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Abstract. We investigate basic issues concerning stored threads and their execution, building upon

Maurer’s model for computers and the thread algebra of Bergstra et al. We show among other things
that a single thread can control the execution on a Maurer machine of any executable finite-state
thread stored in the memory of the Maurer machine. We also relate stored threads with programs as
considered in the program algebra of Bergstra et al. The work is intended as a preparation for the

development of a formal approach to model micro-architectures and to verify their correctness and

anticipated speed-up results.
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1. Introduction

In this paper, we study the feasibility of an approach based on Maurer machines and Basic Thread
Algebra (BTA) to model micro-architectures and to verify their correctness and anticipated speed-up
results. In particular, we investigate basic issues concerning stored threads and their execution.

Maurer machines are based on a model for computers proposed by Maurer in [19], a paper from 40
years ago. Maurer’s model for computers is quite different from the well-known models such as register
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machines, multi-stack machines and Turing machines (see e.g. [17]). The strength of Maurer's model
is that it is close to real computers. BTA is a form of process algebra which is introduced in [6] under
the name Basic Polarized Process Algebra (BPPA). It is a form of process algebra which is tailored to
the description of the behaviour of deterministic sequential programs under execution. The behaviours
concerned are called threads. To make it possible that threads direct a Maurer machine in performing
operations on its state, BTA is extended in this paper with, for each Maurer machine, an apply operator.
Applying a thread to a Maurer machine amounts to generating a sequence of state changes according to
the operations that the Maurer machine associates with the basic actions performed by the thread.

Why did we choose to use Maurer machines and BTA as the basis of an approach to model micro-
architectures? First of all, well-known models for computers, such as register machines, multi-stack
machines and Turing machines, are too general for our purpose. Unlike Maurer's model for comput-
ers, those models have little in common with real computers. They abstract from many aspects of real
computers with which the design of a micro-architectures must deal. Maurer’s model for computers is
based on the view that a computer has a memory, the contents of all memory elements make up the state
of the computer, the computer processes instructions, and the processing of an instruction amounts to
performing an operation on the state of the computer which results in changes of the contents of certain
memory elements. The design of micro-architectures must deal with these aspects of computers. Sec-
ondly, well-known process algebras, such as ACP [2], CCS [22], and CSP [16], are too general for our
purpose as well. BTA has been designed as an algebra of deterministic sequential processes that interact
with a machine. In [11], we show that the processes considered in BTA can be viewed as processes that
are definable over an extension of ACP with conditions introduced in [9]. However, it is quite awkward
to describe and analyze processes of this kind using such a general process algebra.

In this paper, we show step by step that a single thread can control the execution on a Maurer machine
of any executable finite-state thread stored in the memory of the Maurer machine. By that we give a
theoretical underpinning of basic ideas from the practice of micro-architectures. At the same time, we
demonstrate, admittedly by means of a very simple micro-architecture, that a micro-architecture can
be taken as a provably correct refinement of a more abstract architecture, possibly an instruction set
architecture, when using the approach based on Maurer machines and basic thread algebra. In [8], we
make use of the experience gained with the work presented in this paper to model a more advanced
micro-architecture, namely a micro-architecture with pipelined instruction processing, and to verify its
correctness.

Using some kind of strategic interleaving, several single-thread controlled Maurer machines can be
put in parallel, which might be relevant to the design of multiprocessor architectures. Several kinds of
strategic interleaving have been elaborated in earlier work, see e.g. [13, 7]. Using the simplest kind of
strategic interleaving, called cyclic interleaving, we show also in this paper that finite-state threads of
arbitrary size can be dealt with if the Maurer machine on which the execution takes place leaves the
fetching of the basic actions to another Maurer machine whose memory size is sufficient for the thread
concerned.

We also demonstrate in this paper that there is a close connection between stored threads and PGLD
programs. PGLD is one of the program notations based on Program Algebra (PGA) introduced in [6].

It is close to existing assembly languages, and the behaviour of PGLD programs are threads of the kind
considered in BTA. What is important for the modelling of micro-architectures is the presence of test and
jump instructions in PGLD. The modelling of more advanced micro-architectures must more often than
not deal explicitly with test and jump instructions (cf. [8]). This makes stored threads often less adequate
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when modelling more advanced micro-architectures. In such cases, conversion from stored threads to
stored PGLD programs is a feasible option.

The work presented in this paper, as well as the work presented in [8], has convinced us that a special
notation for the description of micro-architectures is desirable. For example, it is annoying that, for each
memory element that is not affected by an operation, this must be described explicitly. However, we
found that fixing an appropriate notation still requires some significant design decisions.

As mentioned above, Maurer's model for computers is quite different from Turing’s model. The
latter model belongs to the foundations of theoretical computer science, whereas the model used in our
approach to model micro-architectures is relatively unknown indeed. In order to acquire more insight
into the connections between Turing machines, Maurer computers and real computers, we investigate
ways to simulate Turing machines on Maurer computers in [12].

The structure of this paper is as follows. First of all, we review Maurer's model for computers
(Section 2) and BTA (Section 3). Following this, we introduce operators which allow for threads to
direct Maurer machines in performing operations on their state (Section 4). After that, we enhance
Maurer machines step by step till we have attained the result that a single thread can control the execution
on a Maurer machines of any executable finite-state thread stored in the memory of the Maurer machines
(Sections 5-8). We demonstrate that such control can be accomplished with a single control operation
as well (Section 9). Next, we introduce parallel composition of Maurer machines and cyclic interleaving
of threads (Section 10) and show that finite-state threads of arbitrary size can be dealt with (Section 11).
Then, we relate PGLD programs to stored threads (Section 12). Finally, we make some concluding
remarks (Section 13).

2. Maurer's Model for Computers

In this section, we shortly review the model for computers proposed by Maurer in [19]. We use the
phrase Maurer computer for what is a computer according to Maurer’s definition.
A Maurer computelC consists of the following components:

e a non-empty set/;

e asetB with card(B) > 2;

e asetS of functionsS : M — B;

e asetO of functionsO : S — S;
and satisfies the following conditions:

o if S1,5, €S, M' C MandS;:M — BissuchthalS;(z) = S;(z) if x € M’ andSs(z) = Sa(z)
if z & M’, thenS; € S;

e if 51,52 € S, thenthe sefz € M | Si(z) # S2(z)} is finite.

M is called thanemory B is called thébase setthe members aof are called thetatesand the members
of O are called th@perations It is obvious that the first condition is satisfied(ifis completei.e. if S
is the set of all function$ : M — B, and that the second condition is satisfied'ifs finite, i.e. if M
and B are finite sets.
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In [19], operations are called instructions. We use the term operation because of the confusion that
would otherwise arise with the more established use of the term instruction in the area of computer
systems architecture and organization.

The memory of a Maurer computer consists of memory elements which have as contents an element
from the base set of the Maurer computer. The contents of all memory elements together make up a state
of the Maurer computer. The operations of the Maurer computer transform states in certain ways and
thus change the contents of certain memory elements. Thus, a Maurer computer has much in common
with a real computer. The first condition on the states of a Maurer computer is a structural condition
and the second one is a finite variability condition. The following theorem from [19] gives an interesting
characterization of the set of states of a Maurer computer.

Theorem 2.1. Let (M, B, S, O) be a Maurer computer, léf) € S,and letB, = {b€ B |35 € Se
S(x) = b} forall x € M. ThenS is the set of all function$ : M — B such thatS(z) € B, for all
x € Mand{z € M | Sy(z) # S(x)} is finite.

Let (M, B,S,O) be a Maurer computer, and lI&t: S — S. Then theinput regionof O, written
IR(0), and theoutput regionof O, written OR(O), are the subsets dff defined as follows:

OR(0) = {x € M |3S € S+ S(x) £ O(S) (@)},

IR(O) = {fL‘ eM | 351,52 €S e (VZ S M\{x} oSl(Z) = SQ(Z) VAN
Jy € OR(0) « O(S1)(y) # O(S2)(y))} -

OR(O) is the set of all memory elements that are possibly affecte@bgnd IR(O) is the set of all
memory elements that possibly affect element©a&f(O) underO. The following theorem from [19]
gives a fundamental property of the input region and the output region of an operation.

Theorem 2.2. Let (M, B, S, O) be a Maurer computer, l&, S2 € S andO € O. ThenS; | IR(O) =
Sy [ IR(O) impliesO(S;) [ OR(O) = O(Ss) | OR(0).?

In words, every operation transforms states that coincide on the input region of the operation to states that
coincide on the output region of the operation. The second condition on the states of a Maurer computer
is necessary for this property to hold. The first condition on the states of a Maurer computer could be
relaxed somewhat (for more details, see [19]).

Let (M, B, S, ) be a Maurer computer, |62 € O, let M’ C OR(O), and letM” C IR(O). Then
theregion affected by//” underO, written AR(M", O) and theregion affectingl/’ underO, written
RA(M’,0), are the subsets dff defined as follows:

AR(M",0) = {z € OR(O) | 351,52 € S (Vz € IR(O) \ M" ¢ S1(2) = S(z) A
O(81)(z) # O(S2)(x)) } ,
RA(M',0) = {z € IR(O) | AR({z},0)n M # 0} .

