
LECTURE 1: CALCULUS ON MANIFOLDS

1. MANIFOLDS: A REFRESHER

We start by briefly recalling the definition of a manifold. Informally, a manifold is a
space that ”locally looks like Rn”. This vague statement is formalized by the notion of
an atlas: Let M be set.

Definition 1.1. A smooth atlas on M is given by a collection of pairs {(Uα, xα)}α∈I , where
I is some indexing set, with:

i) Uα ⊂ M, α ∈ I are subsets that cover M: M =
⋃

α Uα,
ii) xα : Uα → Rn, α ∈ I are bijections Uα

∼= xα(Uα) ⊂ Rn (called ”charts”) ,
iii) For all α, β ∈ I, the maps

(1) xβ ◦ x−1
α : xα(Uα ∩Uβ)

∼=−→ xβ(Uα ∩Uβ),

are smooth (i.e., C∞).

Remark 1.2. We can define the notion of a complex or holomorphic atlas in a similar way:
this time the charts (Uα, zα) map zα : Uα → Cn and are such that the transition maps
zβ ◦ z−1

α : ϕα(Uα ∩ Uβ) → Cn are holomorphic. (We say that f : U → C, U ⊂ Cn is
holomorphic if, in standard coordinates (z1, . . . , zn) ∈ U ⊂ Cn, the functions given by
zi 7→ f (z1, . . . , zi, . . . , zn), keeping the other zj, j 6= i fixed, are holomorphic functions of
one variable, i.e., satisfy the Cauchy–Riemann equations:

∂ f1

∂xi =
∂ f2

∂yi ,
∂ f2

∂xi = −
∂ f1

∂yi , f = f1 +
√
−1 f2, zi = xi +

√
−1yi

Definition 1.3. A smooth manifold is a set equipped with a smooth atlas. A complex
manifold is a set equipped with a complex atlas.

Mathematical Remark 1.4. This definition is not quite precise. There are two mathe-
matical objections to this definition, in the sense that the definition above is not quite
what we want.

i) An atlas {(Uα, xα)}α∈I on M induces a topology by declaring a set U to be open
if and only if xα(U ∩Uα) ⊂ Rn is open for all α ∈ I. To avoid pathological be-
havior, we have to assume this topology to be Hausdorff and second countable.
This excludes for example the possibility to turn Rn itself into a k-dimensional
manifold for k < n. In the usual mathematical definition, one starts with a topo-
logical space (Haussdorf and second countable) and defines an atlas as above,

Date: February 26, 2018.
1



2 LECTURE 1: CALCULUS ON MANIFOLDS

assuming in addition that Uα ⊂ M are open. It can be checked that the induced
atlas-topology agrees with the original one.

ii) The mathematical definition uses the notion of a maximal atlas: We say that
two atlases {(Uα, xα)}α∈I and {(Uα′ , xα′)}α′∈J are compatible if the collection
{(Uα, ϕα)}α∈I ä{(Uα′ , ϕα′)}α′∈J is still an atlas. (For this one needs to check con-
dition iii) above.) Being compatible defines an equivalence relation, and a max-
imal atlas is, by definition, an equivalence class of charts.

Remark 1.5. A complex manifold is in particular a smooth manifold, because of the fact
that a holomorphic function is smooth. For a local complex chart (z1

α, . . . zn
α) the under-

lying smooth chart is given as (x1
α, y1

α, . . . , xn
α , yn

α) or (x1
α, . . . , xn

α , y1
α, . . . , yn

α) by writing
zi

α = xi
α +
√
−1yi

α (the order of coordinates may matter when one assigns an orienta-
tion). Our focus in this course is on smooth manifolds, but it is convenient to have the
concept of a complex manifold at hand in some cases.

Given an atlas {(Uα, xα)}α∈J for a manifold M, we can write out xα : Uα → Rn in
coordinates:

xα(x) := (x1
α(x), . . . , xn

α(x)), x ∈ Uα.

