
Exercises with Lecture 3 of Topology in Physics

(UvA/Mastermath 2018)

February 19, 2018

This is the sheet of exercises corresponding to the material covered in
the third lecture of the 20th of February. It is recommended that you make
all exercises on the sheet even though only the exercises with a ? are graded
and will count towards the final grade. The homework should be handed
in before the next lecture, which is on the 27th of February, by (in order of
preference):

1 E-mailing the pdf-output of a LATEX file to n.dekleijn@uva.nl;

2 E-mailing a scanned copy of a hand-written file to n.dekleijn@uva.nl;

3 Depositing a hard-copy of the pdf-output of a LATEX file in my mailbox
(Niek de Kleijn) at Science Park 107, building F, floor 3;

4 Depositing a hand-written file in my mailbox (Niek de Kleijn) at Science
Park 107, building F, floor 3;

5 Giving it to one of the teachers in person (at the beginning of the lecture).

You will receive comments on all the exercises you hand in (not
just the homework) and we advise you to make use of this option.

Exercises

? Exercise 1: Maxwell theory and de Rham cohomology.

The advantage of formulating Maxwell’s theory in terms of differential forms
is that it now makes sense on any manifold M , not even 4-dimensional! For
this we consider the first few terms of the de Rham complex:

Ω0(M) d−→ Ω1(M) d−→ Ω2(M) d−→ . . .

As we have seen, the electric and magnetic fields are gathered in a two-form
F ∈ Ω2(M), which the homogeneous Maxwell equations require to be closed:
dF = 0.
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i) Assume that H2
dR(M) = H1

dR(M) = 0.

a) Show that for any field strength F there is a potential A ∈ Ω1(M)
such that F = dA.

b) Show that the “configuration space” of fields satisfying the homo-
geneous Maxwell equations (dF = 0) is given by the quotient
Ω1(M)/dΩ0(M).

Elements in dΩ0(M) are called “gauge transformations”. From now on we
will drop the assumption that H2

dR(M) = H1
dR(M) = 0. We write Ωk

cl for
the space of closed k-forms. Recall that in this notation we have

Hk
dR(M) :=

Ker
(
d : Ωk(M)→ Ωk+1(M)

)
Im (d : Ωk−1(M)→ Ωk(M))

= Ωk
cl(M)/dΩk−1(M)

ii) Show that there is a sequence of maps

0→ H1
dR(M)

f1−→ Ω1(M)/dΩ0(M)
f2−→ Ω2

cl(M)
f3−→ H2

dR(M) −→ 0,
(*)

such that the image of any map is the kernel of the following map
(this includes the image and kernels of the zero maps). We call this
property of the sequence exactness.

Minkowski space R1,3 is topologically trivial, so H1
dR(R1,3) = 0 = H2

dR(R1,3),
and the exactness of the sequence (*) amounts to the identification of Ω2

cl(R1,3)
with Ω1(R1,3)/dΩ0(R1,3). In other words: we may equally well describe the
electromagnetic field using the potential A, as long as we make sure that
we use “gauge invariant” observables, i.e., functions A 7→ O(A) that are
invariant under shifts by dΩ0(R1,3): O(A + dΛ) = O(A). For a topologi-
cally nontrivial manifold M (already M = R3 × S1 is an example) we no
longer have Ω2

cl(M) ∼= Ω1(M)/dΩ0(M), as the sequence (*) shows. One
of the lessons from Quantum Mechanics, as witnessed for example by the
Aharonov–Bohm effect is that the potential A, is more fundamental than
the field strength F ! Therefore, it is better to describe Maxwell theory as
an action functional on the space of “fields” A ∈ Ω1(M).

iii) For γ : S1 →M a smooth closed curve we consider the function

Oγ : A 7→
∫
γ
A

from Ω1(M) to R.

a) Show that Oγ is a gauge invariant observable for all γ.

b) Show that the potential A defines a cohomology class if there is no
field, i.e. F = 0.
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c) Suppose we can measure the observables Oγ for all (homotopy
classes of) curves γ. Use the de Rham theorem to show that
we can measure the cohomology class defined by A.

The Aharonov-Bohm experiment sets up exactly the situation de-
scribed above. Namely it sets up an experiment where one can measure
the observables Oγ in a region of space with no magnetic field, thus
allowing to measure the cohomology class of the underlying potential
(this is a quantum mechanical effect).

iv) Show that the action functional

S(A) =
1
2
||dA||2 =

1
2

∫
M
dA ∧ ?dA

is gauge invariant and variation leads to the vacuum Maxwell equation
d ? F = 0. (You actually may have done this already last week...)

