b) the interaction between threads and services is of an asymmetric nature.
Evidence of (a) and (b) is produced by the established connections of threads and services with processes
as considered in the extension of ACP with conditions.

We demonstrate that the theory developed in this paper may be of use by employing it to develop a
simplified, formal representation schema of the design of systems that consist of several multi-threaded
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programs on various hosts in different networks and to verify a property of all systems designed according
to that schema. We propose to use the term formal design prototype for such a schema. The verified
property is laid down in a simulation lemma, which states that a finite thread consisting of basic actions
that will not be processed by any available service is simulated by any instance of the presented schema
that contains the thread in one of its thread vectors.

Setting up a framework in which formal design prototypes for systems that consist of several multi-
threaded programs on various hosts in different networks can be developed and general properties of
systems designed according to those formal design prototypes can be verified is one of the objectives
with which we developed the theory presented in this paper.

The main assumption made in the theory presented in this paper is that strategic interleaving is present
at all levels of such systems. This is a drastic simplification, as a result of which intuition may break
down. We believe however that some such simplification is needed to obtain a manageable theory about
the behaviour of such systems – and that the resulting theory will sometimes be adequate and sometimes
be inadequate. Moreover, cyclic interleaving is a simplification of the interleaving strategies actually
used for multi-threading. Because of the complexity of those strategies, we consider a simplification
like this one desirable to start with. It leads to an approximation which is sufficient in the case where
the property laid down in the simulation lemma mentioned above is verified. The essential point turns
out to be that the interleaving strategy used at each level is fair, i.e. that there will always come a next
turn for all active threads, multi-threads, etc. The simulation lemma goes through for all fair interleaving
strategies: the proof only depends on the use of multi-level cyclic interleaving in the part where in point
of fact its fairness is shown.

When a service that is local to a multi-thread receives a request from the multi-thread, it often needs
to know from which of the interleaved threads the request originates. This can be achieved by informing
the service whenever threads succeed each other by interleaving and whenever a thread drops out by
termination or deadlock. Similar remarks apply to services that are local to hosts and networks. In
this paper, we describe a way in which multi-level strategic interleaving can be adapted such that those
services are properly informed. We also describe in detail a service that needs such support of thread
identity management, using a state-based approach to describe services. Moreover, we use the service
concerned in an example supporting the remarks about deadlocks made early in the introduction.

Thread algebra with multi-level strategic interleaving is a design on top of BPPA (Basic Polarized
Process Algebra) [8, 5]. BPPA is far less general than ACP-style process algebras and its design focuses
on the semantics of deterministic sequential programs. The semantics of a deterministic sequential pro-
gram is supposed to be a polarized process. Polarization is understood along the axis of the client-server
dichotomy. Basic actions in a polarized process are either requests expecting a reply or service offerings
promising a reply. Thread algebra may be viewed as client-side polarized process algebra because all
threads are viewed as clients generating requests for services provided by their environment.

The structure of this paper is as follows. After a review of BPPA (Section 2), we extend it to a basic
thread algebra with cyclic interleaving, but without any feature for multi-level strategic interleaving (Sec-
tion 3). Next, we extend this basic thread algebra with thread-service composition (Section 4) and other
features for multi-level strategic interleaving (Section 5). Following this, we discuss how two additional
features can be expressed (Section 6) and give a formal representation schema of the design of systems
that consist of several multi-threaded programs on various hosts in different networks (Section 7). Then,
we enhance multi-level strategic interleaving with support of thread identity management by services
(Section 8). Thereupon, we introduce a state-based approach to describe services (Section 9) and use
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Table 1. Axiom of BPPA

xE tau D y = xE tau D x T1

it to describe a service in which thread identity management is needed (Section 10). Next, we support
the remarks about deadlocks made early in the introduction by means of an example using that service
(Section 11). After that, we review an extension of ACP with conditions introduced in [12] (Section 12)
and show the connections of threads and services with processes that are definable over this extension of
ACP (Section 13). Finally, we make some concluding remarks (Section 14).

This paper is a revision and extension of [14].

2. Basic Polarized Process Algebra

In this section, we review BPPA (Basic Polarized Process Algebra), a form of process algebra which
is tailored to the use for the description of the behavior of deterministic sequential programs under
execution.

In BPPA, it is assumed that there is a fixed but arbitrary finite set ofbasic actionsA with tau 6∈ A.
We writeAtau for A ∪ {tau}. BPPA has the following constants and operators:

• thedeadlockconstantD;

• theterminationconstantS;

• for eacha ∈ Atau, a binarypostconditional compositionoperator E aD .

We use infix notation for postconditional composition. We introduceaction prefixingas an abbreviation:
a ◦ p, wherep is a term of BPPA, abbreviatesp E aD p.

The intuition is that each basic action is taken as a command to be processed by the execution
environment. The processing of a command may involve a change of state of the execution environment.
At completion of the processing of the command, the execution environment produces a reply value.
This reply is eitherT or F and is returned to the polarized process concerned. Letp andq be closed terms
of BPPA. Thenp E aD q will proceed asp if the processing ofa leads to the replyT (called a positive
reply), and it will proceed asq if the processing ofa leads to the replyF (called a negative reply). If
the reply is used to indicate whether the processing was successful, a useful convention is to indicate
successful processing by the replyT and unsuccessful processing by the replyF. The actiontau plays a
special role. Its execution will never change any state and always produces a positive reply.

BPPA has only one axiom. This axiom is given in Table 1. Using the abbreviation introduced above,
axiom T1 can be written as follows:x E tauD y = tau ◦ x.

A recursive specificationover BPPA is a set of equationsE = {X = tX | X ∈ V }, whereV is a set
of variables and eachtX is a term of BPPA that only contains variables fromV . We writeV(E) for the set
of all variables that occur on the left-hand side of an equation inE. Let t be a term of BPPA containing a
variableX. Then an occurrence ofX in t is guardedif t has a subterm of the formt′E aD t′′ containing
this occurrence ofX. A recursive specificationE is guardedif all occurrences of variables in the right-
hand sides of its equations are guarded or it can be rewritten to such a recursive specification using the
equations ofE. We are only interested in models of BPPA in which guarded recursive specifications
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Table 2. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X= tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Table 3. Axioms for projection

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(xE aD y) = πn(x) E aD πn(y) P3

(
∧

n≥0 πn(x) = πn(y)) ⇒ x = y AIP

have unique solutions, such as the projective limit model of BPPA presented in [5, 8]. A thread that is
the solution of a finite guarded recursive specification over BPPA is called afinite-statethread.

We extend BPPA with guarded recursion by adding constants for solutions of guarded recursive spec-
ifications and axioms concerning these additional constants. For each guarded recursive specificationE
and eachX ∈ V(E), we add a constant standing for the unique solution ofE for X to the constants of
BPPA. The constant standing for the unique solution ofE for X is denoted by〈X|E〉. Moreover, we
use the following notation. Lett be a term of BPPA andE be a guarded recursive specification. Then we
write 〈t|E〉 for t with, for all X ∈ V(E), all occurrences ofX in t replaced by〈X|E〉. We add the ax-
ioms for guarded recursion given in Table 2 to the axioms of BPPA. In this table,X, tX andE stand for
an arbitrary variable, an arbitrary term of BPPA and an arbitrary guarded recursive specification, respec-
tively. Side conditions are added to restrict the variables, terms and guarded recursive specifications for
whichX, tX andE stand. The additional axioms for guarded recursion are known as the recursive defi-
nition principle (RDP) and the recursive specification principle (RSP). The equations〈X|E〉 = 〈tX |E〉
for a fixedE express that the constants〈X|E〉 make up a solution ofE. The conditional equations
E ⇒ X = 〈X|E〉 express that this solution is the only one.

We often writeX for 〈X|E〉 if E is clear from the context. It should be borne in mind that, in such
cases, we useX as a constant.

Henceforth, we will write BPPA(A) for BPPA with the set of basic actionsA fixed to be the set
A, and BPPA(A)+REC for BPPA(A) extended with the constants for solutions of guarded systems of
recursion equations over BPPA and the axioms RDP and RSP from Table 2.

The projective limit characterization of process equivalence on threads is based on the notion of
a finite approximation of depthn. When for alln these approximations are identical for two given
threads, both threads are considered identical. This is expressed by the infinitary conditional equation
AIP (Approximation Induction Principle) given in Table 3. Following [5, 8], approximation of depthn is
phrased in terms of a unaryprojectionoperatorπn( ). The projection operators are defined inductively
by means of the axioms P0–P3 given in Table 3. In this table, and all subsequent tables with axioms in
whicha occurs,a stands for an arbitrary basic action fromAtau. It happens that RSP follows from AIP.

As mentioned above, the behavior of a polarized process depends upon its execution environment.
Each basic action performed by the polarized process is taken as a command to be processed by the
execution environment. At any stage, the commands that the execution environment can accept depend
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only on its history, i.e. the sequence of commands processed before and the sequence of replies produced
for those commands. When the execution environment accepts a command, it will produce a positive
reply or a negative reply. Whether the reply is positive or negative usually depends on the execution
history. However, it may also depend on external conditions.

