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We model micro-architectures with non-pipelined instruction processing and pipelined

instruction processing, using Maurer machines, basic thread algebra and program

algebra. We show that stored programs are executed as intended with these

micro-architectures. We believe that this work provides a new mathematical approach to

model micro-architectures and to verify their correctness and anticipated speed-up

results.

1. Introduction

Pipelined instruction processing is a basic technique used in the design of micro-
architectures (see e.g. Hennessy and Patterson (2003) or Sima (2004)). In this paper,
we investigate the issue of dealing with pipelined instruction processing when modelling
micro-architectures in a mathematically precise way. We model micro-architectures with
non-pipelined instruction processing and pipelined instruction processing, using Maurer
machines, basic thread algebra and program algebra. Moreover, we show that stored
programs are executed as intended with these micro-architectures.

Maurer machines are based on a model for computers proposed in Maurer (1966). Mau-
rer’s model for computers is quite different from the well-known models such as register
machines, multi-stack machines and Turing machines (see e.g. Hopcroft et al. (2001)).
The strength of Maurer’s model is that it is close to real computers. The operations that
can be performed on the state of a computer play a prominent part in the model. Basic
thread algebra is a form of process algebra which is introduced in Bergstra and Loots
(2002) under the name basic polarized process algebra. It is a form of process algebra
which is tailored to the description of the behaviour of deterministic sequential programs

† The work presented in this paper has been carried out as part of the GLANCE-project MICROGRIDS,
which is funded by the Netherlands Organisation for Scientific Research (NWO).

‡ The work presented in this paper has been partly carried out while the second author was also at
Eindhoven University of Technology, Department of Mathematics and Computer Science.
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under execution. The behaviours concerned are called threads. Basic thread algebra is
used in this paper to direct a Maurer machine in performing operations on its state.
Program algebra is introduced in Bergstra and Loots (2002) as well. In program alge-
bra, there is considered, not the behaviour of deterministic sequential programs under
execution, but rather the programs themselves. A program is viewed as an instruction
sequence. The behaviour of a program is taken for a thread of the kind considered in
basic thread algebra. With regard to execution of stored programs on a Maurer machine,
we take the line that the programs concerned are programs of the kind considered in
program algebra.

To make it possible for threads to direct a Maurer machine in performing operations
on its state, basic thread algebra must be extended, for each Maurer machine, with an
operator for applying a thread to the Maurer machine from one of its states. Applying a
thread to a Maurer machine amounts to generating a sequence of state changes according
to the operations that the Maurer machine associates with the basic actions performed
by the thread. Because a program is viewed as an instruction sequence in the setting of
program algebra, the representation of programs in the memory of a Maurer machine
becomes trivial.

Why did we choose to use Maurer machines, basic thread algebra and program algebra
to model micro-architectures? First of all, well-known models for computers, such as
register machines, multi-stack machines and Turing machines, are too general for our
purpose. Unlike Maurer’s model for computers, those models have little in common with
real computers. For example, a real computer has a memory, and the contents of all
memory elements make up the state of the computer. Moreover, a real computer processes
instructions, and the processing of an instruction results in changes of the contents of
certain memory elements. The design of micro-architectures must deal with these aspects
of real computers. Secondly, general process algebras, such as ACP (Bergstra and Klop,
1984; Baeten and Weijland, 1990), CCS (Milner, 1980, 1989), and CSP (Brookes et al.,
1984; Hoare, 1985), are too general for our purpose as well. Basic thread algebra has
been designed as an algebra of deterministic sequential processes that interact with a
machine. In Bergstra and Middelburg (2006b), we show that the processes considered
in basic thread algebra can be viewed as processes that are definable over an extension
of ACP with conditions introduced in Bergstra and Middelburg (2006a). However, it
is quite awkward to describe and analyze processes of this kind using such a general
process algebra. Thirdly, there are two reasons to use program algebra: (1) the view that
programs are instruction sequences fits in well with real computers, and (2) program
behaviours are taken for threads as considered in basic thread algebra.

In Bergstra and Middelburg (2007a), we have demonstrated the feasibility of the micro-
architecture modelling approach taken in this paper. In this paper, we make use of the
experience gained in that feasibility study to model more advanced micro-architectures.
As mentioned above, Maurer’s model for computers is quite different from Turing’s model.
The latter model is part of the foundations of theoretical computer science, whereas the
model used in our approach to model micro-architectures is relatively unknown indeed.
For that reason, we have investigated the connections between the two models in Bergstra
and Middelburg (2007b).
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We treat the instruction set architecture for which micro-architectures are modelled
as a parameter that must fulfil a simple assumption: each instruction from the instruc-
tion set must be of a kind considered in program algebra. For example, program algebra
considers test instructions and unconditional jump instructions, but it does not consider
conditional jump instructions. Besides, program algebra considers forward jump instruc-
tions, but it does not consider backward jump instructions. The effect of a conditional
jump instruction can be mimicked by a test instruction and an unconditional jump in-
struction; and the effect of a backward jump instruction can be mimicked by a forward
jump instruction because programs may be infinite instruction sequences in program
algebra.

In pipelined instruction processing, conditional jump instructions need a treatment dif-
ferent from that of unconditional jump instructions. Backward jump instructions do not
need different treatment from that of forward jump instructions in pipelined instruction
processing. In order to demonstrate the generality of our approach, we look also in this
paper at the influence of extending program algebra with conditional jump instructions
on non-pipelined and pipelined instruction processing. We also pay some attention to
backward jump instructions.

We do not make explicit the instruction set architecture for which micro-architectures
are modelled. In our modelling of a micro-architecture, we start from an arbitrary Maurer
machine and enhance it. That Maurer machine determines the instruction set architecture
for which a micro-architecture is modelled. However, there are Maurer machines for which
the enhancement is primarily intended. We describe in this paper those Maurer machines
as well. They are called strict load/store Maurer instruction set architectures.

We regard the work presented in this paper as one of the preparatory steps in de-
veloping, as part of a project investigating micro-threading (Bolychevsky et al., 1996;
Jesshope and Luo, 2000), a formal approach to design new micro-architectures. That ap-
proach should allow for the correctness of new micro-architectures and their anticipated
speed-up results to be verified. The work presented in this paper, as well as the preced-
ing work presented in Bergstra and Middelburg (2007a), has convinced us that a special
notation for the description of micro-architectures is desirable. However, we found that
fixing an appropriate notation still requires some significant design decisions. We come
back to this issue in Section 13.

The structure of this paper is as follows. First, we review Maurer computers (Section 2)
and basic thread algebra (Section 3). Next, we extend basic thread algebra, for each Mau-
rer machine, with the operator for applying a thread to the Maurer machine from one of
its states (Section 4). Following this, we review program algebra (Section 5) and describe
the way in which programs are represented in the memory of Maurer machines (Sec-
tion 6). Then, we model a micro-architecture with non-pipelined instruction processing
(Section 7). After that, we model a variant of that micro-architecture with pipelined
instruction processing (Sections 8 and 9). Following this, we look at the influence of the
addition of conditional jump instructions (Section 10) and briefly discuss the addition
of backward jump instructions (Section 11). Then, we describe strict load/store Mau-
rer instruction set architectures (Section 12). Finally, we make some concluding remarks
(Section 13).
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2. Maurer Computers

In this section, we briefly review Maurer computers, i.e. computers as defined in Maurer
(1966).

A Maurer computer C consists of the following components:

— a non-empty set M ;
— a set B with card(B) ≥ 2;
— a set S of functions S : M → B;
— a set O of functions O : S → S;

and satisfies the following conditions:

— if S1, S2 ∈ S, M ′ ⊆ M and S3 : M → B is such that S3(x) = S1(x) if x ∈ M ′ and
S3(x) = S2(x) if x 6∈ M ′, then S3 ∈ S;

— if S1, S2 ∈ S, then the set {x ∈ M | S1(x) 6= S2(x)} is finite.

M is called the memory, B is called the base set, the members of S are called the states,
and the members of O are called the operations. It is obvious that the first condition is
satisfied if C is complete, i.e. if S is the set of all functions S : M → B, and that the
second condition is satisfied if C is finite, i.e. if M and B are finite sets.

In Maurer (1966), operations are called instructions. In the current paper, the term
operation is used because of the confusion that would otherwise arise with the instructions
of which program algebra programs are made up.

The memory of a Maurer computer consists of memory elements which have as con-
tent an element from the base set of the Maurer computer. The contents of all memory
elements together make up a state of the Maurer computer. The operations of the Mau-
rer computer transform states in certain ways and thus change the contents of certain
memory elements. Thus, a Maurer computer has much in common with a real computer.
The first condition on the states of a Maurer computer is a structural condition and the
second one is a finite variability condition. We return to these conditions, which are met
by any real computer, after the introduction of the input region and output region of an
operation.

Let (M, B,S,O) be a Maurer computer, and let O : S → S. Then the input region
of O, written IR(O), and the output region of O, written OR(O), are the subsets of M

defined as follows:

IR(O) =
{
x ∈ M

∣∣ ∃S1, S2 ∈ S • (∀z ∈ M \ {x} • S1(z) = S2(z) ∧
∃y ∈ OR(O) • O(S1)(y) 6= O(S2)(y))

}
,

OR(O) =
{
x ∈ M

∣∣ ∃S ∈ S • S(x) 6= O(S)(x)
}

.†

OR(O) is the set of all memory elements that are possibly affected by O; and IR(O) is
the set of all memory elements that possibly affect elements of OR(O) under O.

Let (M,B,S,O) be a Maurer computer, let S1, S2 ∈ S, and let O ∈ O. Then S1 ¹

† The following precedence conventions are used in logical formulas. Operators bind stronger than
predicate symbols, and predicate symbols bind stronger than logical connectives and quantifiers.
Moreover, ¬ binds stronger than ∧ and ∨, and ∧ and ∨ bind stronger than ⇒ and ⇔ . Quantifiers
are given the smallest possible scope.
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IR(O) = S2 ¹ IR(O) implies O(S1) ¹ OR(O) = O(S2) ¹ OR(O).‡ In other words, every
operation transforms states that coincide on the input region of the operation to states
that coincide on the output region of the operation. The second condition on the states of
a Maurer computer is necessary for this fundamental property to hold. The first condition
on the states of a Maurer computer could be relaxed somewhat.

Let (M, B,S,O) be a Maurer computer, let O ∈ O, let M ′ ⊆ OR(O), and let M ′′ ⊆
IR(O). Then the region affecting M ′ under O, written RA(M ′, O), and the region affected
by M ′′ under O, written AR(M ′′, O), are the subsets of M defined as follows:

RA(M ′, O) =
{
x ∈ IR(O)

∣∣ AR({x}, O) ∩M ′ 6= ∅} ,

AR(M ′′, O) ={
x ∈ OR(O)

∣∣ ∃S1, S2 ∈ S • (∀z ∈ IR(O) \M ′′ • S1(z) = S2(z) ∧
O(S1)(x) 6= O(S2)(x))

}
.

AR(M ′′, O) is the set of all elements of OR(O) that are possibly affected by the elements
of M ′′ under O; and RA(M ′, O) is the set of all elements of IR(O) that possibly affect
elements of M ′ under O.

In Maurer (1966), Maurer gives many results about the relation between the input
region and output region of operations, the composition of operations, the decomposition
of operations and the existence of operations with specified input, output and affected
regions. In Bergstra and Middelburg (2007a), we summarize the main results. Recently,
a revised and expanded version of Maurer (1966), which includes all the proofs, has
appeared in Maurer (2006).

3. Basic Thread Algebra

In this section, we review BTA (Basic Thread Algebra), a form of process algebra which
is tailored to the description of the behaviour of deterministic sequential programs under
execution. The behaviours concerned are called threads.