The following precedence conventions are used in logical formulas. Operators bind stronger than predicate symbols, and
predicate symbols bind stronger than logical connectives and quantifiers. Moredvigs stronger than andv, andA and

V bind stronger than=- and < . Quantifiers are given the smallest possible scope.

2We use the notatioff D, wheref is a function andD C dom(f), for the functiong with dom(g) = D such that for all

d € dom(g), g(d) = f(d).
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AR(M",0) is the set of all elements @R (O) that are possibly affected by the elements/6f under
O;andRA(M’,0) is the set of all elements dR(O) that possibly affect elements 8 underO.

In [19], Maurer gives many results about the composition of operations, the decomposition of oper-
ations and the existence of operations with specified input, output and affected regions. In Appendix A,
we summarize the main results. Recently, a revised and expanded version of [19], which includes all the
proofs, has appeared in [20].

3. Basic Thread Algebra

In this section, we review Basic Thread Algebra (BTA), a form of process algebra which is tailored to
the description of the behaviour of deterministic sequential programs under execution. The behaviours
concerned are calldgtireads

In BTA, it is assumed that there is a fixed but arbitrary sdiasic actionsA4. BTA has the following
constants and operators:

e thedeadlockconstanD;
e theterminationconstan®;
e for eacha € A, a binarypostconditional compositiooperator. <a > _.

It is assumed that there are infinitely many variables, includirandy. Terms of BTA are built as

usual from these variables and the constants and operators of BTA. We use infix notation for postcondi-
tional composition. We introducaction prefixingas an abbreviation: o p, wherep is a term of BTA,
abbreviatep <a > p.

The intuition is that each basic action performed by a thread is taken as a command to be processed
by the execution environment of the thread. The processing of a command may involve a change of
state of the execution environment. On completion of the processing of the command, the execution
environment produces a reply value. This reply is eith@r F and is returned to the thread concerned.
Let p andq be closed terms of BTA. Them<la > ¢ will perform actiona, and after that proceed asf
the processing af leads to the reply (called a positive reply) and proceed@i the processing ofi
leads to the reply¥ (called a negative reply).

A recursive specificationver BTA is a set of equation® = {X =tx | X € V}, whereV is a set
of variables and eadty is a term of BTA that only contains variables frdm We writeV(E) for the set
of all variables that occur on the left-hand side of an equatidf.ihet¢ be a term of BTA containing a
variableX. Then an occurrence & in ¢ is guardedif ¢ has a subterm of the forth<l a > ¢” containing
this occurrence o . A recursive specificatiof is guardedif all occurrences of variables in the right-
hand sides of its equations are guarded or it can be rewritten to such a recursive specification using the
equations ofZ. We are only interested in models of BTA in which guarded recursive specifications have
unigue solutions, such as the projective limit model of BTA presented in [3, 6]. A thread that is the
solution of a finite guarded recursive specification over BTA is callfidite-statethread.

We extend BTA with guarded recursion by adding constants for solutions of guarded recursive spec-
ifications and axioms concerning those additional constants. For each guarded recursive specification
FE and eachX € V(F), we add a constant standing for the unique solutiowdbr X to BTA. The
constant standing for the unique solutionfofor X is denoted by X |E). Moreover, we add the axioms
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Table 1. Axioms for guarded recursion

(X|E) = (tx|E) ifX=tx € E RDP
E = X =(X|E) if X € V(E) RSP

Table 2. Approximation induction principle

/\nzoﬂ-n(x) = ’/Tn(y) = Tr=Yy AIP

Table 3. Axioms for projection

mo(z) =D PO
Tn+1(S) =S Pl
Tni1(D) =D P2
Tni1(z daly) = mp(2) Jam,(y) P3

for guarded recursion given in Table 1 to BTA, where we wtite| E) for tx with, for all X € V(E),

all occurrences oKX in tx replaced by X |E). In this table X, t x andE stand for an arbitrary variable,

an arbitrary term of BTA and an arbitrary guarded recursive specification over BTA, respectively. Side
conditions are added to restrict the variables, terms and guarded recursive specifications fof wkich
andE stand. The equationsy |E) = (tx|F) for a fixed E' express that the constant¥ | F) make up a
solution of E. The conditional equations = X = (X|E) express that this solution is the only one.
RDP stands for recursive definition principle and RSP stands for recursive specification principle.

We often writeX for (X |FE) if E is clear from the context. It should be borne in mind that, in such
cases, we Us& as a constant.

The projective limit characterization of process equivalence on threads is based on the notion of a
finite approximation of depth. When for alln these approximations are identical for two given threads,
both threads are considered identical. This is expressed by the infinitary conditional equation given in
Table 2. Following [3, 6], approximation of depthis phrased in terms of a unapyojectionoperator
m(-). The projection operators are defined inductively by means of equations PO—P3 given in Table 3.
In this table,a stands for an arbitrary basic action frafnandn stands for an arbitrary natural number.

AIP stands for approximation induction principle.

RDP, RSP and AIP originate from work on ACP [2]. In the setting of ACP, these principles were
first formulated in [5]. Like in the setting of ACP, RSP follows from RDP and AIP.

In the structural operational semantics, we represent an execution environment by a futottion
{T,F}. We write £ for the set of all those functions aril for the set{T,F}. Given an execution
environmentp and a basic action, the derivedexecution environmen%p is defined by%p(a) =
p((a) ¥ a)

The chosen representation of execution environments is based on the assumption that the reply pro-

3we write ( ) for the empty sequencéd) for the sequence havinfjas sole element, andy 3 for the concatenation of finite
sequencea ands. We assume the usual laws for concatenation of finite sequences.
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Table 4. Transition rules of BTA

s| DT

(@) =T ((a)) =F
<wﬁa2y’p>$<w’%p>p <fcﬂaEy,p>i><y>%p>p
d o a

duced by an execution environment on completion of the processing of a basic action depends at any
stage only on that basic action and the sequence of basic actions processed before. This is a realis-
tic assumption for deterministic execution environments. The representation of execution environments
chosen in [13, 7] is suitable for non-deterministic execution environments as well.

The following transition relations on closed terms of BTA are used in the structural operational
semantics of BTA:

e abinary relation_, p) % (_, p’) for eacha € A andp, p’ € &;
e a unary relation |;
e aunary relationT;
e aunary relation .

The four kinds of transition relations are called #etion steptermination deadlock andtermination
or deadlockrelations, respectively. They can be explained as follows:

e (p,p) = (p, p'): in execution environment, threadp can perform actioa and after that proceed
as threag’ in execution environment’;

e pl: threadp cannot but terminate successfully;
e pT: threadp cannot but become inactive;

e p|: threadp cannot but terminate successfully or become inactive.

The termination or deadlock relation is an auxiliary relation used in the transition rules for cyclic inter-
leaving of threads in Section 10.

The structural operational semantics of BTA is described by the transition rules given in Table 4. The
transition rules for the constants for solutions of guarded recursive specifications over BTA are given
in Table 5. The transition rules for projection are given in Table 6. In these tablstends for an
arbitrary basic action froml. In Table 5,X, tx and E stand for an arbitrary variable, an arbitrary term
of BTA and an arbitrary guarded recursive specification over BTA, respectively. In Tablsténds for
an arbitrary natural number.

Bisimulation equivalence is defined as follows.bisimulationis a symmetric binary relatioB on
closed terms of BTA such that for all closed termandq such thatB(p, q):
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Table 5. Transition rules for guarded recursion

({tx|E), p) = (2’ p') Xty c B (tx|E)] Nty ek {tx|E)T Nty e
(X|E), p) = (2, p") (XIE) (XIE)T

Table 6. Transition rules for projection

(z,p) = (o', p") x| z]

(Tng1(), p) = (mn (@), ) mnga(@)l ()T mo(x)l

o if (p,p) = (p',p'), thenthereis @ such thatq, p) = (¢, p’) andB(p’, ¢');
e if p|, theng|;
e if p7, theng].

Two closed term® and g arebisimulation equivalentwritten p < ¢, if there exists a bisimulatior
such thatB(p, q).

Bisimulation equivalence is a congruence with respect to the postconditional composition operators
and the projection operators. This follows immediately from the fact that the transition rules for these
operators are in the path format (see e.g. [1]). The axioms given in Tables 1-3 are sound with respect to
bisimulation equivalence.

Henceforth, we writels,c for the set of all terms of BTA with guarded recursion in which no
constantg X |E) for infinite E occur, andZy,.. for the set of all closed terms of BTA with guarded
recursion in which no constant{s{|E) for infinite £ occur. Moreover, we Writéf, ..(A), where
A C A, for the set of all closed terms froffi,,.. that only contain basic actions frorh

4. Applying Threads to Maurer Machines

In this section, we introduce Maurer machines and add for each Maurer ma@ha®inary apply
operator_ ey _ to BTA. Moreover, we introduce a notion of computation and related notions in the
setting of Maurer machines and BTA. The notions concerned will be used in coming proofs.

A Maurer machines a tupleH = (M, B,S,0, A, [-]), where(M, B, S, ©) is a Maurer computer
and:

o AC A
o [.]:A— (OxM).