In the structural operational semantics, we represent an execution environment by a functionρ :
(A× {T,F})∗ → P(A × {T,F}) that satisfies the following condition:(a, b) 6∈ ρ(α) ⇒ ρ(α y

〈(a, b)〉) = ∅ for all a ∈ A, b ∈ {T,F} andα ∈ (A× {T,F})∗.1 We writeE for the set of all those func-
tions. Given an execution environmentρ ∈ E and a basic actiona ∈ A, thederivedexecution environ-
ment ofρ after processinga with apositivereply, written ∂

∂a

+
ρ, is defined by∂

∂a

+
ρ(α) = ρ(〈(a,T)〉yα);

and thederivedexecution environment ofρ after processinga with a negativereply, written ∂
∂a

−
ρ, is

defined by ∂
∂a

−
ρ(α) = ρ(〈(a,F)〉 y α).

The following transition relations on closed terms are used in the structural operational semantics of
BPPA:

• a binary relation〈 , ρ〉 a−→ 〈 , ρ′〉 for eacha ∈ Atau andρ, ρ′ ∈ E ;

• a unary relation〈 , ρ〉↓ for eachρ ∈ E ;

• a unary relation〈 , ρ〉↑ for eachρ ∈ E .

The three kinds of transition relations are called theaction step, termination, anddeadlockrelations,
respectively. They can be explained as follows:

• 〈p, ρ〉 a−→ 〈p′, ρ′〉: in execution environmentρ, processp is capable of first performing actiona
and then proceeding as processp′ in execution environmentρ′;

• 〈p, ρ〉↓: in execution environmentρ, processp is capable of terminating successfully;

• 〈p, ρ〉↑: in execution environmentρ, processp is neither capable of performing an action nor
capable of terminating successfully.

The structural operational semantics of BPPA extended with projection and recursion is described by
the transition rules given in Table 4. In this table and all subsequent tables with transition rules in which
a occurs,a stands for an arbitrary action fromAtau. We write〈t|E〉 for t with, for all X that occur on
the left-hand side of an equation inE, all occurrences ofX in t replaced by〈X|E〉.

Bisimulation equivalence is defined as follows. Abisimulationis a symmetric binary relationB on
closed terms such that for all closed termsp andq:

• if B(p, q) and〈p, ρ〉 a−→ 〈p′, ρ′〉, then there is aq′ such that〈q, ρ〉 a−→ 〈q′, ρ′〉 andB(p′, q′);

• if B(p, q) and〈p, ρ〉↓, then〈q, ρ〉↓;

• if B(p, q) and〈p, ρ〉↑, then〈q, ρ〉↑.

1We write 〈 〉 for the empty sequence,〈d〉 for the sequence havingd as sole element, andα y β for the concatenation of
sequencesα andβ. We assume that the identitiesα y 〈 〉 = 〈 〉 y α = α hold.
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Table 4. Transition rules for BPPA with projection and recursion

〈S, ρ〉↓ 〈D, ρ〉↑

〈x E a D y, ρ〉 a−→ 〈x, ∂
∂a

+
ρ〉

(a, T) ∈ ρ(〈 〉)
〈x E a D y, ρ〉 a−→ 〈y, ∂

∂a

−
ρ〉

(a, F) ∈ ρ(〈 〉)

〈x E a D y, ρ〉↑
(a, T) 6∈ ρ(〈 〉), (a, F) 6∈ ρ(〈 〉)

〈x E tau D y, ρ〉 tau−−→ 〈x, ρ〉

〈x, ρ〉 a−→ 〈x′, ρ′〉

〈πn+1(x), ρ〉 a−→ 〈πn(x′), ρ′〉

〈x, ρ〉↓

〈πn+1(x), ρ〉↓

〈x, ρ〉↑

〈πn+1(x), ρ〉↑ 〈π0(x), ρ〉↑

〈〈t|E〉, ρ〉 a−→ 〈x′, ρ′〉

〈〈X|E〉, ρ〉 a−→ 〈x′, ρ′〉
X = t ∈ E

〈〈t|E〉, ρ〉↓

〈〈X|E〉, ρ〉↓
X = t ∈ E

〈〈t|E〉, ρ〉↑

〈〈X|E〉, ρ〉↑
X = t ∈ E

Two closed termsp andq arebisimulation equivalent, written p ↔ q, if there exists a bisimulationB
such thatB(p, q).

Bisimulation equivalence is a congruence with respect to the postconditional composition operators
and the projection operators. This follows immediately from the fact that the transition rules for these
operators are in the path format (see e.g. [2]). The axioms given in Tables 1 and 3 are sound with respect
to bisimulation equivalence.

3. Basic Thread Algebra with Foci and Methods

In this section, we introduce a thread algebra without features for multi-level strategic interleaving. Such
features will be added in subsequent sections. It is a design on top of BPPA.

In [8], its has been outlined how and why polarized processes are a natural candidate for the spec-
ification of the semantics of deterministic sequential programs. Assuming that a thread is a process
representing a deterministic sequential program under execution, it is reasonable to view all polarized
processes as threads. A thread vector is a sequence of threads.

Strategic interleaving operators turn a thread vector of arbitrary length into a single thread. This sin-
gle thread obtained via a strategic interleaving operator is also called a multi-thread. Formally, however
both threads and multi-threads are polarized processes. In this paper, we only cover the simplest inter-
leaving strategy, namelycyclic interleaving. Other plausible interleaving strategies are treated in [10].
They can also be adapted to the features for multi-level strategic interleaving that will be introduced in
the current paper. The strategic interleaving operator for cyclic interleaving is denoted by‖( ). In [10],
it was denoted by‖csi( ) to distinguish it from other strategic interleaving operators.

It is assumed that there is a fixed but arbitrary finite set offociF and a fixed but arbitrary finite set of
methodsM. For the set of basic actionsA, we take the set{f.m | f ∈ F ,m ∈ M}. Each focus plays
the role of a name of a service provided by the execution environment that can be requested to process a
command. Each method plays the role of a command proper. Performing a basic actionf.m is taken as
making a request to the service namedf to process the commandm.

The axioms for cyclic interleaving are given in Table 5. In this table and all subsequent tables with
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Table 5. Axioms for cyclic interleaving

‖(〈 〉) = S CSI1

‖(〈S〉 y α) = ‖(α) CSI2

‖(〈D〉 y α) = SD(‖(α)) CSI3

‖(〈tau ◦ x〉 y α) = tau ◦ ‖(α y 〈x〉) CSI4

‖(〈xE f.mD y〉 y α) = ‖(α y 〈x〉) E f.mD ‖(α y 〈y〉) CSI5

Table 6. Axioms for deadlock at termination

SD(S) = D S2D1

SD(D) = D S2D2

SD(tau ◦ x) = tau ◦ SD(x) S2D3

SD(xE f.mD y) = SD(x) E f.mD SD(y) S2D4

axioms or transition rules in whichf andm occur,f andm stand for an arbitrary focus fromF and an
arbitrary method fromM, respectively. In CSI3, the auxiliarydeadlock at terminationoperatorSD( ) is
used. It turns termination into deadlock. Its axioms appear in Table 6.

Henceforth, we will write TAfm for BPPA(FM) extended with the strategic interleaving operator for
cyclic interleaving, the deadlock at termination operator, and the axioms from Tables 5 and 6.

We extend TAfm with guarded recursion like in the case of BPPA. It involves systems of recursion
equations over TAfm, which require an adaptation of the notion of guardedness. Asystem of recursion
equationsover TAfm is a set of equationsE = {X = tX | X ∈ V } whereV is a set of variables and
eachtX is a term of TAfm that only contains variables fromV . Let t be a term of TAfm containing a
variableX. Then an occurrence ofX in t is guardedif t has a subterm of the formt′E aD t′′ containing
this occurrence ofX. A system of recursion equationsE is guardedif all occurrences of variables in the
right-hand sides of its equations are guarded or it can be rewritten to such a system of recursion equations
using the axioms of TAfm and the equations ofE.

Henceforth, we will write TAfm+REC for TAfm extended with the constants for solutions of guarded
systems of recursion equations over TAfm and the axioms RDP and RSP from Table 2.

The structural operational semantics of the basic thread algebra with foci and methods is described
by the transition rules given in Tables 4 and 7. Here〈x, ρ〉 6−→ stands for the set of all negative conditions
¬ (〈x, ρ〉 a−→ 〈p′, ρ′〉) wherep′ is a closed term of BPPA,ρ′ ∈ E anda ∈ Atau. Recall thatA = {f.m |
f ∈ F ,m ∈ M}. There is an instance of the first rule and the third rule from Table 7 for eachk ≥ 0;
and there is an instance of the second rule and the fourth rule from Table 7 for eachl > 0 andk ≥ l.
The first rule applies to the case where each thread in the thread vector preceding the first one capable of
performing an action is capable of terminating successfully. The second rule applies to the case where
not each thread in the thread vector preceding the first one capable of performing an action is capable of
terminating successfully. The third rule applies to the case where no thread in the thread vector is capable
of performing an action, but each is capable of terminating successfully. The fourth rule applies to the
case where no thread in the thread vector is capable of performing an action, but not each is capable of
terminating successfully.

Bisimulation equivalence is also a congruence with respect to the cyclic interleaving operator and
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Table 7. Transition rules for cyclic interleaving and deadlock at termination

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 a−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 a−→ 〈‖(α y 〈x′k+1〉), ρ
′〉

(k ≥ 0)

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 a−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 a−→ 〈‖(α y 〈D〉 y 〈x′k+1〉), ρ
′〉

(k ≥ l > 0)

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓

〈‖(〈x1〉 y . . . y 〈xk〉), ρ〉↓
(k ≥ 0)

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑

〈‖(〈x1〉 y . . . y 〈xk〉), ρ〉↑
(k ≥ l > 0)

〈x, ρ〉 a−→ 〈x′, ρ′〉

〈SD(x), ρ〉 a−→ 〈SD(x′), ρ′〉

〈x, ρ〉↓

〈SD(x), ρ〉↑

〈x, ρ〉↑

〈SD(x), ρ〉↑

the deadlock at termination operator. This follows immediately from the fact that the transition rules
for the basic thread algebra with foci and methods constitute a complete transition system specification
in relaxed panth format (see e.g. [19]). The axioms given in Tables 5 and 6 are sound with respect to
bisimulation equivalence.

