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1. Introduction

A thread is the behavior of a deterministic sequential program under execution. Multi-threading refers to
the concurrent existence of several threads in a program under execution. Multi-threading is the dominant
form of concurrency provided by recent object-oriented programming languages such as Java [3] and
C#[16]. Arbitrary interleaving, on which theories about concurrent processes such as ACP [6] are based,
is not the appropriate intuition when dealing with multi-threading. In the case of multi-threading, some
deterministic interleaving strategy is used. In [10], we introduced a number of plausible deterministic
interleaving strategies for multi-threading. We also proposed to use the phrase strategic interleaving for
the more constrained form of interleaving obtained by using such a strategy.

The following remarks about deadlocks illustrate why arbitrary interleaving is not the appropriate
intuition when dealing with multi-threading: (a) whether the interleaving of certain threads leads to
deadlock depends on the deterministic interleaving strategy used; (b) sometimes deadlock takes place
with a particular deterministic interleaving strategy whereas arbitrary interleaving would not lead to
deadlock, and vice versa.

The strategic interleaving of a thread vector constitutes a multi-thread. In conventional operating
system jargon, a multi-thread is called a process. Several multi-threads may exist concurrently on the
same machine. Multi-processing refers to the concurrent existence of several multi-threads on a machine.
Such machines may be hosts in a network, and several host behaviors may exist concurrently in the same
network. And so on and so forth. Strategic interleaving is also present at these other levels.

In the current paper, we extend the theory developed so far with features to cover multi-level strategic
interleaving. An axiomatic description of the features concerned, as well as a structural operational
semantics, is provided. There is a dependence on the interleaving strategy considered. We extend the
theory only for the simplest case: cyclic interleaving. Other plausible interleaving strategies are treated
in [10]. They can also be adapted to the setting of multi-level strategic interleaving.

Threads proceed by performing steps, in the sequel called basic actions, in a sequential fashion.
Performing a basic action is taken as making a request to a certain service provided by the execution
environment to process a certain command. The service produces a reply value which is returned to the
thread concerned. A service may be local to a single thread, local to a multi-thread, local to a host, or
local to a network. In this paper, we introduce thread-service composition in order to bind certain basic
actions of a thread to certain services.

Both threads and services look to be special cases of a more general notion of process, and thread-
service composition looks to be a special kind of parallel composition of processes. Therefore, it is
interesting to know the connections of threads and services with processes as considered in theories
about concurrent processes such as ACP. In this paper, we show that threads and services can be viewed
as processes that are definable over an extension of ACP with conditions introduced in [12], and that
thread-service composition on those processes can be expressed in terms of operators of that extension.

The thread-service dichotomy made in this paper is useful for the following reasons: (a) for services,

a state-based description is generally more convenient than an action-based description whereas it is the
other way round for threads; (b) the interaction between threads and services is of an asymmetric nature.
Evidence of (a) and (b) is produced by the established connections of threads and services with processes
as considered in the extension of ACP with conditions.

We demonstrate that the theory developed in this paper may be of use by employing it to develop a
simplified, formal representation schema of the design of systems that consist of several multi-threaded
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programs on various hosts in different networks and to verify a property of all systems designed according
to that schema. We propose to use the term formal design prototype for such a schema. The verified
property is laid down in a simulation lemma, which states that a finite thread consisting of basic actions
that will not be processed by any available service is simulated by any instance of the presented schema
that contains the thread in one of its thread vectors.

Setting up a framework in which formal design prototypes for systems that consist of several multi-
threaded programs on various hosts in different networks can be developed and general properties of
systems designed according to those formal design prototypes can be verified is one of the objectives
with which we developed the theory presented in this paper.

The main assumption made in the theory presented in this paper is that strategic interleaving is present
at all levels of such systems. This is a drastic simplification, as a result of which intuition may break
down. We believe however that some such simplification is needed to obtain a manageable theory about
the behaviour of such systems — and that the resulting theory will sometimes be adequate and sometimes
be inadequate. Moreover, cyclic interleaving is a simplification of the interleaving strategies actually
used for multi-threading. Because of the complexity of those strategies, we consider a simplification
like this one desirable to start with. It leads to an approximation which is sufficient in the case where
the property laid down in the simulation lemma mentioned above is verified. The essential point turns
out to be that the interleaving strategy used at each level is fair, i.e. that there will always come a next
turn for all active threads, multi-threads, etc. The simulation lemma goes through for all fair interleaving
strategies: the proof only depends on the use of multi-level cyclic interleaving in the part where in point
of fact its fairness is shown.

When a service that is local to a multi-thread receives a request from the multi-thread, it often needs
to know from which of the interleaved threads the request originates. This can be achieved by informing
the service whenever threads succeed each other by interleaving and whenever a thread drops out by
termination or deadlock. Similar remarks apply to services that are local to hosts and networks. In
this paper, we describe a way in which multi-level strategic interleaving can be adapted such that those
services are properly informed. We also describe in detail a service that needs such support of thread
identity management, using a state-based approach to describe services. Moreover, we use the service
concerned in an example supporting the remarks about deadlocks made early in the introduction.

Thread algebra with multi-level strategic interleaving is a design on top of BPPA (Basic Polarized
Process Algebra) [8, 5]. BPPA is far less general than ACP-style process algebras and its design focuses
on the semantics of deterministic sequential programs. The semantics of a deterministic sequential pro-
gram is supposed to be a polarized process. Polarization is understood along the axis of the client-server
dichotomy. Basic actions in a polarized process are either requests expecting a reply or service offerings
promising a reply. Thread algebra may be viewed as client-side polarized process algebra because all
threads are viewed as clients generating requests for services provided by their environment.

The structure of this paper is as follows. After a review of BPPA (Section 2), we extend it to a basic
thread algebra with cyclic interleaving, but without any feature for multi-level strategic interleaving (Sec-
tion 3). Next, we extend this basic thread algebra with thread-service composition (Section 4) and other
features for multi-level strategic interleaving (Section 5). Following this, we discuss how two additional
features can be expressed (Section 6) and give a formal representation schema of the design of systems
that consist of several multi-threaded programs on various hosts in different networks (Section 7). Then,
we enhance multi-level strategic interleaving with support of thread identity management by services
(Section 8). Thereupon, we introduce a state-based approach to describe services (Section 9) and use
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Table 1. Axiom of BPPA

rdtau>y=x Jdtaubax TI1

it to describe a service in which thread identity management is needed (Section 10). Next, we support
the remarks about deadlocks made early in the introduction by means of an example using that service
(Section 11). After that, we review an extension of ACP with conditions introduced in [12] (Section 12)
and show the connections of threads and services with processes that are definable over this extension of
ACP (Section 13). Finally, we make some concluding remarks (Section 14).

This paper is a revision and extension of [14].

2. Basic Polarized Process Algebra

In this section, we review BPPA (Basic Polarized Process Algebra), a form of process algebra which
is tailored to the use for the description of the behavior of deterministic sequential programs under
execution.

In BPPA, it is assumed that there is a fixed but arbitrary finite sébsfc actions4 with tau ¢ A.
We write Ay, for AU {tau}. BPPA has the following constants and operators:

e thedeadlockconstanD;
e theterminationconstant;
e for eacha € A:.,, a binarypostconditional compositiooperator. <a> _ .

We use infix notation for postconditional composition. We introdacigon prefixingas an abbreviation:
a o p, wherep is a term of BPPA, abbreviates<l a > p.

The intuition is that each basic action is taken as a command to be processed by the execution
environment. The processing of a command may involve a change of state of the execution environment.
At completion of the processing of the command, the execution environment produces a reply value.
This reply is eithel or F and is returned to the polarized process concerned» artlg be closed terms
of BPPA. Thenp < a ™ ¢ will proceed a% if the processing ofi leads to the replyl’ (called a positive
reply), and it will proceed as if the processing ot leads to the reply (called a negative reply). If
the reply is used to indicate whether the processing was successful, a useful convention is to indicate
successful processing by the reflyand unsuccessful processing by the replyhe actiontau plays a
special role. Its execution will never change any state and always produces a positive reply.

BPPA has only one axiom. This axiom is given in Table 1. Using the abbreviation introduced above,
axiom T1 can be written as follows: <tau ™ y = tau o .

A recursive specificationver BPPA is a set of equatiois= {X =tx | X € V'}, whereV is a set
of variables and eadty is a term of BPPA that only contains variables fromWe write V ( E) for the set
of all variables that occur on the left-hand side of an equatidii.ihett be a term of BPPA containing a
variableX. Then an occurrence & in ¢ is guardedif ¢ has a subterm of the forth<l a > ¢” containing
this occurrence oK. A recursive specificatioly is guardedif all occurrences of variables in the right-
hand sides of its equations are guarded or it can be rewritten to such a recursive specification using the
equations ofE. We are only interested in models of BPPA in which guarded recursive specifications
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Table 2.  Axioms for guarded recursion

(X|E) = (tx|E) if X=tx € E RDP
E= X =(X|E) if X € V(E) RSP

Table 3. Axioms for projection

mo(z) =D PO
m+1(S) =S P1
Tns1(D) = D P2
Tnt1(z <a>y) =mp(z) <a> ma(y) P3
(Apzom(@) =m0(y)) = =y AIP

have unique solutions, such as the projective limit model of BPPA presented in [5, 8]. A thread that is
the solution of a finite guarded recursive specification over BPPA is caliettexstatethread.