The elements ofA are called théasic actionsof H, and[_] is called thebasic action interpretation
functionof H. A and[.] constitute the interface between the Maurer computer and its environment.
The basic action interpretation function Bf associates with each basic actionf6fan operation from

O and a memory element fro/ which are material to the processing of the basic actiothbylet
(Oq,mq) = [a] for all @ € A. Then the processing of a basic actioby H amount to a state change
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Table 7. Defining equations for apply operator

reg =1
SOHS:S
DOHSZT

(z<a>y)ey S=zey04(S)  ifO0.(5)(ma)
(z<aly)ey S=yey Ou5) if O,(S)(myg)

T
F

Table 8. Rule for divergence

/\nzoﬂn(l') .HSZT = :L’OHS:T

according to the operatiof,. In the resulting state, the reply produced Byis contained in memory
elementmn,.

The apply operators associated with Maurer machines are related to the apply operators introduced
in [14]. In applying a thread to a Maurer machine, that Maurer machine is taken as the execution envi-
ronment of the thread. Applying a thread to a Maurer machine amounts to generating a sequence of state
changes according to the operations that the Maurer machine associates with the basic actions performed
by the thread. Thus, the apply operators allow for threads to transform states of Maurer machines. Such
state transformations produce either a state of the Maurer machine concernedraddfired statg. It
is assumed thdtis not a state of any Maurer machine. We extend function restricti¢prioyostipulating
thatT | M = 71 for any setM. The first operand of the apply operatos;; _ associated with Maurer
machineH = (M, B,S, 0, A,[-]) must be a term fronTsn.c(A) and its second argument must be a
state fromS U {1}.

LetH = (M, B,S,0, A,[-]) be a Maurer machine, Igte Ts,c(A4), and letS € S. Thenp ey S
is the state frons that results if all basic actions performed by threaare processed by the Maurer
machineH beginning in stat&. If p is S, then there will be no state change.plfs D, then the result
isT.

LetH = (M, B,S,0, A, [-]) be a Maurer machine, and lgd,, m,) = [a] foralla € A. Then the
apply operator ey _ is defined by the equations given in Table 7 and the rule given in Table 8. In these
tables, stands for an arbitrary member dfand.S stands for an arbitrary member &f

Let H = (M, B,S,0, A,[.]) be a Maurer machine, let € Tgnec(A), and letS € S. Thenp
convergesrom S on H if there exists am € N such thatr,, (p) e S # 7. We say thap divergesfrom
S on H if p does not converge froisi on H. The rule from Table 8 can be read as followst ifliverges
from S on H, thenx ey S equals].

LetH = (M, B,S,0, A, [-]) be a Maurer machine, and lgd,, m,) = [a] foralla € A. Then the
steprelation_ Fg - C (Zfinrec(A) X S) X (Zfinrec(A4) x S) is inductively defined as follows:

e if O,(5)(my) =Tandp =p Jal>p’ then(p,S) kg (p’,0.(5));

o if 0,(5)(my) =Fandp=p dal>p”, then(p,S) Fy (p”,04(S)).
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In this definition, the occurrence ef in p = p’ <a > p” stands for provable equality. We have that
(p,S) Fm (p/,S") impliesp ey S =p' ep S'.

Let H = (M,B,S,0,A,[-]) be a Maurer machine. Thenfall path in_ 5 _ is one of the
following:

e a finite path((pg, So), .., (Pn,Sn)) In - Fx _ such that there does not exist/@,+1, Sn+1) €
ﬁinrec(A) x S with (pm Sn) Fa (anrl, SnJrl);

e an infinite path{(po, So), (p1,S1),...)in _ kg _.

Moreover, letp € Tinec(A), and letS € S. Then thefull path of (p, S) on H is the unique full path
in _ kg _ from (p, S). If p converges fromS on H, then the full path ofp, S) on H is called the
computatiorof (p, S) on H.

LetH = (M, B,S,0, A,[-]) be a Maurer machine, and lete Zgnec(A) andS € S be such that
p converges front on H. Then we writg| (p, S)| ;; for the least: € N such thatr,,(p) ey S # 1. The
computation of(p, §) on H is a full path of length|(p, S)|; from (p, S) to (S,p ey S). So, although
I(p, S)| 4 is not defined in terms of the computation(pf .S) on H, it is the length of the computation
of (p, S)onH.

5. Executing Stored Basic Actions

We enhance Maurer machines step by step till we have attained the result that a single control thread can
control the execution on a Maurer machine of any executable finite-state thread stored in the memory of
the Maurer machine. In this section, we enhance Maurer machines such that processing of a basic action
performed by a thread amounts to first storing it in a special memory element and then executing the
operation associated with the basic action stored in that special memory element. However, the thread
concerned is not stored in the memory of those Maurer machines. Moreover, storing and executing basic
actions cannot be controlled by a single control thread. In Section 7, we enhance Maurer machines
further such that storing and executing basic actions can be controlled by a single control thread. In
Section 8, we enhance them still further such that they can handle stored threads.

We enhance Maurer machines by extending the memory vii#tsi action registe(bar) and areply
register(rr), and the operation set withstoreoperation for each actianof the original Maurer machine
(Ostore:a) @and anexecute stored basic actimperation Qeysp2). Moreover, we replace the basic actions
of the original Maurer machine by a basic actiore:a for each actiom of the original Maurer machine
andexsba. Those basic actions are associated with the operatiggs., andOeyspa, respectively. The
resulting Maurer machines are called SBA-enhancements. SBA stands for stored basic action.

On the SBA-enhancement of a Maurer machifie processing of a basic action performed by a
threadp amounts to first storing it in the special memory elememtand then executing the operation
associated with the basic action storetian. For storing basic actions ar and executing basic actions
stored inbar, the special basic actiossore:a andexsba are introduced. Thus, processing can be brought
under control of a variant of the threasl viz. the thread obtained by applying the transformation
which is defined after the precise definition of an SBA-enhancemenpt, to

Let A C A be such that for altt € A, store:a € A. Then it is assumed thatore:a € A for all
a € A. Moreover, it is assumed thatsba € A.
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Let H = (M, B,S,0, A, [-]) be a Maurer machine witbar, rr ¢ M, store:a ¢ Aforalla € A
andexsba ¢ A, and let(O,, m,) = [a] for all a € A. Then theSBA-enhancemenf H is the Maurer
machine(M’, B',S", 0", A’ []') such that

M = MU {bar, rr} ,
B =BUAUB,
={9":M' - B'|S|MecSAS (bar) e ANS'(rr) € B} ,
' ={0:8 >8I0V €S
(O(S) 1M =0(S"| M) ANO'(S') | (M'\ M) = S" | (M'\ M))}
U {Ostore:a | @ € A} U {Ocxsba}
= {store:a | a € A} U {exsba} ,
[a]’ = (Og,rr) forallac A.

Here, for each € A, Osiore.q iS the unique function fron$’ to S’ such that for alls’ € S’:

Ostore:a(S/) rM = Sl rM
Ostore:a(S/)(bar) =
Ostore:a(S/)(rr) = S’(rr) ;

andOeyspa is the unique function frons’ to S’ such that for alls’” € S':

Oexsba(S/> M = OS/(bar)(Sl TM) )
Oexsba(S”)(bar) = S’ (bar) ,
Oexsba(S/)(rr) = OS/(bar)(S/ rM)(mS’(bar)) :

Because the memory is extended with only finitely many memory elements and the contents of each
of those memory elements is not restricted by the contents of other memory elements, it is easy to check
that an SBA-enhancement of a Maurer machine is a Maurer machine indeed. The same remark applies
to all subsequent enhancements as well.

The transformation function on T.ec IS inductively defined as follows:

P(X) =
o(S) = S
(D) D,
d(t1 Ja > tg) = store:a o (P(t1) Jexsbal> o(ta)) ,

(<X0\{Xo =10, Xn =tn})) = (Xo{Xo = d(t0), ..., Xn = d(tn)}) -
Applying threadp to a state of Maurer machinfé has the same effect as applying the transformation of

p to the corresponding state of the SBA-enhancemer# ofThis is stated rigorously in the following
theorem.

Theorem 5.1. (SBA-enhancement)
Let H' = (M',B',S',0', A", [_]") be the SBA-enhancement &f = (M, B,S,0,A,[.]), letp €
Trinrec(A), and letS{ € S’. Thenp ey (S, | M) = (¢(p) emr S,) | M.
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Proof:
Let (O4,mq) = [a] forall a € A, and let(O,, rr) = [a] foralla € A'. Itis easy to see that for all
acAands’ € §"

Oa(S/ fM) = Oexsba(ostore:a(sl)) [M ) (l)
Oa(S" I M)(ma) = Oexsba(Ostoreia(:S")) (1) - (2)

In the case where converges fromS{, | M on H, it is easy to prove the theorem by induction on
I(p, Sy I M)| , using equations (1) and (2). In the case whede/erges fromS{, | M on H, the theorem
follows immediately from the claim that in this casg(p) e (S{ | M) = (man(¢(p)) em S}) | M for

all n € N. This claim is easily proved by induction en using equations (1) and (2). O

In subsequent sections, we will introduce several other kinds of enhancement of Maurer machines
based on the idea that processing of a basic action performed by a thasadunts to first storing it
in a special memory element and then executing the operation associated with the basic action stored in
that special memory element. However, for each of those other kinds, processing can be brought under
control of a single special thread. This is in most cases accomplished by storing a representation of the
threadp in a part of the memory of the enhanced Maurer machine.

