
LECTURE 3: COHOMOLOGY OF MANIFOLDS

A good reference for this lecture is e.g. [1].

1. THE DE RHAM COMPLEX

As before, we let M be a manifold. We now consider the system of differential forms
(of arbitrary degree) together with the exterior differential:

(1) C∞(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ . . .

A differential form α ∈ Ωk(M) for which dα = 0, is called closed. If there exists a form
β ∈ Ωk−1(M) such that dβ = α, α is called exact. We have seen that d ◦ d = 0, so being
exact implies being closed. With this property, the system (1) is an example of a cochain
complex: we have Im{d : Ωk−1(M) → Ωk(M)} ⊂ ker{d : Ωk(M) → Ωk+1(M)}. The de
Rham cohomology groups measure to what extend closedness fails to imply exactness:

Hk
dR(M) := ker{d : Ωk(M)→ Ωk+1(M)}/Im{d : Ωk−1(M)→ Ωk(M)}.

The main point of de Rham’s theorem (see Theorem 3.2 below) is that these groups are
topological invariants of the underlying topological space. For now, let us collect a few
properties of these groups.1

• The assignment M 7→ H•dR(M) associates a (graded) vector space to a manifold.
• The wedge product of differential forms induces a product

∧ : Hp
dR(M)× Hq

dR(M)→ Hp+q
dR (M),

because d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ.
• A smooth map f : M → N induces a map f ∗ : H•dR(N) → H•dR(M), because of

the fact that the pull-back of differential forms is compatible with the exterior
differential: f ∗dα = d f ∗α for all α ∈ Ωk(N). This map is compatible with the
wedge product.

The following property is less straightforward, but all the more important:

Theorem 1.1 (Homotopy invariance of de Rham cohomology). Let f0, f1 : M → N be
two smooth maps that are smoothly homotopic. Then they induce the same map on the level of
de Rham cohomology groups:

[ f ∗0 ] = [ f ∗1 ] : H•dR(N)→ H•dR(M).

Date: February 26, 2018.
1For the mathematically minded: These three properties can be rephrased by saying that de Rham co-

homology defines a contravariant functor from the category of smooth manifolds (with morphisms given
by smooth maps) to the category of graded algebras.
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Proof. The fact that f0 and f1 are smoothly homotopic means that there exists a smooth
map F : M× [0, 1] → N with F(x, 0) = f0(x) and F(x, 1) = f1(x) for all x ∈ M. With
this homotopy F we shall construct a map H : Ωk(M)→ Ωk−1(N) satisfying2

(?) f ∗0 α− f ∗1 α = (d ◦ H + H ◦ d)α, for all α ∈ Ωk(N).

This property implies that indeed [ f ∗0 ] = [ f ∗1 ].
To construct H, observe that a k-form on M× [0, 1] decomposes as

β = β0 + dt ∧ β1, β ∈ Ωk(M× [0, 1]),

where t is the coordinate on [0, 1], β0 = ∑ β0
i1,...,ik

(x, t)dxi1 ∧ . . . ∧ dxik (in local coordi-
nates) a k-form which does not contain dt and β1 = ∑ β1

i1,...,ik−1
(x, t)dxi1 ∧ . . . ∧ dxik−1

a k − 1 form. We can define the fiber integral along the projection M × [0, 1] → M by
integrating the dt-component over [0, 1]:∫ 1

0
(ι∂/∂tβ)dt =

∫ 1

0
β1dt.

This defines a map
∫
[0,1] : Ωk(M × [0, 1]) → Ωk−1(M) and Stokes’ theorem gives the

property

d
∫
[0,1]

β +
∫
[0,1]

dβ = β|M×{1} − β|M×{0}.

(This is easily seen using the fact that the exterior derivative on M × [0, 1] is given by
dt + d, where dt is the derivative in the t variable and d the exterior derivative on M.)

With the fiber integral, we now define H by

H(α) =
∫
[0,1]

F∗α, α ∈ Ωk(N).

The property (?) now follows from the the above version of Stokes’ theorem together
with the fact that the exterior derivative is compatible with the pull-back along F. �

An important Corollary of this theorem is the Poincaré Lemma: recall that a domain
U ∈ Rn is called star-shaped if there is a point x0 ∈ U such that for any other point
x ∈ U, the straight line tx + (1− t)x0 connecting x0 and x is in U. For example Rn itself
is star-shaped.

