
Exercises with Lecture 5 of Topology in Physics

(UvA/Mastermath 2018)

March 7, 2018

This is the sheet of exercises corresponding to the material covered in
the third lecture of the 6th of March. It is recommended that you make all
exercises on the sheet even though only the exercises with a ? are graded
and will count towards the final grade. The homework should be handed
in before the next lecture, which is on the 13th of March, by (in order of
preference):

1 E-mailing the pdf-output of a LATEX file to n.dekleijn@uva.nl;

2 E-mailing a scanned copy of a hand-written file to n.dekleijn@uva.nl;

3 Depositing a hard-copy of the pdf-output of a LATEX file in my mailbox
(Niek de Kleijn) at Science Park 107, building F, floor 3;

4 Depositing a hand-written file in my mailbox (Niek de Kleijn) at Science
Park 107, building F, floor 3;

5 Giving it to one of the teachers in person (at the beginning of the lecture).

You will receive comments on all the exercises you hand in (not
just the homework) and we advise you to make use of this option.

Exercises

? Exercise 1: The Hopf fibration

We consider the 3-sphere defined as

S3 := {(z1, z2 ∈ C2, |z1|2 + |z2|2 = 1}

and recall the definition of the complex projective line P1 better known as
the Riemann sphere

P1 :=
(
C2\{(0, 0)}

)
/C×
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where C× := C\{0} acts by scalar multiplication. Note that S3 is given by
all pairs of complex numbers satisfying a certain equation, while P1 is given
by pairs of complex numbers (z1, z1) (not both 0) up to a certain equivalence,
namely (z1, z2) ∼ (w1, w2) if there is 0 6= λ ∈ C such that λz1 = w1 and
λz2 = w2.

i) The group U(1) ∼= S1 acts on S3 by

(z1, z2) · eiθ := (z1e
iθ, z2e

iθ)

Find a smooth map S3/U(1) −→ P1 that allows for a smooth inverse,
i.e. show that S3/U(1) ∼= P1.

We may compose the map of i) with the quotient map S3 → S3/U(1) to
obtain a map π : S3 → P1. Recall from the lecture notes of lecture 1 that
we had the atlas of P1 given by the charts

U := {[(z1, z2)] ∈ P1 | z1 6= 0}

and
V := {[(z1, z2)] ∈ P1 | z2 6= 0}.

ii) Find sections U → π−1(U) and V → π−1(V ).

iii) Compute the transition function ϕUV : U ∩ V → U(1).

(BONUS) Consider the standard (defining) representation of U(1) on C:

eiθ · z = eiθz,

and consider the line bundle associated to the Hopf fibration above.
Show that this line bundle agrees with the tautological line bundle
over P1.

Exercise 2: The Hopf invariant

We consider a smooth map f : S2n−1 → Sn. Let ω ∈ Ωn(Sn) be the volume
form

ω :=
n∑
i=1

(−1)i+1dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+1

i) Show that f∗ω is exact: f∗ω = dα for some α ∈ Ωn−1(S2n−1).

ii) Show that the integral

H(f) :=

∫
S2n−1

α ∧ dα

is independent of the choice of “potential” α: it only depends on the
map f .
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iii) Show that the integral above is zero for odd n.

iv) Now you will show that the Hopf invariant H(f) is a homotopy invari-
ant. So consider two maps fi : S

2n−1 → Sn for i = 0, 1 and a homotopy
F : S2n−1 × [0, 1] → Sn between them. Note that this means that if
ιi : S

2n−1 → S2n−1 × [0, 1] denotes the inclusion at an endpoint for
i = 0, 1 respectively, then F ◦ ιi = fi.

a) Show that F ∗ω = dα for some α ∈ Ωn−1(S2n−1 × [0, 1]).

b) Show that f∗i ω = dαi for αi = ι∗iα the restriction of α to the
endpoint S2n−1 × {i} for i = 0, 1. Conclude that we may use αi
to compute H(fi).

c) Show that dα ∧ dα = 0.

d) Show that H(f0) = H(f1).
hint: Stokes’ theorem

v) Since P1 ' S2 we can consider H(π) where π is the map from exercise
1. It turns out that H(π) 6= 0. Show that this means that we cannot
extend the map π to a map R4 → R3.

vi) Show that f n = 1 then H(f) equals the winding number of the map
f : S1 → S1.

(hard BONUS) Show that H(π) = 1.