6. Representation of Threads

In this section, we make precise how to represent threads in the memory of a Maurer machine.

It is assumed that a fixed but arbitrary finite $éf,, and a fixed but arbitrary bijectiomy,, :
[0, card(Mgny) — 1] — My, have been giverMy,, is called thehread memoryWe write size(Myy,, ) for
card(My,). Letn,n’ € [0, size(My,,) — 1] be such thatr < n’. Then, we writeMy, [n] for my, (n),
andMy,[n, n'] for {my,, (k) | n < k < n'}.

The thread memory is a memory whose elements can be addressed by means of elements of the set
[0, size(Myp,) — 1]. We write MAy,, for [0, size(Mn,) — 1].

The thread memory elements are meant for containing the representations of nodes that form part of
a simple graph representation of a thread. Here, the representation of a node iS,dittm@ra triple
consisting of a basic action and two natural numbers addressing thread memory elements containing
representations of other nodes.

Letn,n’ € MAw, be suchthat < n’. Then, we writeB,, [n, n'] for {S,D}U ([n,n'] x A x [n,n]).
We write Byp, for Bin, [0, size(Min,) — 1]. Bin, is called thethread memory base sétVe write Sy, for
the set of all functions$y,, : Miyr — Bihr.

Letp € Thnec. Then theset of nodes of the graph representatioinp, written Nodes(p), is the
smallest subset o, Such that:

e p € Nodes(p);
e if p Jal>q € Nodes(p), thenp', ¢’ € Nodes(p);

o if (Xo{Xo="t0,...,Xpn =1tn}) € Nodes(p) and(to|{Xo = to,..., X, = tn}) =0 <al ¢,
thenp', ¢’ € Nodes(p).
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We write size(p) for card(Nodes(p)).

It is assumed that for all € Tsinrec, a fixed but arbitrary bijectionode,:[0, size(p) —1] — Nodes(p)
with node,(0) = p has been given.

Let p € Tfnrec be such thatize(p) < size(My,,). Then thestored graph representatioof p,
written sy, (p), is the unique functiosy, : Min [0, size(p) — 1] — Bin[0, size(p) — 1] such that for
all n € [0, size(p) — 1], sthr(Mene[n]) = nrepr,(node,(n)), where the functiomrepr,, : Nodes(p) —
Binr [0, size(p) — 1] is defined as follows:

<X0‘{XU = to, .. ,Xn = tn}>) = nreprp(<tg|{X0 = to, .. .,Xn = tn}>) .

We calls, (p) astored thread

Notice thats,,(p) is not defined fop with size(p) > size(Min,). The size of the thread memory
restricts the threads that can be stored.

In [6], program algebra and a hierarchy of program notations for finite-state threads rooted in pro-
gram algebra are introduced. The lower-level program notations, which are close to existing assembly
languages and bring with them test and jump instructions, permit a more efficient stored representation
of threads than the one obtaineddyy. In Section 12, we discuss the connection between stored threads
and programs in such a program notation.

7. No Stored Threads, but a Single Control Thread

In this section, we enhance Maurer machines such that storing and executing basic actions can be con-
trolled by a single control thread. In Section 8, we enhance them further such that they can handle
stored threads as well. The purpose of this section is to demonstrate that control of the execution of
any executable finite-state thread by a single control thread is possible without storing the thread to be
executed.

We enhance Maurer machines by extending the memory witbde register(nr), a basic action
register(bar) and areply register(rr), and the operation set withtelt operation O.11), two fetchop-
erations Qrsetch-T, Ofetch:F) @nd anexecute stored basic acti@peration Qe,spa). Moreover, we replace
the basic actions of the original Maurer machine by basic actiahisfetch: T, fetch:F andexsba, with
which the operation&,it, Osetch:T» Ofetch:F aNdOeyspa are associated. The resulting Maurer machines
are called SBAenhancements.

The node registeir of an SBA-enhancement for a threads meant for containing the number that
corresponds to the node of the graph representatignfifm which most recently a basic action has
been fetched. That node, together with the reply produced on completion of the execution of the basic
action concerned, determines the node from which next time a basic action must be fetched. To indicate
that no basic action has been fetched yetmust initially contain—1. The number corresponding to the
node from which the first time a basic action must be fetched, i.e. the rabt,Tike operatiorOrseich.r
fetches the basic action from threathat must be executed next if the reply produced on completion of
the execution of the last fetched basic action.isThe operatiorO.,s,a €Xecutes the last fetched basic
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action. The operatio,,;; produces the reply if p terminates successfully after performing the last
fetched basic action, and the reflytherwise.

In the definition of an SBAenhancement of a Maurer machine given belaw;pr,(n), where
n € [0, size(p) — 1], abbreviatesirepr,,(node,(n)).

It is assumed thatalt € A, thatfetch:r € A for all » € B, and thaexsba € A.

Let H = (M,B,S,0, A, [-]) be a Maurer machine withr, bar,rr ¢ M, halt ¢ A, fetch:r ¢ A
for all » € B andexsba ¢ A, and let(O,, m,) = [a] for alla € A. Letalsop € Tginrec(A). Then the
SBA-enhancementf H for p is the Maurer machinél’ = (M', B',S’, 0’, A’,[_]’) such that

M’ = MU {nr,bar,rr} ,
B'" =BUJ[-1,size(p) —1JUAUB,
:{S’:M’HB"S’[MES/\
S'(nr) € [—1, size(p) — 1] A S'(bar) € AAS'(rr) € B},
' ={0:8 ¢ ’ O € VS €8 e
(O'(S") M =0(S"TM)ANO'(S") I (M"\ M) =S| (M'\ M))}
U {Ohatt } U {Ofetchir | 7 € B} U {Oexspa }
= {halt} U {fetch:r ‘ r e IB} U {exsba} ,
[a]' = (O4,rr) forallac A.
Here,O.1: is the unique function frons’ to S’ such that for alls’ € S':
Ohait(S") M = S" | M
Ohalt(S")(nr) —S/(”f)
Ohait(S") (bar) = S’(bar) ,
Ohai(S")(rr) =T if node,(S'(nr)) =S,
Onaie(S")(rr) =F if node,(S'(nr)) #S ;

for eachr € B, Ofetchr IS the unique function frons’ to S’ such that for alls’ € S”:4
Ofetch T(S/) fM =9 f

Ofetch T(SI)(nr = nnn(S 7’)

Ofetch:r (S') (bar) = ma(nrepr,(nnn(S’,r)))  if nodey(nnn(S’,r)) ¢ {S,D} ,
Ofetch:r(S”) (bar) = S’(bar) if node,(nnn(S’,r)) € {S,D},
Ofetchr(S))(rr) =T if node,(nnn(S’,r)) ¢ {S,D},
Ofetch:r(S")(rr) =F if node,(nnn(S’,r)) € {S,D},

wherennn : 8’ x B — [0, size(p) — 1] is defined as follows:

nnn(S', T) = my(nrepr,(S'(nr))) if S’(nr) # —1 A node,(S'(nr)) & {S,D},
nnn(S', F) = m3(nrepr,(S'(nr))) if S’(nr) # —1 A node,(S'(nr)) & {S,D},
mm(S’,r) = S’(nr) if S'(nr) #—1A nodep(S’(nr)) € {S,D},
nnn(S’,r) = if S’(nr) =

“4Holding on to the usual conventions leads to a double use,ofit is used as one of the projection operators introduced in
Section 3, and it is used to denote theh projection function associated with some cartesian product. It is always clear from
the context how it is used.
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andOeyspa is the unique function frons’ to S’ such that for alls’” € S':

exsba(S/) M OS/(bar)(S TM) ’
exsba(S/>( ) - Sl<nr) )

Oexsba(S”)(bar) = S'(bar) ,

exsba(S/)( ) - OS’(bar)(S/ rM)(mS’(bar)) :

To control the execution of a thread, we introduce below a control thé&Bd Preceding that, we
sketch the behaviour af' T

CT fetches the next basic action from the thread being executed in accordance with the reply pro-
duced on completion of the execution of the last fetched basic action. If that succeedé,tHest
executes that basic action and next returns to fetching the next basic action. Otherwise, the thread being
executed has come to an end afid comes to an end accordingly. In case no basic action has been
fetched yet,C'T fetches a basic action as if the refllywas produced.

The guarded recursive specification@i’ consists of the following equations:

CT = (CT dexsba> CT') <fetch:T> (S <halt> D),
CT' = (CT dexsba> CT') <fetch:F> (S <halt> D) .

Applying threadp to a state of Maurer machinfé has the same effect as applying control thré&d to
the corresponding state of the SBénhancement aoff for p. This is stated rigorously in the following
theorem.