If x ∈ Uα ∩Uβ we have two charts around x and the local coordinates are related by

(2) (xβ ◦ x−1
α )(x1

α(x), . . . , xn
α(x)) = (x1

β(x), . . . , xn
β(x))

Remark 1.6 (“clutching and pasting”). A slightly different point of view on manifolds
is given by focusing on the transition functions ϕαβ := xα ◦ x−1

β , which are by defini-
tion local diffeomorphisms on Rn. We now think of M as consisting of pieces Ũα :=
xα(Uα) ⊂ Rn which are glued together using the transition functions ϕαβ:

(3) M ∼= ä
α∈I

Ũα

/
∼,

where x ∼ y means that ϕαβ(x) = y, for x ∈ Ũα and y ∈ Ũβ. The quotient makes sense
because the transition functions {ϕαβ}α,β∈I satisfy the following properties ensuring
that ∼ defines an equivalence relation:

ϕαα = id (Reflexivity)(4a)

ϕβα = ϕ−1
αβ (Symmetry)(4b)

ϕαβ ◦ ϕβγ = ϕαγ (Transitivity)(4c)

Conversely, given a bunch of open subsets Uα ⊂ Rn, together with local diffeomor-
phisms ϕαβ : U → U′ with U ⊂ Uα and U′ ⊂ Uβ, satisfying the three properties above,
we can define a smooth manifold structure on M defined by (3).
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Example 1.7 (Projective spaces). Consider Pn = CPn, the space of all one-dimensional
lines in Cn+1. We denote the usual homogeneous coordinates by [z0, . . . , zn] ∈ CPn. The
standard manifold charts are given by

Ui = {[z0, . . . , zn] ∈ CPn, zi 6= 0},

with coordinate charts ϕi : Ui → Cn, given by

(5) ϕi([z0, . . . , zn]) =

(
z0

zi , . . . ,
zi−1

zi ,
zi+1

zi , . . . ,
zn

zi

)
.

The transition maps ϕij = ϕi ◦ ϕ−1
j are given by ϕij(z0, . . . , zn) = (zi)−1 · (z0, . . . , zn),

where we have identified ϕj(Uj) with the affine hyperplane {(z0, . . . , zn), zj = 1} ⊂
Cn+1.

The main idea behind the definition of a manifold is that we can use the local struc-
ture on M, as being equal to Rn, to introduce key concepts from analysis such as smooth
functions, mappings and vector fields on M. All we have to do is phrase the definition
in terms of local charts, and check that the definition is invariant under change of coor-
dinates (2).

As a simple example, define a function f on M to be smooth if for each chart (Uα, ϕα)

the function fα := f ◦ ϕ−1
α is a smooth function on Rn. By the chain rule for derivatives,

this definition is independent of the choice of local chart, and therefore makes sense on
the manifold M. The space of smooth functions on M is denoted by C∞(M). From the
point of view of Remark 1.6, a smooth function f ∈ C∞(M) is given by a collection of
smooth functions { fα ∈ C∞(Uα)}α∈I on pieces of Rn, that agree on overlaps:

fα(x) = fβ(ϕαβ(x)), for all x ∈ Uα ∩Uβ.

Another, more general example is given by the notion of a smooth map between manifolds:
A map f : M → N is said to be smooth if, for atlases (Uα, xα) for M and (Vβ, yβ) of N,
the composition

yβ ◦ f ◦ x−1
α : Uα → Vβ,

is smooth. By the chain rule, this notion of smoothness is independent of local coordi-
nates.

2. TANGENT BUNDLE AND VECTOR FIELDS

Recall that for an open subset U ⊂ Rn, its tangent bundle is defined to be TU := U×
Rn. If we write x ∈ U in coordinates x = (x1, . . . , xn), the tangent space TxU = Rn to U
at x has the basis {∂/∂x1, . . . , ∂/∂xn}. Let ϕ : U → V with V ⊂ Rn be a diffeomorphism
sending x ∈ U to ϕ(x) = y(x) = (y1, . . . , yn) ∈ V. Its tangent map acts on the tangent
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space by the Jacobi matrix:

(6) Tx ϕ

(
∂

∂xi

)
= ∑

j

∂yj

∂xi (x)
∂

∂yj ∈ Tϕ(x)V.

