
Exercises with Lecture 7 of Topology in Physics

(UvA/Mastermath 2018)

March 20, 2018

This is the sheet of exercises corresponding to the material covered in
the seventh lecture of the 20th of March. It is recommended that you make
all exercises on the sheet even though only the exercises with a ? are graded
and will count towards the final grade. The homework should be handed in
before the next lecture, by (in order of preference):

1 E-mailing the pdf-output of a LATEX file to n.dekleijn@uva.nl;

2 E-mailing a scanned copy of a hand-written file to n.dekleijn@uva.nl;

3 Depositing a hard-copy of the pdf-output of a LATEX file in my mailbox
(Niek de Kleijn) at Science Park 107, building F, floor 3;

4 Depositing a hand-written file in my mailbox (Niek de Kleijn) at Science
Park 107, building F, floor 3;

5 Giving it to one of the teachers in person (at the beginning of the lecture).

You will receive comments on all the exercises you hand in (not
just the homework) and we advise you to make use of this option.

Exercises

Exrecise 1: The gauge group

In the lectures we have seen that gauge theories, such as Yang–Mills theory,
are described using principal G-bundles for some fixed compact Lie group
G. These theories are called gauge theories because they have a large sym-
metry group, called the gauge group. The aim of this exercise is to better
understand the structure of this gauge group.

Fix a principal G-bundle π : P →M . The gauge group is defined to be

G(P ) :=

{
ψ : P → P, satisfying

ψ(pg) = ψ(p)g
π(ψ(p)) = π(p)

for all p ∈ P, g ∈ G
}
,

where all ψ are assumed to be smooth.
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a) Show that G(P ) is indeed a group. When showing that G(P ) contains
inverses you may assume that they are smooth.

b) Suppose that P = M×G is the trivial bundle. Show that the equation

ψ(m, g) = (m,ϕ(m)g) for all (m, g) ∈ P,

defines, for any ψ ∈ G(P ), a function ϕ : M → G. Explain that this
correspondence shows that G(P ) ∼= C∞(M,G). What is the group
structure on C∞(M,G)?

c) Let A be a connection form on P , i.e. A ∈ Ω1(P, g) is a Lie algebra
valued 1-form that satisfies

ιξPA = ξ, for all ξ ∈ g,

R∗gA = Adg−1(A), for all g ∈ G.

Show that for ψ ∈ G(P ), the pull-back ψ∗A is another connection
1-form.

d) When P is trivial, it has a global section s : M → P and we can use
this section to pull the connection form A back to a g-valued 1-form
α := s∗A ∈ Ω1(M, g). A computation shows that the action of G(P )
on the space of connections is given by

ϕ · α = ϕαϕ−1 + (dϕ)ϕ−1, (1)

using the notation of b). Show by an explicit computation that this
defines an action of G(P ): ϕ1 · (ϕ2 · α) = (ϕ1ϕ2) · α.

e) Show that the curvature F (α) := dα+ α ∧ α satisfies

F (ϕ · α) = ϕF (α)ϕ−1.

Use this to show that the Yang–Mills action

SYM (α) :=

∫
M

Tr(F (α) ∧ ?F (α))

is invariant under the action of the gauge group.

Remark

The configuration space of pure Yang–Mills theory is given by the space of all
connections C(P ) on the principal G-bundle P . The Yang–Mills action has a
huge symmetry group, the gauge group G(P ) so that the physically relevant
configuration space is actually the quotient C(P )/G(P ). When P = M ×G
is trivial C(P ) = Ω1(M, g) with the action of G(P ) = C∞(M,G) given
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by (1). When P is not trivial, these spaces look slightly different, taking
into account the twisting of the bundle P : in the general case we have
C(P ) = Ω1(M, ad(P )) and G(P ) = Γ∞(M,Ad(P )) where ad(P ) and Ad(P )
are bundles associated to P :

Ad(P ) := P ×G G = (P ×G)/{(ph, g) = (p, hgh−1), p ∈ P, g, h ∈ G}
ad(P ) := P ×G g = (P × g)/{(ph, ξ) = (p,Adh(ξ)), p ∈ P, h ∈ G, ξ ∈ g}.

(Remark that ad(P ) is a vector bundle, whereas Ad(P ) is only a fiber bundle
with typical fiber G.)