In BTA, it is assumed that there is a fixed but arbitrary set of basic actions A with
tau 6∈ A. We write Atau for A ∪ {tau}. BTA has the following constants and operators:

— the deadlock constant D;
— the termination constant S;
— for each a ∈ Atau, a binary postconditional composition operator E a D .

We use infix notation for postconditional composition. We introduce action prefixing as
an abbreviation: a ◦ p, where p is a term of BTA, abbreviates p E aD p.

The intuition is that each basic action performed by a thread is taken as a command to
be processed by the execution environment of the thread. The processing of a command
may involve a change of state of the execution environment. At completion of the pro-
cessing of the command, the execution environment produces a reply value. This reply
is either T or F and is returned to the thread concerned. Let p and q be closed terms of

‡ We use the notation f �D, where f is a function and D ⊆ dom(f), for the function g with dom(g) = D
such that for all d ∈ dom(g), g(d) = f(d).
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Table 1. Axiom of BTA

xE tauD y = xE tauD x T1

Table 2. Axioms for guarded recursion

〈X|E〉 = 〈tX |E〉 if X = tX ∈ E RDP
E ⇒ X = 〈X|E〉 if X ∈ V(E) RSP

BTA. Then p E a D q will perform action a, and after that proceed as p if the processing
of a leads to the reply T (called a positive reply) and proceed as q if the processing of
a leads to the reply F (called a negative reply). The action tau plays a special role. Its
execution will never change any state and always produces a positive reply.

BTA has only one axiom. This axiom is given in Table 1. Using the abbreviation
introduced above, axiom T1 can be written as follows: x E tau D y = tau ◦ x.

A recursive specification over BTA is a set of equations E = {X = tX | X ∈ V }, where
V is a set of variables and each tX is a term of BTA that contains only variables from V .
We write V(E) for the set of all variables that occur on the left-hand side of an equation
in E. Let t be a term of BTA containing a variable X. Then an occurrence of X in t

is guarded if t has a subterm of the form t′ E aD t′′ containing this occurrence of X. A
recursive specification E is guarded if all occurrences of variables in the right-hand sides
of its equations are guarded or it can be rewritten to such a recursive specification using
the equations of E. We are only interested in models of BTA in which guarded recursive
specifications have unique solutions, such as the projective limit model of BTA presented
in Bergstra and Bethke (2003). A thread that is the solution of a finite guarded recursive
specification over BTA is called a finite-state thread.

We extend BTA with guarded recursion by adding constants for solutions of guarded re-
cursive specifications and axioms concerning these additional constants. For each guarded
recursive specification E and each X ∈ V(E), we add a constant standing for the unique
solution of E for X to the constants of BTA. The constant standing for the unique so-
lution of E for X is denoted by 〈X|E〉. Moreover, we use the following notation. Let t

be a term of BTA and E be a guarded recursive specification. Then we write 〈t|E〉 for t

with, for all X ∈ V(E), all occurrences of X in t replaced by 〈X|E〉. We add the axioms
for guarded recursion given in Table 2 to the axioms of BTA. In this table, X, tX and
E stand for an arbitrary variable, an arbitrary term of BTA and an arbitrary guarded
recursive specification, respectively. Side conditions are added to restrict the variables,
terms and guarded recursive specifications for which X, tX and E stand. The additional
axioms for guarded recursion are known as the recursive definition principle (RDP) and
the recursive specification principle (RSP). The equations 〈X|E〉 = 〈tX |E〉 for a fixed E

express that the constants 〈X|E〉 make up a solution of E. The conditional equations
E ⇒ X = 〈X|E〉 express that this solution is the only one.

We often write X for 〈X|E〉 if E is clear from the context. It should be borne in mind
that, in such cases, we use X as a constant.

The projective limit characterization of process equivalence on threads is based on the
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Table 3. Approximation induction principle
V

n≥0 πn(x) = πn(y) ⇒ x = y AIP

Table 4. Axioms for projection operators

π0(x) = D P0
πn+1(S) = S P1
πn+1(D) = D P2
πn+1(xE aD y) = πn(x)E aD πn(y) P3

notion of a finite approximation of depth n. When for all n these approximations are
identical for two given threads, both threads are considered identical. This is expressed
by the infinitary conditional equation AIP (Approximation Induction Principle) given
in Table 3. Here, following Bergstra and Bethke (2003), approximation of depth n is
phrased in terms of a unary projection operator πn( ). The projection operators are
defined inductively by means of the axioms given in Table 4. In this table, a stands for
an arbitrary member of Atau. It happens that RSP follows from AIP.

The structural operational semantics of BTA and its extensions with guarded recur-
sion and projection can be found in Bergstra and Middelburg (2005) and Bergstra and
Middelburg (2007a).

Henceforth, we write Tfinrec for the set of all closed terms of BTA with guarded recursion
in which no constants 〈X|E〉 for infinite E occur. We write Tfinrec(A), where A ⊆ A, for
the set of all closed terms from Tfinrec that contain only basic actions from A.

4. Applying Threads to Maurer Machines

In this section, we introduce Maurer machines and add for each Maurer machine H a
binary apply operator •H to BTA.

A Maurer machine is a tuple H = (M,B,S,O, A, [[ ]]), where (M, B,S,O) is a Maurer
computer and:

— A ⊆ A;
— [[ ]] : A → (O ×M) is such that for all S ∈ S and a ∈ A, S(p2([[a]])) ∈ {T, F}.§
The members of A are called the basic actions of H, and [[ ]] is called the basic action
interpretation function of H. A and [[ ]] constitute the interface between the Maurer
computer and its environment.

The apply operators associated with Maurer machines are related to the apply opera-
tors introduced in Bergstra and Ponse (2002). They allow for threads to transform states
of the associated Maurer machine by means of its operations. Such state transformations
produce either a state of the associated Maurer machine or the undefined state ↑. It is

§ Let A1, . . . , An be sets. Then the function from A1 × . . . × An to Ai (1 ≤ i ≤ n) which maps each
(a1, . . . , an) ∈ A1 × . . .×An to ai is usually denoted by πi. We write pi instead of πi because of the
confusion that would otherwise arise with the projection operator introduced in Section 3.
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Table 5. Defining equations for apply operator

x •H ↑ = ↑
S •H S = S
D •H S = ↑
(tau ◦ x) •H S = x •H S
(xE aD y) •H S = x •H Oa(S) if Oa(S)(ma) = T
(xE aD y) •H S = y •H Oa(S) if Oa(S)(ma) = F

Table 6. Rule for divergence
V

n≥0 πn(x) •H S = ↑ ⇒ x •H S = ↑

assumed that ↑ is not a state of any Maurer machine. We extend function restriction to
↑ by stipulating that ↑ ¹ M = ↑ for any set M . The first operand of the apply operator
•H associated with Maurer machine H = (M,B,S,O, A, [[ ]]) must be a term from

Tfinrec(A) and its second argument must be a state from S ∪ {↑}.
Let H = (M, B,S,O, A, [[ ]]) be a Maurer machine, let p ∈ Tfinrec(A), and let S ∈ S.

Then p•HS is the state that results if all basic actions performed by thread p are processed
by the Maurer machine H from initial state S. Moreover, let (Oa,ma) = [[a]] for all a ∈ A.
Then the processing of a basic action a by H amounts to a state change according to the
operation Oa. In the resulting state, the reply produced by H is contained in memory
element ma. If p is S, then there will be no state change. If p is D, then the result is ↑.

Let H = (M, B,S,O, A, [[ ]]) be a Maurer machine, and let (Oa,ma) = [[a]] for all
a ∈ A. Then the apply operator •H is defined by the equations given in Table 5 and
the rule given in Table 6. In these tables, a stands for an arbitrary member of A and S

stands for an arbitrary member of S.
Let H = (M, B,S,O, A, [[ ]]) be a Maurer machine, let p ∈ Tfinrec(A), and let S ∈ S.

Then p converges from S on H if there exists an n ∈ N such that πn(p)•H S 6= ↑. We say
that p diverges from S on H if p does not converge from S on H. The rule from Table 6
can be read as follows: if x diverges from S on H, then x •H S equals ↑.

We introduce some auxiliary notions, which are useful in proofs to come.
Let H = (M, B,S,O, A, [[ ]]) be a Maurer machine, and let (Oa,ma) = [[a]] for all

a ∈ A. Then the step relation `H ⊆ (Tfinrec(A) × S) × (Tfinrec(A) × S) is inductively
defined as follows:

— if p = tau ◦ p′, then (p, S) `H (p′, S);
— if Oa(S)(ma) = T and p = p′ E aD p′′, then (p, S) `H (p′, Oa(S));
— if Oa(S)(ma) = F and p = p′ E aD p′′, then (p, S) `H (p′′, Oa(S)).

Let H = (M, B,S,O, A, [[ ]]) be a Maurer machine. Then a full path in `H is one
of the following:

— a finite path 〈(p0, S0), . . . , (pn, Sn)〉 in `H such that there exists no (pn+1, Sn+1) ∈
Tfinrec(A)× S with (pn, Sn) `H (pn+1, Sn+1);

— an infinite path 〈(p0, S0), (p1, S1), . . .〉 in `H .

Moreover, let p ∈ Tfinrec(A), and let S ∈ S. Then the full path of (p, S) on H is the unique
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full path in `H from (p, S). If p converges from S on H, then the full path of (p, S)
on H is called the computation of (p, S) on H and we write ||(p, S)||H for the length of
the computation of (p, S) on H.

It is easy to see that (p0, S0) `H (p1, S1) only if p0 •H S0 = p1 •H S1 and that
〈(p0, S0), . . . , (pn, Sn)〉 is the computation of (p0, S0) on H only if pn = S and Sn =
p0 •H S0. It is also easy to see that, if p0 converges from S0 on H, ||(p0, S0)||H is the least
n ∈ N such that πn(p0) •H S0 6= ↑.

In the definition of a Maurer machine, we could have taken a function [[ ]] that associates
with each a ∈ A a triple (na, Oa,ma) ∈ M ×O×M such that S(na), S(ma) ∈ {T, F} for
all S ∈ S. In that case, S(na) would indicate whether basic action a is enabled in state
S, i.e. whether the processing of a is not blocked in state S. In this paper, we consider
only threads that are behaviours of deterministic sequential programs under execution.
For such behaviours, it is not at all interesting to take into account the possibility that
some basic actions are not always enabled. Therefore, it is assumed that all basic actions
of a Maurer machine are enabled in all states. Under this assumption, it is sufficient that
the function [[ ]] associates with each a ∈ A a pair (Oa,ma) ∈ O×M as in the definition
given at the beginning of this section.

5. Program Algebra

In this section, we review PGA (ProGram Algebra), an algebra of sequential programs
based on the idea that sequential programs are in essence sequences of instructions. PGA
provides a program notation for finite-state threads. A hierarchy of program notations
that provide more and more sophisticated programming features are rooted in PGA
(see Bergstra and Loots (2002)).

In PGA, it is assumed that there is a fixed but arbitrary set A of basic instructions.
PGA has the following primitive instructions:

— for each a ∈ A, a void basic instruction a;
— for each a ∈ A, a positive test instruction +a;
— for each a ∈ A, a negative test instruction −a;
— for each k ∈ N, a forward jump instruction #k;
— a termination instruction !.