Theorem 7.1. (SBA-enhancement)
Let H' = (M',B',S',0', A’ [.]') be the SBAenhancement off = (M, B,S,0, A, [.]) for p €
Tiinrec(A), and letS{, € S’ be such thas{(nr) = —1. Thenp ey (S}, [ M) = (CT ey S})) | M

Proof:
Let (O4,mq) = [a] for alla € A, and let(O,, rr) = [a]’ forall a € A’. Then itis easy to see that for
all S € 8" with node,(nnn(S’, S'(rr))) ¢ {S,D}:

Oa(S/ TM) = Oexsba(ofetch:r<5,)) fM 5 (3)
Oa(sl rM)<ma) = Oexsba(Ofetch:r<S,))(rr) s (4)

wherea = ma(nrepr,(nodey(nnn(S’, S'(rr))))) andr = S’(rr).
Let (p},, S;,) be then+1-th element in the full path of CT, S;) on H'. Then it is easy to prove by
induction onn that
Pongo = CT 155, 1 (r) =T A S, 4(rr) =T,
Phpyo = CT' i Sy, () =T AS), H(rr)=F,
Popgo =S if S5, 1(rr) =FASy, o(rr) =T
Popgo =D if S5, 1(rr) =FA Sy, o(rr) =F

(if 2n+2 < |(CT, Sp)| 5 in caseCT converges fronb, on H'). Moreover, letp,, S,,) be then+1-th
element in the full path ofp, S{, | M) on H. Then, using (3), (4) and (5), it is straightforward to prove
by induction onn that:

®)

9
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e p, IS represented by the part of the graph representation pofwhose root is
nodep(nnn(Ssy,,, S5, (rr)));

e S, =S5, M

(if n < |(p, Sy I M)| in casep converges fromS;, | M on H). From this, the theorem follows
immediately. O

The SBA-enhancements of a Maurer machine for different threads have different fetch operations.
That is why SBA-enhancements are inflexible from a practical point of view: it is virtually impossible
to change an operation available on a real machine. On the other hand, it is easy to change the stored
thread present in the memory of a real machine.

8. Fetching Basic Actions from a Stored Thread

In this section, we enhance Maurer machines such that a single control thread can control the execution
on a Maurer machine of any executable finite-state thread stored in the memory of the Maurer machine.

We enhance Maurer machines by extending the memory witiread memoryMyy,,), a thread
location register(tlr), a basic action registefbar) and areply register(rr), and the operation set with
a halt operation QOnait), two fetch operations Qseich-T, Ofetch:F) @nd anexecute stored basic action
operation Qeysba). Moreover, we replace the basic actions of the original Maurer machine by basic
actionshalt, fetch: T, fetch:F andexsba, with which the operation®ait, Ofetch: T Ofetch:F @NUOeysha are
associated. The resulting Maurer machines are called ST-40-enhancements. ST stands for stored thread
and 40 indicates that there are four control operations available. The operations associated with basic
actionshalt, fetch:T, fetch:F andexsba in ST-40-enhancements differ from the operations associated
with those basic actions in SBA&nhancements.

The thread location registel is meant for containing the address of the thread memory element
from which most recently a basic action has been fetched. The contents of that thread memory element,
together with the reply produced on completion of the execution of the basic action concerned, deter-
mines the thread memory element from which next time a basic action must be fetched. To indicate that
no basic action has been fetched yét,must initially contain—1. The thread memory element from
which the first time a basic action must be fetched is the one at adidrEss a given threag, the oper-
ationsOqait, Ofetch: Ty Ofeten:F aNdOeysha have essentially the same effect on an ST-40-enhancement of
a Maurer machine and an SBAnhancement of the same Maurer machinefibthe thread memory of
the ST-40-enhancement contasag (p). The main difference is that the effects@f.icn. T andOfetch.F
on the ST-40-enhancement are obtained by actually fetching basic actions from a stored graph represen-
tation ofp in its thread memory, whereas on the SBRhancement the effects that look to be obtained
by fetching are fully embedded in the operations.

Let H = (M, B,S,0, A,[-]) be a Maurer machine witM,, Z M, tlr,bar,rr ¢ M, halt ¢ A,
fetch:r ¢ A for all € B andexsba ¢ A, and let(O,, m,) = [a] for all a € A. Then theST-40-
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enhancementf H is the Maurer machingl’ = (M’, B',S’, 0, A’,[.]') such that
M' = M UM, U {tIr, bar, rr} |
B" = BUBgw UMAy,, U{-1} UAUB,
={9:M —B'|SIMeSAS | Mpr € Shr A

S'(tlr) € MAg, U {—1} A S'(bar) € ANS'(rr) € B},

! :{O’:S/—>8’|HO€OoVS’ES’o

(O'(S) I M =0(8" | M) ANO'(S") [ (M'\ M) = S" | (M'\ M))}

U {Ohalt} U {Ofetch:r ‘ re B} U {Oexsba} )
= {halt} U {fetch:r | r € B} U {exsba} ,
[a]' = (Og,rr) forallac A" .

Here,Ona1: is the unique function frons’ to S’ such that for alls’ € S’:

Onae(S") M =8"TM

Onait(S") [ Menr = S [ Mgy

Oha|t(S/)(t ) = S/(th’) ,

Ohait(S")(bar) = S'(bar) ,

Ohait(S)(rr) =T if S'(My,[S'(tIF)]) =S,
Onaie(S")(rr)  =F if S (Men[S'(tIF)]) # S 5

for eachr € B, Oseteh:r IS the unique function fron$’ to S’ such that for alls’ € S’:

Ofetch:r(S/) TM =5 TM

Ofetch:r (S") [ Mene = S [ My
Ofetch:r(S7)(tlr) = ntla(S',r)
Ofetch:r(S7)(bar) = ma(S" (Mine[ntla(S’,7)]))  if S'(Mne[ntla(S’,r)]) € {S,D},
Ofetch:r(S”)(bar) = S’(bar) if S'(Myp,[ntla(S’,r)]) € {S,D},
Ofetchr(S))(rr) =T if S"(Mine[ntla(S’,7)]) & {S,D},
Ofetchr(S)(rr) = if S"(Mine[ntla(S’,7)]) € {S,D},
wherentla : S’ x B — MAy, is defined as follows:
ntla (S, T) = w1 (S" (M [S'(tIr)])) if S'(tlr) € MAg, A S (Mg, [S’(tIF)]) & {S, D},
ntla(S’,F) = w3(S' (M, [S'(tIr)])) if S'(tlr) € MAg, A S (Mg, [S’(tIF)]) & {S, D},
ntla(S’,r) = S'(tlr) if S'(tlr) € MAw, A S’ (M [S'(tIr)]) € {S,D},

ntla(S’,r) =0 if S'(tlr) &€ MAgy ;
andOeysps is the unique function frons’ to S’ such that for alls’” € S’:
Oexsba(S/) M = OS’(bar)(S/ TM) )
exsba(S/) I\/Ithr — S f I\/Ithr )
Oexsba(S7)(tlr) = S'(tlr)
Oexsba(S")(bar) = S’(bar) ,
exsba(Sl)( r) = OS’(bar)(Sl rM)(mS’(bar)) :

17
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Consider again the guarded recursive specification over BTA that consists of the following equations:

CT = (CT <exsbal> CT') <fetch:T> (S <halt™> D),
CT' = (CT <dexsbal> CT') <fetch:F> (S <halt> D) .

Applying threadp to a state of Maurer machiné has the same effect as applying control thréad to
the corresponding state of the ST-40-enhancemeht iofwhich the thread memory contains the stored
graph representation pf This is stated rigorously in the following theorem.

Theorem 8.1. (ST-40-enhancement)

Let H' = (M',B',S',0’, A',[_]) be the ST-40-enhancement Bf = (M, B,S, 0, A, [.]), letp €
Trinrec (A) be such thatize(p) < size(Mg,), and letS; € S’ be such that], | My, [0, size(p) — 1] =
Sthr(p) @nd S (tlr) = —1. Thenp ey (S) | M) = (CT ey SY) | M.

Proof:
Let (04, m,) = [a] forall a € A, and let(O,, rr) = [a] foralla € A’. Then it is easy to see that for
all S’ € 8" with S’ (Mg, [ntla(S’, S'(rr))]) € {S,D}:

Oa(S/ TM) = Oexsba (Ofetch:r(sl>) fM 5 (6)
Oa(S/ rM)(ma) = Oexsba (Ofetch:r(sl))(rr) ) (7)
wherea = mo (S’ (M, [ntla (S, S'(rr))])) andr = S’(rr).

Let (p},, S;,) be then+1-th element in the full path of CT, Sj;) on H'. Then it is easy to prove by
induction onn that

Papgo = CT  if Sy, () =T NSy, o(rm) =T,

Popyo = CT' if Sy, () =T NS, o(rr)=F, ®)
Popgo =S if S5, 1 (rr) =F A Sy, o) =T,

Popgn =D if S5, 1 (rr) =FA S, () =F

(if 2n+2 < |(CT, Sp)| 5 In caseCT converges fronb, on H'). Moreover, letp,, S,,) be then+1-th
element in the full path ofp, S, | M) on H. Then, using (6), (7) and (8), it is straightforward to prove
by induction o that:

e p, is represented by the partf, (p) to whichntla(S5,,, S5, (rr)) points;
e S, =S5, I M

(if n < |(p, Sy I M)| in casep converges fromS;, [ M on H). From this, the theorem follows
immediately. O

Notice that the proof of Theorem 7.1 and the proof of Theorem 8.1 follow similar lines.