Corollary 1.2 (Poincaré Lemma). Let U ⊂ Rn be a star-shaped domain. Then:

H•dR(U) =

R • = 0

0 • > 0.

In the end this is a statement about solutions to certain systems of PDE’s: Given a
k-form α ∈ Ωk(M) on a manifold M, a necessary condition for the equation α = dβ to
have a solution β ∈ Ωk−1(M), is that α is closed: dα = 0. The Poincaré Lemma says
that for M a star-shaped domain in Rn, this condition is also sufficient: any closed form

2In homological algebra, H is called a chain homotopy between [ f ∗0 ] and [ f ∗1 ].
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is always exact. Since any point x ∈ M in a manifold has a neighborhood that is star-
shaped, this means that locally any closed form on a manifold is also exact. The answer
to the question whether this is globally true however depends on the global topology of
M.

2. SINGULAR (CO)HOMOLOGY OF MANIFOLDS

Recall that the standard k-dimensional simplex ∆k ⊂ Rk+1 is defined as the convex
subset satisfying the equation

∆k := {(t0, . . . .tk) ∈ Rk+1,
k

∑
i=0

ti = 1, ti ≥ 0.}

The boundary of ∆k consists of k + 1 copies of the (k − 1)-dimensional simplex by
putting ti = 0, i = 0, . . . , k. We write di : ∆k−1 ↪→ ∆k, i = 0, . . . , k for the corre-
sponding inclusion. A smooth singular k-simplex is a smooth map σ : ∆k → M, where
smooth means that we can extend σ to a small open neighborhood of ∆k in Rk+1. We
write S∞

k (M) for the vector space (over R) spanned by all smooth singular k-simplices.
So an element in S∞

k (M) is given by a finite sum ∑i λiσi with λi ∈ R and σi smooth
singular k-simplices. There is an operator ∂ : S∞

k (M)→ S∞
k−1(M) given on simplices by

∂σ :=
k

∑
i=0

(−1)iσ ◦ di,

i.e. this operator restricts a smooth singular k-simplex σ, a map from ∆k to M, to its
k + 1 boundary faces equal to ∆k−1, with a sign. Exactly because of this sign, one checks
that ∂ ◦ ∂ = 0, i.e. the system

. . . ∂−→ S∞
2 (M)

∂−→ S∞
1 (M)

∂−→ S∞
0 (M)

forms a chain complex.3 This time, for a chain complex, we should take its homology:

Hsing
k (M, R) := ker{∂ : S∞

k (M)→ S∞
k−1(M)}/Im{∂ : S∞

k+1(M)→ S∞
k (M)}.

To get an idea what these groups measure, consider Hsing
0 (M, R): a singular 0-simplex

σ : ∆0 → M is just a point in M, and any such simplex is automatically closed since
S∞
−1(M, R) = 0. If two points x, y ∈ M are in the same path connected component of M,

any path γ : [0, 1]→ M from γ(0) = x to γ(1) = y defines a 1-simplex γ : ∆1 → M such
that ∂γ = x − y, showing that they induce the same homology class. In other words:
Hsing

0 (M, R) measures the number of path connected components of M.

Example 2.1 (The fundamental class of an oriented manifold). Let M be a smooth n-
dimensional manifold. It was proved by Whitehead in 1940 that M can be triangulated:
we can write M as a finite union of smooth singular n-simplices σi : ∆n → M for i =

3The difference between a chain complex and a cochain complex is that in the former the differential has
degree −1, whereas in the latter it has degree +1.
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1, . . . , p such that any boundary face of σi is a boundary face of exactly one other simplex
σj, j 6= i. Consider the combination

p

∑
i=1
±σi ∈ S∞

n (M, R).

If we can consistently put the ±-signs so that each boundary face appears with both a
+ and a− sign when taking ∂ of this expression, we get an n-cycle and therefore a class
in Hsing

n (M, R). This can be done exactly when M is orientable and the resulting class of
an oriented manifold M is called the fundamental class, written [M] ∈ Hsing

n (M, R).

If we want to have a cochain complex, we should take the dual:

Sk
∞(M) := HomR(S∞

k (M), R).

Now the differential ∂ dualizes to a degree increasing operator d : Sk
∞(M) → Sk+1

∞ (M)

by
dϕ(σ) := ϕ(∂σ), ϕ ∈ Sk

∞(M), σ ∈ S∞
k+1(M).