We write I for the set of all primitive instructions.
The intuition is that the execution of a basic instruction a may modify a state and

produces T or F at its completion. In the case of a positive test instruction +a, basic
instruction a is executed and execution proceeds with the next primitive instruction if T is
produced and otherwise the next primitive instruction is skipped and execution proceeds
with the primitive instruction following the skipped one. In the case where T is produced
and there is not at least one subsequent primitive instruction and in the case where F

is produced and there are not at least two subsequent primitive instructions, deadlock
occurs. In the case of a negative test instruction −a, the role of the value produced is
reversed. In the case of a void basic instruction a, the value produced is disregarded:
execution always proceeds as if T is produced. The effect of a forward jump instruction
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Table 7. Axioms of PGA

(X ; Y ) ; Z = X ; (Y ; Z) PGA1
(Xn)ω = Xω PGA2
Xω ; Y = Xω PGA3
(X ; Y )ω = X ; (Y ; X)ω PGA4

Table 8. Defining equations for thread extraction operator

|a| = a ◦ D
|a ; X| = a ◦ |X|
|+a| = a ◦ D
|+a ; X| = |X|E aD |#2 ; X|
|−a| = a ◦ D
|−a ; X| = |#2 ; X|E aD |X|

|#k| = D
|#0 ; X| = D
|#1 ; X| = |X|
|#k + 2 ; u| = D
|#k + 2 ; u ; X| = |#k + 1 ; X|
| ! | = S
| ! ;X| = S

#k is that execution proceeds with the kth next instruction of the program concerned.
If k equals 0 or the kth next instruction does not exist, then #k results in deadlock. The
effect of the termination instruction ! is that execution terminates.

The thread extraction operator introduced below, together with the apply operators
introduced in Section 4, makes it possible to associate operations of Maurer machines
with basic instructions, and consequently with primitive instructions of PGA.

PGA has the following constants and operators:

— for each u ∈ I, an instruction constant u ;
— the binary concatenation operator ; ;
— the unary repetition operator ω .

Closed terms of PGA are considered to denote programs. The intuition is that a pro-
gram is in essence a non-empty finite or infinite sequence of primitive instructions. These
sequences are called single pass instruction sequences because PGA has been designed
to enable single pass execution of instruction sequences: each instruction can be dropped
after it has been executed. Programs are considered to be equal if they represent the
same single pass instruction sequence. The axioms for instruction sequence equivalence
are given in Table 7. In this table, n stands for an arbitrary natural number greater than
0. For each n > 0, the term Xn is defined by induction on n as follows: X1 = X and
Xn+1 = X ; Xn. The unfolding equation Xω = X ; Xω is derivable. Each closed term of
PGA is derivably equal to a term in canonical form, i.e. a term of the form P or P ; Qω,
where P and Q are closed terms of PGA that do not contain the repetition operator.

Each closed term of PGA is considered to denote a program of which the behaviour is
a finite-state thread, taking the set A of basic instructions for the set A of actions. The
thread extraction operator | | assigns a thread to each program. The thread extraction
operator is defined by the equations given in Table 8 (for a ∈ A, k ∈ N and u ∈ I) and
the rule given in Table 9. This rule is expressed in terms of the structural congruence
predicate ∼= , which is defined by the formulas given in Table 10 (for n,m, k ∈ N and
u1, . . . , un, v1, . . . , vm+1 ∈ I).
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Table 9. Rule for cyclic jump chains

X ∼= #0 ; Y ⇒ |X| = D

Table 10. Defining formulas for structural congruence predicate

#n + 1 ; u1 ; . . . ; un ; #0 ∼= #0 ; u1 ; . . . ; un ; #0
#n + 1 ; u1 ; . . . ; un ; #m ∼= #m + n + 1 ; u1 ; . . . ; un ; #m
(#n + k + 1 ; u1 ; . . . ; un)ω ∼= (#k ; u1 ; . . . ; un)ω

#m + n + k + 2 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)ω ∼=
#n + k + 1 ; u1 ; . . . ; un ; (v1 ; . . . ; vm+1)ω

X ∼= X
X1

∼= Y1 ∧X2
∼= Y2 ⇒ X1 ; X2

∼= Y1 ; Y2 ∧X1
ω ∼= Y1

ω

The equations given in Table 8 do not cover the case where there is a cyclic chain of
forward jumps. Programs are structurally congruent if they are the same after removing
all chains of forward jumps in favour of direct jumps. Because a cyclic chain of forward
jumps corresponds to #0, the rule from Table 9 can be read as follows: if X starts
with a cyclic chain of forward jumps, then |X| equals D. It is easy to see that the
thread extraction operator assigns the same thread to structurally congruent programs.
Therefore, the rule from Table 9 can be replaced by the following generalization: X ∼=
Y ⇒ |X| = |Y |.

Let E be a finite guarded recursive specification over BTA, and let PX be a closed term
of PGA for each X ∈ V(E). Let E′ be the set of equations that results from replacing in
E all occurrences of X by |PX | for each X ∈ V(E). If E′ can be obtained by applications
of axioms PGA1–PGA4, the defining equations for the thread extraction operator, and
the rule for cyclic jump chains, then |PX | is the solution of E for X. Such a finite
guarded recursive specification can always be found. Thus, the behaviour of each closed
PGA term is a thread that is definable by a finite guarded recursive specification over
BTA. Moreover, each finite guarded recursive specification over BTA can be translated
to a PGA program of which the behaviour is the solution of the finite guarded recursive
specification concerned.

Closed terms of PGA are loosely called PGA programs. PGA programs in which the
repetition operator does not occur are called finite PGA programs. Henceforth, we write
Pfin for the set of all finite PGA programs. We write Pfin(A), where A ⊆ A, for the set of
all closed terms from Pfin that contain only basic instructions from A.

In the remainder of this paper, with the exception of Section 11, we consider only finite
PGA programs.

6. Stored Programs

In this short section, we make precise how to represent PGA programs in the memory of
a Maurer machine.

It is assumed that a fixed but arbitrary finite set Mprog and a fixed but arbitrary
bijection mprog : [0, card(Mprog)− 1] → Mprog have been given. Mprog is called the program
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memory. We write size(Mprog) for card(Mprog). Let n, n′ ∈ [0, size(Mprog)−1] be such that
n ≤ n′. Then, we write Mprog[n] for mprog(n), and Mprog[n, n′] for {mprog(k) | n ≤ k ≤ n′}.

The program memory is a memory of which the elements can be addressed by means
of members of [0, size(Mprog)− 1]. We write MAprog for [0, size(Mprog)− 1] and MA′prog for
[0, size(Mprog)].

The program memory elements are meant to contain the primitive instructions that
form part of a finite PGA program.

We write Iprog for I \ {#k | k > size(Mprog) − 1}. Iprog is the program memory base
set. We write Sprog for the set of all functions Sprog : Mprog → Iprog.

Let P = u1 ; . . . ; un ∈ Pfin with n ≤ size(Mprog). Then the stored representation of
P , written sprog(P ), is the unique function sprog : Mprog[0, n− 1] → Iprog such that for all
i ∈ [0, n− 1], sprog(Mprog[i]) = ui+1. We call sprog(P ) a stored program.

Note that sprog(u1 ; . . . ; un) is not defined if n > size(Mprog). The size of the program
memory restricts the programs that can be stored.

7. Non-Pipelined Instruction Processing

In this section, we model a micro-architecture with non-pipelined instruction processing.
We do not make the instruction set architecture for which this micro-architecture is mod-
elled explicit. We start from an arbitrary Maurer machine and enhance it. That Maurer
machine determines the instruction set architecture for which a micro-architecture is
modelled. However, there are Maurer machines for which the enhancement is primarily
intended. Those Maurer machines will be introduced in Section 12. Henceforth, we write
“PGA instruction” for “primitive instruction of PGA”.

We enhance Maurer machines by extending the memory with a program memory
(Mprog), a program counter upper bound register (pcbr), a program counter (pc), an in-
struction register (ir), a decoded instruction type register (ditr), a basic action register
(bar), a displacement register (dr), an executed instruction type register (eitr), an in-
struction reply register (irr), a fetch reply register (rrfetch), a pre-process reply register
(rrprep), an execute reply register (rrexec) and a post-process reply register (rrpostp), and
the operation set with a fetch operation (Ofetch), a pre-process operation (Oprep), an ex-
ecute operation (Oexec) and a post-process operation (Opostp). Moreover, we replace the
basic actions of the original Maurer machine by basic actions fetch, prep, exec and postp,
with which the operations Ofetch, Oprep, Oexec and Opostp are associated. The resulting
Maurer machines are called SP-NPL-enhancements. SP stands for stored program and
NPL stands for non-pipelined instruction processing. In SP-NPL-enhancements of Mau-
rer machines, the five instruction types bsc, ptst, ntst, fjmp and term are distinguished.
These types correspond to the five kinds of PGA instructions introduced in Section 5.
Henceforth, we write IT for the set {bsc, ptst, ntst, fjmp, term}. The memory elements
pcbr, pc, ir, ditr, bar, dr, eitr and irr are used to communicate information between the
execution handling operations Ofetch, Oprep, Oexec and Opostp. The memory elements rrfetch,
rrprep, rrexec and rrpostp are the reply registers of the execution handling operations Ofetch,
Oprep, Oexec and Opostp, respectively. It is assumed that pcbr, pc, ir, ditr, bar, dr, eitr,
irr, rrfetch, rrprep, rrexec and rrpostp are pairwise different memory elements. Henceforth, we
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write M ′
ip for {pcbr, pc, ir, ditr, bar, dr, eitr, irr} and M ′

rr for {rrfetch, rrprep, rrexec, rrpostp}. It
is assumed that Mprog ∩ (M ′

ip ∪M ′
rr) = ∅. Henceforth, we write B for the set {T, F}. After

giving the precise definition of an SP-NPL-enhancement, we will further explain how an
SP-NPL-enhancement operates.

Let H = (M,B,S,O, A, [[ ]]) be a Maurer machine such that M∩(Mprog∪M ′
ip∪M ′

rr) = ∅
and fetch, prep, exec, postp 6∈ A, and let (Oa,ma) = [[a]] for all a ∈ A. Then the SP-NPL-
enhancement of H is the Maurer machine H ′ = (M ′, B′,S ′,O′, A′, [[ ]]′) such that

M ′ = M ∪Mprog ∪M ′
ip ∪M ′

rr ,

B′ = B ∪MA′prog ∪ Iprog ∪ IT ∪A ∪ B ,

S ′ = {S′ : M ′ → B′ |
S′ ¹ M ∈ S ∧ S′ ¹ Mprog ∈ Sprog ∧ S′(pcbr) ∈ MAprog ∧
S′(pc) ∈ MA′prog ∧ S′(ir) ∈ Iprog ∧
S′(ditr) ∈ IT ∧ S′(bar) ∈ A ∧ S′(dr) ∈ MAprog ∧
S′(eitr) ∈ IT ∧ S′(irr) ∈ B ∧
S′(rrfetch) ∈ B ∧ S′(rrprep) ∈ B ∧ S′(rrexec) ∈ B ∧ S′(rrpostp) ∈ B} ,

O′ = {O′ : S ′ → S ′ |
∃O ∈ O • ∀S′ ∈ S ′ •
(O′(S′) ¹ M = O(S′ ¹ M) ∧O′(S′) ¹ (M ′ \M) = S′ ¹ (M ′ \M))}

∪ {Ofetch, Oprep, Oexec, Opostp} ,

A′ = {fetch, prep, exec, postp} ,

[[a]]′ = (Oa, rra) for all a ∈ A′ .