We extend BPPA with guarded recursion by adding constants for solutions of guarded recursive spec-
ifications and axioms concerning these additional constants. For each guarded recursive speéification
and eachX € V(E), we add a constant standing for the unique solutio& dbr X to the constants of
BPPA. The constant standing for the unique solutiotdor X is denoted by X |E). Moreover, we
use the following notation. Létbe a term of BPPA and’ be a guarded recursive specification. Then we
write (t|E') for ¢ with, for all X € V(E), all occurrences oX in ¢ replaced by X |E). We add the ax-
ioms for guarded recursion given in Table 2 to the axioms of BPPA. In this tAhley and F stand for
an arbitrary variable, an arbitrary term of BPPA and an arbitrary guarded recursive specification, respec-
tively. Side conditions are added to restrict the variables, terms and guarded recursive specifications for
which X, tx andE stand. The additional axioms for guarded recursion are known as the recursive defi-
nition principle (RDP) and the recursive specification principle (RSP). The equatidids) = (tx|E)
for a fixed E' express that the constantX | ) make up a solution of2. The conditional equations
E = X = (X|E) express that this solution is the only one.

We often writeX for (X |FE) if E'is clear from the context. It should be borne in mind that, in such
cases, we us& as a constant.

Henceforth, we will write BPPAA) for BPPA with the set of basic actiond fixed to be the set
A, and BPPAA)+REC for BPPAA) extended with the constants for solutions of guarded systems of
recursion equations over BPPA and the axioms RDP and RSP from Table 2.

The projective limit characterization of process equivalence on threads is based on the notion of
a finite approximation of depth. When for alln these approximations are identical for two given
threads, both threads are considered identical. This is expressed by the infinitary conditional equation
AIP (Approximation Induction Principle) given in Table 3. Following [5, 8], approximation of depth
phrased in terms of a unapyojectionoperatorr, (- ). The projection operators are defined inductively
by means of the axioms PO-P3 given in Table 3. In this table, and all subsequent tables with axioms in
which a occurs,a stands for an arbitrary basic action frofs,,. It happens that RSP follows from AIP.

As mentioned above, the behavior of a polarized process depends upon its execution environment.
Each basic action performed by the polarized process is taken as a command to be processed by the
execution environment. At any stage, the commands that the execution environment can accept depend
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only on its history, i.e. the sequence of commands processed before and the sequence of replies produced
for those commands. When the execution environment accepts a command, it will produce a positive
reply or a negative reply. Whether the reply is positive or negative usually depends on the execution
history. However, it may also depend on external conditions.

In the structural operational semantics, we represent an execution environment by a function
(Ax{T,F})* — P(A x {T,F}) that satisfies the following condition(a,b) & p(a) = p(a ~
{(a,b))) =0 foralla € A, bec {T,F}anda € (A x {T,F})*.! We write€ for the set of all those func-
tions. Given an execution environment £ and a basic action € A, thederivedexecution environ-
ment ofp after processing with apositivereply, Written%p, is defined bya@:p(a) =p({(a,T)) ~a);
and thederivedexecution environment gé after processing with a negativereply, written %‘ o, IS
defined by p(a) = p({(a, F)) ~a).

The following transition relations on closed terms are used in the structural operational semantics of
BPPA:

e abinary relation_, p) = (_, p) for eacha € A, andp, p’' € &;
e aunary relation(_, p)| for eachp € &;
e aunary relation(_, p)1 for eachp € £.

The three kinds of transition relations are called #ution step termination anddeadlockrelations,
respectively. They can be explained as follows:

e (p,p) = (p/,p'): in execution environment, procesy is capable of first performing action
and then proceeding as procgs@ execution environment';

e (p,p)l: in execution environment, proces® is capable of terminating successfully;

e (p,p)7: in execution environment, process is neither capable of performing an action nor
capable of terminating successfully.

The structural operational semantics of BPPA extended with projection and recursion is described by
the transition rules given in Table 4. In this table and all subsequent tables with transition rules in which
a occurs,a stands for an arbitrary action from.,. We write (¢|E') for ¢ with, for all X that occur on
the left-hand side of an equation i\ all occurrences oK in ¢ replaced by X |E).

Bisimulation equivalence is defined as follows bisimulationis a symmetric binary relatiol on
closed terms such that for all closed terprendg:

e if B(p,q) and(p, p) % (p', p'), then there is @ such thatlq, p) = (¢, p') andB(¢', ¢');
o if B(p,q)and(p, p)!|, then(q, p)|;

o if B(p,q) and(p, p)T, then(g, p)T.

*We write () for the empty sequencéd) for the sequence having as sole element, and ~ 3 for the concatenation of
sequences andj. We assume that the identities~ () = () ~ a = « hold.



J.A. Bergstra and C.A. Middelburg / Thread Algebra with Multi-Level Strategies 7

Table 4. Transition rules for BPPA with projection and recursion

— (a,F) € p({))
(xQaby,p) = (2,55 P) (@<day,p) > (y, 2 p) g

(x daly,p) (z Stau D>y, p) 2% (z, p)

L p) 5 (2l p) (z, )l (z, p)1
(Tnt1(z), p) = (mn(z), p') (mnt1(x), p) ] (mn+1(z), )1 (mo(x), p)T
R (1, T (LY (S
(X|E),p) = (a,p) (X|E),p) | ({XIE), p)1

Two closed term® and g arebisimulation equivalentwritten p < ¢, if there exists a bisimulatiof
such thatB(p, q).

Bisimulation equivalence is a congruence with respect to the postconditional composition operators
and the projection operators. This follows immediately from the fact that the transition rules for these
operators are in the path format (see e.qg. [2]). The axioms given in Tables 1 and 3 are sound with respect
to bisimulation equivalence.

3. Basic Thread Algebra with Foci and Methods

In this section, we introduce a thread algebra without features for multi-level strategic interleaving. Such
features will be added in subsequent sections. It is a design on top of BPPA.

In [8], its has been outlined how and why polarized processes are a natural candidate for the spec-
ification of the semantics of deterministic sequential programs. Assuming that a thread is a process
representing a deterministic sequential program under execution, it is reasonable to view all polarized
processes as threads. A thread vector is a sequence of threads.

Strategic interleaving operators turn a thread vector of arbitrary length into a single thread. This sin-
gle thread obtained via a strategic interleaving operator is also called a multi-thread. Formally, however
both threads and multi-threads are polarized processes. In this paper, we only cover the simplest inter-
leaving strategy, namelgyclic interleaving Other plausible interleaving strategies are treated in [10].
They can also be adapted to the features for multi-level strategic interleaving that will be introduced in
the current paper. The strategic interleaving operator for cyclic interleaving is denoti¢d)byn [10],
it was denoted by ., (-) to distinguish it from other strategic interleaving operators.

It is assumed that there is a fixed but arbitrary finite séboif 7 and a fixed but arbitrary finite set of
methodsM. For the set of basic action, we take the seff.m | f € F,m € M}. Each focus plays
the role of a name of a service provided by the execution environment that can be requested to process a
command. Each method plays the role of a command proper. Performing a basicfactiisrtaken as
making a request to the service nanyetb process the command.

The axioms for cyclic interleaving are given in Table 5. In this table and all subsequent tables with
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Table 5.  Axioms for cyclic interleaving

() =S CSI1
1({S) ~ @) = [[() CSI12
) = So([|(a)) CSI3

Sp(S) =D S2D1
Sp(D) =D S2D2
Sp(tau o x) = tau o Sp(x) S2D3
Sp(z 4 f.m>y) =Sp(z) < fom>Sp(y) S2D4

axioms or transition rules in whicfi andm occur, f andm stand for an arbitrary focus froti and an
arbitrary method from\, respectively. In CSI3, the auxiliadeadlock at terminatiooperatoiSp (- ) is
used. It turns termination into deadlock. Its axioms appear in Table 6.

Henceforth, we will write TA,,, for BPPA(FM ) extended with the strategic interleaving operator for
cyclic interleaving, the deadlock at termination operator, and the axioms from Tables 5 and 6.

We extend TA,, with guarded recursion like in the case of BPPA. It involves systems of recursion
equations over TA,, which require an adaptation of the notion of guardednessystem of recursion
equationsover TAy, is a set of equation8 = {X = tx | X € V} whereV is a set of variables and
eachtx is a term of TA,, that only contains variables fro. Lett be a term of TA, containing a
variableX. Then an occurrence & in ¢ is guardedif ¢ has a subterm of the forth<l a > t” containing
this occurrence oX . A system of recursion equatiofsis guardedif all occurrences of variables in the
right-hand sides of its equations are guarded or it can be rewritten to such a system of recursion equations
using the axioms of T4, and the equations df.

