EXERCISE: PROJECTIVE CURVES

In these exercises we are going to have a closer look at the Riemann surfaces defined by polynomial equations. Let us first recall the result of the first exercise sheet: consider the subset $C \subset \mathbb{C}^2$ defined as the zero locus of a polynomial $p \in \mathbb{C}[z_1, z_2]$ in two variables

$$C := \{ (z_1, z_2) \in \mathbb{C}^2, \ p(z_1, z_2) = 0 \}.$$

This is called an *affine curve*. In the first exercise sheet you have proved that when

(*)
$$C \cap \{\frac{\partial p}{\partial z_1} = 0\} \cap \{\frac{\partial p}{\partial z_2} = 0\} = \emptyset,$$

C carries the structure of a Riemann surface. Remark that *C* is noncompact.

Exercise 1. Let $P \in \mathbb{C}[z_0, z_1, z_2]$ be a *homogeneous* polynomial in three variables, and consider its zero locus in \mathbb{P}^2 :

$$\hat{C} := \{ (z_0 : z_1 : z_2) \in \mathbb{P}^2, \ P(z_0, z_1, z_2) = 0 \}.$$

- a) Show that \hat{C} is a compact subset of \mathbb{P}^2 . (Use that \mathbb{P}^2 itself is compact.)
- b) A *singular point* of \hat{C} is a point $(a : b : c) \in \hat{C}$ such that

$$\frac{\partial P}{\partial z_0}(a,b,c) = \frac{\partial P}{\partial z_1}(a,b,c) = \frac{\partial P}{\partial z_2}(a,b,c) = 0.$$

Show that if \hat{C} has no singular points, it is a Riemann surface. (Such a Riemann surface is called a smooth projective curve.)

Exercise 2. Consider the affine curve *C* defined by the polynomial

$$p(z_1, z_2) = z_2^3 - (z_1^3 - z_1).$$

- a) By considering the unique homogeneous polynomial $P(z_0, z_1, z_2)$ of degree 3 such that $P(1, z_1, z_2) = p(z_1, z_2)$, show that *C* has a canonical compactification to a compact Riemann surface $\hat{C} \subset \mathbb{P}^2$.
- b) Denote by $\pi : \hat{C} \to \mathbb{P}^1$ the map $\pi(z_0 : z_1 : z_2) = (z_0 : z_1)$ and use Riemann–Hurwitz to compute the genus of \hat{C} .
- c) Write down a basis for the holomorphic 1-forms on \hat{C} .