
Exercises with Lecture 12 of Topology in Physics

(UvA/Mastermath 2018)

1 May 2018

This is the sheet of exercises corresponding to the material covered in the
twelfth lecture of the 1st of May. It is recommended that you make all
exercises on the sheet even though only the exercises with a ? are graded
and will count towards the final grade. The homework should be handed
in before the next lecture, which is on the 8th of May, by (in order of
preference):

1 E-mailing the pdf-output of a LATEX file to n.dekleijn@uva.nl;

2 E-mailing a scanned copy of a hand-written file to n.dekleijn@uva.nl;

3 Depositing a hard-copy of the pdf-output of a LATEX file in my mailbox
(Niek de Kleijn) at Science Park 107, building F, floor 3;

4 Depositing a hand-written file in my mailbox (Niek de Kleijn) at Science
Park 107, building F, floor 3;

5 Giving it to one of the teachers in person (at the beginning of the lecture).

You will receive comments on all the exercises you hand in (not
just the homework) and we advise you to make use of this option.

Exercises

Exercise 1: More on the heat kernel

Let us consider the heat kernel for an elliptic operator ∆ : H → H, where
H is a Hilbert space (say over Rn) of quantum states. We can now express
the heat kernel in coordinate basis as

h(x, y, t) =
〈
x
∣∣e−t∆∣∣y〉 , (1)

where |x〉 and |y〉 are position eigenstates.
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a. Show that this function satisfies the heat equation(
∂

∂t
+ ∆x

)
h(x, y, t) = 0, (2)

where ∆x indicates that we act with ∆ on the x-variable.

The reason for the name “heat kernel” is that we can use the above function
as a “kernel” to generate any solution to the heat equation. It is a standard
result in the theory of differential equations that such a solution u(x, t) is
completely determined by its initial conditions u(x, 0) ≡ uB(x).

b. Show that the function

u(x, y) =

∫
Rn

h(x, y, t)uB(y)dy (3)

satisfies the heat equation and has the initial conditions uB(x).

? Exercise 2: An alternative way to compute the index

We have seen in the lectures that the index of an operator D can be
computed using the operator e−t∆. Here, we investigate an alternative
but similar computation. Assume we have an elliptic, Fredholm operator
D : Γ(M,E) → Γ(M,F ) and intruduce its adjoint operator D† and the
Laplacians ∆E = D†D and ∆F = DD†. Moreover, we introduce the func-
tion

IE(s) = Tr

(
s

∆E + s

)
(4)

and similarly define IF (s).

a. Show that for s > 0, IE(s)− IF (s) is independent of s.

b. Show that IE(s)− IF (s) = ind(D).

You may assume without proof in this exercise that all traces involved exist
and are finite numbers. This does require the condition that s > 0, though!
(Why?)

Exercise 3: The fermionic harmonic oscillator

Introduce operators c and c† that have the anticommutation relation

{c, c†} = 1. (5)

Define |0〉 by c|0〉 = 0 and |1〉 = c†|0〉. Note that we do not impose that
{c, c} = {c†, c†} = 0 yet.

a. Introduce a state |2〉 and compute its norm.
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b. Argue from (a) that it is natural to impose {c, c} = {c†, c†} = 0. What
happens if we don’t?

As in the lecture, we now introduce the coherent state |θ〉 = |0〉+ θ|1〉.

c. Show that the completeness relation can now be written as

I =

∫
dθ∗dθ |θ〉〈θ|e−θ∗θ (6)

d. Similarly, show that the trace of e−βH can be written as

Tr e−βH =

∫
dθ∗dθ e−θ

∗θ〈−θ|e−βH |θ〉. (7)

That is, we need anti-periodic boundary conditions to define the trace
as a Grassmann integral.

? Exercise 4: A supersymmetric Lagrangian

As in the lecture, we study the Lagrangian

L =
1

2
ẋiẋi +

i

2
ψiψ̇i (8)

a. Show that the transformation δxi = iεψi, δψi = −εẋi changes the
Lagrangian by a total t-derivative.

b. Using the canonical commutation relations between coordinates and
momenta, show that the transformation in (a) is generated by the
operator Q = ψiẋi.
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