(?) Exercise 3: Cocycles and Representations

In this exercise we will consider how one uses representations of general
linear groups in order to perform constructions from linear algebra like the
direct sum and tensor product. For this purpose recall that a rank n vector
bundle E →M and a cover ∪αUα = M yield a cocycle

ϕαβ : Uα ∩ Uβ −→ GL(n)

and we may reconstruct the vector bundle E given the cocycle. Now suppose
φ : GL(n) → GL(m) is a group homomorphism, i.e. a representation of
GL(n) on the m-dimensional standard vector space. In particular φ(I) = I,
φ(A−1) = φ(A)−1 and φ(AB) = φ(A)φ(B) and so φ◦ϕαβ satisfies the cocycle
conditions. Thus the representation φ coupled with the vector bundle E
define another (rank m) vector bundle S!

i) Recall that E ⊕ E is the vector bundle with fiber Ex ⊕ Ex. Give the
representation GL(n)→ GL(2n) that gives rise to this vector bundle.

ii) Similarly E ⊗ E is the vector bundle with fiber Ex ⊗ Ex. Give the
representation GL(n)→ GL(n2) that gives rise to this vector bundle.
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iii) Again
∧nE is the vector bundle with fiber Ex∧Ex∧. . .∧Ex (n-times).

Give the representation GL(n)→ GL(1) that gives rise to this vector
bundle.

The rest of this exercise does not need to be handed in as
homework

iv) The vector bundle E∗ is the vector bundle with fibers E∗x. Give the
representation GL(n)→ GL(n) that gives rise to this vector bundle.

Given another rank k vector bundle F with corresponding cocycle de-
noted by ψαβ : Uαβ → GL(k) we find that a representation of the product
φ : GL(n)×G(k)→ GL(m) gives rise to the cocycle

φ ◦ (ϕαβ, ψαβ) : Uαβ −→ GL(m)

and thus a rank m vector bundle S.

i) Recall that E ⊕ F is the vector bundle with fiber Ex ⊕ Fx. Give
the representation GL(n) → GL(n + k) that gives rise to this vector
bundle.

ii) Similarly E ⊗ F is the vector bundle with fiber Ex ⊗ Fx. Give the
representation GL(n)→ GL(nm) that gives rise to this vector bundle.

iii) Again Hom(E,F ) is the vector bundle with fiber Hom(Ex, Fx). Give
the representation GL(n) → GL(nm) that gives rise to this vector
bundle. What does this have to do with the vector bundle E∗ ⊗ F?

Exercise 4: Non-trivial subbundle

In this exercise we will consider the relation between projection valued func-
tions and vector bundles. In the proces we will construct a non-trivial sub-
bundle of a trivial bundle. In fact on a compact manifold every bundle is
a subbundle of a trivial one since any vector bundle E in that case admits
a complementary bundle F such that E ⊕ F is trivial. We will consider
the base space M = T2 = R2/(2πZ)2, the 2-dimensional torus, and we will
denote the rank 2 trivial bundle T2 × C2 by C2 → T2.

i) Show that the sections Γ∞(T2;C2) are given by columns

(
η1
η2

)
of

smooth functions ηi ∈ C∞(T2).

ii) Show that the map D : Γ∞(T2;C2)→ Ω1(T2;C2) given by

D

(
η1
η2

)
=

(
dη1
dη2

)
defines a connection on C2.
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iii) Show that the curvature F (D) vanishes identically.

Suppose f, g and h are smooth functions on the circle such that

f − f2 = g2 + h2 and gh = 0.

iv) Consider the smooth function p : T2 →M2(C) given by

p(θ, φ) =

(
f(θ) g(θ) + h(θ)eiφ

g(θ) + h(θ)e−iφ 1− f(θ)

)
and show that p2 = p.

Now we note p defines a map P : C2 → C2 that is linear in the fibers and
since p2 = p the image Im P defines a rank 1 vector bundle N1 → T2.

v) Show that map ∇ : Γ∞(T2;N1)→ Ω1(T2;N1) given by

∇Pη = PDPη

defines a connection on N1.

Recall that we may extend the definition of ∇ to a map

∇ : Ωk(T2;N1) −→ Ωk+1(T2;N1)

in the obvious way, i.e. by the formula PD = ∇ and noting that D is
extended as the entrywise exterior derivative. Then the curvature F (∇) is
defined by the equation ∇2Pη = F (∇) ∧ Pη.

vi) Show that F (∇) = pdp ∧ dp

In a following lecture we will see that Tr(F (∇)) is a closed 2-form whose
class is called the first Chern class (up to a factor). We will also see that this
class only depends on the isomorphism class of the vector bundle. More-
over we will see that the first Chern class of a trivial vector bundle always
vanishes. In this case we may compute that Tr(F (∇)) is not exact by inte-
grating it over T2 and therefore N1 is a non-trivial subbundle of the trivial
bundle C2. As a last (very hard) exercise you can try to show that Tr(F (∇))
is not exact by assuming the following 4 conditions on f, g and h

(1) 0 ≤ f(θ) ≤ 1 for all θ;

(2) f(0) = 1 and f(π) = 0;

(3) g(θ) =
√
f − f2 and h(θ) = 0 for all θ ∈ [0, π] and finally

(4) g(θ) = 0 and h(θ) =
√
f − f2 for all θ ∈ [π, 2π].
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