
Exercises with Lecture 6 of Topology in Physics

(UvA/Mastermath 2018)

13 March 2018

This is the sheet of exercises corresponding to the material covered in the
sixth lecture of the 13th of March. It is recommended that you make all
exercises on the sheet even though only the exercises with a ? are graded
and will count towards the final grade. The homework should be handed
in before the next lecture, which is on the 20th of March, by (in order of
preference):

1 E-mailing the pdf-output of a LATEX file to n.dekleijn@uva.nl;

2 E-mailing a scanned copy of a hand-written file to n.dekleijn@uva.nl;

3 Depositing a hard-copy of the pdf-output of a LATEX file in my mailbox
(Niek de Kleijn) at Science Park 107, building F, floor 3;

4 Depositing a hand-written file in my mailbox (Niek de Kleijn) at Science
Park 107, building F, floor 3;

5 Giving it to one of the teachers in person (at the beginning of the lecture).

You will receive comments on all the exercises you hand in (not
just the homework) and we advise you to make use of this option.

Exercises

?Exercise 1: Triviality of principal bundles

Let P be a principal bundle with base space M , fiber a Lie group G, and
projection π : P → M . Assume we are also given a (global) section σ ∈
Γ(M,P ).

a. Using σ, construct a map from M ×G to P that is one-to-one, i.e. it
is both injective and surjective (and show that it has those properties,
of course).

The above result is a rather remarkable theorem: any principal bundle that
has a global section, is isomorphic to the trivial bundle!
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b. There are of course many ways to argue that the Möbius strip is not
homeomorphic to the cylinder. Give such an argument using the the-
orem we obtained above. (Think of the Möbius strip and the cylinder
as real vector bundles over a circle, and consider associated principal
bundles.)

Exercise 2: Classifying instantons in Yang-Mills theory

In this exercise, we fill in some of the gaps in the discussion of instantons
from the lecture.

In the lecture, we have described S4 as R4 ∪ {∞} and divided it into two
hemispheres, UN with |x| ≤ R + ε and US with |x| ≥ R − ε. Recall that
to describe instantons, on the southern hemisphere, we may choose a trivial
Yang-Mills gauge potential, AS(x) = 0.

a. Show that the map gn : x 7→ r−n(xiσi+x
4I)n, with I the 2×2 identity

matrix and σi the Pauli matrices, gives a map from the boundary of UN

to SU(2) for every integer n. Here, r2 = (x1)2 + (x2)2 + (x3)2 + (x4)2.

The map gn can be smoothly extended over UN (convince yourself of this!)
On the northern hemisphere of S4, we now introduce the Yang-Mills gauge
potential AN (x) = g−1

n dgn. Since this gauge potential is pure gauge, AS and
AN together give a well-defined connection on an SU(2) principal bundle
over S4.

In an exercise from a previous lecture, you have shown that Tr F ∧ F can
be written as dCS where CS is the Chern-Simons form CS = Tr (A∧ dA+
2
3A ∧A ∧A).

b. Use the Chern-Simons form to show that∫
S4

Tr F ∧ F = −1

3

∫
S3

Tr AN ∧AN ∧AN . (1)

where S3 is the 3-sphere defined by |x| = R.

c. Argue (for the n = 1 case for simplicity) that Tr AN ∧ AN ∧ AN is
constant a constant multiple of the volume form on S3.

The above results were used in the lecture to argue that
∫
S4 Tr F ∧ F is

a discrete invariant that can be used to classify the “winding number” of
different instanton configurations.
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?Exercise 3: The Berry connection

We consider a quantum mechanical system that can be described by one
“slow moving coordinate” X and one “fast moving coordinate” x. The
hamiltonian operator for this system is

H =
p̂2

2m
+
P̂ 2

2M
+ V (x,X) (2)

where p̂ = −i∂x is the momentum operator for x, and P̂ is defined similarly
for X. The fact that X is “slow moving” means that wave functions ψ(x,X)
vary much faster when we change x then they do when we change X: to first
approximation (in some parameter that we will not specify) we can think of
these wave functions as being constant in X. Therefore, it is interesting to
ignore the P̂ -term in the hamiltonian at first, and consider the hamiltonian

h(X) =
p̂2

2m
+ V (x,X) (3)

where X now has become a parameter, and wave functions depend on x
only. Assume that h(X) has a discrete set of energy eigenstates |n,X〉 and
corresponding eigenvalues εn(X), and that all of these depend smoothly on
X, so that in particular eigenvectors for different n never cross when varying
X.

Of course, the true energy eigenstates of the hamiltonian (2) do depend on
X as well, but it can be shown that to a good approximation for fixed X
they equal |n,X〉 up to an X-dependent normalization:

Ψn(x,X) = Φn(X)|n,X〉 (4)

We call the energy eigenvalues corresponding to these states En.

Act with H on Ψn(x,X), and require that the result equals EnΨn(x,X).
Use this to derive a differential equation for Φn(X) that contains the Berry
connection

An(X) = 〈n,X|∂X |n,X〉, (5)

where you may assume without proof that 〈n,X|∂X |m,X〉 = 0 for n 6= m.
(This assumption is known as the Born-Oppenheimer approximation.) In
this way, show that Φn(X) is an energy eigenstate for the effective hamilto-
nian

Heff =
1

2M

(
P̂ − iAn(X)

)2
+ εn(X). (6)

The upshot of this exercise is that one can “integrate out” the fast degree
of freedom, resulting in a covariant derivative in the hamiltonian for the
slow degree of freedom, where the connection involved is precisely the Berry
connection.
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