Henceforth, we will write TA,+REC for TAy,, extended with the constants for solutions of guarded
systems of recursion equations overgJAand the axioms RDP and RSP from Table 2.

The structural operational semantics of the basic thread algebra with foci and methods is described
by the transition rules given in Tables 4 and 7. Herep) 4 stands for the set of all negative conditions
= ({x,p) = (p/, p')) wherep' is a closed term of BPPAy' € £ anda € Ay,,. Recall thatd = {f.m |
f € F,m € M}. There is an instance of the first rule and the third rule from Table 7 for kaetv;
and there is an instance of the second rule and the fourth rule from Table 7 fof gabtandk > 1.

The first rule applies to the case where each thread in the thread vector preceding the first one capable of
performing an action is capable of terminating successfully. The second rule applies to the case where
not each thread in the thread vector preceding the first one capable of performing an action is capable of
terminating successfully. The third rule applies to the case where no thread in the thread vector is capable
of performing an action, but each is capable of terminating successfully. The fourth rule applies to the
case where no thread in the thread vector is capable of performing an action, but not each is capable of
terminating successfully.

Bisimulation equivalence is also a congruence with respect to the cyclic interleaving operator and



J.A. Bergstra and C.A. Middelburg / Thread Algebra with Multi-Level Strategies 9

Table 7. Transition rules for cyclic interleaving and deadlock at termination

<$17 P>l7 ey <Ik7 p>l7 <Ik+17 P> = <I;€+1, pl>

(k> 0)
(1) ~ oo (zpgr) > @), p) =5 ([ (2] 40)), ")
<x17P> 7/"7' CER) <xk,P> 7L)7 <xlvp>T7 <xk+1,P> = <$;€+17p/> (k‘ 2 I> 0)
(I(z1) ~ oo (zpgr) ~ @), p) =5 ([[( ™ (D) ~ (2] 41)), ')
<x17p>l77<xk:p>l (]{,‘2 0)
1) ~> .o (zi)), P
<x17p>7L'7"'7<xk7p>74>7<xlvp>T (k2l>0)

(1) ~ o> (), o)1
(2, p) = (2, p) (z, )l (z, p)1
(Sp(x), p) = (Sp(z'), p’) (Sp(x), o)1 (Sp(z), p)1

the deadlock at termination operator. This follows immediately from the fact that the transition rules
for the basic thread algebra with foci and methods constitute a complete transition system specification
in relaxed panth format (see e.g. [19]). The axioms given in Tables 5 and 6 are sound with respect to
bisimulation equivalence.

4. Thread-Service Composition

In this section, we extend the basic thread algebra with foci and methods with thread-service composition.
For eachf € F, we introduce d@hread-service compositiasperator. /;_. These operators have a thread
as first argument and a service as second argument. The intuition js/that is the thread that results
from issuing all basic actions performed by thresithat are of the forny.m to serviceH.

A service is represented by a functiéh: M+ — {T,F, B, R} with the property that/ (o) = B =
H(a~(m)) =BandH(a) =R = H(a~(m)) = Rforall« € M* andm € M. This function is
called thereply function of the service. We writ®F for the set of all reply functions ar@ for the set
{T,F,B,R}. Given areply functiorf and a methodh, the derived reply function off after processing
m, written 22 H , is defined by.2- H (o) = H((m) ~ a).

The connection between a reply functibhand the service represented by it can be understood as
follows:

e If H((m)) =T, the request to process commands accepted by the service, the reply is positive
and the service proceeds §;§H :

e If H((m)) = F, the request to process commands accepted by the service, the reply is negative
and the service proceeds §%’H .

e If H((m)) = B, the request to process commands not refused by the service, but the processing
of m is temporarily blocked. The request will have to wait until the processing isfnot blocked
any longer.

e If H((m)) =R, the request to process commands refused by the service.
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Table 8. Axioms for thread-service composition

S/fH=S TSC1
D/fH=D TSC2
(tauox) /f H=tauo (z /f H) TSC3
(xdgmby) /fH=(z/f H)Sgmb (y/r H) if -~ f=g TSC4
(xS fmy) /s H="tauo (z /f 32 H) fH(m) =T TSC5
(xS fomD> )/fH:tauo(y/faimH) if H((m)) =F TSC6
(x<fmby)/f H=D if H((m)) =B VvV H({(m)) =R TSC7

Table 9. Transition rules for thread-service composition

(z,p) L5 (2, p') . (z,p) 2% (2!, p)
(@ /g H,p) L2 (2! Jy H, o) @ /s H,p) 25 (2! [y H,p')

x f»m 2 o

)~ @) H((m)) € {T,F}, (F.m, H(m))) € p(())
(x /f H,p) 2% (2’ [y 22-H,p')
X f—m> X T
(z, p) (=, p") H((m)) € (B.R) (z,p)| (z, p)1

(= /[y H,p)T (x/r H,p)l (x /r H,p)T

Henceforth, we will identify a reply function with the service represented by it.

The axioms for thread-service composition are given in Table 8. In this table and all subsequent
tables with axioms or transition rules in whighoccurs, likef, g stands for an arbitrary focus frorh.
Moreover, in this table and all subsequent tables with axioms or transition rules in Whisturs, H
stands for an arbitrary reply function froRF. Axiom TSC3 expresses that the actici is always
accepted. Axioms TSC5 and TSC6 make it clear thatarises as the residue of processing commands.
Thereforetau is not connected to a particular focus, and is always accepted.

Henceforth, we write TAS for TA, extended with the thread-service composition operators and the
axioms from Table 8.

We extend T/{@lc with guarded recursion as in the case of,JASystems of recursion equations over
TA and guardedness of those are defined as in the casexgf Bt with TAg,, everywhere replaced
by TAC,

Henceforth, we will write TAX*+REC for TA:S extended with the constants for solutions of guarded
systems of recursion equations over;FAand the axioms RDP and RSP from Table 2.

The structural operational semantics of the basic thread algebra with foci and methods extended with
thread-service composition is described by the transition rules given in Tables 4, 7 and 9. Bisimulation
equivalence is also a congruence with respect to the thread-service composition operators. This follows
immediately from the fact that the transition rules for these operators are in the path format. The axioms
given in Table 8 are sound with respect to bisimulation equivalence.
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Table 10. Additional axioms for cyclic interleaving & deadlock at termination

[((z 2 f'mBy) ~ ) = [[((z) > ) L fImP (e~ (y)) CSI6
[((z 2 f7m B y) ~a) = [|((z) > a) LfmE [[(a~ (y)) CSI7

So(z 4 f?m>y) = Sp(z) < f?m> Sp(y) S2D5
So(z < f?mP>y) =Sp(xz) I f?m> Sp(y) S2D6

5. Guarding Tests

In this section, we extend the thread algebra developed so far with guarding tests. Guarding tests are
basic actions meant to verify whether a service will accept the request to process a certain method now,
and if not so whether it will be accepted after some time. Guarding tests allow for dealing with delayed
processing and exception handling as will be shown in Section 6.

We extend the set of basic actions. For the set of basic actions, we now take thg/$et=
{fm, ftm, f'm | f € F,m € M}. Basic actions of the formg?m and f7?m will be called
guarding testsPerforming a basic actiofi’m is taken as making the request to the service nafied
reply whether it will accept the request to process methatbw. The reply is positive if the service will
accept that request now, and otherwise it is negative. Performing a basic ACtiois taken as making
the request to the service namgdo reply whether it will accept the request to process methatbw
or after some time. The reply is positive if the service will accept that request now or after some time,
and otherwise it is negative.

A service may be local to a single thread, local to a multi-thread, local to a host, or local to a network.
A service local to a multi-thread is shared by all threads from which the multi-thread is composed, etc.
Henceforth, to simplify matters, it is assumed that each thread, each multi-thread, each host, and each
network has a unique local service. Moreover, it is assumedthal, n € F. Below, the focit, p, h
andn play a special role:

¢ for each thread; is the focus of its unique local service;

e for each multi-thread is the focus of its unique local service;
¢ for each hosth is the focus of its unique local service;

e for each networkn is the focus of its unique local service.

As explained below, it happens that not only thread-service composition but also cyclic interleaving
has to be adapted to the presence of guarding tests.

The additional axioms for cyclic interleaving and deadlock at termination in the presence of guarding
tests are given in Table 10. Axioms CSI6 and CSI7 state that:

e after a positive reply orf?m or f7m, the same thread proceeds with its next basic action; and
thus it is prevented that meanwhile other threads can cause a state change to a state in which the
processing ofn is blocked (andf?m would not reply positively) or the processingafis refused
(and bothf?m and f7?m would not reply positively);



12 J.A. Bergstra and C.A. Middelburg/ Thread Algebra with Multi-Level Strategies

Table 11. Additional axioms for thread-service composition

(x<dgtmPy) /s H=(z/f H Qg?m>(y/f H) f-f=g TSC8
(x<f™m>y) /f H=tauo (z /f H) if H(m)) =T Vv

H((m))=F TSC9
(x<Qftm>y) /f H="tauo (y /s H) if H(m))=B A - f=t TSCI10
(z < ftmiy) /s H=D it (H(m) =B A f=1) v

H((m))=R TSC11
(xdg?mby) /r H=(z /s H)dgtm (y /sy H) if = f=g TSC12
(x<f"m>vy) /f H=tauo (z /; H) if -~ H((m)) =R TSC13
(x<fm>vy) /f H=tauo (y /f H) if H((m)) =R TSC14

e after a negative reply offi?m or f7'm, the same thread does not proceed with it; and thus it is
prevented that other threads cannot make progress.