? Exercise 2: The Chern character

a) Show that the restriction of an invariant symmetric polynomial

P : Matr(C)× . . .×Matr(C)→ C

to the subset diagonalizable matrices, defines a symmetric polynomial1

in r variables. With this, relate the Chern classes to the elementary
symmetric functions

σk(λ1, . . . , λr) :=
∑

1≤i1≤...≤ik≤r
λi1 · · ·λir , k = 1, . . . , r.

b) It is an algebraic fact that any symmetric polynomial can be written as
a linear sum of products of the σk’s. Show that any characteristic class
obtained from the Chern–Weil formalism can be expressed in terms of
Chern classes by using this fact, the splitting principle and the results
of a).

c) Consider the polynomial functions Pk on Matr(C) (r × r-matrices)
defined by the expansion

Tr(etA) = P0(A) + tP1(A) + t2P2(A) + . . . , A ∈Matr(C).

Show that the Pk are invariant, and therefore define characteristic
classes chk(E) ∈ H2k

dR(M) of a vector bundle E → M . Express ch1

and ch2 in terms of Chern classes. Have you seen ch2 before?

d) The Chern character is defined as the sum

ch(E) :=
∑
k≥0

chk(E) ∈ H•dR(M).

Why is this a finite sum? Show that the Chern character satisfies
ch(E ⊕ F ) = ch(E) + ch(F ).

1A symmetric polynomial is a polynomial function Q of r-variable that is invariant
under permutations of the variables: Q(λ1, . . . , λr) = Q(λτ(1), . . . , λτ(r)), ∀τ ∈ Sr.
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Exercise 3: The Chern Simons form

a) If you view the trace on matrices as an invariant polynomial via
(A,B) 7→ Tr(AB), what is the associated characteristic class?

b) Explain why the characteristic class in a) is, up to a normalization of
4π2, an integral cohomology class.

c) Suppose that E →M is a trivial vector bundle and let ∇ = d+A be
a connection. Show that the transgression form L(d, d+A) is exactly
the Chern–Simons form Tr(A ∧ dA+ 2

3A ∧A ∧A) discussed before.

Exercise 4: The Euler Class

In this exercise we will consider oriented real vector bundles (and in the
end also complex ones). One way to characterize an orientation on a real
rank n vector bundle π : E →M over the manifold M is to say that relative
to some open cover {Uα} we may pick the transition functions denoted by
φαβ : Uαβ → GL(n,R) to have values in the subgroup SO(n) of GL(n,R). So
we will now assume that φαβ : Uαβ → SO(n), i.e. we will consider oriented
vector bundles. This means in particular that we can choose point-wise
linearly independent sections eα,i : Uα → E|Uα for i = 1, . . . , n for any α such

that φαβ(x)jieβ,j(x) = eα,i(x) for all x ∈ Uα ∩ Uβ. Given x ∈ M and any α
such that x ∈ Uα we can now consider polar coordinates (rα, θα,1, . . . , θα,n−1)
on Ex\{0} by treating the eα,i as standard coordinates. Note also that this
system of coordinates varies smoothly with x.

i) Show that, if x ∈ Uαβ, then rα(x) = rβ(x).

For simplicity’s sake let us set n = 2 from now on.

ii) Argue that we may pick functions ϕαβ ∈ C∞(Uαβ) such that

θβ = θα + π∗ϕαβ

holds on E|Uαβ\0(Uαβ) for 0 the zero section.

We note that
dϕαβ − dϕαγ + dϕβγ = 0

on the triple intersections Uαβγ (as a bonus exercise prove this).

iv) Show that there exist one-forms ξα ∈ Ω1(Uα) such that

1

2π
dϕαβ = ξβ − ξα.

HINT: consider 1
2π

∑
γ ργϕαγ for {ργ} a partition of unity subordinate to

{Uγ}.
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v) Show that the two-forms dξα define a class e(E) ∈ H2
dR(M) that is

independent of the choice of ξ′αs.

The class e(E) is called the Euler class of the oriented vector bundle E.
Given a rank 1 complex vector bundle V it is given by transition functions
φαβ with values in U(1) and by considering the isomorphism SO(2) ' U(1)
given by

eiφ 7→
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
it gives rise to a rank 2 oriented real vector bundle VR.

vii) Show that e(VR) = c1(V ).

Finally let us compute such a class. Consider the two-sphere S2 and note
that it is isomorphic to the complex manifold P1. This means that the
tangent bundle TS2 = VR for V a rank 1 complex bundle.

viii) Show that ∫
S2

e(TS2) = χ(S2)

where χ(M) :=
∑∞

i=0(−1)iDim H i
dR(M) denotes the so-called Euler

characteristic.

HINT: Split the integral into a sum of integrals over the north and south hemi-

spheres (keep orientation in mind). Consider the usual cover of S2 given by

UN and US by deleting the south and north poles respectively. To determine

ϕNS consider orthonormal vector fields e1N , e
2
N on UN and e1S , e

2
S on US for

the usual Riemannian metric.
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