Ofetch is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

Ofetch(S′) ¹ M = S′ ¹ M ,

Ofetch(S′) ¹ Mprog = S′ ¹ Mprog ,

Ofetch(S′)(pcbr) = S′(pcbr) ,

Ofetch(S′)(pc) = S′(pc) + 1 if S′(pc) + 1 ≤ S′(pcbr) ,

Ofetch(S′)(pc) = S′(pc) if S′(pc) + 1 > S′(pcbr) ,

Ofetch(S′)(ir) = S′(Mprog[S′(pc)]) if S′(pc) ≤ S′(pcbr) ,

Ofetch(S′)(ir) = #0 if S′(pc) > S′(pcbr) ,

Ofetch(S′) ¹ {ditr, bar, dr} = S′ ¹ {ditr, bar, dr} ,

Ofetch(S′) ¹ {eitr, irr} = S′ ¹ {eitr, irr} ,

Ofetch(S′)(rrfetch) = T if S′(pc) ≤ S′(pcbr) ,

Ofetch(S′)(rrfetch) = F if S′(pc) > S′(pcbr) ,

Ofetch(S′) ¹ (M ′
rr \ {rrfetch}) = S′ ¹ (M ′

rr \ {rrfetch}) .
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Oprep is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

Oprep(S′) ¹ M = S′ ¹ M ,

Oprep(S′) ¹ Mprog = S′ ¹ Mprog ,

Oprep(S′)(pcbr) = S′(pcbr) ,

Oprep(S′) ¹ {pc, ir} = S′ ¹ {pc, ir} ,

Oprep(S′)(ditr) = p1(dec(S′)) ,

Oprep(S′)(bar) = p2(dec(S′)) ,

Oprep(S′)(dr) = p3(dec(S′)) ,

Oprep(S′) ¹ {eitr, irr} = S′ ¹ {eitr, irr} ,

Oprep(S′)(rrprep) = T ,

Oprep(S′) ¹ (M ′
rr \ {rrprep}) = S′ ¹ (M ′

rr \ {rrprep}) ,

where dec : S ′ → IT ×A×MAprog is defined as follows:

dec(S′) = (bsc, a, S′(dr)) if S′(ir) = a ,

dec(S′) = (ptst, a, S′(dr)) if S′(ir) = +a ,

dec(S′) = (ntst, a, S′(dr)) if S′(ir) = −a ,

dec(S′) = (fjmp, S′(bar), k) if S′(ir) = #k ,

dec(S′) = (term, S′(bar), S′(dr)) if S′(ir) = ! .

Oexec is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

Oexec(S′) ¹ M = OS′(bar)(S′ ¹ M) if opc(S′) ,

Oexec(S′) ¹ M = S′ ¹ M if ¬ opc(S′) ,

Oexec(S′) ¹ Mprog = S′ ¹ Mprog ,

Oexec(S′)(pcbr) = S′(pcbr) ,

Oexec(S′) ¹ {pc, ir} = S′ ¹ {pc, ir} ,

Oexec(S′) ¹ {ditr, bar, dr} = S′ ¹ {ditr, bar, dr} ,

Oexec(S′)(eitr) = S′(ditr) ,

Oexec(S′)(irr) = OS′(bar)(S′ ¹ M)(mS′(bar)) if opc(S′) ,

Oexec(S′)(irr) = T if ¬ opc(S′) ,

Oexec(S′)(rrexec) = T ,

Oexec(S′) ¹ (M ′
rr \ {rrexec}) = S′ ¹ (M ′

rr \ {rrexec}) ,

where opc : S ′ → B is defined as follows:

opc(S′) = T iff S′(ditr) ∈ {bsc, ptst, ntst} .
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Opostp is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:
Opostp(S′) ¹ M = S′ ¹ M ,

Opostp(S′) ¹ Mprog = S′ ¹ Mprog ,

Opostp(S′)(pcbr) = S′(pcbr) ,

Opostp(S′)(pc) = pcu(S′) ,

Opostp(S′)(ir) = S′(ir) ,

Opostp(S′) ¹ {ditr, bar, dr} = S′ ¹ {ditr, bar, dr} ,

Opostp(S′) ¹ {eitr, irr} = S′ ¹ {eitr, irr} ,

Opostp(S′)(rrpostp) = T if S′(eitr) 6= term ,

Opostp(S′)(rrpostp) = F if S′(eitr) = term ,

Opostp(S′) ¹ (M ′
rr \ {rrpostp}) = S′ ¹ (M ′

rr \ {rrpostp}) ,

where pcu : S ′ → MA′prog is defined as follows:

pcu(S′) = S′(pc) if S′(eitr) = bsc ∨
S′(eitr) = ptst ∧ S′(irr) = T ∨
S′(eitr) = ntst ∧ S′(irr) = F ∨
S′(eitr) = term ,

pcu(S′) = S′(pc) + 1 if (S′(eitr) = ptst ∧ S′(irr) = F ∨
S′(eitr) = ntst ∧ S′(irr) = T) ∧

S′(pc) + 1 ≤ S′(pcbr) ,

pcu(S′) = S′(pc)− 1 + S′(dr) if S′(eitr) = fjmp ∧ S′(dr) 6= 0 ∧
S′(pc)− 1 + S′(dr) ≤ S′(pcbr) ,

pcu(S′) = S′(pcbr) + 1 if (S′(eitr) = ptst ∧ S′(irr) = F ∨
S′(eitr) = ntst ∧ S′(irr) = T) ∧

S′(pc) + 1 > S′(pcbr) ∨
S′(eitr) = fjmp ∧
(S′(dr) = 0 ∨
S′(pc)− 1 + S′(dr) > S′(pcbr)) .

Figure 1 shows the structure of an SP-NPL-enhancement. The program counter pc

contains the address of the program memory element from which a PGA instruction is
fetched next, unless its content is greater than the highest program address (contained
in pcbr). Fetched PGA instructions are stored in ir. The program counter is incremented
at every fetch. Pre-processing amounts to decoding the PGA instruction stored in ir: the
type of that PGA instruction is stored in ditr, the basic action involved is stored in bar if
it is not a jump or termination instruction, and the displacement is stored in dr if it is a
jump instruction. Execution does not deal with jump and termination instructions; they
are dealt with by post-processing. Post-processing amounts to adjusting the program
counter and recognizing termination. The program counter is adjusted on a positive test
instruction that has given a negative reply, a negative test instruction that has given a
positive reply, and a jump instruction.

Essential information about the last fetched PGA instruction is forwarded from one
execution handling operation to the next: from Ofetch to Oprep via ir, from Oprep to Oexec via
ditr and either bar or dr, from Oexec to Opostp via eitr and irr. Moreover, each execution
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Mprog
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pc

ir
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M

CT

Fig. 1. Structure of an SP-NPL-enhancement

handling operation has its own reply register. All this fits in well with the pipelined
variant of SP-NPL-enhancements that will be introduced in Section 8.

Because the memory is extended with only finitely many memory elements, it is easy
to check, using Proposition IV in Maurer (1966), that the SP-NPL-enhancement of a
Maurer machine is indeed a Maurer machine. The same remark applies to the SP-PL-
enhancement of a Maurer machine introduced in Section 8 as well.

Consider the guarded recursive specification over BTA that consists of the following
equation:

CT = (prep ◦ exec ◦ (CT E postp D S)) E fetch D D .

Let P be a finite PGA program. Then applying thread |P | to a state of Maurer machine
H has the same effect as applying the execution handling thread CT to the corresponding
state of the SP-NPL-enhancement of H in which the program memory contains the stored
representation of P . This is stated rigorously in the following theorem.

Theorem 1 (SP-NPL-enhancement). Let H ′ = (M ′, B′,S ′,O′, A′, [[ ]]′) be the SP-
NPL-enhancement of H = (M, B,S,O, A, [[ ]]), let P = u1 ; . . . ; un ∈ Pfin(A) be such
that n ≤ size(Mprog), and let S′0 ∈ S ′ be such that S′0 ¹ Mprog[0, n − 1] = sprog(P ),
S′0(pcbr) = n− 1 and S′0(pc) = 0. Then |P | •H (S′0 ¹ M) = (CT •H′ S′0) ¹ M .

Proof. Let (Oa,ma) = [[a]] for all a ∈ A, and let (Oa, rra) = [[a]]′ for all a ∈ A′.
Then it is easy to see that for all S′ ∈ S ′ and a ∈ A such that S′(pc) ≤ S′(pcbr) and
S′(Mprog[S′(pc)]) ∈ {a,+a,−a}:

Opostp(Oexec(Oprep(Ofetch(S′)))) ¹ M = Oa(S′ ¹ M) , (1)

Opostp(Oexec(Oprep(Ofetch(S′))))(irr) = Oa(S′ ¹ M)(ma) ; (2)

and it is easy to see that for all S′ ∈ S ′ and a ∈ A such that S′(pc) ≤ S′(pcbr) and
S′(Mprog[S′(pc)]) 6∈ {a,+a,−a}:

Opostp(Oexec(Oprep(Ofetch(S′)))) ¹ M = S′ ¹ M . (3)
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Let (p′i, S
′
i) be the (i+1)st element in the full path of (CT , S′0) on H ′. Then it is easy to

prove by induction on i that

p′4i+4 = CT if S′4i+1(rrfetch) = T ∧ S′4i+4(rrpostp) = T ,

p′4i+4 = S if S′4i+1(rrfetch) = T ∧ S′4i+4(rrpostp) = F ,

p′4i+1 = D if S′4i+1(rrfetch) = F

(4)

(if 4i+4 < ||(CT , S′0)||H′ in case CT converges from S′0 on H ′). Let (pi, Si) be the (i+1)st
element in the full path of (|P |, S′0 ¹ M) on H, and let (p′i, S

′
i) be the (i+1)st element

in the full path of (CT , S′0) on H ′ of which the first component equals CT , S or D and
the second component, say S′, satisfies S′(Mprog[S′(pc)]) 6= #k for all k ∈ MAprog. Then,
using (1), (2), (3) and (4), it is straightforward to prove by induction on i and case
distinction on the structure of finite PGA programs that

pi = |sprog(P )(Mprog[S′4i(pc)]) ; . . . ; sprog(P )(Mprog[n− 1])| ,
Si = S′4i ¹ M

(if i < ||(|P |, S′0 ¹ M)||H in case |P | converges from S′0 ¹M on H). From this, the theorem
follows immediately.

Henceforth, execution handling threads, like CT , are called power threads.

8. Pipelined Instruction Processing

In this section, we model a micro-architecture with pipelined instruction processing which
is a variant of the micro-architecture with non-pipelined instruction processing modelled
in Section 7. In the latter micro-architecture, PGA instructions are processed after one
another, whereas, in the micro-architecture modelled here, four PGA instructions can
be simultaneously overlapped in processing. We again start from an arbitrary Maurer
machine and enhance it.

We enhance Maurer machines by extending the memory as in the case of SP-NPL-
enhancements and additionally with an instruction skip flag (isf), a jump decoded flag
(jdf), a jump processed flag (jpf), a pipeline status register (plsr) and a reply register
(rr), and the operation set with a step operation (Ostep), a pipeline control operation
(Oplctr) and a halt operation (Ohalt). Moreover, we replace the basic actions of the orig-
inal Maurer machine by basic actions step, plctr and halt with which the extra oper-
ations Ostep, Oplctr and Ohalt are associated. The resulting Maurer machines are called
SP-PL-enhancements. SP again stands for stored program and PL stands for pipelined
instruction processing. In SP-PL-enhancements of Maurer machines, the four pipeline
stages fetchst, prepst, execst and postpst are distinguished. Henceforth, we write PS for
{fetchst, prepst, execst, postpst}. The memory elements isf, jdf, jpf and plsr are used to
control the pipelined processing of PGA instructions and to produce a reply in rr at
the completion of each step of the pipelined instruction processing. It is assumed that
isf, jdf, jpf, plsr and rr are pairwise different memory elements. Henceforth, we write
M ′

plc for {isf, jdf, jpf, plsr, rr}. It is assumed that (Mprog ∪M ′
ip ∪M ′

rr) ∩M ′
plc = ∅. After
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giving the precise definition of an SP-PL-enhancement, we will further explain how an
SP-PL-enhancement operates.