Without this difference, the Simulation Lemma (Section 7) would not go through.

The additional axioms for thread-service composition in the presence of guarding tests are given in
Table 11. Axioms TSC10 and TSC11 are crucial. The point is that, if the local service of a thread is in a
state in which the processing of methads blocked, no other thread can raise that state. Consequently,
if the processing ofn is blocked, it is blocked forever.

Henceforth, we write Tﬁf’gt for TAEC extended with a postconditional composition operator for
each guarding test and the axioms from Tables 10 and 11.

We extend Téfﬂc’gt with guarded recursion as in the case of;JA Systems of recursion equations
over TAP“#" and guardedness of those are defined as in the casegaf Bat with TA;, everywhere
replaced by TA#".

Henceforth, we will write TA“#'+REC for TAZ“#" extended with the constants for solutions of
guarded systems of recursion equations ovefTA and the axioms RDP and RSP from Table 2.

The additional transition rules for cyclic interleaving and deadlock at termination in the presence
of guarding tests are given in Table 12, wherestands for an arbitrary basic action from the set
{ftm, f'm | f € F,m € M}. The remarks made in Section 2 about the first two rules from Ta-
ble 7 apply to the first two rules from Table 12 and the next two rules from Table 12 as well. The
additional transition rules for thread-service composition in the presence of guarding tests are given in
Table 13. Bisimulation equivalence remains a congruence with respect to these operators. The axioms
given in Tables 10 and 11 are sound with respect to bisimulation equivalence.

6. Delayed Processing and Exception Handling

We go on to show how guarding tests can used to express postconditional composition with delay and
postconditional composition with exception handling.

For postconditional composition with delay, we extend the set of basic actiovith the set{ f!m |
f e F,m e M}. Performing a basic actiofim is like performingf.m, but in case processing of the
commandn is temporarily blocked, it is automatically delayed until the blockade is over.
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Table 12. Additional transition rules for cyclic interleaving & deadlock at termination

<$lyﬂ>l:' L] <xkzp>lv <zk+lzp> X <m;(;+l7pl>
(Iz1) ~ oo (zha) > @)y p) 2 (1@ 0) ™ @) p')
<ml>p> 7L)7 e <Ik,p>7L>, <zlvp>T7 <xk+17p> Z <x;¢+17pl>

(I(@1) ~ oo (zpga) ~ ), p) 2 (@) ~ @ (D)), o)

(a, T) € p(()) (k= 0)

(a,T)ep(()) (k=1>0)

<$17P>l: SRR <xk: p>lv <zk+17 P> = <m;g+l7pl>
(Iz1) ~ oo (zha) > @)y p) 2 (@™ (2 0)), 0')
<.’171,p> 7L)7 ce. <zk7 p> 7L>7 <mlv p>T7 <xk+17 p> = <x%+17 pl>

(I(@1) ~ oo~ (zpega) ~ ), p) = ([[(@ ™ (D) ~ (o 1)), P)

(a,F) € p(() (k=0)

(,F)ep(()) (k=21>0)

(x,p) = (2, p")
(Sp(z),p) L (Sp(z'),p")

Table 13. Additional transition rules for thread-service composition

(@, p) L (!, o)
( /g H,p) =% (2 /s H,p")
(@,p) L (!, o)
(/g H,p) =% (2 /s H,p")
t?m ftm

<I7p>‘—_)<x7p>H(<m>):B <$7p>—'<xvp>H
(x k H,p)1 (x /s H,p)1
(w,p) L (2!, )
<:E /f H:ﬂ) Loy, <:E/ /f val>
ftm

<x7 p> - <x’,p’>

<:E /f H:ﬂ) oy, <:E/ /f val>

H({m)) € {T,F}, (f7m,T) € p(())

H((m)) =B, f #t, (fy?m,F) € p(())

((m)) =R

H((m)) € {T,F,B}, (f?m,T) € p(())

H((m)) =R, (f'm,F) € p(())

Table 14. Axioms for delayed processing and exception handling

zdfimy=(zdfm>y)If!m> (x < flm>y) DP
rdfmyl>z=(x I fm>2)Ifm>y EH1
zdflmyl>z=((zdfm>2)df'm> (zdflmy]>2)) I fPm>y EH2

For postconditional composition with exception handling, we introduce the following notations:
x A fmy]> z andx < flm[y] > z. The intuition forxz < f.m [y] > z is thatx < f.m > z is tried,
but y is done instead in the exceptional case that f.m > z fails because the request to process
is refused. The intuition for: < flm [y] > z is thatx < flm > z is tried, buty is done instead in the
exceptional case that< flm > z fails because the request to processs refused. The processing of
m may first be blocked and thereafter be refused; in that gaisejone instead as well.

The defining axioms for postconditional composition with delayed processing and the two forms of
postconditional composition with exception handling are given in Table 14. Axiom DP guarantees that
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Table 15. Transition rules for delayed processing and exception handling

(e AfmPy) AfrmD (x Aftm B y), p) = (2, p')
(z Aftm >y, p) = (', p)
(zQfmPy) Iftmb (z dflmPy),p)l ((z IfmPy) IftmD (zdfimPy), o)l
(x < flmBy, p)| (x fim By, p)1
(z QfmP>2z) A fmBy, p) = (W', p')
(z dfmy] >z, p) & (W', p)
(@ dfmbP2) AfMtmbPy,p)l ((xfmP2) IfmDy,p)T
(xdfmy|>zp)l (@ fmyl>z )1
((z QfmP2) Afrm D> (2 Qflmy] > 2)) AfPm >y, p) = (W', p')
(zdf!imy)>z,p) & (W, p')
(((z QfmP2) IftmD (z A flm[y| > 2)) I fPmDy, p)l
(x fim [y >z, p)]
(((z QfmP2) IftmD (z A flm[y] > 2)) I fPm Dy, p)T

(z < flmy|>2,p)7

f-m is only performed iff 7m yields a positive reply. Axioms EH1 and EH2 guarantee jhat is only
performed if f7m yields a positive reply. An alternative to the second equation from Table 14 is

<l flmy|>z=((x<fm>2) I ffm> (x < flm>2)) I fPmy.

In that casey is only done if the processing af is refused immediately.

Henceforth, we write TR 84><" for TAI™“2" extended with the postconditional composition oper-
ators for delayed processing and exception handling and the axioms from Table 14.

We extend T,%if’gt’dp’eh with guarded recursion as in the case of;JASystems of recursion equa-
tions over TAX#"4Peh and guardedness of those are defined as in the casegf Bt with TAg,
everywhere replaced by =P,

Henceforth, we will write TA/*#"P*"+REC for TAZ#"P*" extended with the constants for solu-
tions of guarded systems of recursion equations ovéif’?ﬁ&dp@h and the axioms RDP and RSP from
Table 2.

The additional transition rules for postconditional composition with delayed processing and post-
conditional composition with exception handling are given in Table 15. Bisimulation equivalence is a
congruence with respect to these operators. The axioms given in Table 14 are sound with respect to
bisimulation equivalence.

7. A Formal Design Prototype

In this section, we show how the thread algebra developed in Sections 3—-6 can be used to give a sim-
plified, formal representation schema of the design of systems that consist of several multi-threaded
programs on various hosts in different networks. We propose to use théotenal design prototypéor
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such a schema. The presented schema can be useful in understanding certain aspects of the systems with
which it is concerned.
The set obasic thread expressionwith typical elemenfP, is defined by

P :=D|S|PIfm>P|P<flm>P|
P fm[P|>P|P<fim[P]>P|(X|E),

wheref € F, m € M and(X|E) is a constant standing for the unique solution for variablef a
guarded system of recursion equatidh which the right-hand sides of the equations are basic thread
expressions in which variables may occur wherever basic thread expressions are expected. Thus, the use
of guarding tests, i.e. basic actions of the forfiis» and f7’m, is restricted to their intended use.