4. Thread-Service Composition

In this section, we extend the basic thread algebra with foci and methods with thread-service composition.
For eachf ∈ F , we introduce athread-service compositionoperator /f . These operators have a thread
as first argument and a service as second argument. The intuition is thatp /f H is the thread that results
from issuing all basic actions performed by threadp that are of the formf.m to serviceH.

A service is represented by a functionH :M+ → {T,F,B,R} with the property thatH(α) = B ⇒
H(α y 〈m〉) = B andH(α) = R ⇒ H(α y 〈m〉) = R for all α ∈ M+ andm ∈ M. This function is
called thereply function of the service. We writeRF for the set of all reply functions andR for the set
{T,F,B,R}. Given a reply functionH and a methodm, the derived reply function ofH after processing
m, written ∂

∂mH, is defined by ∂
∂mH(α) = H(〈m〉 y α).

The connection between a reply functionH and the service represented by it can be understood as
follows:

• If H(〈m〉) = T, the request to process commandm is accepted by the service, the reply is positive
and the service proceeds as∂∂mH.

• If H(〈m〉) = F, the request to process commandm is accepted by the service, the reply is negative
and the service proceeds as∂∂mH.

• If H(〈m〉) = B, the request to process commandm is not refused by the service, but the processing
of m is temporarily blocked. The request will have to wait until the processing ofm is not blocked
any longer.

• If H(〈m〉) = R, the request to process commandm is refused by the service.
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Table 8. Axioms for thread-service composition

S /f H = S TSC1

D /f H = D TSC2

(tau ◦ x) /f H = tau ◦ (x /f H) TSC3

(xE g.mD y) /f H = (x /f H) E g.mD (y /f H) if ¬ f = g TSC4

(xE f.mD y) /f H = tau ◦ (x /f
∂

∂m
H) if H(〈m〉) = T TSC5

(xE f.mD y) /f H = tau ◦ (y /f
∂

∂m
H) if H(〈m〉) = F TSC6

(xE f.mD y) /f H = D if H(〈m〉) = B ∨ H(〈m〉) = R TSC7

Table 9. Transition rules for thread-service composition

〈x, ρ〉 g.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 g.m−−−→ 〈x′ /f H, ρ′〉
f 6= g

〈x, ρ〉 tau−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉

〈x, ρ〉 f.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f
∂

∂m
H, ρ′〉

H(〈m〉) ∈ {T, F}, (f.m, H(〈m〉)) ∈ ρ(〈 〉)

〈x, ρ〉 f.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉↑
H(〈m〉) ∈ {B, R}

〈x, ρ〉↓

〈x /f H, ρ〉↓

〈x, ρ〉↑

〈x /f H, ρ〉↑

Henceforth, we will identify a reply function with the service represented by it.

The axioms for thread-service composition are given in Table 8. In this table and all subsequent
tables with axioms or transition rules in whichg occurs, likef , g stands for an arbitrary focus fromF .
Moreover, in this table and all subsequent tables with axioms or transition rules in whichH occurs,H
stands for an arbitrary reply function fromRF . Axiom TSC3 expresses that the actiontau is always
accepted. Axioms TSC5 and TSC6 make it clear thattau arises as the residue of processing commands.
Therefore,tau is not connected to a particular focus, and is always accepted.

Henceforth, we write TAtscfm for TAfm extended with the thread-service composition operators and the
axioms from Table 8.

We extend TAtscfm with guarded recursion as in the case of TAfm. Systems of recursion equations over
TAtsc

fm and guardedness of those are defined as in the case of TAfm, but with TAfm everywhere replaced
by TAtsc

fm .

Henceforth, we will write TAtscfm+REC for TAtsc
fm extended with the constants for solutions of guarded

systems of recursion equations over TAtsc
fm and the axioms RDP and RSP from Table 2.

The structural operational semantics of the basic thread algebra with foci and methods extended with
thread-service composition is described by the transition rules given in Tables 4, 7 and 9. Bisimulation
equivalence is also a congruence with respect to the thread-service composition operators. This follows
immediately from the fact that the transition rules for these operators are in the path format. The axioms
given in Table 8 are sound with respect to bisimulation equivalence.
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Table 10. Additional axioms for cyclic interleaving & deadlock at termination

‖(〈xE f?mD y〉 y α) = ‖(〈x〉 y α) E f?mD ‖(α y 〈y〉) CSI6

‖(〈xE f??mD y〉 y α) = ‖(〈x〉 y α) E f??mD ‖(α y 〈y〉) CSI7

SD(xE f?mD y) = SD(x) E f?mD SD(y) S2D5

SD(xE f??mD y) = SD(x) E f??mD SD(y) S2D6

5. Guarding Tests

In this section, we extend the thread algebra developed so far with guarding tests. Guarding tests are
basic actions meant to verify whether a service will accept the request to process a certain method now,
and if not so whether it will be accepted after some time. Guarding tests allow for dealing with delayed
processing and exception handling as will be shown in Section 6.

We extend the set of basic actions. For the set of basic actions, we now take the setFMgt =
{f.m, f?m, f??m | f ∈ F ,m ∈ M}. Basic actions of the formsf?m and f??m will be called
guarding tests. Performing a basic actionf?m is taken as making the request to the service namedf to
reply whether it will accept the request to process methodm now. The reply is positive if the service will
accept that request now, and otherwise it is negative. Performing a basic actionf??m is taken as making
the request to the service namedf to reply whether it will accept the request to process methodm now
or after some time. The reply is positive if the service will accept that request now or after some time,
and otherwise it is negative.

A service may be local to a single thread, local to a multi-thread, local to a host, or local to a network.
A service local to a multi-thread is shared by all threads from which the multi-thread is composed, etc.
Henceforth, to simplify matters, it is assumed that each thread, each multi-thread, each host, and each
network has a unique local service. Moreover, it is assumed thatt, p, h, n ∈ F . Below, the focit, p, h
andn play a special role:

• for each thread,t is the focus of its unique local service;

• for each multi-thread,p is the focus of its unique local service;

• for each host,h is the focus of its unique local service;

• for each network,n is the focus of its unique local service.

As explained below, it happens that not only thread-service composition but also cyclic interleaving
has to be adapted to the presence of guarding tests.

The additional axioms for cyclic interleaving and deadlock at termination in the presence of guarding
tests are given in Table 10. Axioms CSI6 and CSI7 state that:

• after a positive reply onf?m or f??m, the same thread proceeds with its next basic action; and
thus it is prevented that meanwhile other threads can cause a state change to a state in which the
processing ofm is blocked (andf?m would not reply positively) or the processing ofm is refused
(and bothf?m andf??m would not reply positively);
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Table 11. Additional axioms for thread-service composition

(xE g?mD y) /f H = (x /f H) E g?mD (y /f H) if ¬ f = g TSC8

(xE f?mD y) /f H = tau ◦ (x /f H) if H(〈m〉) = T ∨
H(〈m〉) = F TSC9

(xE f?mD y) /f H = tau ◦ (y /f H) if H(〈m〉) = B ∧ ¬ f = t TSC10

(xE f?mD y) /f H = D if (H(〈m〉) = B ∧ f = t) ∨
H(〈m〉) = R TSC11

(xE g??mD y) /f H = (x /f H) E g??mD (y /f H) if ¬ f = g TSC12

(xE f??mD y) /f H = tau ◦ (x /f H) if ¬ H(〈m〉) = R TSC13

(xE f??mD y) /f H = tau ◦ (y /f H) if H(〈m〉) = R TSC14

• after a negative reply onf?m or f??m, the same thread does not proceed with it; and thus it is
prevented that other threads cannot make progress.

Without this difference, the Simulation Lemma (Section 7) would not go through.
The additional axioms for thread-service composition in the presence of guarding tests are given in

Table 11. Axioms TSC10 and TSC11 are crucial. The point is that, if the local service of a thread is in a
state in which the processing of methodm is blocked, no other thread can raise that state. Consequently,
if the processing ofm is blocked, it is blocked forever.

Henceforth, we write TAtsc,gt
fm for TAtsc

fm extended with a postconditional composition operator for
each guarding test and the axioms from Tables 10 and 11.

We extend TAtsc,gt
fm with guarded recursion as in the case of TAfm. Systems of recursion equations

over TAtsc,gt
fm and guardedness of those are defined as in the case of TAfm, but with TAfm everywhere

replaced by TAtsc,gtfm .

Henceforth, we will write TAtsc,gt
fm +REC for TAtsc,gt

fm extended with the constants for solutions of
guarded systems of recursion equations over TAtsc,gt

fm and the axioms RDP and RSP from Table 2.
The additional transition rules for cyclic interleaving and deadlock at termination in the presence

of guarding tests are given in Table 12, whereγ stands for an arbitrary basic action from the set
{f?m, f??m | f ∈ F ,m ∈ M}. The remarks made in Section 2 about the first two rules from Ta-
ble 7 apply to the first two rules from Table 12 and the next two rules from Table 12 as well. The
additional transition rules for thread-service composition in the presence of guarding tests are given in
Table 13. Bisimulation equivalence remains a congruence with respect to these operators. The axioms
given in Tables 10 and 11 are sound with respect to bisimulation equivalence.