Let H = (M, B,S,O, A, [[ ]]) be a Maurer machine such that M ∩ (Mprog ∪ M ′
ip ∪

M ′
rr ∪M ′

plc) = ∅ and step, plctr, halt 6∈ A, and let (Oa,ma) = [[a]] for all a ∈ A. Then the
SP-PL-enhancement of H is the Maurer machine H ′ = (M ′, B′,S ′,O′, A′, [[ ]]′) such that

M ′ = M ∪Mprog ∪M ′
ip ∪M ′

rr ∪M ′
plc ,

B′ = B ∪MA′prog ∪ Iprog ∪ IT ∪A ∪ B ∪ P(PS ) ,

S ′ = {S′ : M ′ → B′ |
S′ ¹ M ∈ S ∧ S′ ¹ Mprog ∈ Sprog ∧ S′(pcbr) ∈ MAprog ∧
S′(pc) ∈ MA′prog ∧ S′(ir) ∈ Iprog ∧
S′(ditr) ∈ IT ∧ S′(bar) ∈ A ∧ S′(dr) ∈ MAprog ∧
S′(eitr) ∈ IT ∧ S′(irr) ∈ B ∧
S′(rrfetch) ∈ B ∧ S′(rrprep) ∈ B ∧ S′(rrexec) ∈ B ∧ S′(rrpostp) ∈ B ∧
S′(jdf) ∈ B ∧ S′(isf) ∈ B ∧ S′(jpf) ∈ B ∧ S′(plsr) ∈ P(PS ) ∧
S′(rr) ∈ B} ,

O′ = {O′ : S ′ → S ′ |
∃O ∈ O • ∀S′ ∈ S ′ •
(O′(S′) ¹ M = O(S′ ¹ M) ∧O′(S′) ¹ (M ′ \M) = S′ ¹ (M ′ \M))}

∪ {Ostep, Oplctr, Ohalt} ,

A′ = {step, plctr, halt} ,

[[a]]′ = (Oa, rr) for all a ∈ A′ .

Ostep is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

Ostep(S′) = O′fetch(O
′
prep(O′

exec(O′postp(S′)))) ,

where O′
fetch, O′

prep, O′
exec and O′

postp are suboperations defined as follows:

O′
fetch is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

O′fetch(S
′) = S′ if fetchst 6∈ S′(plsr) ,

O′fetch(S
′) ¹ (M ′ \M ′

plc) = Ofetch(S′ ¹ (M ′ \M ′
plc)) if fetchst ∈ S′(plsr) ,

O′fetch(S
′) ¹ M ′

plc = S′ ¹ M ′
plc if fetchst ∈ S′(plsr) ;

O′
prep is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

O′prep(S′) = S′ if prepst 6∈ S′(plsr) ,

O′prep(S′) ¹ (M ′ \M ′
plc) = Oprep(S′ ¹ (M ′ \M ′

plc)) if prepst ∈ S′(plsr) ,

O′prep(S′)(jdf) = jdc(S′) if prepst ∈ S′(plsr) ,

O′prep(S
′) ¹ (M ′

plc \ {jdf}) = S′ ¹ (M ′
plc \ {jdf}) if prepst ∈ S′(plsr) ,

where jdc : S ′ → B is the unique function from S ′ to B such that for all S′ ∈ S ′:

jdc(S′) = T iff Oprep(S′ ¹ (M ′ \M ′
plc))(ditr) ∈ {fjmp, term} ;
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O′
exec is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

O′exec(S
′) = S′ if execst 6∈ S′(plsr) ,

O′exec(S
′) ¹ (M ′ \M ′

plc) = Oexec(S′ ¹ (M ′ \M ′
plc)) if execst ∈ S′(plsr) ,

O′exec(S
′)(isf) = isc(S′) if execst ∈ S′(plsr) ,

O′exec(S
′) ¹ (M ′

plc \ {isf}) = S′ ¹ (M ′
plc \ {isf}) if execst ∈ S′(plsr) ,

where isc : S ′ → B is the unique function from S ′ to B such that for all S′ ∈ S ′:

isc(S′) = T iff

S′(ditr) = ptst ∧Oexec(S′ ¹ (M ′ \M ′
plc))(irr) = F ∨

S′(ditr) = ntst ∧Oexec(S′ ¹ (M ′ \M ′
plc))(irr) = T ;

O′
postp is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

O′
postp(S

′) = S′ if postpst 6∈ S′(plsr) ,

O′
postp(S

′) ¹ (M ′ \M ′
plc) = O′′postp(S

′ ¹ (M ′ \M ′
plc)) if postpst ∈ S′(plsr) ,

O′
postp(S

′)(jpf) = jpc(S′) if postpst ∈ S′(plsr) ,

O′
postp(S

′) ¹ (M ′
plc \ {jpf}) = S′ ¹ (M ′

plc \ {jpf}) if postpst ∈ S′(plsr) ,

where jpc : S ′ → B is the unique function from S ′ to B such that for all S′ ∈ S ′:

jpc(S′) = T iff S′(eitr) = fjmp ,

and O′′postp is defined as Opostp in the case of the SP-NPL-enhancement, except for the
replacement of the auxiliary program counter update function pcu by the function pcu ′

defined as follows:

pcu ′(S′) = S′(pc) if S′(eitr) 6= fjmp ,

pcu ′(S′) = S′(pc)− 2 + S′(dr) if S′(eitr) = fjmp ∧ S′(dr) 6= 0 ∧
S′(pc)− 2 + S′(dr) ≤ S′(pcbr) ,

pcu ′(S′) = S′(pcbr) + 1 if S′(eitr) = fjmp ∧
(S′(dr) = 0 ∨
S′(pc)− 2 + S′(dr) > S′(pcbr)) .

Oplctr is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:

Oplctr(S′) ¹ (M ′ \M ′
plc) = S′ ¹ (M ′ \M ′

plc) ,

Oplctr(S′)(jdf) = F ,

Oplctr(S′)(isf) = F ,

Oplctr(S′)(jpf) = F ,

Oplctr(S′)(plsr) = plsu(S′) ,

Oplctr(S′)(rr) = ru(S′) ,

where plsu : S ′ → P(PS ) is the unique function from S ′ to P(PS ) such that for all
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Mprog
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Oprep

Oexec

O′′postp
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ir
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M

Ostep

Ohalt

O′fetch
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rr

CT′

Fig. 2. Structure of an SP-PL-enhancement

S′ ∈ S ′:
fetchst ∈ plsu(S′) iff S′(rrfetch) = T ∧

(fetchst ∈ S′(plsr) ∧ S′(jdf) = F ∨
S′(isf) = T ∨ S′(jpf) = T) ,

prepst ∈ plsu(S′) iff S′(rrfetch) = T ∧
(fetchst ∈ S′(plsr) ∧ S′(jdf) = F ∨
S′(isf) = T) ,

execst ∈ plsu(S′) iff prepst ∈ S′(plsr) ∧ S′(isf) = F ,

postpst ∈ plsu(S′) iff execst ∈ S′(plsr) ,

and ru : S ′ → B is the unique function from S ′ to B such that for all S′ ∈ S ′:
ru(S′) = T iff plsu(S′) 6= ∅ ∧ S′(rrpostp) = T .

Ohalt is the unique function from S ′ to S ′ such that for all S′ ∈ S ′:
Ohalt(S′) ¹ (M ′ \ {rr}) = S′ ¹ (M ′ \ {rr}) ,

Ohalt(S′)(rr) = T if S′(rrpostp) = F ,

Ohalt(S′)(rr) = F if S′(rrpostp) = T .

Figure 2 shows the structure of an SP-PL-enhancement. The suboperations O′
fetch,

O′
prep and O′exec of Ostep either do not affect the memory elements of M ′ \ M ′

plc or do
affect these memory elements exactly in the way in which the operations Ofetch, Oprep
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and Oexec of the SP-NPL-enhancement of H would affect them. The suboperation O′
postp

of Ostep either does not affect the memory elements of M ′ \ M ′
plc or does affect these

memory elements in a way that is similar to the way in which the operation Opostp of
the SP-NPL-enhancement of H would affect them. The difference with Opostp is due to
the different way in which skipping of a PGA instruction is accomplished in pipelined
instruction processing.

The suboperations O′fetch, O′prep, O′
exec and O′

postp of Ostep correspond to the pipeline
stages that a PGA instruction being processed passes through successively. When the
suboperation corresponding to a stage other than the last one has handled a PGA in-
struction, the suboperation corresponding to the next stage is enabled to handle that
PGA instruction in the next step, subject to the exceptions mentioned below. O′fetch, the
suboperation corresponding to the first stage, is always enabled to fetch a PGA instruc-
tion in the next step, subject to the exceptions mentioned below. The exceptions are the
following:

— when O′
prep has decoded a jump or termination instruction, pipelined instruction pro-

cessing is stalled beginning with the PGA instruction fetched in the same step;
— when O′

exec has executed either a positive test instruction with a negative reply as
result or a negative test instruction with a positive reply as result, the PGA instruc-
tion fetched immediately after the test instruction is further discarded and pipelined
instruction processing is started again with the next step if the latter instruction is a
jump or termination instruction;

— when O′postp has adjusted the program counter on a jump instruction, the last fetched
PGA instruction is discarded and pipelined instruction processing is started again
with the next step.

Thus, the suboperations O′
fetch, O′

prep, O′exec and O′postp are not all enabled to handle a
PGA instruction in every step of the pipelined instruction processing. The content of the
pipeline status register indicates which of the suboperations are enabled. Enabledness
is controlled by the pipeline control operation Oplctr. This operation is intended to be
performed immediately after Ostep. It takes parts of the output of the suboperations of
Ostep to fix up the enabledness of these suboperations for the next step.

The idea is that in each step the suboperations O′fetch, O′
prep, O′exec and O′postp are

performed in parallel. To justify the use of the term pipeline here, we have to show that
the suboperations can actually be performed in parallel. We come back to this issue in
Section 9.

Consider the guarded recursive specification over BTA that consists of the following
equation:

CT ′ = step ◦ (CT ′ E plctr D (S E halt D D)) .

Let P be a finite PGA program. Then applying thread |P | to a state of the Maurer
machine H has the same effect as applying power thread CT ′ to the corresponding
state of the SP-PL-enhancement of H in which the program memory contains the stored
representation of P . This is stated rigorously in the following theorem.

Theorem 2 (SP-PL-enhancement). Let H ′ = (M ′, B′,S ′,O′, A′, [[ ]]′) be the SP-
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PL-enhancement of H = (M,B,S,O, A, [[ ]]), let P = u1 ; . . . ; un ∈ Pfin(A) be such that
n ≤ size(Mprog), let S′0 ∈ S ′ be such that S′0 ¹Mprog[0, n− 1] = sprog(P ), S′0(pcbr) = n− 1,
S′0(pc) = 0, S′0(rrfetch) = T, S′0(jdf) = S′0(isf) = S′0(jpf) = F and S′0(plsr) = {fetchst}.
Then |P | •H (S′0 ¹ M) = (CT ′ •H′ S′0) ¹ M .

Proof. We prove that (CT •H′′ (S′0 ¹ (M ′ \ M ′
plc))) ¹ M = (CT ′ •H′ S′0) ¹ M , where

H ′′ is the SP-NPL-enhancement of H. From this and Theorem 1, the theorem follows
immediately.