A thread vector in which each thread has its local service is of the form

<P1 /t TL51> ~oL. f"<]3[t /t TLSlt> s

where Py, ..., P, are basic thread expressions, afiflS,, ..., TLS;, are local services for threads.
The local service of a thread does nothing else but maintaining local data for the thread. A multi-thread
vector in which each multi-thread has its local service is of the form

(I(TV1) fp PLSy) ~ ...~ ([(TV,) fp PLSL,)

where TV, ..., TV, are thread vectors in which each thread has its local servicePasd, ...,

PLS;, are local services for multi-threads. The local service of a multi-thread maintains shared data of
the threads from which the multi-thread is composed. A typical example of such data are Java pipes. A
host behaviour vector in which each host has its local service is of the form

(I(PV1) b HLS1) ~ ...~ ([[(PVy,) h HLSy,)

where PV, ..., PV, are multi-thread vectors in which each multi-thread has its local service, and
HLS., ..., HLS;, are local services for hosts. The local service of a host maintains shared data of the
multi-threads on the host. A typical example of such data are the files connected with Unix sockets used
for data transfer between multi-threads on the same host. A network behaviour vector in which each
network has its local service is of the form

([(HV1) /o NLS1) ...~ ([(HV,) /o NLSL,)

whereHVy, ..., HV,, are host behaviour vectors in which each host has its local serviceyhfg,
..., NLS,;, are local services for networks. The local service of a network maintains shared data of the
hosts in the network. A typical example of such data are the files connected with Unix sockets used for
data transfer between different hosts in the same network.

The behaviour of a system that consist of several multi-threaded programs on various hosts in differ-
ent networks is described by an expression of the fiofiil"), whereN'V is a network behaviour vector
in which each network has its local service. A typical example is the case \iHérie an expression of
the form

[Py e TLS1) ~(Py o TLS2)) Jp PLS1) ™
(I((Ps x TLS3) ~(Py )y TLS4) ~(Ps }x TLS5)) /p PLS2)) jn HLS1) ™~
(ICCI((Ps /x TLS6)) /p PLS3)) /o HLS2)) /o NLS ,
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Table 16. Definition of simulation relation

S sim z
D sim x
z simy A xsimz = xsimyJalz

zsimy A zsimw=zdal>zsimydalw

wherePy, ..., Ps are basic thread expressiorid,Sy, ..., TLSg are local services for threadBLS1,
..., PLS5 are local services for multi-thread& LS, HLS, are local services for hosts, ad.S is
a local service for networks. It describes a system that consists of two hosts in one network, where
on the first host currently a multi-thread with two threads and a multi-thread with three threads exist
concurrently, and on the second host currently a single multi-thread with a single thread exists.

A desirable property of all systems designed according to the schi¢ém& ) is laid down in
Lemma 7.1 below. This lemma is phrased in terms of a simulation relatianon the closed terms
of TAEif’gt’dp’eh+REC. The relatiorsim (is simulated by) is defined inductively by means of the rules in
Table 16.

Lemma 7.1. (Simulation Lemma)

Let P be a basic thread expression in which all basic actions are from thgfset | f € F \
{t,p,h,n},m € M} and constants standing for the solutions of guarded recursive specifications do
not occur. LetC[P] be a context ofP of the form||(NV') where NV is a network behavior vector as
above. TherP sim C[P]. This implies thaC[P] will perform all steps ofP in finite time.

Proof:

We prove this theorem for a more general schema than the sgl{eéé&) presented above. We consider

the schema that is obtained from the one presented above by replacing all expressions of fli& jorm
whereV is a thread vector, a multi-thread vector, a host behaviour vector or a network behaviour vector,
by expressions of the fori® (V'), whereS}, stands forSp appliedn times. We proveP sim C’[P],
whereC’ is a context of? of this more general form, by induction on the depthodind case distinction

on the structure of?, and in the cas® = P’ <a ™ P” by induction on the position aP in NV. O

In the inductive step of the proof of the caBe= P’ <a > P”, we actually prove that multi-level cyclic
interleaving (in the presence of delayed processing and exception handling) is fair, , i.e. that there will
always come a next turn for all active threads, multi-threads, etc.

8. Thread Identity Management in Local Services

A multi-thread with local service is described by an expression of the fgrftV') /, PLS, whereT'V

is a thread vector an®? .S is a local service for multi-threads. When the local sen/deS receives a

request from the multi-threalfl 7'V'), it often needs to know from which of the interleaved threads the
request originates. This can be achieved by informing the local service whenever threads succeed each
other by interleaving and whenever a thread drops out by termination or deadlock. Similar remarks apply
to local services of hosts and networks.
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Table 17. Axioms for cyclic interleaving with thread identity management support

I, (()) =S CSItim1
I,((S) ~ a) = £.shift o ||, () CSItim?2
I,((D) ~ @) = £.shift o Sp(|| () CSItim3
l,({tau o z) ~ o) = tau o L.rotate o ||,(ac ™ (x)) CSItim4
I,({x 4 f.mPy) ~a)=Lrotateo ||,(a~ (x)) < f.m D> Lrotateo ||,(a~ (y)) CSIltimb
I,z D frm>y)~a) =|,(z) > a) D f?mD Lrotateo ||, (a~ (y)) CSItim6
I,z fPmy)~a) =||,({(z) > a) I f?mD Lrotateo ||,(a ™ (y)) CSItim7

That leads us to cyclic interleaving with thread identity management support. For this variation of
cyclic interleaving, it is assumed thattate, shift € M. Three new strategic interleaving operators are
introduced:||,(-), [[,(-) and||,(-). The operatof| () differs from||(-) in that it generates a basic
actionp.rotate whenever threads succeed each other and it generates a basigpatiiarwhenever a
thread drops out. The operatdkg_) and||,(-) differ from ||(_) analogously.

The axioms for cyclic interleaving with thread identity management support are given in Table 17,
where/ stands for an arbitrary focus from the et h, n}.

We refrain from giving the additional transition rules figy(-), [|,(-) and|[,(-). They are obvious
variations of the transition rules f¢_ ).

In order to cover local services in which thread identity management is needed, we have to adapt the
formal design prototype given in Section 7. A multi-thread with local service is now described by an
expression of the form,(7'V') /, PLS, whereT'V is a thread vector in which each thread has its local
service andPLS is a local service for multi-threads. The behavior of a host with local service is now
described by an expression of the fofiy(PV') /, HLS, wherePV is a multi-thread vector in which
each multi-thread has its local service afidlS is a local service for hosts. The behavior of a network
with local service is now described by an expression of the fior# V') /, NLS, whereHV is a host
behavior vector in which each host has its local service/dhd is a local service for networks.

Notice that the forms of the expressions that describe a thread with local service and a system have
not been adapted. In the first case, no interleaving of threads is involved; and in the second case, no local
service is involved.

In Section 10, we will describe a service in which thread identity management is needed.

9. State-Based Description of Services

In this section, we introduce the state-based approach to describe services that will be used in Section 10
to describe a service in which thread identity management is needed. This approach is similar to the
approach to describe state machines introduced in [15].

In this approach, a service is described by

e a set of states’;
e an initial statesg € S;

e an effect functioreff : M x S — S
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e ayield functionyld : M x S — R.

The setS contains the states in which the service may be; and the funcijfirendyld give, for each
methodm and states, the state and reply, respectively, that result from processiigstates.
We define a cumulative effect functieaff : M* — S in terms ofsg andeff as follows:

ceff (()) =
ceff (e~ (m >)—6ﬁ(m ceff () -

We define a servicél : M™ — R in terms ofceff andyld as follows:
H(a~ (m)) = yld(m, ceff (a)) .

We considelH to be the service described By sq, eff andyld.

Note thatH ((m)) = yld(m, so) and%H is the service obtained by takingf (m, so) instead ofs,
as the initial state.

As an example, we give a state-based description of a very simple service concerning a Boolean cell.
This service can be used as a local service of threads. It will be generalized in Section 10 to a service
that can be used as a local service of multi-threads, hosts and networks.

It is assumed that contains the following methods:

e bc:set:T: the contents of the Boolean cell becorieand the reply isT;
e bc:set:F: the contents of the Boolean cell beconkesnd the reply is;
e bc:get: nothing changes and the reply is the contents of the Boolean cell.

We write M, for the set{bc:set: T, bc:set:F, bc:get}.
The state-based description of the service is as follows:

o S={T,F};
o 50 =F,

e ¢ff andyld are defined as follows:

eff (bciset:T,s) =T, yld(bc:set:T,s) =T ;

eff (bc:set:F,s) = F , yld(bc:set:F,s) = F ;

eff (bc:get, 5) =s, yld(bc:get, s) S5

off (m,5) = yld(m, s) = ifm & Me -

In Section 13, we will show that services can also be viewed as processes that are definable over an
extension of ACP with conditions introduced in [12].
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10. Localizable Boolean Cells

In this section, we describe a service in which thread identity management is needed. It can be used
as a local service of multi-threads, hosts and networks. The service, €dll€d concerns localizable
Boolean cells. It generalizes the service described in SectiadbA.' is much simpler than a service
maintaining Java pipes or a service maintaining the files connected with Unix sockets. However, its
description suggests how to describe those more interesting services.