6. Delayed Processing and Exception Handling

We go on to show how guarding tests can used to express postconditional composition with delay and
postconditional composition with exception handling.

For postconditional composition with delay, we extend the set of basic actionsA with the set{f !m |
f ∈ F ,m ∈ M}. Performing a basic actionf !m is like performingf.m, but in case processing of the
commandm is temporarily blocked, it is automatically delayed until the blockade is over.
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Table 12. Additional transition rules for cyclic interleaving & deadlock at termination

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(〈x′k+1〉 y α), ρ′〉
(α, T) ∈ ρ(〈 〉) (k ≥ 0)

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(〈x′k+1〉 y α y 〈D〉), ρ′〉
(α, T) ∈ ρ(〈 〉) (k ≥ l > 0)

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(α y 〈x′k+1〉), ρ
′〉

(α, F) ∈ ρ(〈 〉) (k ≥ 0)

〈x1, ρ〉 6−→, . . . , 〈xk, ρ〉 6−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 γ−→ 〈x′k+1, ρ′〉

〈‖(〈x1〉 y . . . y 〈xk+1〉 y α), ρ〉 γ−→ 〈‖(α y 〈D〉 y 〈x′k+1〉), ρ
′〉

(α, F) ∈ ρ(〈 〉) (k ≥ l > 0)

〈x, ρ〉 γ−→ 〈x′, ρ′〉

〈SD(x), ρ〉 γ−→ 〈SD(x′), ρ′〉

Table 13. Additional transition rules for thread-service composition

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) ∈ {T, F}, (f?m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) = B, f 6= t, (f?m, F) ∈ ρ(〈 〉)

〈x, ρ〉 t?m−−−→ 〈x′, ρ′〉

〈x /t H, ρ〉↑
H(〈m〉) = B

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉↑
H(〈m〉) = R

〈x, ρ〉 f??m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) ∈ {T, F, B}, (f?m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f??m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
H(〈m〉) = R, (f?m, F) ∈ ρ(〈 〉)

Table 14. Axioms for delayed processing and exception handling

xE f !mD y = (xE f.mD y) E f?mD (xE f !mD y) DP

xE f.m [y] D z = (xE f.mD z) E f??mD y EH1

xE f !m [y] D z = ((xE f.mD z) E f?mD (xE f !m [y] D z)) E f??mD y EH2

For postconditional composition with exception handling, we introduce the following notations:
x E f.m [y]D z andx E f !m [y]D z. The intuition forx E f.m [y]D z is thatx E f.m D z is tried,
but y is done instead in the exceptional case thatx E f.m D z fails because the request to processm
is refused. The intuition forx E f !m [y]D z is thatx E f !m D z is tried, buty is done instead in the
exceptional case thatx E f !m D z fails because the request to processm is refused. The processing of
m may first be blocked and thereafter be refused; in that case,y is done instead as well.

The defining axioms for postconditional composition with delayed processing and the two forms of
postconditional composition with exception handling are given in Table 14. Axiom DP guarantees that
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Table 15. Transition rules for delayed processing and exception handling

〈(x E f.m D y) E f?m D (x E f !m D y), ρ〉 a−→ 〈z′, ρ′〉

〈x E f !m D y, ρ〉 a−→ 〈z′, ρ′〉

〈(x E f.m D y) E f?m D (x E f !m D y), ρ〉↓

〈x E f !m D y, ρ〉↓

〈(x E f.m D y) E f?m D (x E f !m D y), ρ〉↑

〈x E f !m D y, ρ〉↑

〈(x E f.m D z) E f??m D y, ρ〉 a−→ 〈u′, ρ′〉

〈x E f.m [y] D z, ρ〉 a−→ 〈u′, ρ′〉

〈(x E f.m D z) E f??m D y, ρ〉↓

〈x E f.m [y] D z, ρ〉↓

〈(x E f.m D z) E f??m D y, ρ〉↑

〈x E f.m [y] D z, ρ〉↑

〈((x E f.m D z) E f?m D (x E f !m [y] D z)) E f??m D y, ρ〉 a−→ 〈u′, ρ′〉

〈x E f !m [y] D z, ρ〉 a−→ 〈u′, ρ′〉

〈((x E f.m D z) E f?m D (x E f !m [y] D z)) E f??m D y, ρ〉↓

〈x E f !m [y] D z, ρ〉↓

〈((x E f.m D z) E f?m D (x E f !m [y] D z)) E f??m D y, ρ〉↑

〈x E f !m [y] D z, ρ〉↑

f.m is only performed iff?m yields a positive reply. Axioms EH1 and EH2 guarantee thatf.m is only
performed iff??m yields a positive reply. An alternative to the second equation from Table 14 is

x E f !m [y]D z = ((x E f.m D z) E f?m D (x E f !m D z)) E f??m D y .

In that case,y is only done if the processing ofm is refused immediately.
Henceforth, we write TAtsc,gt,dp,eh

fm for TAtsc,gt
fm extended with the postconditional composition oper-

ators for delayed processing and exception handling and the axioms from Table 14.
We extend TAtsc,gt,dp,eh

fm with guarded recursion as in the case of TAfm. Systems of recursion equa-

tions over TAtsc,gt,dp,eh
fm and guardedness of those are defined as in the case of TAfm, but with TAfm

everywhere replaced by TAtsc,gt,dp,eh
fm .

Henceforth, we will write TAtsc,gt,dp,eh
fm +REC for TAtsc,gt,dp,eh

fm extended with the constants for solu-

tions of guarded systems of recursion equations over TAtsc,gt,dp,eh
fm and the axioms RDP and RSP from

Table 2.
The additional transition rules for postconditional composition with delayed processing and post-

conditional composition with exception handling are given in Table 15. Bisimulation equivalence is a
congruence with respect to these operators. The axioms given in Table 14 are sound with respect to
bisimulation equivalence.

7. A Formal Design Prototype

In this section, we show how the thread algebra developed in Sections 3–6 can be used to give a sim-
plified, formal representation schema of the design of systems that consist of several multi-threaded
programs on various hosts in different networks. We propose to use the termformal design prototypefor
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such a schema. The presented schema can be useful in understanding certain aspects of the systems with
which it is concerned.

The set ofbasic thread expressions, with typical elementP , is defined by

P ::= D
∣∣ S

∣∣ P E f.m D P
∣∣ P E f !m D P

∣∣
P E f.m [P ]D P

∣∣ P E f !m [P ]D P
∣∣ 〈X|E〉 ,

wheref ∈ F , m ∈ M and〈X|E〉 is a constant standing for the unique solution for variableX of a
guarded system of recursion equationsE in which the right-hand sides of the equations are basic thread
expressions in which variables may occur wherever basic thread expressions are expected. Thus, the use
of guarding tests, i.e. basic actions of the formsf?m andf??m, is restricted to their intended use.

A thread vector in which each thread has its local service is of the form

〈P1 /t TLS 1〉 y . . . y 〈Plt /t TLS lt〉 ,

whereP1, . . . , Plt are basic thread expressions, andTLS 1, . . . , TLS lt are local services for threads.
The local service of a thread does nothing else but maintaining local data for the thread. A multi-thread
vector in which each multi-thread has its local service is of the form

〈‖(TV 1) /p PLS 1〉 y . . . y 〈‖(TV lp) /p PLS lp〉 ,

whereTV 1, . . . , TV lp are thread vectors in which each thread has its local service, andPLS 1, . . . ,
PLS lp are local services for multi-threads. The local service of a multi-thread maintains shared data of
the threads from which the multi-thread is composed. A typical example of such data are Java pipes. A
host behaviour vector in which each host has its local service is of the form

〈‖(PV 1) /h HLS 1〉 y . . . y 〈‖(PV lh) /h HLS lh〉 ,

wherePV 1, . . . , PV lh are multi-thread vectors in which each multi-thread has its local service, and
HLS 1, . . . ,HLS lh are local services for hosts. The local service of a host maintains shared data of the
multi-threads on the host. A typical example of such data are the files connected with Unix sockets used
for data transfer between multi-threads on the same host. A network behaviour vector in which each
network has its local service is of the form

〈‖(HV 1) /n NLS 1〉 y . . . y 〈‖(HV ln) /n NLS ln〉 ,

whereHV 1, . . . , HV ln are host behaviour vectors in which each host has its local service, andNLS 1,
. . . , NLS ln are local services for networks. The local service of a network maintains shared data of the
hosts in the network. A typical example of such data are the files connected with Unix sockets used for
data transfer between different hosts in the same network.

The behaviour of a system that consist of several multi-threaded programs on various hosts in differ-
ent networks is described by an expression of the form‖(NV ), whereNV is a network behaviour vector
in which each network has its local service. A typical example is the case whereNV is an expression of
the form

‖(〈‖(〈‖(〈P1 /t TLS 1〉 y 〈P2 /t TLS 2〉) /p PLS 1〉 y

〈‖(〈P3 /t TLS 3〉 y 〈P4 /t TLS 4〉 y 〈P5 /t TLS 5〉) /p PLS 2〉) /h HLS 1〉 y

〈‖(〈‖(〈P6 /t TLS 6〉) /p PLS 3〉) /h HLS 2〉) /n NLS ,
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Table 16. Definition of simulation relation

S sim x

D sim x

x sim y ∧ x sim z ⇒ x sim y E aD z

x sim y ∧ z sim w ⇒ xE aD z sim y E aD w

whereP1, . . . , P6 are basic thread expressions,TLS 1, . . . ,TLS 6 are local services for threads,PLS 1,
. . . , PLS 3 are local services for multi-threads,HLS 1, HLS 2 are local services for hosts, andNLS is
a local service for networks. It describes a system that consists of two hosts in one network, where
on the first host currently a multi-thread with two threads and a multi-thread with three threads exist
concurrently, and on the second host currently a single multi-thread with a single thread exists.