We use the following notation in the proof. For each S′ ∈ S ′ and each n > 0,
cyclen(S′) is defined by induction on n as follows: cycle1(S′) = Oplctr(Ostep(S′)) and
cyclen+1(S′) = Oplctr(Ostep(cyclen(S′))). For each S′ ∈ S ′, tip(S′) is defined as follows:
tip(S′) ⇔ fetchst ∈ S′(plsr) ∧ prepst ∈ cycle1(S′)(plsr) ∧ execst ∈ cycle2(S′)(plsr) ∧
postpst ∈ cycle3(S′)(plsr). Thus, tip(S′) indicates that some instruction will be totally
processed from state S′.

Analysis of input and output regions yields three potential sources of interference
between the suboperations of Ostep: OR(O′

postp) ∩ OR(O′
fetch) = {pc}, OR(O′postp) ∩

IR(O′fetch) = {pc} and IR(O′postp) ∩OR(O′
fetch) = {pc}. It is easy to see that, by stalling

pipelined instruction processing when O′prep has decoded a jump instruction, interference
does not really happen: O′

fetch does not change any memory element if O′postp has changed
pc in the same step, and O′postp does not change any memory element if O′fetch has changed
pc in the previous step. Because of this, it is not difficult to see that for all S′ ∈ S ′:

tip(S′) ⇒
cycle4(S′) ¹ M = Opostp(Oexec(Oprep(Ofetch(S′ ¹ (M ′ \M ′

plc))))) ¹ M .
(5)

We have that tip(S′0) holds. Moreover, tip is preserved by the total processing of an
instruction if there is a next instruction to be processed:

— if S′(Mprog[S′(pc)]) = a and S′(pc) + 1 ≤ S′(pcbr),
then tip(S′) ⇒ tip(cycle1(S′));

— if S′(Mprog[S′(pc)]) ∈ {+a,−a}, cycle3(S′)(isf) = F and S′(pc) + 1 ≤ S′(pcbr),
then tip(S′) ⇒ tip(cycle1(S′));

— if S′(Mprog[S′(pc)]) ∈ {+a,−a}, cycle3(S′)(isf) = T and S′(pc) + 2 ≤ S′(pcbr),
then tip(S′) ⇒ tip(cycle2(S′));

— if S′(Mprog[S′(pc)]) = #k and S′(pc) + k ≤ S′(pcbr),
then tip(S′) ⇒ tip(cycle4(S′)).

Let (pi, Si) be the (i+1)st element in the full path of (CT , S′0 ¹ (M ′ \M ′
plc)) on H ′′. Then

it is easy to prove by induction on i that

p4i+4 = CT if S′4i+1(rrfetch) = T ∧ S′4i+4(rrpostp) = T ,

p4i+4 = S if S′4i+1(rrfetch) = T ∧ S′4i+4(rrpostp) = F ,

p4i+1 = D if S′4i+1(rrfetch) = F

(6)

(if 4i + 4 < ||(CT , S′0 ¹ (M ′ \M ′
plc))||H′′ in case CT converges from S′0 ¹ (M ′ \M ′

plc) on
H ′′). Let (p′i, S

′
i) be the (i+1)st element in the full path of (CT ′, S′0) on H ′. Then it is
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Table 11. Pipelined instruction processing of a ; +b ; #3 ; c ; #2 ; d ; !

1 2 3 4 5 6 7 8 9 10 11 12

a fetch prep exec postp

+b fetch prep exec postp

#3 fetch prep

c fetch prep exec postp

#2 fetch prep exec postp

d fetch

! fetch prep exec postp

fetch

easy to prove by induction on i that

p′4i+4 = CT ′ if tip(S4i) ∧ S′4i+1(rrfetch) = T ∧ S′4i+4(rrpostp) = T ,

p′4i+4 = S if tip(S4i) ∧ S′4i+1(rrfetch) = T ∧ S′4i+4(rrpostp) = F ,

p′4i+1 = D if tip(S4i) ∧ S′4i+1(rrfetch) = F

(7)

(if 4i+4 < ||(CT ′, S′0)||H′ in case CT ′ converges from S′0 on H ′). Let (pi, Si) be the (i+1)st
element in the full path of (CT , S′0 ¹ (M ′ \M ′

plc)) on H ′′ of which the first component
equals CT , S or D, and let (p′i, S

′
i) be the (i+1)st element in the full path of (CT ′, S′0)

on H ′ of which the first component equals CT ′, S or D and the second component, say
S′, satisfies tip(S′) if the first component equals CT ′. Then, using (5), (6), (7) and the
preservation properties of tip, it is straightforward to prove by induction on i and case
distinction on the kinds of primitive instructions of PGA that

(pi = CT ⇔ p′i = CT ′) ∧ (pi = S ⇔ p′i = S) ∧ (pi = D ⇔ p′i = D) ,

Si ¹ (M ′ \M ′
plc) = S′i ¹ (M ′ \M ′

plc)

(if i < ||(CT , S′0 ¹ (M ′ \M ′
plc))||H′′ in case CT converges from S′0 ¹ (M ′ \M ′

plc) on H ′′).
From this, the theorem follows immediately.

Example (Pipelined instruction processing). Table 11 shows the pipelined instruc-
tion processing of the PGA program a;+b;#3;c;#2;d;! . It is assumed that the execution
of +b results in a negative reply. We see that the pipelined instruction processing of this
PGA program is stalled three times: after the jump instruction #3 has been decoded in
step 4, after the jump instruction #2 has been decoded in step 6, and after the termi-
nation instruction ! has been decoded in step 10. Because the execution of the positive
test instruction +b has produced a negative reply in step 4, the next instruction in the
pipeline, i.e. the jump instruction #3, is not executed and post-processed in later steps.
Pipelined instruction processing is started again from step 5, because there is no longer
a jump instruction in the pipeline. The jump instruction #2 passes all four pipeline
stages before pipelined instruction processing is started again from step 9. Moreover,
because the jump is actually taken, the prematurely fetched instruction d is discarded
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Table 12. Pipelined instruction processing of a ; +b ; c ; #3 ; d ; e

1 2 3 4 5 6 7 8

a fetch prep exec postp

+b fetch prep exec postp

c fetch prep

#3 fetch prep exec postp

d fetch

e

fetch

when pipelined instruction processing is started again. The attempt to fetch another
instruction prematurely in step 10 does not succeed because the last instruction of the
PGA program was fetched in step 9. Instruction processing stops after step 12, because
in that step the termination instruction was recognized.

Table 12 shows the pipelined instruction processing of the program a ;+b ;c ;#3;d ;e . It
is assumed that the execution of +b results in a negative reply. We see that the pipelined
instruction processing of this PGA program is stalled once: after the jump instruction #3
has been decoded in step 5. Because the execution of the positive test instruction +b has
produced a negative reply in step 4, the next instruction in the pipeline, i.e. the void basic
instruction c, is not executed and post-processed in later steps. The jump instruction #3
passes all four pipeline stages before pipelined instruction processing is started again from
step 8. Moreover, because the jump is actually taken, the prematurely fetched instruction
d is discarded when pipelined instruction processing is started again. The attempt to
fetch another instruction in step 8 does not succeed because the jump instruction #3 has
brought the program counter beyond the last instruction of the PGA program. Instruction
processing stops after step 8, because fetching fails in that step while there is no other
instruction in the pipeline. This situation corresponds to a programming error, such as a
jump out of the program, as a result of which further instruction processing is blocked.

With pipelined instruction processing, execution of the first example program takes 12
steps and execution of the second example program takes 8 steps. With non-pipelined
instruction processing, these would take 20 steps and 13 steps, respectively. However,
there will be no real gain unless O′

fetch, O′prep, O′exec and O′
postp can be performed in

parallel.

9. Parallel Composability

In this section, we justify the use of the term pipeline in Section 8 by showing that the
suboperations O′fetch, O′prep, O′exec and O′postp of Ostep can actually be performed in parallel.

In the case under consideration, performing a number of operations in parallel amounts
to accomplishing the state transformations going with the different operations simulta-
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neously. It should be borne in mind that accomplishing them simultaneously and accom-
plishing them in arbitrary order do not always yield the same result.

Let (M, B,S,O) be a Maurer computer, let O ∈ O, and let O1, O2 : S → S be such
that O2(O1(S)) = O(S) for all S ∈ S. Then O is parallel composable of O1 and O2 if the
following conditions are fulfilled:

— O1 is consistent with O2: if O1 and O2 affect the same memory element, then they
affect that memory element the same;

— O1 is transparent to O2: if O1 affects a memory element, then that memory element
does not affect any memory element under O2.

More precisely, O is parallel composable of O1 and O2 iff O1 con O2 ∧ O1 tra O2, where
con and tra are defined as follows:

O1 con O2 iff

∀m ∈ OR(O1) ∩OR(O2), S ∈ S •

(O1(S)(m) 6= S(m) ∧O2(S)(m) 6= S(m) ⇒ O1(S)(m) = O2(S)(m)) ,

O1 tra O2 iff

∀m ∈ OR(O1) ∩ IR(O2), S ∈ S •

(O1(S)(m) 6= S(m) ⇒
¬ (∃S′ ∈ S • (∀m′ ∈ M \ {m} • O1(S)(m′) = S′(m′) ∧

∃m′′ ∈ OR(O2) • O2(O1(S))(m′′) 6= O2(S′)(m′′)))) .

Sufficient conditions for O1 con O2 and O1 tra O2 to hold are OR(O1)∩OR(O2) = ∅ and
OR(O1) ∩ IR(O2) = ∅, respectively.

Let (M, B,S,O) be a Maurer computer, let O ∈ O, and let O1, O2 : S → S be such
that O2(O1(S)) = O(S) for all S ∈ S. Then O1 and O2 are commutative if O2(O1(S)) =
O1(O2(S)) for all S ∈ S. We have that, for O to be parallel composable of O1 and O2,
O1 and O2 do not have to be commutative. We have also that, for O1 and O2 to be
commutative, O does not have to be parallel composable of O1 and O2. In other words,
neither parallel composability implies commutativity nor the other way round.

Parallel composability generalizes easily to n operations (for n ≥ 2).
Let (M, B,S,O) be a Maurer computer, let O ∈ O, and let O1, . . . , On :S → S be such

that On(. . . O1(S) . . .) = O(S) for all S ∈ S. Then O is parallel composable of O1, . . . , On

iff
∧

1≤i<n

∧
i<j≤n(Oi con Oj ∧Oi tra Oj).

The suboperations O′fetch, O′
prep, O′exec and O′postp of Ostep from Section 8 can be per-

formed in parallel. This is stated rigorously in the following theorem.

Theorem 3 (Parallel composability). Take the SP-PL-enhancement of a Maurer
machine H as in Section 8. Then Ostep is parallel composable of O′postp, O′

exec, O′
prep and

O′
fetch.
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Proof. The following follows immediately from the definitions:

OR(O′
postp) ∩OR(O′

exec) = ∅, OR(O′postp) ∩ IR(O′exec) = ∅,
OR(O′

postp) ∩OR(O′
prep) = ∅, OR(O′postp) ∩ IR(O′prep) = ∅,

OR(O′
postp) ∩OR(O′

fetch) = {pc}, OR(O′postp) ∩ IR(O′fetch) = {pc},
OR(O′

exec) ∩OR(O′prep) = ∅, OR(O′exec) ∩ IR(O′prep) = ∅,
OR(O′

exec) ∩OR(O′fetch) = ∅, OR(O′exec) ∩ IR(O′fetch) = ∅,
OR(O′

prep) ∩OR(O′
fetch) = ∅, OR(O′prep) ∩ IR(O′

fetch) = ∅ .

Hence we need to have a closer look only on the conditions O′postp con O′fetch and O′
postp tra

O′
fetch; and we have to consider only the memory element pc. Now, take an arbitrary state

S′. It is easy to see that, if O′postp changes pc in state S′, then O′exec must not have set
isf one step back and O′prep must have set jdf two steps back. It is also easy to see that,
as a consequence, O′fetch does not change any memory element in states S′ and O′

prep(S
′).