Varying the basepoint x ∈ U, these matrices together form the tangent mapping Tϕ :
TU → TV, and by the chain rule for Jacobi matrices we see that

(7) T(ψ ◦ ϕ) = Tψ ◦ Tϕ,

where ψ : V →W is another diffeomorphism.
Suppose now that we are given a manifold structure on M provided by an atlas

{(Uα, xα)}α∈I , with associated “gluing data” {Ũα := xα(Uα) ⊂ Rn} with transition
functions ϕαβ := xβ ◦ x−1

α satisfying the conditions (4a)–(4c). Then the subsets

{TŨα = Ũα ×Rn ⊂ R2n},

together with the local diffeomorphisms ψαβ := Tϕαβ : TŨα → TŨβ, satisfy the same
“cocycle conditions” (4a)–(4c) by the chain rule (7). It therefore defines another 2n-
dimensional manifold, called the tangent bundle TM of M. It comes equipped with a
canonical projection π : TM → M, and the fiber π−1(x) = Tx M is called the tangent
space of M at x. In the “gluing picture” of Remark 1.6 we have

TM := ä
α

(
Ũα ×Rn)/ ∼,

and we therefore see that, given a smooth map f : M→ N, the collection

ä
α,β

T(yβ ◦ f ◦ x−1
α ) : ä

α

T(xα(Uα))→ä
β

T(yβ(Vβ)),

where {(Vβ, yβ)} is an atlas for N, descends to the quotient to define a smooth map
T f : TM→ TN.

Smooth sections of the projection π, i.e. smooth maps X : M → TM satisfying π ◦
X = idM, are called vector fields. In local coordinates (x1

α, . . . , xn
α) on Uα a vector field

can be written as
X = ∑

i
Xi

α(x)
∂

∂xi
α

,

where the “coefficients” Xi
α(x) are smooth functions of x ∈ Uα. When x ∈ Uα ∩Uβ and

we change to coordinates (x1
β, . . . , xn

β), we see from (6) that

X = ∑
i

Xi
β(x)

∂

∂xi
β

, with Xi
β = ∑

j
X j

α

∂xi
β

∂xj
α

.

This explains the physicists’ point of view on vector fields: for them, a vector field is
given by a vector of functions Xi

α(x) in local coordinates, which transforms as above
under coordinate changes. We write X(M) for the vector space of all vector fields on M

The following properties are easy to check:
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• A diffeomorphism f : M → N induces a push forward map f∗ : X(M) → X(N)

by the formula

f∗X(y) := Tf−1(y)(X)

• A vector field X ∈ X(M) acts on C∞(M) by taking “directional derivatives”
f 7→ X( f ). Once again in local coordinates

(8) X( f )(x) := ∑
i

Xi
α(x)

∂ f
∂xi .

• There is a “Lie bracket” of vector fields given in local coordinates

[X, Y] =
n

∑
i,j=1

(
Xi

α(x)
∂Y j(x)

∂xi
α

−Yi
α(x)

∂X j(x)
∂xi

α

)
∂

∂xj
α

3. COTANGENT BUNDLE AND DIFFERENTIAL FORMS

The cotangent bundle is dual to the tangent bundle. For U ⊂ Rn we define the
cotangent space T∗x U, x ∈ U as the vector space with basis {dxi}n

i=1 dual to the basis
{∂/∂xi}n

i=1 of TxU:

dxi
(

∂

∂xj

)
= δi

j.