A desirable property of all systems designed according to the schema‖(NV ) is laid down in
Lemma 7.1 below. This lemma is phrased in terms of a simulation relationsim on the closed terms
of TAtsc,gt,dp,eh

fm +REC. The relationsim (is simulated by) is defined inductively by means of the rules in
Table 16.

Lemma 7.1. (Simulation Lemma)
Let P be a basic thread expression in which all basic actions are from the set{f.m | f ∈ F \
{t, p, h, n},m ∈ M} and constants standing for the solutions of guarded recursive specifications do
not occur. LetC[P ] be a context ofP of the form‖(NV ) whereNV is a network behavior vector as
above. ThenP sim C[P ]. This implies thatC[P ] will perform all steps ofP in finite time.

Proof:
We prove this theorem for a more general schema than the schema‖(NV ) presented above. We consider
the schema that is obtained from the one presented above by replacing all expressions of the form‖(V ),
whereV is a thread vector, a multi-thread vector, a host behaviour vector or a network behaviour vector,
by expressions of the formSn

D(V ), whereSn
D stands forSD appliedn times. We proveP sim C ′[P ],

whereC ′ is a context ofP of this more general form, by induction on the depth ofP and case distinction
on the structure ofP , and in the caseP ≡ P ′ E aD P ′′ by induction on the position ofP in NV . ut

In the inductive step of the proof of the caseP ≡ P ′ E aD P ′′, we actually prove that multi-level cyclic
interleaving (in the presence of delayed processing and exception handling) is fair, , i.e. that there will
always come a next turn for all active threads, multi-threads, etc.

8. Thread Identity Management in Local Services

A multi-thread with local service is described by an expression of the form‖(TV ) /p PLS , whereTV
is a thread vector andPLS is a local service for multi-threads. When the local servicePLS receives a
request from the multi-thread‖(TV ), it often needs to know from which of the interleaved threads the
request originates. This can be achieved by informing the local service whenever threads succeed each
other by interleaving and whenever a thread drops out by termination or deadlock. Similar remarks apply
to local services of hosts and networks.
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Table 17. Axioms for cyclic interleaving with thread identity management support

‖`(〈 〉) = S CSItim1

‖`(〈S〉 y α) = `.shift ◦ ‖`(α) CSItim2

‖`(〈D〉 y α) = `.shift ◦ SD(‖`(α)) CSItim3

‖`(〈tau ◦ x〉 y α) = tau ◦ `.rotate ◦ ‖`(α y 〈x〉) CSItim4

‖`(〈xE f.mD y〉 y α) = `.rotate ◦ ‖`(α y 〈x〉) E f.mD `.rotate ◦ ‖`(α y 〈y〉) CSItim5

‖`(〈xE f?mD y〉 y α) = ‖`(〈x〉 y α) E f?mD `.rotate ◦ ‖`(α y 〈y〉) CSItim6

‖`(〈xE f??mD y〉 y α) = ‖`(〈x〉 y α) E f??mD `.rotate ◦ ‖`(α y 〈y〉) CSItim7

That leads us to cyclic interleaving with thread identity management support. For this variation of
cyclic interleaving, it is assumed thatrotate, shift ∈ M. Three new strategic interleaving operators are
introduced:‖p( ), ‖h( ) and‖n( ). The operator‖p( ) differs from ‖( ) in that it generates a basic
actionp.rotate whenever threads succeed each other and it generates a basic actionp.shift whenever a
thread drops out. The operators‖h( ) and‖n( ) differ from ‖( ) analogously.

The axioms for cyclic interleaving with thread identity management support are given in Table 17,
where` stands for an arbitrary focus from the set{p, h, n}.

We refrain from giving the additional transition rules for‖p( ), ‖h( ) and‖n( ). They are obvious
variations of the transition rules for‖( ).

In order to cover local services in which thread identity management is needed, we have to adapt the
formal design prototype given in Section 7. A multi-thread with local service is now described by an
expression of the form‖p(TV ) /p PLS , whereTV is a thread vector in which each thread has its local
service andPLS is a local service for multi-threads. The behavior of a host with local service is now
described by an expression of the form‖h(PV ) /h HLS , wherePV is a multi-thread vector in which
each multi-thread has its local service andHLS is a local service for hosts. The behavior of a network
with local service is now described by an expression of the form‖n(HV ) /n NLS , whereHV is a host
behavior vector in which each host has its local service andNLS is a local service for networks.

Notice that the forms of the expressions that describe a thread with local service and a system have
not been adapted. In the first case, no interleaving of threads is involved; and in the second case, no local
service is involved.

In Section 10, we will describe a service in which thread identity management is needed.

9. State-Based Description of Services

In this section, we introduce the state-based approach to describe services that will be used in Section 10
to describe a service in which thread identity management is needed. This approach is similar to the
approach to describe state machines introduced in [15].

In this approach, a service is described by

• a set of statesS;

• an initial states0 ∈ S;

• an effect functioneff :M× S → S;
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• a yield functionyld :M× S → R.

The setS contains the states in which the service may be; and the functionseff andyld give, for each
methodm and states, the state and reply, respectively, that result from processingm in states.

We define a cumulative effect functionceff :M∗ → S in terms ofs0 andeff as follows:

ceff (〈 〉) = s0

ceff (α y 〈m〉) = eff (m, ceff (α)) .

We define a serviceH :M+ → R in terms ofceff andyld as follows:

H(α y 〈m〉) = yld(m, ceff (α)) .

We considerH to be the service described byS, s0, eff andyld .
Note thatH(〈m〉) = yld(m, s0) and ∂

∂mH is the service obtained by takingeff (m, s0) instead ofs0

as the initial state.
As an example, we give a state-based description of a very simple service concerning a Boolean cell.

This service can be used as a local service of threads. It will be generalized in Section 10 to a service
that can be used as a local service of multi-threads, hosts and networks.

It is assumed thatM contains the following methods:

• bc:set:T : the contents of the Boolean cell becomesT and the reply isT;

• bc:set:F : the contents of the Boolean cell becomesF and the reply isF;

• bc:get : nothing changes and the reply is the contents of the Boolean cell.

We writeMbc for the set{bc:set:T, bc:set:F, bc:get}.
The state-based description of the service is as follows:

• S = {T,F};

• s0 = F;

• eff andyld are defined as follows:

eff (bc:set:T, s) = T ,

eff (bc:set:F, s) = F ,

eff (bc:get, s) = s ,

eff (m, s) = s ,

yld(bc:set:T, s) = T ;

yld(bc:set:F, s) = F ;

yld(bc:get, s) = s ;

yld(m, s) = R , if m 6∈ Mbc .

In Section 13, we will show that services can also be viewed as processes that are definable over an
extension of ACP with conditions introduced in [12].
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10. Localizable Boolean Cells

In this section, we describe a service in which thread identity management is needed. It can be used
as a local service of multi-threads, hosts and networks. The service, calledLBC , concerns localizable
Boolean cells. It generalizes the service described in Section 9.LBC is much simpler than a service
maintaining Java pipes or a service maintaining the files connected with Unix sockets. However, its
description suggests how to describe those more interesting services.

It is assumed thatM contains all methods ofLBC , to wit (for eachn ∈ N):

• lbc:n:create: if a Boolean cell with namen does not exist, it is created with status unowned and
contentsF, and the reply isT; otherwise, nothing changes and the reply isF;

• lbc:n:elim: if a Boolean cell with namen exists and it is unowned, it is eliminated and the reply is
T; otherwise, nothing changes and the reply isF;

• lbc:n:claim: if a Boolean cell with namen exists and it is unowned or owned by the requesting
thread, it becomes or remains owned by the requesting thread and the reply isT; otherwise, nothing
changes and the reply isF if it does not exist andB if it is owned by a thread other than the
requesting thread;

• lbc:n:release: if a Boolean cell with namen exists and it is owned by the requesting thread, it
becomes unowned and the reply isT; otherwise, nothing changes and the reply isF if it does not
exist andR if it is unowned or owned by a thread other than the requesting thread;

• lbc:n:set:T: if a Boolean cell with namen exists and it is owned by the requesting thread, its
contents becomesT and the reply isT; otherwise, nothing changes and the reply isR;

• lbc:n:set:F: if a Boolean cell with namen exists and it is owned by the requesting thread, its
contents becomesF and the reply isT; otherwise, nothing changes and the reply isR;

• lbc:n:get: if a Boolean cell with namen exists and it is owned by the requesting thread, nothing
changes and the reply is its contents; otherwise, nothing changes as well and the reply isR.

We writeMlbc for the set of all methods ofLBC .
Notice that, formally, multi-threads and host behaviours are threads as well. Therefore, in the case

whereLBC is used as a local service of a host or a network, we can think of multi-thread or host where
thread is written in the explanation of its methods given above.

We suppose that an instance ofLBC knows, when it starts to service a multi-thread, host or network,
the number of threads, multi-threads or hosts it has to deal with initially. We consider this number to be
a parameter of the service.