Hence both the consistency condition and the transparency condition are trivially met.

The proof of Theorem 3 shows that stalling pipelined instruction processing when O′
prep

has decoded a jump instruction is crucial for parallel composability. It is easy to see
that Ostep is not parallel composable of O′postp, O′exec, O′prep, O′

fetch and Oplctr. This is to
be expected. For example, the flags jdf, isf and jpf are set by O′prep, O′

exec and O′postp to
influence how plsr is updated by Oplctr.

10. Conditional Jump Instructions

In this section, we extend PGA with conditional jump instructions and look at the effect
of this on non-pipelined and pipelined instruction processing.

We add to PGA the following primitive instructions:

— for each a ∈ A and k ∈ N, a positive conditional jump instruction +a#k;
— for each a ∈ A and k ∈ N, a negative conditional jump instruction −a#k.

A positive conditional jump instruction +a#k has the same effect as +a ;#k, but counts
as one instruction; and a negative conditional jump instruction −a#k has the same effect
as −a ;#k, but counts as one instruction. In Bergstra and Loots (2002), PGA is extended
with a unit instruction operator u which turns PGA programs into single instructions.
In that extension of PGA, called PGAu, +a#k and −a#k can be taken as abbreviations
for u(+a ;#k) and u(−a ;#k), respectively. In Ponse (2002), thread extraction for PGAu

programs is described by means of a mapping from PGAu programs to PGA programs.
The SP-NPL-enhancement of a Maurer machine changes only slightly when conditional

jump instructions are added. Only the set IT and the auxiliary functions dec, opc and pcu
used in the definition of the SP-NPL-enhancement of a Maurer machine from Section 7
have to be redefined. The set IT is redefined because the two kinds of conditional jump
instructions give rise to two additional instruction types: pcfjmp and ncfjmp. The function
dec is redefined in order to deal with the decoding of conditional jump instructions. The
function opc is redefined because conditional jump instructions cause an operation to
be performed. The function pcu is redefined in order to deal with the adjustment of the
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program counter in the case of conditional jump instructions.

IT is redefined to be the set {bsc, ptst, ntst, fjmp, pcfjmp, ncfjmp, term}.
The function dec : S ′ → IT ×A×MAprog is redefined as follows:

dec(S′) = (bsc, a, S′(dr)) if S′(ir) = a ,

dec(S′) = (ptst, a, S′(dr)) if S′(ir) = +a ,

dec(S′) = (ntst, a, S′(dr)) if S′(ir) = −a ,

dec(S′) = (fjmp, S′(bar), k) if S′(ir) = #k ,

dec(S′) = (pcfjmp, a, k) if S′(ir) = +a#k ,

dec(S′) = (ncfjmp, a, k) if S′(ir) = −a#k ,

dec(S′) = (term, S′(bar), S′(dr)) if S′(ir) = ! .

The function opc : S ′ → B is redefined as follows:

opc(S′) = T iff S′(ditr) ∈ {bsc, ptst, ntst, pcfjmp, ncfjmp} .

The function pcu : S ′ → MA′prog is redefined as follows:

pcu(S′) = S′(pc) if S′(eitr) = bsc ∨
S′(eitr) = ptst ∧ S′(irr) = T ∨
S′(eitr) = ntst ∧ S′(irr) = F ∨
S′(eitr) = pcfjmp ∧ S′(irr) = F ∨
S′(eitr) = ncfjmp ∧ S′(irr) = T ∨
S′(eitr) = term ,

pcu(S′) = S′(pc) + 1 if (S′(eitr) = ptst ∧ S′(irr) = F ∨
S′(eitr) = ntst ∧ S′(irr) = T) ∧

S′(pc) + 1 ≤ S′(pcbr) ,

pcu(S′) = S′(pc)− 1 + S′(dr) if (S′(eitr) = fjmp ∨
S′(eitr) = pcfjmp ∧ S′(irr) = T ∨
S′(eitr) = ncfjmp ∧ S′(irr) = F) ∧

S′(dr) 6= 0 ∧
S′(pc)− 1 + S′(dr) ≤ S′(pcbr) ,

pcu(S′) = S′(pcbr) + 1 if (S′(eitr) = ptst ∧ S′(irr) = F ∨
S′(eitr) = ntst ∧ S′(irr) = T) ∧

S′(pc) + 1 > S′(pcbr) ∨
(S′(eitr) = fjmp ∨
S′(eitr) = pcfjmp ∧ S′(irr) = T ∨
S′(eitr) = ncfjmp ∧ S′(irr) = F) ∧

(S′(dr) = 0 ∨
S′(pc)− 1 + S′(dr) > S′(pcbr)) .

Like the SP-NPL-enhancement of a Maurer machine, the SP-PL-enhancement of a
Maurer machine changes only slightly when conditional jump instructions are added. The
memory has to be extended with a conditional jump flag (cjf) which, like the other flags,
contains a Boolean value. The set M ′

plc, the auxiliary functions jpc and pcu ′, the subop-
eration O′exec and the operation Oplctr used in the definition of the SP-PL-enhancement
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of a Maurer machine from Section 8 have to be redefined. The flag cjf is needed in order
to control the pipelined processing of instructions in the presence of conditional jump
instructions. The set M ′

plc is redefined because of the addition of the flag cjf. The func-
tion jpc is redefined because, after adjustment of the program counter on conditional
jump instructions, pipelined instruction processing must be restarted as in the case of
unconditional jump instructions. Just like pcu before, the function pcu ′ is redefined in
order to deal with the adjustment of the program counter in the case of conditional jump
instructions. The suboperation O′exec is redefined in order to set the additional flag cjf

when, in the case of conditional jump instructions, the reply value is produced on which
the jump concerned must actually take place. The operation Oplctr is redefined in order
to control the pipelined processing of instructions in the presence of conditional jump
instructions.

M ′
plc is redefined to be the set {isf, jdf, jpf, cjf, plsr, rr}.

The function jpc : S ′ → B is redefined as follows:

jpc(S′) = T iff

S′(eitr) = fjmp ∨
S′(eitr) = pcfjmp ∧ S′(irr) = T ∨ S′(eitr) = ncfjmp ∧ S′(irr) = F .

The function pcu ′ : S ′ → MA′prog is redefined as follows:

pcu ′(S′) = S′(pc) if S′(eitr) ∈ {bsc, ptst, ntst, term} ∨
S′(eitr) = pcfjmp ∧ S′(irr) = F ∨
S′(eitr) = ncfjmp ∧ S′(irr) = T ,

pcu ′(S′) = S′(pc)− 2 + S′(dr) if S′(eitr) = fjmp ∧ S′(dr) 6= 0 ∧
S′(pc)− 2 + S′(dr) ≤ S′(pcbr) ,

pcu ′(S′) = S′(pc)− 3 + S′(dr) if (S′(eitr) = pcfjmp ∧ S′(irr) = T ∨
S′(eitr) = ncfjmp ∧ S′(irr) = F) ∧

S′(dr) 6= 0 ∧
S′(pc)− 3 + S′(dr) ≤ S′(pcbr) ,

pcu ′(S′) = S′(pcbr) + 1 if S′(eitr) = fjmp ∧
(S′(dr) = 0 ∨
S′(pc)− 2 + S′(dr) > S′(pcbr)) ∨

(S′(eitr) = pcfjmp ∧ S′(irr) = T ∨
S′(eitr) = ncfjmp ∧ S′(irr) = F) ∧

(S′(dr) = 0 ∨
S′(pc)− 3 + S′(dr) > S′(pcbr)) .

The suboperation O′exec is redefined as follows:

O′
exec(S′) = S′ if execst 6∈ S′(plsr) ,

O′
exec(S

′) ¹ (M ′ \M ′
plc) = Oexec(S′ ¹ (M ′ \M ′

plc)) if execst ∈ S′(plsr) ,

O′
exec(S

′)(isf) = isc(S′) if execst ∈ S′(plsr) ,

O′
exec(S

′)(cjf) = cjc(S′) if execst ∈ S′(plsr) ,

O′
exec(S

′) ¹ (M ′
plc \ {isf, cjf}) = S′ ¹ (M ′

plc \ {isf, cjf}) if execst ∈ S′(plsr) ,
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where isc : S ′ → B is defined as in the case without conditional jump instructions and
cjc : S ′ → B is the unique function from S ′ to B such that for all S′ ∈ S ′:

cjc(S′) = T iff

S′(ditr) = pcfjmp ∧Oexec(S′ ¹ (M ′ \M ′
plc))(irr) = T ∨

S′(ditr) = ncfjmp ∧Oexec(S′ ¹ (M ′ \M ′
plc))(irr) = F .

Oplctr is redefined as follows:

Oplctr(S′) ¹ (M ′ \M ′
plc) = S′ ¹ (M ′ \M ′

plc) ,

Oplctr(S′)(jdf) = F ,

Oplctr(S′)(isf) = F ,

Oplctr(S′)(jpf) = F ,

Oplctr(S′)(cjf) = F ,

Oplctr(S′)(plsr) = plsu(S′) ,

Oplctr(S′)(rr) = ru(S′) ,

where plsu : S ′ → P(PS ) is the unique function from S ′ to P(PS ) such that for all
S′ ∈ S ′:

fetchst ∈ plsu(S′) iff S′(rrfetch) = T ∧
(fetchst ∈ S′(plsr) ∧ S′(jdf) = F ∧ S′(cjf) = F ∨
S′(isf) = T ∨ S′(jpf) = T) ,

prepst ∈ plsu(S′) iff S′(rrfetch) = T ∧
(fetchst ∈ S′(plsr) ∧ S′(jdf) = F ∧ S′(cjf) = F ∨
S′(isf) = T) ,

execst ∈ plsu(S′) iff prepst ∈ S′(plsr) ∧ S′(isf) = F ∧ S′(cjf) = F ,

postpst ∈ plsu(S′) iff execst ∈ S′(plsr) .

11. Backward Jump Instructions

In this short section, we discuss backward jump instructions and sketch the effect of their
inclusion on non-pipelined and pipelined instruction processing.

In the preceding sections, we have considered only finite PGA programs, i.e. closed
terms of PGA in which the repetition operator does not occur. This means that pro-
grams that are infinite sequences of primitive instructions are excluded. In other words,
programs of which the execution goes on indefinitely are not covered. However, in a set-
ting with backward jump instructions, there exists for each such program a behaviourally
equivalent program that is a finite sequence of primitive instructions.

In a setting with backward jump instructions, there are, in addition to the primitive
instructions of PGA introduced earlier, the following primitive instructions:

— for each k ∈ N, a backward jump instruction \#k.

We write I′ for the set that consists of all primitive instructions of PGA and all backward
jump instructions. A PGLB program is a closed term that can be built from:

— for each u ∈ I′, an instruction constant u;
— the concatenation operator ; .
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In Bergstra and Loots (2002), the meaning of PGLB programs is described by means
of a mapping from PGLB programs to PGA programs. For each PGA program, there
exists a PGLB program that is mapped to a PGA program with the same behaviour. In
other words, the expressiveness is not decreased by replacing the repetition operator by
backward jump instructions.

The addition of backward jump instructions gives rise to trivial changes of the SP-NPL-
enhancement and SP-PL-enhancement of Maurer machines: forward jump instructions
and backward jump instructions can be treated in the same way.

Only the set IT and the auxiliary functions dec and pcu used in the definition of the
SP-NPL-enhancement of a Maurer machine from Section 7 and the auxiliary function pcu ′

used in the definition of the SP-PL-enhancement of a Maurer machine from Section 8 have
to be redefined. The set IT must be redefined because the backward jump instructions
give rise to an additional instruction type: bjmp. The function dec must be redefined in
order to deal with the decoding of backward jump instructions. The function pcu and
pcu ′ must be redefined in order to deal with the adjustment of the program counter in
the case of backward jump instructions.