This duality implies, by the rule (6), that a diffeomorphism ϕ : U → V with V ⊂ Rn

sending x ∈ U to ϕ(x) = y(x) = (y1, . . . , yn) ∈ V sends

(9) T∗y ϕ(dyi) =
n

∑
j=1

∂yi

∂xj dxj,

i.e. the covectors dxi transform according to the inverse of the Jacobi matrix. Again, the
pieces T∗Ũα together with the inverse of the Jacobi matrices of the transition functions
T∗ϕα satisfy the conditions (4a)–(4c) and define a manifold called the cotangent bundle
T∗M. Again there is an obvious smooth projection π : T∗M → M and sections are
called differential 1-forms (these are sometimes called covector fields). By definition a
differential 1-form θ maps a point x ∈ M to a linear map Tx M→ R. In local coordinates,
θ can be written as

θ = ∑
α

θα
i (x)dxi.

Changing to another chart ϕβ, equation (9) implies the transformation rule

θ
β
i = ∑

j

∂xj
α

∂xi
β

θα
j .

We shall write Ω1(M) for the vector space of all differential 1-forms on M. In higher
degrees, a k-form ω maps a point x ∈ M to an antisymmetric linear k-form on Tx M, i.e.
an element in

∧k T∗x M. To define what it means for ω to be smooth, we have to define
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a manifold structure on
∧

T∗M. In brief: locally for U ⊂ Rn, a basis of
∧k T∗x U is given

by {dxii ∧ . . . ∧ dxik} so that ω can be written in local coordinates as

ω = ∑
i1,...,ik

ωα
i1,...,ik

dxi1 ∧ . . . ∧ dxik ,

where ωα
i1,...,ik

is a collection of smooth functions on Uα, which are antisymmetric under
permutations of the k-indices i1, . . . , ik. The transformation rules under changes of local
coordinates are given by

(10) ω
β
i1,...,ik

= ∑
j1,...,jk

∂xj1
α

∂xi1
β

· · · ∂xjk
α

∂xik
β

ωα
j1,...,jk

Again, the following properties are easy to derive:

• a smooth map f : M → N induces a pull-back map f ∗ : Ωk(N) → Ωk(M) de-
fined as

f ∗ω(x)(V1, . . . , Vk) := ω( f (x))(Tx f (V1), . . . , Tx f (Vk)), for x ∈ M, V1, . . . , Vk ∈ Tx M.

• By definition, there is a pairing

Ω1(M)×X(M)→ R, (θ, X) 7→ θ(X).

• The total derivative of a function f ∈ C∞(M), written in local coordinates

d f |Uα = ∑
i

∂ f
∂xi dxi,

defines a 1-form d f ∈ Ω1(M). This is consistent with (or can be derived from)
the action (8) of vector fields on functions: in other words, we can now write
X( f ) := d f (X).
• The formula

dω|Uα := ∑
i,i1,...,ik

∂ωα
i1,...,ik

∂xi dxi ∧ dxi1 ∧ . . . ∧ dxik ,

defines an operator d : Ωk(M) → Ωk+1(M), called the exterior derivative. There
is a coordinate independent formula for this derivative as follows

dω(X0, . . . , Xk) =
p

∑
i=0

(−1)iXi
(
ω(X0, . . . , X̂i, . . . , Xk)

)
(11)

+ ∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk),

where the hat means that we omit that term from the argument. It is not difficult
to prove that ddω = 0 for all ω ∈ Ωk(M), because we can change the order in
which we take partial derivatives.
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• For any vector field X ∈ X(M) there is an operator ιX : Ωk(M) → Ωk−1(M)

called contraction with X and defined as

(ιXω) := ω(x)(X,−, . . . ,−) :
k−1∧

Tx M→ R.

• Cartan’s magic formula

LX := ιX ◦ d + d ◦ ιX : Ωk(M)→ Ωk(M)

defines an action of vector fields on k-forms. This extends the action of X(M) on
C∞(M) = Ω0(M).
• Using a partition of unity, the integral

∫
M α of an n-form over an n-dimensional

manifold is well defined, i.e., independent of the choice of local coordinates.
This is because the transformation rule (10) for an n-form is exactly given by
multiplication with the Jacobian (i.e., the determinant of the Jacobi matrix) which
appears in the change of coordinates of multidimensional integrals. When M is
a manifold with boundary ∂M, Stokes’ theorem asserts that∫

M
dβ =

∫
∂M

β, for β ∈ Ωk−1(M).