Let l0 ∈ N. Then the state-based description of the serviceLBC with parameterl0, writtenLBC (l0),
is as follows:

S = {(c, o, l) ∈ C ×O × N | dom(c) = dom(o),max(rng(o)) ≤ l} ,

whereC = {c : N → {T,F} | N ∈ Pfin(N)}, O = {o : N → N | N ∈ Pfin(N)}; s0 = ([ ], [ ], l0); and
eff andyld are defined in Tables 18 and 19, respectively. The state of the service comprises the contents
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Table 18. Effect function for service with localizable Boolean cells

eff (lbc:n:create, (c, o, l)) = (c⊕ [n 7→ F], o⊕ [n 7→ 0], l) if n 6∈ dom(c)

eff (lbc:n:create, (c, o, l)) = (c, o, l) if n ∈ dom(c)

eff (lbc:n:elim, (c, o, l)) =

(c � (dom(c) \ {n}), o � (dom(c) \ {n}), l) if n ∈ dom(c) ∧ o(n) = 0

eff (lbc:n:elim, (c, o, l)) = (c, o, l) if n 6∈ dom(c) ∨ o(n) 6= 0

eff (lbc:n:claim, (c, o, l)) = (c, o⊕ [n 7→ 1], l) if n ∈ dom(c) ∧ o(n) ≤ 1

eff (lbc:n:claim, (c, o, l)) = (c, o, l) if n 6∈ dom(c) ∨ o(n) > 1

eff (lbc:n:release, (c, o, l)) = (c, o⊕ [n 7→ 0], l) if n ∈ dom(c) ∧ o(n) = 1

eff (lbc:n:release, (c, o, l)) = (c, o, l) if n 6∈ dom(c) ∨ o(n) 6= 1

eff (lbc:n:set:b, (c, o, l)) = (c⊕ [n 7→ b], o, l) if n ∈ dom(c) ∧ o(n) = 1

eff (lbc:n:set:b, (c, o, l)) = (c, o, l) if n 6∈ dom(c) ∨ o(n) 6= 1

eff (lbc:n:get, (c, o, l)) = (c, o, l)

eff (rotate, (c, o, l)) = (c, rotate(o, l), l)

eff (shift, (c, o, l)) = (c, shift(o, l), l − 1)

eff (m, (c, o, l)) = (c, o, l) if m 6∈ Mlbc ∪ {rotate, shift}

Table 19. Yield function for service with localizable Boolean cells

yld(lbc:n:create, (c, o, l)) = T if n 6∈ dom(c)

yld(lbc:n:create, (c, o, l)) = F if n ∈ dom(c)

yld(lbc:n:elim, (c, o, l)) = T if n ∈ dom(c) ∧ o(n) = 0

yld(lbc:n:elim, (c, o, l)) = F if n 6∈ dom(c) ∨ o(n) 6= 0

yld(lbc:n:claim, (c, o, l)) = T if n ∈ dom(c) ∧ o(n) ≤ 1

yld(lbc:n:claim, (c, o, l)) = F if n 6∈ dom(c)

yld(lbc:n:claim, (c, o, l)) = B if n ∈ dom(c) ∧ o(n) > 1

yld(lbc:n:release, (c, o, l)) = T if n ∈ dom(c) ∧ o(n) = 1

yld(lbc:n:release, (c, o, l)) = F if n 6∈ dom(c)

yld(lbc:n:release, (c, o, l)) = R if n ∈ dom(c) ∧ o(n) 6= 1

yld(lbc:n:set:b, (c, o, l)) = T if n ∈ dom(c) ∧ o(n) = 1

yld(lbc:n:set:b, (c, o, l)) = R if n 6∈ dom(c) ∨ o(n) 6= 1

yld(lbc:n:get, (c, o, l)) = c(n) if n ∈ dom(c) ∧ o(n) = 1

yld(lbc:n:get, (c, o, l)) = R if n 6∈ dom(c) ∨ o(n) 6= 1

yld(rotate, (c, o, l)) = T

yld(shift, (c, o, l)) = T

yld(m, (c, o, l)) = R if m 6∈ Mlbc ∪ {rotate, shift}
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(c) and owner (o) of the existing Boolean cells, and the number of threads, multi-threads or hosts it is
dealing with (l). The functionsrotate, shift : O × N → O used in Table 18 are defined as follows:

dom(rotate(o, l)) = dom(o) ,

rotate(o, l)(n) = 0 ,

rotate(o, l)(n) = l ,

rotate(o, l)(n) = o(n)− 1 ,

dom(shift(o, l)) = dom(o) ;

shift(o, l)(n) = 0 , if o(n) = 0 ;

shift(o, l)(n) = 0 , if o(n) = 1 ;

shift(o, l)(n) = o(n)− 1 , if 1 < o(n) ≤ l .

We use the following notation for functions:[ ] for the empty function;[d 7→ r] for the functionf with
dom(f) = {d} such thatf(d) = r; f ⊕ g for the functionh with dom(h) = dom(f) ∪ dom(g) such
that for alld ∈ dom(h), h(d) = f(d) if d 6∈ dom(g) andh(d) = g(d) otherwise; andf � D for the
functiong with dom(g) = dom(f) \D such that for alld ∈ dom(g), g(d) = f(d).

11. On Strategic Interleaving versus Arbitrary Interleaving

In Section 1, we have made the following remarks about deadlocks to illustrate why arbitrary interleav-
ing is not the appropriate intuition when dealing with multi-threading: (a) whether the interleaving of
certain threads leads to deadlock depends on the deterministic interleaving strategy used; (b) sometimes
deadlock takes place with a particular deterministic interleaving strategy whereas arbitrary interleaving
would not lead to deadlock, and vice versa. In this section, we support these remarks by means of an
example using the localizable Boolean cells described in Section 10.

Consider the multi-thread with local service described by

‖p(〈p.lbc:1:create ◦ S〉 y

〈p.lbc:1:claim ◦ p.lbc:1:set:F ◦ p.lbc:1:release ◦ S〉 y

〈p.lbc:1:claim ◦ p.lbc:1:set:T ◦ p.lbc:1:release ◦ S〉) /p LBC

We can easily derive that this term equalstau8 ◦D.2 In other words, in the multi-thread with local service
described above, cyclic interleaving does lead to deadlock. Now consider the simple variation of cyclic
interleaving where each thread in the thread vector is given three consecutive turns. This is the instance
of cyclic interleaving with step counting specified in [10] fork = 3. With this interleaving strategy, the
above term equalstau14◦S. In other words, in the multi-thread with local service described above, cyclic
interleaving with step counting does not lead to deadlock if the number of consecutive turns is three.

Arbitrary interleaving introduces nondeterministic choices. For example, after actionp.lbc:1:create
of the first thread and actionp.lbc:1:claim of the second thread have been performed, there is a nonde-
terministic choice between performing actionp.lbc:1:set:F of the second thread and performing action
p.lbc:1:claim of the third thread. Thread-service composition may eliminate options in nondeterministic
choices. For example, in the above-mentioned nondeterministic choice, the option to perform action
p.lbc:1:claim of the third thread is eliminated because the serviceLBC blocks it. Indeed, after thread-
service composition withLBC , there is one option left: the option to perform actionp.lbc:1:set:F of the
second thread.
2For each termt of TAtsc,gt,dp,eh

fm +REC and eachn ≥ 0, the termtaun(t) is defined by induction onk as follows:tau0(t) = t
andtaun+1(t) = tau ◦ taun(t).



22 J.A. Bergstra and C.A. Middelburg / Thread Algebra with Multi-Level Strategies

A deterministic interleaving strategy just gives turns to threads in the thread vector. It may happen
that a turn is given to a thread that happens to deadlock after thread-service composition. With arbitrary
interleaving such deadlocks do not take place, wherever there is an option left to perform an action.
Consequently, in the multi-thread with local service described above, arbitrary interleaving does not lead
to deadlock.

12. ACP with Conditions

In Section 13, we will investigate the connections of threads and services with the processes considered
in ACP-style process algebras. We will focus on ACPc, an extension of ACP with conditions introduced
in [12]. In this section, we shortly review ACPc. For a comprehensive overview, the reader is referred
to [12, 13]. The axioms of ACPc are given in Appendix A.

ACPc is an extension of ACP with conditional expressions in which the conditions are taken from a
Boolean algebra. ACPc has two sorts: (i) the sortP of processes, (ii) the sortC of conditions. In ACPc,
it is assumed that the following has been given: a fixed but arbitrary setA (of actions), withδ 6∈ A, a
fixed but arbitrary setCat (of atomic conditions), and a fixed but arbitrary commutative and associative
function | : A ∪ {δ} × A ∪ {δ} → A ∪ {δ} such thatδ | a = δ for all a ∈ A ∪ {δ}. The function| is
regarded to give the result of synchronously performing any two actions for which this is possible, and
to beδ otherwise. Henceforth, we writeAδ for A ∪ {δ}.

Let p andq be closed terms of sortP, ζ andξ be closed term of sortC, a ∈ A, H ⊆ A, andη ∈ Cat.
Intuitively, the constants and operators to build terms of sortP that will be used to define the processes
to which threads and services correspond can be explained as follows:

• δ can neither perform an action nor terminate successfully;

• a first performs actiona unconditionally and then terminates successfully;

• p + q behaves either asp or asq, but not both;

• p · q first behaves asp, but whenp terminates successfully it continues asq;

• ζ :→ p behaves asp under conditionζ;

• p ‖ q behaves as the process that proceeds withp andq in parallel;

• ∂H(p) behaves the same asp, except that actions fromH are blocked.