The size of a stored thread may exceed the size of the thread memory of an ST-40-enhancement.
In other words, an ST-40-enhancement cannot handle finite-state threads of arbitrary size. Section 11
shows how to get around this limitation.
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9. A Universal Control operation

On an ST-40-enhancement of a Maurer machine, four operations are available for controlling the ex-
ecution of any finite-state thread stored in the memory of the Maurer machine by means of a single
control thread. In this section, we introduce ST-10-enhancements, which have a single universal control
operation available for that purpose.

We enhance Maurer machines by extending the memory witired memoryMy,,), a thread
location register(tlr), abasic action registefbar), areply register(rr) and afetch mode registeffmr),
and the operation set withstepoperation Q). Moreover, we replace the basic actions of the original
Maurer machine by one basic actiatep, with which the operatioi®s:., is associated. The resulting
Maurer machines are called ST-10-enhancements. ST stands again for stored thread and 10 indicates
that there is one control operation available.

Consecutive executions of the operation., alternate between a fetch mode and an execute mode.
The fetch mode registémr is meant for containing a flag that indicates whether the next tieeis
executed the mode is fetch mode. The contents of that register, together with the contents of the reply
register, determines whether the next tifg., is executed actuallPn,ie, Ofetch: T, Ofetch:F OF Oexsba
is executed.

It is assumed thattep € A.

Let H = (M, B,S,0,A,[.]) be a Maurer machine witM,, Z M, tlr, bar,rr,fmr ¢ M and
step ¢ A, and let(O,, m,) = [a] for all a € A. Then theST-10-enhancemenf H is the Maurer
machineH’ = (M', B',S', 0, A’ [.]') such that

M" = M U Mgy, U {tIr, bar, rr, fmr} |
B' = BUByp UMAy, U{—-1}UAUB,
S ={8:M —-B|SMecSAS | Mg € Senr A
S'(tlr) € MAg, U {—1} A S'(bar) € AAS'(rr) € BA S (fmr) € B},
O ={0:8-8[30c0.¥5 €S
(O'(S) I M =0(S" | M)ANO'(S) [ (M'\ M) =S| (M'\ M))}
0 {Oue}
A" = {step},
[step]’ = (Ostep, T) -

Here,O.p, is the unique function fron$’ to S’ such that for alls’ € S

Ostep(S") | M" = Osetchr (S" T M) if S'(fmr) = T A S (rr) =1,
Ostep(S”) | M" = Oexspa(S" T M") if S'(fmr) = FA S (rr) =T,
Ostep(S") | M" = Opaie(S" | M") if S’(fmr) =FAS'(rr) =F,
Ostep(S") (fmr) =F if S'(fmr) =T,
Ostep(S)(fmr) =T if S'(fmr) = F |

whereM” = M U Mg, U {tlr, bar, rr} andOsetchry Oexsba @NdOpa1; are defined as in the definition of
the ST-40-enhancement.

To control the execution of a thread, we introduce below a control thf€&t Preceding that, we
sketch the behaviour af' 7.
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CT” is reminiscent ofCT. An odd step ofCT” is actually a fetch step, which may fail because of
termination or deadlock of the controlled thread. An even ste’Bf is actually an execute step if the
preceding fetch step did not fail. Otherwise, it is a halt step. In a fetch step, the next basic action from
the controlled thread is fetched in accordance with the reply produced on completion of the execution of
the last fetched basic action by inspecting the reply register.

The guarded recursive specification@f” consists of the following equation:

CT" = (stepo CT") <Istep> (S Jstep>D) .

Applying threadp to a state of Maurer machirié¢ has the same effect as applying control thré&d’ to
the corresponding state of the ST-10-enhancemeht iofwhich the thread memory contains the stored
graph representation pf This is stated rigorously in the following theorem.

Theorem 9.1. (ST-10-enhancement)

Let H' = (M',B',S',0', A',[_]') be the ST-10-enhancement Hf = (M, B,S, 0, A,[_]), letp €
Tinrec (A) be such thatize(p) < size(My,), and letS), € S’ be such that], | My, [0, size(p) — 1] =
sthr(p), Sp(tlr) = —1 andSy(fmr) = T. Thenp ey (Sj | M) = (CT" e S) | M.

Proof:

The proof follows the same line as the proof of Theorem 8.1. In the proof, the equations corresponding
to equations (6) and (7) hold only for stat&swith S’(fmr) = T. This does not stand in the way of
following the same line, because this extra condition is satisfied by all sfateat have to be related to

the state component of an element in the full patkpof5] [ M) on H. O

10. Parallel Maurer Machines and Interleaving of Threads

In Section 11, we will show that a Maurer machine with a fixed finite memory can deal with any finite-
state thread, provided that it is put in parallel with a Maurer machine of a suitable kind that can hold the
thread concerned. In this section, we introduce the parallel compaosition of Maurer machines. Moreover,
because the control threads of the Maurer machines have to be interleaved if they are put in parallel, we
add an operator for that purpose to BTA.

Let H; = (M;, B;, S;, 05, A;, [-],), fori = 1,2, be Maurer machines with for all € AM; N M,
eitherVO, € Oy ex & OR(O1) 0rvVO2 € Oy ez ¢ OR(O3), andA; N A2 = (). Then theparallel
compositionof H; and Ha, written H; || Ho, is the unique Maurer machiné/, B, S, O, A, [-]) such
that

M = M; U M, ,
B =BiUB;y,
S :{S:MHB’SfMlESlASfMQESQ},
O =0,U0,,
A =A1UA,,

la] =[a], ifaec A,

l[a] =[a], ifaec As.
Note that the parallel composition of two Maurer machines is defined only if each common memory
element is read-only for at least one of the Maurer machines. It is usual that the common memory
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Table 9. Axioms for cyclic interleaving

) =S5 oSt
Sy~ a) =||(a) CSI2
) CSI3
(e~ (z)) dat [[(a~(y)) CSI4

Sp(S)=D S2D1
Sp(D) =D $2D2
Sp(z <al>y) =Sp(z) <al>Sp(y) S2D3

elements do duty for communication between the parallel Maurer machines. The parallel composition
of Maurer machines is not considered in [19, 20].

It is assumed that a collection of threads to be interleaved takes the form of a sequence of threads,
called athread vector Strategic interleaving operators turn a thread vector of arbitrary length into a
single thread. This single thread obtained via a strategic interleaving operator is also aallgi a
thread Formally, however multi-threads are threads as well.

In this section, we only cover the simplest interleaving strategy, naoyeljc interleaving Cyclic
interleaving basically operates as follows: at each stage of the interleaving, the first thread in the thread
vector gets a turn to perform a basic action and then the thread vector undergoes a cyclic permutation.
We mean by a cyclic permutation of a thread vector that the first thread in the thread vector becomes the
last one and all others move one position to the left. If one thread in the thread vector deadlocks, the
whole does not deadlock till all others have terminated or deadlocked. An important property of cyclic
interleaving is that it is fair, i.e. there will always come a next turn for all active threads. Other plausible
interleaving strategies are treated in [13]. The strategic interleaving operator for cyclic interleaving is
denoted by ().

The axioms for cyclic interleaving are given in Table 9. In CSI3, the auxiti@gdlock at termination
operatoiSp(_) is used. It turns termination into deadlock. Its axioms appear in Table 10. In these tables,
a stands for an arbitrary basic action fron

The structural operational semantics of BTA extended with cyclic interleaving is described by the
transition rules given in Tables 4 and 11. In these takilesands for an arbitrary basic action from
Without the termination or deadlock relatior}, we would need negative premises in the second, fourth
and sixth transition rule.

Bisimulation equivalence is also a congruence with respect to the cyclic interleaving operator and
the deadlock at termination operator. This follows immediately from the fact that the transition rules
from Tables 4 and 11 constitute a complete transition system specification in relaxed panth format (see
e.g. [21]). The axioms given in Tables 9 and 10 are sound with respect to bisimulation equivalence.
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Table 11. Transition rules for cyclic interleaving and deadlock at termination

il xel, (Trgn, p) = (T, 07) (k> 0)
(1) ~ o (mpga) ™ @), p) = (@™ () 0)): 0)
1], me [l (g, p) 5 (@, ) (k3150
(I(z1) ~ oo {@pga) > @), p) = (@™ (D) ™ (2 41)), 07
1), ..., 2kl R A R (k3150
| (1) > ()] | ((@1) > ()T
(z,p) = (2',p') x]

(Sp(x), p) = (Sp(z"), ') Sp(x)7

11. Dealing with Finite-State Threads of Arbitrary Size

In this section, we show that finite-state threads of arbitrary size can be dealt with by means of an
enhanced Maurer machine that does the execution of stored basic actions, but leaves the fetching of those
basic actions to a remote Maurer machine whose memory size is sufficient for the thread concerned.