It is easy to see that with the correct redefinitions, Theorems 1 and 2 go through after
the addition of backward jump instructions. Conditional backward jump instructions can
be added in the same way as conditional forward jump instructions have been added in
Section 10.

12. Instruction Set Architectures

In this section, we introduce the concept of a strict load/store Maurer instruction set
architecture. This concept takes its name from the following: it is described in the set-
ting of Maurer’s model for computers, it concerns only load/store architectures, and the
load/store architectures concerned are strict in some respects that will be explained after
its formalization.

The concept of a strict load/store Maurer instruction set architecture, or shortly a strict
load/store Maurer ISA, is an approximation of the concept of a load/store instruction
set architecture. It is focussed on instructions for data manipulation and data transfer.
Instructions for transfer of program control are treated in a uniform way over different
strict load/store Maurer ISAs. Instances of the concept of a strict load/store Maurer ISA
are those Maurer machines for which SP-NPL-enhancement and SP-PL-enhancement
are primarily intended. The SP-NPL-enhancement and SP-PL-enhancement of a strict
load/store Maurer ISA can be viewed as implementations of that ISA.

Each Maurer machine has a number of basic actions with which an operation is asso-
ciated. In this section, when speaking about Maurer machines that are strict load/store
Maurer ISAs, such basic actions are loosely called basic instructions. The term basic
action is uncommon where we are concerned with ISAs, and moreover basic instructions
and basic actions are identified in the semantics of PGA.

The basic idea underlying the concept of a strict load/store Maurer ISA is that there
is a main memory of which the elements contain data, an operating unit with a small
internal memory by which data can be manipulated, and an interface between the main
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memory and the operating unit for data transfer between them. For the sake of simplicity,
data is restricted to the natural numbers between 0 and some upper bound. Other types
of data that could be supported can always be represented by the natural numbers
provided. Moreover, the data manipulation instructions offered by a strict load/store
Maurer ISA are not restricted and may include ones that are tailored to manipulation
of representations of other types of data. Therefore, we believe that nothing essential is
lost by the restriction to natural numbers.

The concept of a strict load/store Maurer ISA is parametrized by:

— an address width k;
— a word length l;
— a bit size m of the operating unit;
— a number u of pairs of address and data registers for load instructions;
— a number v of pairs of address and data registers for store instructions;
— a set A′ of basic instructions for data manipulation.

It is assumed that a fixed but arbitrary set Mdata of cardinality 2k and a fixed but
arbitrary bijection mdata : [0, 2k − 1] → Mdata have been given. Mdata is called the data
memory. The data memory is a memory of which the elements can be addressed by means
of natural numbers in the interval [0, 2k−1]. The address width k can be regarded as the
number of bits used for the binary representation of addresses of data memory elements.
We write Baddr for [0, 2k − 1]. The data memory elements are meant for containing data.
They can contain natural numbers in the interval [0, 2l − 1]. The word length l can be
regarded as the number of bits used to represent data in data memory elements. We
write Bdata for [0, 2l − 1].

It is assumed that a fixed but arbitrary set Mou of cardinality m, called the operating
unit memory, has been given. The operating unit memory is a memory of which the
elements can contain natural numbers in the set {0, 1}, i.e. bits. We write Bit for {0, 1}.
The bit size m can be regarded as the number of bits that the internal memory of the
operating unit contains. Usually, a part of the operating unit memory is partitioned into
groups to which data manipulation instructions can refer.

It is assumed that fixed but arbitrary sets Mld and Mla of cardinality u and fixed but
arbitrary bijections mld : [0, u − 1] → Mld and mla : [0, u − 1] → Mla have been given. It
is also assumed that fixed but arbitrary sets Msd and Msa of cardinality v and fixed but
arbitrary bijections msd : [0, v − 1] → Msd and msa : [0, v − 1] → Msa have been given.
The members of Mla and Mld are called load address registers and load data registers,
respectively. The members of Msa and Msd are called store address registers and store
data registers, respectively. The load and store registers are special memory elements
meant for transferring data between the data memory and the operating unit memory.
The members of Mla and Msa can contain addresses, i.e. members of Baddr. The members
of Mld and Msd can contain data, i.e. members of Bdata. It is assumed that Mdata, Mou,
Mld, Msd, Mla, Msa and {rra | a ∈ A} are pairwise disjoint sets.

Let n ∈ [0, 2k−1], n′ ∈ [0, u−1] and n′′ ∈ [0, v−1]. Then, we write Mdata[n] for mdata(n),
Mld[n′] for mld(n′), Mla[n′] for mla(n′), Msd[n′′] for msd(n′′) and Msa[n′′] for msa(n′′).

A strict load/store Maurer instruction set architecture with parameters k, l, m, u, v
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and A′ is a Maurer machine H = (M, B,S,O, A, [[ ]]) with

M = Mdata ∪Mou ∪Mld ∪Msd ∪Mla ∪Msa ∪ {rra | a ∈ A} ,

B = Bdata ∪ Baddr ∪ B ,

S = {S : M → B |
∀m ∈ Mdata ∪Mld ∪Msd • S(m) ∈ Bdata ∧
∀m ∈ Mla ∪Msa • S(m) ∈ Baddr ∧
∀m ∈ Mou • S(m) ∈ Bit ∧ ∀a ∈ A • S(rra) ∈ B} ,

O = {Oa | a ∈ A} ,

A = {load:n | n ∈ [0, u− 1]} ∪ {store:n | n ∈ [0, v − 1]} ∪A′ ,

[[a]] = (Oa, rra) for all a ∈ A ,

where, for all n ∈ [0, u − 1], Oload:n is the unique function from S to S such that for all
S ∈ S:

Oload:n(S) ¹ (M \ {Mld[n], rrload:n}) = S ¹ (M \ {Mld[n], rrload:n}) ,

Oload:n(S)(Mld[n]) = S(Mdata[S(Mla[n])]) ,

Oload:n(S)(rrload:n) = T ,

and, for all n ∈ [0, v − 1], Ostore:n is the unique function from S to S such that for all
S ∈ S:

Ostore:n(S) ¹ (M \ {Mdata[S(Msa[n])], rrstore:n}) = S ¹ (M \ {Mdata[S(Msa[n])], rrstore:n}) ,

Ostore:n(S)(Mdata[S(Msa[n])]) = S(Msd[n]) ,

Ostore:n(S)(rrstore:n) = T ,

and, for all a ∈ A′, Oa is a function from S to S such that:

IR(Oa) ⊆ Mou ∪Mld ,

OR(Oa) ⊆ Mou ∪Msd ∪Mla ∪Msa ∪ {rra} .

On purpose, we consider only load/store architectures. We believe that load/store ar-
chitectures give rise to a relatively simple interface between the data memory and the
operating unit. For example, with an architecture other than a load/store architecture, it
is more difficult to establish statically, when it concerns instructions for data manipula-
tion and/or data transfer, the cases in which the operations associated with instructions
that follow each other can be safely performed in a different order or in parallel.

A strict load/store Maurer ISA is strict in the following respects:

— with data transfer between the data memory and the operating unit, a strict sepa-
ration is made between memory elements used for loading data, loading addresses,
storing data, and storing addresses;

— from these memory elements, only the memory elements used for loading data are
allowed in the input regions of data manipulation operations;

— a data memory of which the size is less than the number of addresses determined by
the address width is not allowed.

The first two ways in which a strict load/store Maurer ISA is strict concern the interface
between the data memory and the operating unit. We believe that they yield the most
conveniently arranged interface for theoretical work relevant to micro-architecture design.
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Less simple interfaces are found in many load/store architectures of which there exist
implementations. The third way in which a strict load/store Maurer ISA is strict saves
the need to deal with addresses that do not address a memory element. Such addresses
can be dealt with in many different ways, each of which complicates the architecture
considerably. We consider their exclusion desirable in much theoretical work relevant to
micro-architecture design.

An anonymous referee draw our attention to the fact that a strict separation between
memory elements used for loading data, loading addresses, storing data, and storing ad-
dresses is also made in Cray and Thornton’s design of the CDC 6600 computer (Thornton,
1970), which is arguably the first implemented load/store architecture. However, in their
design, the memory elements used for storing data are also allowed in the input regions
of data manipulation operations.

13. Conclusions

We have modelled micro-architectures with non-pipelined instruction processing and
pipelined instruction processing, using Maurer machines, basic thread algebra and pro-
gram algebra. Because our descriptions of micro-architectures are more precise than
those usually given, we have been able to verify that stored programs are executed as in-
tended with these micro-architectures. A thorough understanding of the issues relevant to
pipelined instruction processing can be acquired by modelling micro-architectures based
on different pipeline organizations as well.

In this paper, pipelined instruction processing deals with control conflicts, but does
not deal with data conflicts. Because memory access is not made explicit, data conflicts
simply do not occur in the model presented in this paper. Models in which memory
access is made explicit may have it placed in a separate pipeline stage, as a result of
which data conflicts may occur. In those models, additional assumptions are needed
about the instruction set architecture. Such additional assumptions are incorporated in
the concept of a strict load/store Maurer instruction set architecture introduced in this
paper.

Several techniques for speeding up instruction processing involve multi-threading, a
form of concurrency where some interleaving strategy determines how threads that exist
concurrently are interleaved (see also Bergstra and Middelburg (2007c, 2005)). When
modelling micro-architectures for those techniques, the enabledness of basic actions dis-
cussed in Section 4 is likely to be relevant. It certainly is relevant in the case of micro-
threading (Bolychevsky et al., 1996; Jesshope and Luo, 2000).

There are many options for future work. We mention only the modelling of micro-
architectures for different combinations of instruction set architecture and technique for
speeding up instruction processing. By that, the work presented in this paper may grow
into a theoretical basis for micro-architecture design.

The work presented in this paper, as well as the preceding work presented in Bergstra
and Middelburg (2007a), has convinced us that a special notation for the description of
micro-architectures is desirable. For example, it is annoying that, for each memory ele-
ment that is not affected by an operation, this must be described explicitly. However, we
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found that fixing an appropriate notation still requires some significant design decisions.
We aim at a notation of which the semantics can simply be given by a translation to
logical formulas, much in the spirit of predicative methodology (Hehner et al., 1986).
The following alternative description of the operation Ofetch from Section 7 shows how
an appropriate notation could look like:

Ofetch : if pc + 1 ≤ pcbr then pc := pc + 1 ,

if pc ≤ pcbr then (ir := Mprog[pc] ; rr := T) else (ir := #0 ; rr := F) .

The work presented in Bergstra and Middelburg (2007a) and this paper has also con-
vinced us that modularity is material to this work: it is about combining and extending
models and about renaming and hiding names used in those models. All this has until
now been done informally, but in the future there may arise a need to formalize it. We
believe that module algebra (Bergstra et al., 1990) is a suitable formalism on which to
base that formalization.

Parallel composability in connection with pipelined instruction processing is studied
in a different setting in Hoe and Arvind (2004). Using algebraic techniques from Harman
and Tucker (1996), three simple pipelined systems and a pipelined implementation of a
micro-processor are both modelled and verified in Fox and Harman (2003) and Fox (1998),
respectively. The simple pipelined systems as well as the pipelined implementation of a
micro-processor are modelled as iterated maps. By modelling a pipelined micro-processor
as an iterated map, it is modelled at a level of abstraction that is higher than that at
which micro-architecture design takes place. We focus our attention on modelling at
the latter level of abstraction. A very extensive and up-to-date overview of interesting
work on modelling and verifying pipelined micro-processors can also be found in Fox and
Harman (2003).
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