Intuitively, the constants and operators to build terms of sortC that will be used to define the processes
to which threads and services correspond can be explained as follows:

• η is an atomic condition;

• ⊥ is a condition that never holds;

• > is a condition that always holds;

• −ζ is the opposite ofζ;
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• ζ t ξ is eitherζ or ξ;

• ζ u ξ is bothζ andξ.

The remaining operators of ACPc are of an auxiliary nature. They are needed to axiomatize ACPc.
We write

∑
i∈I pi, whereI = {i1, . . . , in} andpi1 , . . . , pin are terms of sortP, for pi1 + . . . + pin .

The convention is that
∑

i∈I pi stands forδ if I = ∅. We use the notationp C ζ B q, wherep andq are
terms of sortP andζ is a term of sortC, for ζ :→ p +−ζ :→ q.

A process is considered definable over ACPc if there exists a guarded recursive specification over
ACPc that has that process as its solution.

A recursive specificationover ACPc is a set of equationsE = {X = tX | X ∈ V }, whereV is
a set of variables and eachtX is a term of sortP that only contains variables fromV . Let t be a term
of sortP containing a variableX. An occurrence ofX in t is guardedif t has a subterm of the form
a · t′ containing this occurrence ofX. A recursive specification over ACPc is guardedif all occurrences
of variables in the right-hand sides of its equations are guarded or it can be rewritten to such a recursive
specification using the axioms of ACPc and the equations of the recursive specification. We only consider
models of ACPc in which guarded recursive specifications have unique solutions.

For each guarded recursive specificationE and each variableX that occurs as the left-hand side of
an equation inE, we introduce a constant of sortP standing for the unique solution ofE for X. This
constant is denoted by〈X|E〉. The axioms for guarded recursion are also given in Appendix A.

In order to express thread-service composition on the ACPc-definable processes corresponding to
threads and services, we need an extension of ACPc with renaming operatorsρr like the ones introduced
for ACP in [7]. Intuitively, the action renaming operatorρr, wherer : A → A, can be explained as
follows: ρr(p) behaves asp with each action replaced according tor. The axioms for action renaming
are also given in Appendix A.

In order to explain the connection of threads and services with ACPc fully, we need an extension of
ACPc with the condition evaluation operatorsCEh introduced in [12]. Intuitively, the condition evalua-
tion operatorCEh, whereh is a function on conditions that is preserved by⊥, >, −, t andu, can be
explained as follows:CEh(p) behaves asp with each condition replaced according toh. The important
point is that, ifh(ζ) ∈ {⊥,>}, all subterms of the formζ :→ q can be eliminated. The axioms for
condition evaluation are also given in Appendix A.

13. Connections of Threads and Services with ACPc

In this section, we show that threads and services can be viewed as processes that are definable over
ACPc, the extension of ACP with conditions reviewed in Section 12, and that thread-service composition
on those processes can be expressed in terms of operators of ACPc with renaming.

For that purpose,A, | andCat are taken as follows:

A = {sf (d) | f ∈ F , d ∈M∪ {?m | m ∈M} ∪ {??m | m ∈M} ∪R}
∪ {rf (d) | f ∈ F , d ∈M∪ {?m | m ∈M} ∪ {??m | m ∈M} ∪R}
∪ {stop, stop, stop∗, i} ;
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Table 20. Definition of translation function for threads

[[X]] = X ,

[[S]] = stop ,

[[D]] = i · δ ,
[[t1 E tau D t2]] = i · i · [[t1]] ,
[[t1 E f.mD t2]] = sf (m) · (rf (T) · [[t1]] + rf (F) · [[t2]]) ,
[[t1 E t?mD t2]] = st(?m) · (rt(T) · [[t1]] + rt(F) · [[t1]]) ,
[[t1 E f?mD t2]] =

sf (?m) · (rf (T) · [[t1]] + rf (F) · [[t1]] + rf (B) · [[t2]]) if f 6= t ,

[[t1 E f??mD t2]] =

sf (??m) · (rf (T) · [[t1]] + rf (F) · [[t1]] + rf (B) · [[t1]] + rf (R) · [[t2]]) ,
[[〈X|E〉]] = 〈X|{X = [[t]] | X= t ∈ E}〉 .

for all a ∈ A, f ∈ F andd ∈M∪ {?m | m∈M} ∪ {??m | m∈M} ∪R:

sf (d) | rf (d) = i ,

sf (d) | a = δ if a 6= rf (d) ,

a | rf (d) = δ if a 6= sf (d) ,

i | a = δ ;

stop | stop = stop∗ ,

stop | a = δ if a 6= stop ,

a | stop = δ if a 6= stop ,

and
Cat = {H(〈m〉) = r | H ∈ RF ,m ∈M, r ∈ R} ∪ {f = g | f, g ∈ F} .

We proceed with relating threads and services to processes definable over ACPc. First of all, we
define a function[[ ]] that gives a translation of terms of the thread algebra developed in Sections 3–5 to
terms of ACPc. The translation is restricted to the terms in which the operators for cyclic interleaving,
deadlock at termination, and thread-service composition do not occur. It is easy to prove by induction
that each terms of the thread algebra is derivably equal to a term in which these operators do not occur.
Hence, the restriction does not cause any loss of generality. The function[[ ]] is defined inductively by the
equations given in Table 20. In Section 6, postconditional composition with delay and postconditional
composition with exception handling are defined over the thread algebra developed in Sections 3–5.
Thus, the translation of a term of one of the additional forms (t1 E f !m D t2, t1 E f.m [t2]D t3 or
t1 E f !m [t2]D t3) equals the translation of a term of the thread algebra developed in Sections 3–5:

[[t1 E f !m D t2]] = [[〈X|{X = (t1 E f.m D t2) E f?m D X}〉]] ,

[[t1 E f.m [t2]D t3]] = [[(t1 E f.m D t3) E f??m D t2]] ,

[[t1 E f !m [t2]D t3]] =

[[〈X|{X = ((t1 E f.m D t3) E f?m D X) E f??m D t2}〉]] .

Secondly, we define functions[[ ]]f , one for eachf ∈ F , that give translations of the services intro-
duced in Section 4 to terms of ACPc. The translation of a service depends upon the focus associated with
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Table 21. Definition of translation function for services

[[H]]f = 〈P f
H |E〉

whereE consists of an equation

P f
H′ =

∑
m∈M

(rf (m) · sf (H ′(〈m〉)) · (P f
∂

∂m
H′ CH ′(〈m〉)=T tH ′(〈m〉)=F B P f

H′)

+ (rf (?m) + rf (??m)) · sf (H ′(〈m〉)) · P f
H′) + stop

for eachH ′ ∈ RF

Table 22. Extension of translation function for threads to thread-service composition

[[t /f H]] = ρr(∂Cf ([[t]] ‖ [[H]]f ))

wherer is such that

r(stop∗) = stop r(a) = a if a 6= stop∗

andCf is defined by

Cf = {sf (d) | d ∈M∪ {?m | m ∈M} ∪ {??m | m ∈M} ∪R}
∪ {rf (d) | d ∈M∪ {?m | m ∈M} ∪ {??m | m ∈M} ∪R}
∪ {stop, stop}

it. If focus f is associated with serviceH, it will only process basic actions that are of the formf.m. In
that case,[[H]]f is the correct translation. For everyf ∈ F , the function[[ ]]f is defined in Table 21.

Notice that ACP is sufficient for the translation of threads: no conditional expressions occur in the
translations. For the translation of services, we have used the full power of ACPc.

Next, we relate thread-service composition to operators of ACPc with renaming. That is, we extend
the translation function[[ ]] to terms in which thread-service composition does occur. The additional
equation for this extension is given in Table 22.

The translations given above preserve the closed substitution instances of all axioms in which the op-
erators for cyclic interleaving and deadlock at termination do not occur, i.e. axioms T1 and TSC1–TSC14
(see Tables 1, 8 and 11). Roughly speaking, this means that the translations of the closed substitution
instances of these axioms are derivable from the axioms of ACPc. Axioms TSC1–TSC14 are for the
greater part conditional equations. The conditions concerned take part in the translation as well. The
conditions are looked upon as propositions with the conditions of the formsH(〈m〉) = r andf = g, i.e.
the elements ofCat, as propositional variables.

We define a function[[ ]] that gives a translation of conditional equations of the thread algebra devel-
oped in Sections 3–5 to equations of ACPc. For convenience, unconditional equations are considered to
be conditional equations with conditionT. The function[[ ]] is defined as follows:

[[t1 = t2 if φ]] = CEhΦ∪{φ}([[t1]]) = CEhΦ∪{φ}([[t2]]) ,

where
Φ = {

∧
r∈R ¬ (H(〈m〉) = r ∧

∨
r′∈R\{r} H(〈m〉) = r′) | H∈RF ,m∈M}

∪ {
∧

f∈F f = f ∧
∧

f∈F
∧

f ′∈F\{f} ¬ f = f ′} .
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HerehΨ is a function on conditions of ACPc that preserves⊥, >, −, t andu and satisfieshΨ(α) = >
iff α corresponds to a proposition derivable fromΨ andhΨ(α) = ⊥ iff −α corresponds to a proposition
derivable fromΨ.3

Theorem 13.1. (Preservation Theorem)
Let p = q if φ be a closed substitution instance ofT1, TSC1, TSC2, . . . , TCS13 or TSC14. Then
[[p = q if φ]] is derivable from ACPc.