It is assumed that1 contains all methods af BC, to wit (for eachn € N):

e |bc:n:create: if a Boolean cell with name does not exist, it is created with status unowned and
contentsF, and the reply idl'; otherwise, nothing changes and the reply;is

e |bc:n:elim: if a Boolean cell with name exists and it is unowned, it is eliminated and the reply is
T; otherwise, nothing changes and the replf;is

e |bc:n:claim: if a Boolean cell with name: exists and it is unowned or owned by the requesting
thread, it becomes or remains owned by the requesting thread and the repiytierwise, nothing
changes and the reply Kif it does not exist and if it is owned by a thread other than the
requesting thread;

e Ibc:n:release: if a Boolean cell with name, exists and it is owned by the requesting thread, it
becomes unowned and the replylisotherwise, nothing changes and the repl¥ i§ it does not
exist ancdR if it is unowned or owned by a thread other than the requesting thread;

e Ibc:n:set:T: if a Boolean cell with name: exists and it is owned by the requesting thread, its
contents becomeE and the reply isT'; otherwise, nothing changes and the replRis

e |bc:n:set:F: if a Boolean cell with name: exists and it is owned by the requesting thread, its
contents becomdsand the reply isT'; otherwise, nothing changes and the replRRjs

e Ibc:n:get: if a Boolean cell with name exists and it is owned by the requesting thread, nothing
changes and the reply is its contents; otherwise, nothing changes as well and theReply is

We write M, for the set of all methods af BC'.

Notice that, formally, multi-threads and host behaviours are threads as well. Therefore, in the case
whereLB(C is used as a local service of a host or a network, we can think of multi-thread or host where
thread is written in the explanation of its methods given above.

We suppose that an instanceld®C' knows, when it starts to service a multi-thread, host or network,
the number of threads, multi-threads or hosts it has to deal with initially. We consider this number to be
a parameter of the service.

Letly € N. Then the state-based description of the serlziB&" with parametet, written LBC (),
is as follows:

S ={(¢,0,1) € C x O x N | dom(c) = dom(o), max(rng(o)) <1},

whereC' = {c¢: N — {T,F} | N € Ps,(N)},O ={0: N = N | N € Ps,(N)}; so = ([],[],0); and
eff andyld are defined in Tables 18 and 19, respectively. The state of the service comprises the contents
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Table 18. Effect function for service with localizable Boolean cells

eff (Ibc:n:create, (¢,0,1)) = (c® [n— Fl,o® [n+— 0],1) ifn & dom(c)
eff (Ibc:n:create, (¢, 0,1)) = (¢, 0,1) if n € dom(c)
eff (Ibc:nzelim, (¢, 0,1)) =

(¢ (dom(c) \ {n}),o [ (dom(c) \ {n}),l) ifn € dom(c) A o(n)=0
eff (Ibc:n:elim, (¢, 0,1)) = (¢, 0,1) if n € dom(c) V o(n) #0
eff (Ibc:n:claim, (¢, 0,1)) = (¢,0 ® [n — 1],1) if n € dom(c) A o(n) <1
eff (Ibc:n:claim, (¢, 0,1)) = (¢, 0,1) if n € dom(c) V o(n) >1
eff (Ibc:n:release, (¢, 0,1)) = (¢,0 ® [n — 0],1) if n € dom(c) A o(n) =1
eff (Ibc:n:release, (c,0,1)) = (c,0,1) if n & dom(c) V o(n) #1
eff (Ibc:n:set:d, (¢, 0,1)) = (¢ B [n +— b],0,1) if n € dom(c) A o(n) =1
eff (Ibc:n:set:b, (c,0,1)) = (c,0,1) if n & dom(c) V o(n) #1
eff (Ibc:n:get, (c,0,1)) = (¢, 0,1)
eff (rotate, (¢, 0,1)) = (c, rotate(o,1),1)
eff (shift, (¢, 0,1)) = (e, shift(o,1),1 — 1)
eff (m, (c,0,1)) = (c,0,1) if m & Mipc U {rotate, shift}

Table 19. Yield function for service with localizable Boolean cells
yld(Ibc:n:create, (¢,0,1)) =T  if n & dom(c)

yld(Ibc:n:create, (c,0,1)) = F  if n € dom(c)
yld(Ibc:nzelim, (¢,0,1)) =T if n € dom(c) A o(n) =0
yld(Ibc:n:elim, (¢, 0,1)) =F if n ¢ dom(c) V o(n)
yld(Ibc:n:claim, (¢,0,1)) =T  ifn € dom(c) A o(n
yld(Ibc:n:claim, (¢,0,1)) = F  if n ¢ dom(c)
yld(Ibc:n:claim, (c,0,1)) =B ifn € dom(c) A o(n) > 1
yld(Ibc:n:release, (¢,0,1)) =T ifn € dom(c) A o(n) =1
yld(Ibc:n:release, (¢,0,1)) = F if n & dom(c)
yld(Ibc:n:release, (c,0,1)) =R ifn € dom(c) A o(n) #1
yld(Ibc:n:set:d, (¢,0,1)) =T if n € dom(c) A o(n) =1
yld(Ibc:niset:d, (¢,0,1)) =R ifn & dom(c) V o(n) # 1
yld(Ibc:n:get, (c,0,1)) = ( ) ifnedom(c) A o(n)=1
yld(Ibc:n:get, (¢, o, l)) = if n ¢ dom(c) V o(n) #1
yld(rotate, (¢, 0,1)) =

yld(shift, (¢,0,1)) =T

yld(m, (¢c,0,1)) =R if m & Mipc U {rotate, shift}
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(¢) and owner ¢) of the existing Boolean cells, and the number of threads, multi-threads or hosts it is
dealing with (). The functionsrotate, shift : O x N — O used in Table 18 are defined as follows:

dom(rotate(o,1)) = dom(o) , dom(shift(o,l)) = dom(o) ;

rotate(o,l)(n) =0, shift(o,1)(n) =0, ifo(n) =0;
rotate(o,l)(n) =1, shift(o,1)(n) =0, ifo(n) =1;
rotate(o,l)(n) = o(n) — 1, shift(o,1)(n) =o(n) —1, ifl<o(n)<l.

We use the following notation for function§} for the empty function{d — r| for the functionf with
dom(f) = {d} such thatf(d) = r; f @ g for the functionh with dom(h) = dom(f) U dom(g) such
that for alld € dom(h), h(d) = f(d) if d ¢ dom(g) andh(d) = g(d) otherwise; andf [ D for the
functiong with dom(g) = dom(f) \ D such that for ali € dom(g), g(d) = f(d).

11. On Strategic Interleaving versus Arbitrary Interleaving

In Section 1, we have made the following remarks about deadlocks to illustrate why arbitrary interleav-
ing is not the appropriate intuition when dealing with multi-threading: (a) whether the interleaving of
certain threads leads to deadlock depends on the deterministic interleaving strategy used; (b) sometimes
deadlock takes place with a particular deterministic interleaving strategy whereas arbitrary interleaving
would not lead to deadlock, and vice versa. In this section, we support these remarks by means of an
example using the localizable Boolean cells described in Section 10.

Consider the multi-thread with local service described by

I,((p-Ibc:1:create o S) ~
(p.Ibc:1:claim o p.Ibc:1:set:F o p.lbc:1:release 0 S) ~
(p.Ibc:1:claim o p.Ibc:1:set:T o p.Ibc:1:release 0 S)) /, LBC

We can easily derive that this term equals® o D.? In other words, in the multi-thread with local service
described above, cyclic interleaving does lead to deadlock. Now consider the simple variation of cyclic
interleaving where each thread in the thread vector is given three consecutive turns. This is the instance
of cyclic interleaving with step counting specified in [10] foe= 3. With this interleaving strategy, the
above term equalau'*oS. In other words, in the multi-thread with local service described above, cyclic
interleaving with step counting does not lead to deadlock if the number of consecutive turns is three.
Arbitrary interleaving introduces nondeterministic choices. For example, after aclianl :create
of the first thread and actignlIbc:1:claim of the second thread have been performed, there is a nonde-
terministic choice between performing actipiibc:1:set:F of the second thread and performing action
p.lbc:1:claim of the third thread. Thread-service compaosition may eliminate options in nondeterministic
choices. For example, in the above-mentioned nondeterministic choice, the option to perform action
p.lbc:1:claim of the third thread is eliminated because the servi&& blocks it. Indeed, after thread-
service composition witl. BC, there is one option left: the option to perform actjpibc:1:set:F of the
second thread.

2For each term of TA!“&%9P*"+REC and each > 0, the termtau™ (¢) is defined by induction ok as follows:tau® () = ¢
andtau™ ! () = tau o tau™(t).
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A deterministic interleaving strategy just gives turns to threads in the thread vector. It may happen
that a turn is given to a thread that happens to deadlock after thread-service composition. With arbitrary
interleaving such deadlocks do not take place, wherever there is an option left to perform an action.
Consequently, in the multi-thread with local service described above, arbitrary interleaving does not lead
to deadlock.

12. ACP with Conditions

In Section 13, we will investigate the connections of threads and services with the processes considered
in ACP-style process algebras. We will focus on ACé&h extension of ACP with conditions introduced
in [12]. In this section, we shortly review ACPFor a comprehensive overview, the reader is referred
to [12, 13]. The axioms of ACPare given in Appendix A.