We enhance Maurer machines by extending the memory wliths& action registefbar), areply
register(rr), aremote reply registefrrr) and astop mode registesmr), and the operation set withrealt
operation Oy,1;) and anexecute stored basic actimperation Qe.spa). Moreover, we replace the basic
actions of the original Maurer machine by basic actibsls andexsba, with which the operation®y,,;
andO.sp, are associated. The resulting Maurer machines are called RST-enhancements. RST stands for
remote stored thread.

We also introduce a Maurer machine with a memory consistinglofesad memoryMyy,,), athread
location register(tlr), abasic action registe(bar), areply register(rr), aremote reply registefrrr), and
a stop mode registefsmr), and an operation set consisting diedchoperation QOsetch). Moreover, this
Maurer machine has one basic actifach, with which the operatio@¢., is associated. The resulting
Maurer machine is called the remote machine for stored threads.

The common memory elements of the RST-enhancerfiérdf a Maurer machine and the remote
machineH"” for a stored thread atgar, rr, rrr, smr. The memory elementsar, rrr, smr are not changed
by any operations off’ and the memory element is not changed by any operations &f'. So, the
parallel compositior’ || H" is defined (cf. Section 10). The fetch, execute and halt operations found
here are similar to the ones of an ST-40-enhancement. The opefkatibmas the same effect as either
fetch: T or fetch:F depending on the contentsef The operatiorxsba has no effect ifrr containsF.

Let H = (M,B,S,0,A,[.]) be a Maurer machine witMy,, M, tlr, bar,rr rrr,smr & M,
halt ¢ A, fetch:r ¢ A for all » € B andexsba ¢ A, and let(O,, m,) = [a] for all « € A. Then the
RST-enhancemeat H is the Maurer machinél’ = (M’, B',S', ©', A’,[.]) such that
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M’ = M U {bar, rr,rrr,smr} ,
B =BUAUB,
' ={S"M —-B|SIMecSA
S'(bar) € ANS'(rr) € BAS'(rrr) € BAS'(smr) € B},
O ={0:8—=8[I0c0.V S .
(O'(S") I M =O(S" | M) NO'(S') I (M'\ M) = 5" [ (M'\ M))}
U {Onait, Oexsba } »
" = {halt,exsba} ,
[halt]" = (Opai, rr) ,
[exsba]’ = (Oexsbas 1Y) -

Here,Ona1: is the unique function frons’ to S’ such that for alls’” € S':

Ohaie(S") [ M = S"| M,
Ohait(S")(bar) = S’(bar) ,
Ohait(S")(rr) = S’(smr) ,
Onaie(S")(rrr) = S'(rrr)
Ohait(S")(smr) = S’(smr) ;

andOeysps is the unique function frons’ to S’ such that for alls’” € S’:

exsba(S/) M = OS’(bar)(Sl [ M) if S’(rrr) =T,
Oexsba(S) [ M =S"| M if S"(rrr) =F
Oexsba(S")(bar) = S’(bar) ,

Oexsba (S/)(rr) = OS’(bar)(Sl rM)(mS’(bar)) if S’(rrr) =T,
Oexsba(S7)(rr) = S(rr) if S"(rrr) =F
Oexsba(S7) (rrr) = S'(rrr) |

Oexsba(S") (smr) = S’ (smr) .

The remote machine for stored threadsthe Maurer machingl” = (M”, B", 8", 0", A", [_]")
such that

M = Mipr U {tlr, bar, rr, rrr, smr} )

BN = BthrUMAthrU{—l}UAUB7

S ={8":M" — B" | 5" | Minr € Senr A S”(tlr) € MAg, U {—1} A
S”(bar) € ANS"(rr) € BAS"(rrr) € BAS"(smr) € B},

O” = {Ofetch} )

A" = {fetch} ,

[[fetch]]" = (Ofetch, rrr) .
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Here,Oseten is the unique function frons” to S” such that for alls” € S”:

Ofetch(SN) f Mpr = S f Mehr ’

Oferch (S")(tlr) = ntla(S",r)

Ofetcn(S”)(bar) = mo (" (Mene[ntla(S",r)])) if S”(Mne[ntla(S",7)]) & {S,D},
Ofetch (S”)(bar) = S”(bar) if S”(Mgny[ntla(S”,7)]) € {S,D},
Ofetch (S”)(rr) = 5"(rr)

Ofetcn(S”)(rrr) =T if S” (Mg [ntla(S”,7)]) & {S,D},
Ofetch (S”)(rrr) = if S”(Mgnr[ntla(S”,7)]) € {S,D},
Ofetch (S”)(smr) = if S”(Mgnr[ntla(S”,7)]) =S,
Ofetch (S”)(smr) =F if S”(Mgnr[ntla(S”,7)]) #S,

wherer = S”(rr), and wherentla : 8" x B — MAy, is defined as in the definition of an ST-40-
enhancement.

To control the execution of a thread, we introduce below control thégadfor RST-enhancements
of Maurer machines and control thread™ for remote machines for stored threads. Preceding that, we
sketch the behaviour of the cyclic interleaving@f” and C'T”.

While fetch does not failfetch andexsba are performed alternatingly. Wheéetch fails, the cyclic
interleaving of CT" and CT” proceeds a€'T’. This means thadxsba is performed once more before
the whole comes to an end, but that has no effect becausentainsr.

The guarded recursive specification@i” consists of the following equation:

CT' = CT' <exsbal> (S <halt™> D),
and the guarded recursive specificationCdf” consists of the following equation:
CT" = CT" <fetch>S .

Applying threadp to a state of Maurer machirfé has the same effect as applying the cyclic interleaving
of control threadsC'T’ and CT”, starting with CT”, to the corresponding state of the parallel com-
position of the RST-enhancement Bf and the remote machine for stored threads in which the thread
memory contains the stored graph representatign dhis is stated rigorously in the following theorem.

Theorem 11.1. (RST-enhancement)

Let H' = (M',B',S', 0, A’ [.]') be the RST-enhancement &f = (M, B,S,0, A,[.]), let H" be
the remote machine for stored threadsplet T, (A) be such thatize(p) < size(My, ), letS* be the
set of states off’ || H”, and letS§ € S* be such thab | M, [0, size(p) — 1] = sihe(p), Sj(tlr) = —1,
So(rr) = T. Thenp ey (S5 I M) = (|((CT") ¥ (CT")) ez S5) | M.

Proof:
Firstly, ||((CT") ¥ (CT")) is the solution of the guarded recursive specification over BTA that consists
of the following equation:

CT* = (CT* dexsbal [|[((CT") ¥ (S <halt> D))) <fetch> CT" .
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Secondly,H’ || H" is the Maurer machin& = (M*, B*, §*, 0*, A* [_]") such that

M* = M U Mg, U {tlr, bar, rr, rrr,smr} ,

B* = BUBw UMAj U{—-1}UAUB,

§* ={S*:M* — B* | S* M € SN S*[ Min € Sthre A S*(tlr) € MAg, U {—1} A
S*(bar) € AN S*(rr) € B A S*(rrr) € B A S*(smr) € B},

o* ={0*:8* - & ‘ JO € O eVS* € S* o

(O%(S*) | M = O(S* | M) A O*(S*) [ (M*\ M) = §* | (M*\ M))}
U {Oha|t7 Ofetch7 Oexsba} )

A* = {halt, fetch,exsba} ,

[[ ]] = (Ohalt, 1) ,

[fetch]® = (Ofetch, rrr) ,

[exsba]™ = (Oexspa, rrr) -

Here,Ohait, Ofetch aNdOeysha are the extensions of the operatia@ns, ¢, Ofetch aNdOeyspa Of H' and H”
to S* such thaOy 1 (S*) [ (M*\ M') = S* [ (M*\ M"), Otetcn(S*) | (M*\ M) = S* | (M*\ M")
andOexspa (S*) [ (M*\ M') = S* | (M*\ M").

The remainder of the proof follows the same line as the proof of Theorem 8.1. O

Variations of the way to deal with arbitrary finite-state threads presented above are possible. For
example, the fetch and execute operations could have been kept essentially the same as the ones of an
ST-40-enhancement. In that case, test operations would have been needed to check the most recently
produced reply of the other Maurer machine. Moreover, a cyclic interleaving strategy would have been
needed that gives each control thread two consecutive turns.

12. Stored Threads and Programs

In this section, we discuss the connection between stored threads and programs. First, we review the
program notation PGLD, which is close to existing assembly languages. PGLD belongs to a hierarchy
of program notations rooted in program algebra. Both program algebra and that hierarchy of program
notations are introduced in [6].

In PGLD, it is assumed that there is a fixed but arbitrary sdtasic instructionss. PGLD has the
following primitive instructions:

e for eacha € J, apositive test instructior-a;

e for eacha € J, anegative test instruction-a;

e for eacha € 7, avoid basic instruction;

e for eachk € N, anabsolute jump instructiog:#k.