Proof:
The proof is straightforward. We outline the proof for axiom TSC5. The other axioms are proved in a
similar way. In the outline of the proof for axiom TSC5,E, r andCf are as in Tables 21 and 22, andΦ
is as above. We take an arbitrary closed substitution instance of TSC5, say

(p E f.m D q) /f H = tau ◦ (p /f
∂

∂mH) if H(〈m〉) = T .

The following equation about the translation of the left-hand side of the closed substitution instance of
TSC5 is derivable from the axioms of ACPc and the axioms for guarded recursive specifications over
ACPc:

ρr(∂Cf
(sf (m) · (rf (T) · [[p]] + rf (F) · [[q]]) ‖ 〈P f

H |E〉))
= i · i · (H(〈m〉) = T :→ ρr(∂Cf

([[p]] ‖ 〈P f
∂

∂m
H
|E〉))

+ H(〈m〉) = F :→ ρr(∂Cf
([[q]] ‖ 〈P f

∂
∂m

H
|E〉))) .

The following equation is derivable from this equation and the axioms for condition evaluation:

CEΦ∪{H(〈m〉)=T}(ρr(∂Cf
(sf (m) · (rf (T) · [[p]] + rf (F) · [[q]]) ‖ 〈P f

H |E〉)))
= i · i · CEΦ∪{H(〈m〉)=T}(ρr(∂Cf

([[p]] ‖ 〈P f
∂

∂m
H
|E〉))) .

The following equation about the translation of the right-hand side of the closed substitution instance of
TSC5 is derivable from the axioms for condition evaluation:

CEΦ∪{H(〈m〉)=T}(i · i · ρr(∂Cf
([[p]] ‖ 〈P f

∂
∂m

H
|E〉)))

= i · i · CEΦ∪{H(〈m〉)=T}(ρr(∂Cf
([[p]] ‖ 〈P f

∂
∂m

H
|E〉))) .

Hence, the evaluated translation of the the left-hand side equals the evaluated translation of the the right-
hand side. ut

The statement that threads and services can be viewed as processes that are definable over ACPc is
justified by the fact that the translations given above preserve the closed substitution instances of all
axioms concerned.

Suppose that we could also translate terms in which the operators for cyclic interleaving and deadlock
at termination do occur such that the closed substitution instances of axioms CSI1–CSI7 and S2D1–S2D6

3Here we use “corresponds to” for the wordy “is isomorphic to the equivalence class with respect to logical equivalence of”
(see also [12]).
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(see Tables 5 and 10) are preserved. This would give an even stronger justification. Moreover, the trans-
lation concerned would imply that we could apply the SRM-technique described in [4] to obtain a model
of the thread algebra developed in Sections 3–5 from each minimal model of ACPc. The generaliza-
tion of the SRM-technique described in [9], which is not restricted to minimal models, would make a
first-order extension of ACPc necessary.

However, we are not able to extend the translation function[[ ]] to terms in which the operator for
cyclic interleaving occurs. The operator for cyclic interleaving asks much more than the operator for
thread-service composition. Basically, more advanced conditions than the conditions that can be ex-
pressed with the retrospection operator and the last action constants added to ACPc in [12] should be
added to ACPc. A sort of sequences of processes, with constants and operators belonging to it, should
be added as well.

14. Conclusions

We have presented an algebraic theory of threads and multi-threads based on multi-level strategic inter-
leaving for the simple strategy of cyclic interleaving. The other interleaving strategies treated in [10]
can be adapted to the setting of multi-level strategic interleaving in a similar way. We have also pre-
sented a reasonable though simplified formal representation schema of the design of systems that consist
of several multi-threaded programs on various hosts in different networks. By dealing with delays and
exceptions, this schema is sufficiently expressive to formalize mechanisms like Java pipes (for commu-
nication between threads) and Unix sockets (for communication between multi-threads, called processes
in Unix jargon, and communication between hosts). Such mechanisms calls for services in which thread
identity management is needed. In the primary theory, multi-level strategic interleaving does not provide
support of thread identity management by services. We have presented an adaptation of the primary
theory that does provide support thereof. We have shown the connections of threads and services with
processes that are definable over ACPc, an extension of ACP with conditions introduced in [12], as well.

The work reported upon in this paper confirms us in our opinion that, in computer science, it always
turns out to be hard to get at a formalization of what is considered intuitively to be simple. This is a state
of affairs which by itself is responsible for many of the problems we are facing in computer science.

To the best of our knowledge, there is no other work on the theory of threads and multi-threads
that is based on strategic interleaving. Although a deterministic interleaving strategy is always used
for thread interleaving, it is the practice in work in which the semantics of multi-threated programs is
involved to look upon thread interleaving as arbitrary interleaving, see e.g. [1, 18, 21]. Even if it would be
appropriate to look upon thread interleaving as arbitrary interleaving, it is likely that a separate algebraic
theory of threads and multi-threads would be more convenient than extensions of process algebras based
on arbitrary interleaving, such as ACP [6], CCS [20] and CSP [17]. The connections of threads and
services with processes that are definable over ACPc produce evidence for this surmise. The translations
show that describing threads and services as general processes is cumbersome. Moreover, reasoning
about threads and services as general processes requires a multiple of elementary proof steps.

One of the options for future work is to formalize mechanisms like Java pipes and Unix sockets using
the thread algebra developed in this paper. Another option for future work is to adapt some interleaving
strategies from [10], other than cyclic interleaving, to the setting of multi-level strategic interleaving. Still
another option for future work is to generalize the thread algebra developed in this paper by considering
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Table 23. Axioms of ACPc(a, b, c ∈ Aδ)

x+ y = y + x A1

(x+ y) + z = x+ (y + z) A2

x+ x = x A3

(x+ y) · z = x · z + y · z A4

(x · y) · z = x · (y · z) A5

x+ δ = x A6

δ · x = δ A7

x ‖ y = x bb y + y bb x+ x | y CM1

a bb x = a · x CM2

a · x bb y = a · (x ‖ y) CM3

(x+ y) bb z = x bb z + y bb z CM4

a · x | b = (a | b) · x CM5

a | b · x = (a | b) · x CM6

a · x | b · y = (a | b) · (x ‖ y) CM7

(x+ y) | z = x | z + y | z CM8

x | (y + z) = x | y + x | z CM9

a | b = b | a C1

(a | b) | c = a | (b | c) C2

δ | a = δ C3

∂H(a) = a if a 6∈ H D1

∂H(a) = δ if a ∈ H D2

∂H(x+ y) = ∂H(x) + ∂H(y) D3

∂H(x · y) = ∂H(x) · ∂H(y) D4

> :→ x = x GC1

⊥ :→ x = δ GC2

φ :→ δ = δ GC3

φ :→ (x+ y) = φ :→ x+ φ :→ y GC4

φ :→ x · y = (φ :→ x) · y GC5

φ :→ (ψ :→ x) = (φ u ψ) :→ x GC6

(φ t ψ) :→ x = φ :→ x+ ψ :→ x GC7

(φ :→ x) bb y = φ :→ (x bb y) GC8

(φ :→ x) | y = φ :→ (x | y) GC9

x | (φ :→ y) = φ :→ (x | y) GC10

∂H(φ :→ x) = φ :→ ∂H(x) GC11

φ t ⊥ = φ BA1

φ t −φ = > BA2

φ t ψ = ψ t φ BA3

φ t (ψ u χ) = (φ t ψ) u (φ t χ) BA4

φ u > = φ BA5

φ u −φ = ⊥ BA6

φ u ψ = ψ u φ BA7

φ u (ψ t χ) = (φ u ψ) t (φ u χ) BA8

a fixed but arbitrary interleaving strategy with certain properties instead of cyclic interleaving. In [11],
we have already introduced such a parametrized theory in a setting where only single-level strategic
interleaving is considered.

A. Axioms of ACPc

The axioms of ACPc are given in Table 23. The axioms for guarded recursive specifications over ACPc

are given in Table 24. The additional axioms for condition evaluation and action renaming are given in
Table 25 and Table 26, respectively. In Table 24, we use the following notation. LetE be a recursive
specification over ACPc, and lett be a term of ACPc. Then we writeV(E) for the set of all variables
that occur on the left-hand side of an equation inE, and we write〈t|E〉 for t with, for all X ∈ V(E), all
occurrences ofX in t replaced by〈X|E〉.
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Table 24. Axioms for recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP

E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

Table 25. Axioms for condition evaluation (a ∈ Aδ, η ∈ Cat, η′ ∈ Cat ∪ {⊥,>})

CEh(a) = a CE1

CEh(a · x) = a · CEh(x) CE2

CEh(x+ y) = CEh(x) + CEh(y) CE3

CEh(φ :→ x) = CEh(φ) :→ CEh(x) CE4

CEh(CEh′(x)) = CEh◦h′(x) CE5

CEh(⊥) = ⊥ CE6

CEh(>) = > CE7

CEh(η) = η′ if h(η) = η′ CE8

CEh(−φ) = −CEh(φ) CE9

CEh(φ t ψ) = CEh(φ) t CEh(ψ) CE10

CEh(φ u ψ) = CEh(φ) u CEh(ψ) CE11

Table 26. Axioms for action renaming (a ∈ A)

ρr(δ) = δ ARN1

ρr(a) = r(a) ARN2

ρr(a · x) = r(a) · ρr(x) ARN3

ρr(x+ y) = ρr(x) + ρr(y) ARN4

ρr(φ :→ x) = φ :→ ρr(x) ARN5
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