ACF* is an extension of ACP with conditional expressions in which the conditions are taken from a
Boolean algebra. ACFhas two sorts: (i) the soR of processeqii) the sortC of conditions In ACF°,
it is assumed that the following has been given: a fixed but arbitrank ¢et actions), withy ¢ A, a
fixed but arbitrary se€,; (of atomic conditions), and a fixed but arbitrary commutative and associative
function|: AU {0} x AU {0} — AU {0} such that | a = ¢ for all @ € AU {d}. The function| is
regarded to give the result of synchronously performing any two actions for which this is possible, and
to beo otherwise. Henceforth, we writg; for AU {d}.

Let p andq be closed terms of soR, ¢ and¢ be closed term of so€, a € A, H C A, andn € Cy;.
Intuitively, the constants and operators to build terms of Botthat will be used to define the processes
to which threads and services correspond can be explained as follows:

e ¢ can neither perform an action nor terminate successfully;

a first performs actiorm unconditionally and then terminates successfully;

p + g behaves either gsor asq, but not both;

p - q first behaves ag, but whenp terminates successfully it continuesgs

¢ :— p behaves ag under conditiorg;

p || ¢ behaves as the process that proceeds mwéhdq in parallel;
e Oy (p) behaves the same psexcept that actions frorii are blocked.

Intuitively, the constants and operators to build terms of €btihat will be used to define the processes
to which threads and services correspond can be explained as follows:

e 77is an atomic condition;
e | is a condition that never holds;
e T is a condition that always holds;

e —( is the opposite of;
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e (LI iseitherC or&;
e (M¢isboth¢ and¢.

The remaining operators of ACRre of an auxiliary nature. They are needed to axiomatize®ACP

We write ) ;7 p;, whereZ = {iy,...,i,} andp;,, ..., p;, are terms of sorP, forp;, +... + p;,.

The convention is tha}_, _; p; stands fow if Z = (). We use the notatiop <1 ¢ > ¢, wherep andq are
terms of sorfP? and( is a term of sorC, for( :— p+ —( :—q.

A process is considered definable over AGPthere exists a guarded recursive specification over
ACF* that has that process as its solution.

A recursive specificatioover ACF is a set of equation® = {X = tx | X € V}, whereV is
a set of variables and ea¢h is a term of sorfP that only contains variables froii. Lett be a term
of sort P containing a variableéX. An occurrence ofX in t is guardedif ¢ has a subterm of the form
a - t' containing this occurrence f. A recursive specification over ACKs guardedif all occurrences
of variables in the right-hand sides of its equations are guarded or it can be rewritten to such a recursive
specification using the axioms of ACBnd the equations of the recursive specification. We only consider
models of ACP in which guarded recursive specifications have unique solutions.

For each guarded recursive specificatibrand each variabl& that occurs as the left-hand side of
an equation inF, we introduce a constant of sdpt standing for the unique solution @& for X. This
constant is denoted biyX | E'). The axioms for guarded recursion are also given in Appendix A.

In order to express thread-service composition on the Adfinable processes corresponding to
threads and services, we need an extension of AGH renaming operators,. like the ones introduced
for ACP in [7]. Intuitively, the action renaming operatpf, wherer : A — A, can be explained as
follows: p,(p) behaves ag with each action replaced accordingitoThe axioms for action renaming
are also given in Appendix A.

In order to explain the connection of threads and services with®AdR, we need an extension of
ACPF* with the condition evaluation operatot€;, introduced in [12]. Intuitively, the condition evalua-
tion operatorCE;,, whereh is a function on conditions that is preserved by T, —, U andri, can be
explained as followsCEy, (p) behaves ag with each condition replaced according/to The important
point is that, ifh(¢) € {L, T}, all subterms of the forng :— ¢ can be eliminated. The axioms for
condition evaluation are also given in Appendix A.

13. Connections of Threads and Services with ACP

In this section, we show that threads and services can be viewed as processes that are definable over
ACP*, the extension of ACP with conditions reviewed in Section 12, and that thread-service composition
on those processes can be expressed in terms of operators DivitGPenaming.

For that purposeA, | andC,; are taken as follows:

A={sfd)]|feF,de MU{Tm|meM}U{"m|me M}UR}
{rr(d)| feF,de MU{tm|meM}u{?"m|me M}UR}
{stop, stop, stop*, i} ;
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Table 20. Definition of translation function for threads

[X] =
[S] = stop ,
[D]=i-0,
Htl SltauEtg]] =i-i- Htl]] s
[t: S f.m ta] = sp(m) - (r5(T) - [ta] + 14 (F) - [t])
[ts Q?7m > o] = su(7m) - (ve(T) - [ta] + 1e(F) - [1a])
[[tl < f‘7m > tz]] =

s¢(?m) - (ep(T) - [ta] + 15 (F) - [ta] + x4(B) - [£]) iff#t,
[[t1 ﬁ f77m E tzﬂ =

sp(?m) - (rp(T) - [ta] +rp(F) - [ta] + 17 (B) - [ta] +r4(R) - [t2])
[X|E)] = (X|{X =[t] | X=t € E}).

foralla € A, f €e Fandd e MU {?m | meM} U{?"m |me M} UR:

sf(d) |re(d) =1, stop | stop = stop™ ,
sfp(d)|a=9¢ ifa#rs(d), stop|a=14¢ if a # stop ,
alrg(d) =6 ifa #s¢(d), a|stop =4 if a # stop ,
ila=94;

and
Ca={H((m))=r|HeERF,meM,re RyU{f=g9g|f,geF}.

We proceed with relating threads and services to processes definable over RgR of all, we
define a functiorf. ] that gives a translation of terms of the thread algebra developed in Sections 3-5 to
terms of ACP. The translation is restricted to the terms in which the operators for cyclic interleaving,
deadlock at termination, and thread-service composition do not occur. It is easy to prove by induction
that each terms of the thread algebra is derivably equal to a term in which these operators do not occur.
Hence, the restriction does not cause any loss of generality. The fuficliadefined inductively by the
equations given in Table 20. In Section 6, postconditional composition with delay and postconditional
composition with exception handling are defined over the thread algebra developed in Sections 3-5.
Thus, the translation of a term of one of the additional forms<( f!m > tq, t1 < f.m [ta] > t3 OF
t1 < flm [t2] & t3) equals the translation of a term of the thread algebra developed in Sections 3-5:

[t < fim e to] = [(XHX = (119 fm B t9) < f2m = X1,

[[tl ﬁfm [tg] E t ﬂ [[(tl S’me t3) S’frpmlz tg]] y
[t1 < flm[to] > t3] =
[(XHX = ((th S f.mBt3) S fImE X) I fmEta})] .

Secondly, we define functior[s]]f, one for eacly € F, that give translations of the services intro-
duced in Section 4 to terms of ACPThe translation of a service depends upon the focus associated with
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Table 21. Definition of translation function for services
[H]; = (P}|E)

whereE consists of an equation

Pl = 37 (ey(m) sy (H' (m)) - (P, ., < H'(m) =T U H'((m)) =F & P} )
"M (g (m) + 1 (7m) - sp(H'((m))) - Ph,) + stop

for eachH’' € RF

Table 22. Extension of translation function for threads to thread-service composition
[t /s H] = pr(0c, (1] || [H] 1))

wherer is such that

r(stop™) = stop r(a) = aif a # stop”
andCy is defined by

Cr={ssd)|de MU{Tm|me M}IUu{"?m|me M}UR}
U{rp(d) | deMU{m|me M}U{"m|me M}UR}
U {stop, stop}

it. If focus f is associated with servicH, it will only process basic actions that are of the foftm. In
that case[H] is the correct translation. For evefye F, the function]_] s is defined in Table 21.

Notice that ACP is sufficient for the translation of threads: no conditional expressions occur in the
translations. For the translation of services, we have used the full power ¢f ACP

Next, we relate thread-service composition to operators of‘A@H renaming. That is, we extend
the translation functiorf_] to terms in which thread-service composition does occur. The additional
equation for this extension is given in Table 22.

The translations given above preserve the closed substitution instances of all axioms in which the op-
erators for cyclic interleaving and deadlock at termination do not occur, i.e. axioms T1 and TSC1-TSC14
(see Tables 1, 8 and 11). Roughly speaking, this means that the translations of the closed substitution
instances of these axioms are derivable from the axioms of°‘A@Rioms TSC1-TSC14 are for the
greater part conditional equations. The conditions concerned take part in the translation as well. The
conditions are looked upon as propositions with the conditions of the féf(s:)) = r andf = g, i.e.
the elements o€ ,;, as propositional variables.