PGLD programs have the form;...;u, whereuq, ..., u, are primitive instructions of PGLD.
The intuition is that the execution of a basic instructiomay modify a state and produces a Boolean
value on completion. In the case of a positive test instructian basic instructioru is executed and
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Table 12. Defining equations for behaviour extraction

li,ur 5. .. ;un| =S ifnotl1 <i<n
[t u1 5. sun| =aoli+1,uy ;... uyl ifu; =a

lt,ug .y un =i+ Loy un| <al i+ 2,ur 5.5 up| ifu, = +a

[ty ur s s un| =i+ 2,01 5. s up <a> i+ Lug ;... uy| ifu;=—a
[ty ;s un| = |k ur s up if u; = #H#k

execution proceeds with the next primitive instructioff ifs produced and otherwise the next primitive
instruction is skipped and execution proceeds with the primitive instruction following the skipped one.
In the case wher@& is produced and there is not at least one subsequent primitive instruction and in the
case wherd- is produced and there are not at least two subsequent primitive instructions, termination
occurs. In the case of a negative test instructian the role of the produced Boolean value is reversed.
In the case of a void basic instructian the produced Boolean value is disregarded: execution always
proceeds with the next primitive instruction (if present). The effect of an absolute jump instrictién
is that execution proceeds with theth instruction of the program concerned #f#k is itself thek-th
instruction, then inaction (deadlock) occurskléquals) or k is greater than the length of the program,
termination occurs.

We write Pp,14 for the set of all PGLD programs.

The behaviour of a PGLD program is a thread. The functiggq that maps each PGLD program
to its behaviour is defined by; ;.. . ; up|pgia = |1, u1 5. .. ; us| Where|_, _| is defined by the equations
given in Table 12. In this tabley,,...,u, are primitive instructions of PGLDy € J andk,i € N.
The equations given in Table 12 do not cover the case where there are cyclic chains of jump instructions.
We stipulate thati, u; ;... ; u,| = D if u; is @ jump instruction contained in a cyclic chain of jump
instructions. It is easy to see that the behaviour of each PGLD program is definable by a finite guarded
recursive specification over BTA. Moreover, each finite guarded recursive specification over BTA can be
translated to a PGLD program whose behaviour is the solution of the finite guarded recursive specifica-
tion concerned (cf. Section 5 of [4]).

Next, we consider the stored threads from Section 6 again. We S&it®r {si..(p) | » € Tinrec /\
size(p) < size(Menr)}. We define a translation functignyld : ST — Ppgq for stored threads. For all
T € ST, pgld(T) = pgld'(T,0), wherepgld' : ST x N — P44 is recursively defined as follows:

pgld' (T,n) = pgld” (T,n) if Mihe[n + 1] & dom(T) ,
pgld' (T, n) = pgld” (T, n); pgld' (T,n + 1)  if Myp[n + 1] € dom(T) ,

wherepgld” : ST x N — P4 is defined as follows:

pgld” (T, n) = +a; #4#3n'+1; ##3n"+1 if Mne[n] = (n/,a,n”)
pgld" (T, n) = ##0; ##0; #40 if Mipe[n] =S
pgld" (T, n) = ##3n+1; #4#3n+2; #4#3n+3  if My [n] =D .

The functionpgld transforms addresses of thread memory elements containing representations of nodes
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to absolute jump instructions taking the line that each representation of a node is mapped to three primi-
tive instructions. For that reasofiandD are mapped to three primitive instructions.

It can be shown that, for afl € Tinrec With size(p) < size(Miny), |pgld(sthr(P))|pela = p- The func-
tion pgld shows that there is hardly a difference between the stored thygae) and the PGLD program
pgld(sihe(p)) extracted from itsy,, (p) can also be viewed as a stored representatignidf s, (p)) with
three primitive instruction to a memory element. However, it is likely #g (sin,(p)) contains need-
less jump instructions. For example, what can be achieved by a positive test instruetiotiowed by
two identical jump instructions can also be achieved by a void basic instructiorother words, PGLD
permits a more efficient representation of threads than the one obtained by syayaoid pgld.

What is most important for the modelling of micro-architectures is the presence of test and jump
instructions in PGLD. The modelling of more advanced micro-architectures must more often than not
deal explicitly with test and jump instructions (cf. [8]). This makes stored threads often less adequate
when modelling more advanced micro-architectures. In such cases, conversion from stored threads to
stored PGLD programs is a feasible option.

Aninteresting feature of PGLD is that PGLD programs are close to terms of Program Algebra (PGA);
and a mapping has been defined by which they can be turned into terms of PGA (see e.g. [6]). Using the
axioms of PGA, programs can be simplified algebraically. For example, chained jumps can be removed
and thus the size of the program can be reduced.

13. Concluding Remarks

We have investigated basic issues concerning stored threads and their execution on a Maurer machine.
We have shown that a single thread can control the execution on a Maurer machine of any executable
finite-state thread stored in the memory of the Maurer machine. In fact, that has been done by modelling
one of the simplest micro-architectures with single thread control of the execution of stored threads,
using Maurer machines and BTA, and verifying that stored threads are executed correctly with the micro-
architecture modelled. In a similar manner, we have also shown that finite-state threads of arbitrary size
can be dealt with if the Maurer machine on which the execution takes place leaves the fetching of the
basic actions to another Maurer machine whose memory size is sufficient for the thread concerned.

The model of one of the simplest micro-architecture with single thread control of the execution
of stored threads has been developed gradually via models of semi-micro-architectures. The gradual
development clarifies in some degree why virtually all existing micro-architectures for general-purpose
computers have grown out of that simple micro-architecture.

We believe that the work presented in this paper demonstrates the feasibility of an approach based on
Maurer machines and BTA to model micro-architectures and to verify their correctness and anticipated
speed-up results. In [8], we have already made use of the experience gained in this paper to model a
micro-architecture with pipelined instruction processing and to verify its correctness. We feel that we
were able to model that micro-architecture at the level of abstraction at which micro-architecture design
takes place. We are not aware of other approaches where micro-architectures can be modelled at that
level of abstraction.

The work presented in this paper, as well as the work presented in [8], was in part carried out in
the framework of a project investigating micro-threading [15, 18], a technique for speeding up instruc-
tion processing on a computer that makes use of the abilities of the computer to process instructions
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simultaneously in cases where the state changes involved do not influence each other. This technique
requires that programs are parallelized by judicious use of thread forking. After the report version of
this paper appeared, we have also investigated parallelization for simple programs, called straight-line
programs, using Maurer machines and thread algebra. In that work, which is presented in [10], we focus
our attention on basic speed-up results and correctness of program parallelizations.
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A. Results on Maurer Computers

In this appendix, we summarize the main results about the composition of operations, the decomposition
of operations and the existence of operations with specified input, output and affected regions.

We have the following theorem about the input region and the output region of the composition of
two operations.

Theorem A.1. (Composition of operations)

Let (M, B,S,O) be a Maurer computer, l€?;,0, € O, and letO’ : S — S be defined byO'(S) =
02(01(S)). ThenIR(O'") C IR(O1) U IR(O2) and OR(0O1) \ OR(O2) C OR(O') C OR(0Oq) U
OR(Os). If OR(01) N IR(O2) = 0, thenIR(O3) C IR(O') and OR(O’) = OR(O1) U OR(O>).
Moreover, ifOR(O’) = OR(O1) U OR(O2) andOR(O1) N OR(0O2) = 0, then alsd/R(0O;) C IR(0O’).
If OR(O1) NIR(O2) = 0, IR(O1) N OR(O2) = P and OR(0O1) N OR(O2) = 0, thenO’ = O” where
0" : S — Sisdefined byO”(S) = 01(02(5)).

We have the following theorem about the decomposition of an operation.

Theorem A.2. (Decomposition of operations)

Let (M, B,S,O) be a Maurer computer, l&? € O, and letx € OR(O) \
1,05:8 — Swith O,(0}(S)) = O(S) such tha’R(O}) C IR(O), IR(O)

{z} andOR(O}) = OR(O) \ {z}.

LetC = (M, B,S,O) be a Maurer computer. Then theit componenbf C is the sef{z € M |
db € BeVS € SeS(z) =0}

We have the following theorem about the existence of operations for arbitrary input and output re-
gions.

IR(O). Then there exist
) C IR(0), OR(O}) =

Theorem A.3. (Existence of operations (1))

Let (M, B,S,O) be a Maurer computer, léf be its unit component, and 1€t Q C M. Then there
exists a functiorO : S — S with IR(O) = PandOR(O) = Qiff PNZ =0, QN Z = {), and
P#0 = Q#Y0.

We have the following theorem about the existence of operations for arbitrary input, output and
affected regions.
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Theorem A.4. (Existence of operations (2))

Let (M, B, S, O) be a Maurer computer with countahlé, let Z be its unit component, 1€, Q C M
withPNZ=0,QNnZ =0,andP # 0 = Q # 0, and letQ, C Q with Q, # 0 for eachz € P.
Moreover, assume that the following two conditions are satisfied:

e there exist only finitely many € M such thatr € Q,, vy ¢ Q, forally € M \ {z}, and
card({b€ B |3S € S« S(x) =b}) =2;

o for all infinite Qo C |J,cp Q. the set{z € P | Q. N Qo # 0} is either infinite or contains an
elementy for which the sef{b € B | 35 € S « S(y) = b} is infinite.

Then there exists a functian : S — S with IR(O) = P, OR(O) = Q andAR({z},0) = Q, for each
xz € P.

Both conditions in Theorem A.4 are satisfied J . » Q. is a finite set.
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