? Exercise 2: Computing H•dR(Sn)

Definition 1 (Homotopy Equivalence).
A (smooth) homotopy equivalence between two manifolds M and N is given
by a pair of smooth maps

f : M −→ N and g : N −→M

such that f ◦g is smoothly homotopic to IdN and g◦f is smoothly homotopic
to IdM .

Note that homotopy equivalence defines an equivalence relation on smooth
manifolds, which we denote ∼h.

i) Show that N ∼h M implies that H•dR(N) ' H•dR(M).

ii) How do we use the result of i) in the Poincaré lemma?

iii) Using the definition of H•dR in terms of differential forms show that
H•dR(M

∐
N) ' H•dR(M)⊕H•dR(N).

iv) You will now compute the cohomology of the n-sphere by decomposing
it into two opens sets and applying the Mayer–Vietoris sequence.

a) Use the description of H0
dR (or the definition) to show that we have

H0
dR(S0) = R2 and H0

dR(Sn) = R for n > 0.
b) Find two open subsets U and V of Sn such that U ∩ V ∼h Sn−1

(also show why they are homotopy equivalent).
c) Apply the Mayer–Vietoris sequence to find that H1

dR(Sn) = Rδ1n .
d) Apply the Mayer–Vietoris sequence and the result of c) to compute

the comohology of Sn for any n ≥ 0 as Hk
dR(Sn) = Rδk0+δkn .

3



Exercise 3: Computing H•dR(T2)

In this exercise we will compute the cohomology of the 2-torus T2. We
consider the flat model of the 2-torus as the space R2/Z2, i.e. we consider
the plane and identify points (x1, y1) and (x2, y2) if x1 − x2 and y1 − y2 are
both integers.

i) Show that T2 is given by considering the square [0, 1] × [0, 1] ⊂ R2 and
identifying the points (0, t) with (1, t) for t ∈ [0, 1] as well as identifying
the points (s, 0) with (s, 1) for s ∈ [0, 1].

i) [Bonus] What does this model of T2 have to do with snake?

ii) Compute the cohomology of T2 by decomposing it into two open subsets
Uouter and Umiddle such that you already know the cohomology of
Umiddle, Uouter and Umiddle ∩ Uouter and applying the Mayer–Vietoris
sequence.

Exercise 4: The Hodge–Maxwell Theorem

In this exercise we will define the Hodge ? starting from a general (pesudo-
Riemannian) metric g on the oriented manifold M without using coordi-
nates. Recall that g allows us to define a notion of volume on the manifold
M . The volume of the submanifold B is given as the integral

∫
B vol. In

coordinates vol is given by the formula

vol =
√
|g|dx1 ∧ . . . ∧ dxn,

where

|g| =

∣∣∣∣∣∣
n∑

i1,...,in=1

εi1...ing1i1 . . . gnin

∣∣∣∣∣∣
denotes the absolute value of the determinant of g and the dxi form a pos-
itively oriented basis. Recall that the coordinate transformation xi → yi is
called positive if Det ∂xi

∂yj (the Jacobian determinant) is positive.

i) Show that the formula for vol above defines an n-form ω. Do this by
performing a (positive) coordinate transformation.

ii) The metric g is given by a symmetric non-degenerate bilinear pairing on
the tangent spaces

(v, w) 7→ gµν(x)vµvν ,

for v, w ∈ TxM . Show that we get a C∞(M)-bilinear pairing

X(M)× X(M) −→ C∞(M),

where X(M) denotes vector fields.
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Note that similarly the maps

(α, β) 7→ gµ1ν1(x) . . . gµpνp(x)αµ1...µpβν1...νp

define a C∞(M)-bilinear pairing on Ωp(M). In fact this is the pairing
〈α, β〉 mentioned in the lecture notes.

iii) Assume that M is compact and show that

(α, β) =
∫
M
〈α, β〉ω

defines an R-bilinear, symmetric pairing on Ωp(M).

iv) Consider β ∈ Ωp(M), define ?β as the n− p form satifying

α ∧ ?β = 〈α, β〉ω

for all α ∈ Ωp(M) and show that this definition coincides with the
coordinate expression given in the lectures.

Hint: Show first that ?β is uniquely defined. To do this note that if a
form is 0 around every point, then it vanishes globally.

v) Show that the adjoint d∗ of the exterior derivative d is given by the
formula ?d?.
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