We define a functiorj_] that gives a translation of conditional equations of the thread algebra devel-
oped in Sections 3-5 to equations of ACIFor convenience, unconditional equations are considered to
be conditional equations with conditidn The function[-] is defined as follows:

[t =t2if @] = CEhnyyyy ([ta]) = CEryyyy, ([E2])

where
® = {Arer = (H((m)) =7 A Vyegy g H(m) =1') | HERF, me M}

U {/\fe}‘f:f A /\fef/\f/ef\{f}_‘ f:f/} .
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Herehy is a function on conditions of ACRhat preserves, T, —, LI andr and satisfiedy(a) = T
iff o corresponds to a proposition derivable frdnandhy () = L iff —a corresponds to a proposition
derivable from¥.3

Theorem 13.1. (Preservation Theorem)
Letp = ¢ if ¢ be a closed substitution instanceBf, TSC1, TSC2, ..., TCS13 or TSC14. Then
[p = q if ¢] is derivable from ACP.

Proof:

The proof is straightforward. We outline the proof for axiom TSC5. The other axioms are proved in a
similar way. In the outline of the proof for axiom TSCB, r andC'y are as in Tables 21 and 22, a#d

is as above. We take an arbitrary closed substitution instance of TSC5, say

(p<fmq) /s H=tauo (p/; 2o H) if H((m)) =T .

The following equation about the translation of the left-hand side of the closed substitution instance of
TSC5 is derivable from the axioms of ACRnd the axioms for guarded recursive specifications over
ACP*:

pr(Dc, (sy(m) - (vs(T) - [p] +v5(F) - [a) || (PF| E)))
=1-1-(H((m)) =T := pr(9c, ([P | <P£%H|E>))

+ H((m)) = F:— pr(9c,([d] | <P%H|E>))) :

The following equation is derivable from this equation and the axioms for condition evaluation:

CEauga((my)=T}(pr (e, (sp(m) - (x4 (T) - [p] +14(F) - [a]) | (P§IE))))
=i-i- CEauga(my)=T}(or(9c; ([P] I <P£%H|E>))) :

The following equation about the translation of the right-hand side of the closed substitution instance of
TSCS5 is derivable from the axioms for condition evaluation:

CEaua(my=my (11 pr (e, ([e] | (P, |E))))
=i+ CEaugr(omy=T) (0r (O, (D] | (P, 1))

Hence, the evaluated translation of the the left-hand side equals the evaluated translation of the the right-
hand side. O

The statement that threads and services can be viewed as processes that are definable“oger ACP
justified by the fact that the translations given above preserve the closed substitution instances of all
axioms concerned.

Suppose that we could also translate terms in which the operators for cyclic interleaving and deadlock
at termination do occur such that the closed substitution instances of axioms CSI1-CSI7 and S2D1-S2D6

%Here we use “corresponds to” for the wordy “is isomorphic to the equivalence class with respect to logical equivalence of”
(see also [12]).
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(see Tables 5 and 10) are preserved. This would give an even stronger justification. Moreover, the trans-
lation concerned would imply that we could apply the SRM-technique described in [4] to obtain a model
of the thread algebra developed in Sections 3-5 from each minimal model d¢f. AGR generaliza-
tion of the SRM-technique described in [9], which is not restricted to minimal models, would make a
first-order extension of ACPnecessary.

However, we are not able to extend the translation fundfidrto terms in which the operator for
cyclic interleaving occurs. The operator for cyclic interleaving asks much more than the operator for
thread-service composition. Basically, more advanced conditions than the conditions that can be ex-
pressed with the retrospection operator and the last action constants added“tmACRH should be
added to ACP. A sort of sequences of processes, with constants and operators belonging to it, should
be added as well.

14. Conclusions

We have presented an algebraic theory of threads and multi-threads based on multi-level strategic inter-
leaving for the simple strategy of cyclic interleaving. The other interleaving strategies treated in [10]
can be adapted to the setting of multi-level strategic interleaving in a similar way. We have also pre-
sented a reasonable though simplified formal representation schema of the design of systems that consist
of several multi-threaded programs on various hosts in different networks. By dealing with delays and
exceptions, this schema is sufficiently expressive to formalize mechanisms like Java pipes (for commu-
nication between threads) and Unix sockets (for communication between multi-threads, called processes
in Unix jargon, and communication between hosts). Such mechanisms calls for services in which thread
identity management is needed. In the primary theory, multi-level strategic interleaving does not provide
support of thread identity management by services. We have presented an adaptation of the primary
theory that does provide support thereof. We have shown the connections of threads and services with
processes that are definable over ACah extension of ACP with conditions introduced in [12], as well.

The work reported upon in this paper confirms us in our opinion that, in computer science, it always
turns out to be hard to get at a formalization of what is considered intuitively to be simple. This is a state
of affairs which by itself is responsible for many of the problems we are facing in computer science.

To the best of our knowledge, there is no other work on the theory of threads and multi-threads
that is based on strategic interleaving. Although a deterministic interleaving strategy is always used
for thread interleaving, it is the practice in work in which the semantics of multi-threated programs is
involved to look upon thread interleaving as arbitrary interleaving, see e.g. [1, 18, 21]. Even if it would be
appropriate to look upon thread interleaving as arbitrary interleaving, it is likely that a separate algebraic
theory of threads and multi-threads would be more convenient than extensions of process algebras based
on arbitrary interleaving, such as ACP [6], CCS [20] and CSP [17]. The connections of threads and
services with processes that are definable overAgg&duce evidence for this surmise. The translations
show that describing threads and services as general processes is cumbersome. Moreover, reasoning
about threads and services as general processes requires a multiple of elementary proof steps.

One of the options for future work is to formalize mechanisms like Java pipes and Unix sockets using
the thread algebra developed in this paper. Another option for future work is to adapt some interleaving
strategies from [10], other than cyclic interleaving, to the setting of multi-level strategic interleaving. Still
another option for future work is to generalize the thread algebra developed in this paper by considering
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Table 23. Axioms of ACHa, b, c € As)

rt+y=y+x Al Ti—mz==x GC1
(z+y)+tz=a+ (y+2) A2 li—saz=90 GC2
r+x==1x A3 ¢p:—d=96 GC3
(z+y) z=z-24+y- -z A4 p:—(r+y)=¢:—z+¢d:—y GC4
(z-y)-z=z-(y-2) A5 p:—z-y=(p:—z)y GC5h
x+d==x A6 o= (Y:i—x)=(pMNY) :—x GC6
d-x=96 A7 (pUY)i—mz=¢:—z+¢:—xz GCT
(p:—2)ly=¢:—(zly)  GCS8
slly=cly+ylztaly OML  (3ma)|y=dm(z|y) GCo
allz=a -z CM2 z|(p:—=y)=¢d:— (z]|y) GC10
a-z||ly=a-(z|y) CM3 Ou(¢p:—x) = ¢:— Ou(x) GC11
(z+y) llz==zlz+yllz CM4
a-z|b=1(a|b)- =z CM5 pUL=2¢ BA1
alb-z=(alb) -z CM6 pU—¢p=T BA2
azlby=(alb) @y CMT SUY=pUS BA3
(x+y)|z=xlz+ylz  COMS GU@WMY) =(FUY)N(HUx) BA4
z|ly+z)=z|y+z]|=z CM9 pNT =9 BA5
pr—¢=1 BA6
alb="bla C1 pMNY=9MNae BAT
(@lbt)lc=al (|0 2 GNWUX)=(NY UGNy BAS
dla=46 C3
Ou(a) =a ifag H D1
Ou(a) =146 ifae H D2
Ou ( ) =0u(xz)+0u(y) D3
(

a fixed but arbitrary interleaving strategy with certain properties instead of cyclic interleaving. In [11],
we have already introduced such a parametrized theory in a setting where only single-level strategic
interleaving is considered.

A. Axioms of ACP¢

The axioms of ACPare given in Table 23. The axioms for guarded recursive specifications ovér ACP
are given in Table 24. The additional axioms for condition evaluation and action renaming are given in
Table 25 and Table 26, respectively. In Table 24, we use the following notationt beta recursive
specification over ACR, and lett be a term of ACP. Then we writeV(E) for the set of all variables

that occur on the left-hand side of an equatiodirand we write(t| E) for ¢ with, for all X € V(FE), all
occurrences ok in t replaced by X |E).
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Table 24. Axioms for recursion
(X|E) = (tx|E) ifX =tx € E RDP
E= X = (X|E) f X e V(E) RSP

Table 25. Axioms for condition evaluation € As, n € Cyr, ' € Coe U{L, T})

CEn(a) = a CEl CEp(l)=L CE6

CEn(a-z) =a- CEp(x) CE2 CEL(T)=T CE7

CEn(z +y) = CEx(x) + CEnL(y) CE3 CEn(n) =17 if h(n) =7 CES8

CEn(¢:— x) = CEx(¢) :— CEn(z) CE4  CEn(—¢) = —CEx(9) CE9

CEn(CEn (z)) = CEpons () CE5 CEx( = CEn(¢) UCEx(vp) CE10
(

= CEn(¢) M CEx(vp) CEI11

pr(6) =96 ARN1
pr(a) =7r(a ARN2
pr(a-x) =r(a)- pr(z) ARN3
pr(x +y) = pr(x) + pr(y) ARN4
pr(¢:—x) =¢d:—pr(x) ARN5
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