4. CALCULUS ON COMPLEX MANIFOLDS

When the manifold M is complex, the differential calculus on M is a bit richer when
we complexify the tangent bundle. Let us first again consider the local situation U ⊂
Cn. Using the coordinates zi = xi +

√
−1yi with i = 1, . . . , n, a real basis for the tangent

space TzU is given by {∂/∂xi, ∂/∂yi}n
i=1. On Cn, we can also use the complex coordi-

nates (zi, z̄i), so it is convenient to introduce the complex basis

∂

∂zi =
1
2

(
∂

∂xi −
√
−1

∂

∂yi

)
,

∂

∂z̄i =
1
2

(
∂

∂xi +
√
−1

∂

∂yi

)
.

The complex tangent space is then defined as TC
z U = spanC{∂/∂zi, ∂/∂z̄i, i = 1, . . . , n}.

In a similar way we define the complex tangent bundle TCM: this is a complex manifold,
just like the tangent bundle to a smooth manifold is a smooth manifold in its own right.

In the notation above the Cauchy–Riemann equations are given by the simple equa-
tion ∂ f /∂z̄ = 0. The transition functions ϕ : zi 7→ wi(z1, . . . , zn) of the complex manifold
are by definition holomorphic, so ∂w/∂z̄i = 0 and therefore

Tz ϕ

(
∂

∂zi

)
=

n

∑
j=1

∂wj

∂zi
∂

∂wj , Tz ϕ

(
∂

∂z̄i

)
=

n

∑
j=1

∂w̄j

∂z̄i
∂

∂w̄j

It follows that the transition functions for the complex tangent bundle TCM have the
form (

∂wj/∂zi 0
0 ∂w̄j/∂z̄i

)
.
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Because of this special shape of the transition matrix, with off-diagonal terms in this
2× 2 matrix equal to zero, the complex tangent bundle splits as

TCM = T(1,0)M⊕ T(0,1)M,

with T(1,0)
z M the subspace spanned by ∂/∂zi and T(0,1)M spanned by ∂/∂z̄i in a local

complex chart (z1, . . . , zn). Dually this leads to a decomposition of the space of complex
differential 1-forms (these are sections of the complex cotangent bundle)

Ω1
C(M) = Ω(1,0)(M)⊕Ω(0,1)(M),

where α ∈ Ω(1,0)(M) when in local holomorphic coordinates z = (z1, . . . , zn) can be
written as α = ∑i αi(z, z̄)dzi (no dz̄i’s) and β ∈ Ω(0,1)(M) when β = ∑i βi(z, z̄)dz̄i (no
dzi’s). Going over to higher degree differential forms, we get

Ωk
C(M) =

⊕
p+q=k

Ω(p,q)(M),

with α ∈ Ω(p,q)(M) if locally, in some holomorphic coordinate system z = (z1, . . . , zn)

we have

α = ∑
i1,...,ip,j1,...,jq

αi1,...,ip,j1,...,jq(z, z̄)dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq

The exterior differential

dα = ∑
i,i1,...,ip,j1,...,jq

(
∂αi1,...,ip,j1,...,jq

∂zi dzi +
∂αi1,...,ip,j1,...,jq

∂z̄j dz̄i
)
∧ dzi1 ∧ . . .∧ dzip ∧ dz̄j1 ∧ . . .∧ dz̄jq ,

accordingly splits as d = ∂+ ∂̄, where ∂ : Ω(p,q)(M)→ Ω(p+1,q)(M) and ∂̄ : Ω(p,q)(M)→
Ω(p,q+1)(M). The fundamental property d ◦ d = 0 of the exterior differential now
amounts to

∂ ◦ ∂ = 0, ∂ ◦ ∂̄ + ∂̄ ◦ ∂ = 0, ∂̄ ◦ ∂̄ = 0.
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