Clearly d ◦ d = 0, so that we have a cochain complex, and its cohomology

Hk
sing(M, R) := ker{d : Sk

∞(M)→ Sk+1
∞ (M)}/Im{d : Sk−1

∞ (M)→ Sk
∞(M)}

3. THE DE RHAM THEOREM

Given a k-form on M and a smooth singular k-simplex σ : ∆k → M we can integrate:

(2) 〈α, σ〉 :=
∫

∆k
σ∗α.

Notice that it is important that we use smooth singular simplices to be able to pull-back
the differential form to ∆k. Stokes’ theorem now gives us:

Lemma 3.1. For α ∈ Ωk−1(M) and σ ∈ S∞
k (M) we have the equality

〈dα, σ〉 = 〈α, ∂σ〉 .

We can therefore reinterpret the pairing (2) as a map

Ψ : Ω•(M) −→ S•∞(M)

satisfying d ◦ Ψ = Ψ ◦ d. Such a map is called a morphism of cochain complexes. The fact
that Ψ is compatible with the differentials on both sides implies that it induces a map
on cohomology:

[Ψ] : H•dR(M) −→ H•sing(M, R).

Theorem 3.2 (de Rham’s theorem). The map [Ψ] is an isomorphism.

We will not give the full proof of the theorem, but only sketch the main idea. An
important ingredient in the proof is the following crucial property satisfied by de Rham
cohomology:
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Theorem 3.3 (Mayer–Vietoris). Suppose that M = U ∪ V is covered by two open subsets.
Then there exists a long exact sequence4

. . . −→ Hk
dR(U ∪V) −→ Hk

dR(U)⊕ Hk
dR(V) −→ Hk

dR(U ∩V) −→ Hk+1
dR (U ∪V) −→ . . .

Proof. Given U and V, we have maps on the level of differential forms

Ωk(U ∪V)→ Ωk(U)⊕Ωk(V)→ Ωk(U ∩V)

α 7→ (α|U , α|V)

(βU , βV) 7→ βU |U∩V − βV |U∩V

Remark that the composition of these maps is zero, and that (βU , βV) ∈ Ωk(U)⊕Ωk(V)

mapping to zero in Ωk(U ∩ V) means it comes from a form β ∈ Ωk(U ∪ V). Applying
cohomology, we get

Hk
dR(U ∪V)→ Hk

dR(U)⊕ Hk(V)dR → Hk
dR(U ∩V).

Let us now construct a map Hk(U ∩V)→ Hk+1(U ∪V). For this we choose a function
χU ∈ C∞(U) which is ≤ 1 on U and equal to 1 on U\(U ∩ V). Then χV := 1− χU is
equal to 1 on V\(U ∩ V) and we have χU + χV = 1. Given a closed differential form
ω ∈ Ωk(U ∩V), let

(dχU ∧ω, dχV ∧ω) ∈ Ωk(U)⊕Ωk(V).

Then on U ∩V we have

dχU ∧ω− dχV ∧ω = d(χU − χV) ∧ω

= d(1) ∧ω

= 0,

and therefore these two forms glue together to a closed form of degree k + 1 on U ∪V.
We will skip the proof that the sequence is exact. �

Remark 3.4. Those who know a bit of homological algebra will recognize the snake
Lemma in the proof above: The core of the argument is to show that the sequence

0→ Ω•(U ∪V)→ Ω•(U)⊕Ω•(V)→ Ω•(U ∩V)→ 0

is exact. This short exact sequence of complexes induces the long exact sequence in
cohomology. Remark that the choice of the function χU is irrelevant: choosing another
χ′U results in a closed differential form which differs from the one constructed above by
an exact form. (Try to prove this!)

4A long exact sequence is a complex with zero cohomology. In other words: each composition of maps is
zero and the kernel of each map equals the image of the map preceding it.
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The proof of de Rham’s Theorem now amounts to proving first that singular coho-
mology H•sing(M, R) satisfies the same properties as the properties of de Rham coho-
mology we have just outlined: functoriality, homotopy invariance and the existence
of Mayer–Vietoris sequences. With that, by choosing an open cover of the manifold
by open sets that are homeomorphic to a star-shaped domain, the proof is reduced to
proving the de Rham isomorphism for such domains, which is done by the Poincaré
Lemma. For the full details, see [2, §V.9].

Example 3.5. The Mayer–Vietoris property, together with homotopy invariance is ex-
tremely useful in computations. As an example let us compute the cohomology of Pn.
The inclusion Cn ↪→ Cn+1 given by (z0, . . . , zn−1) 7→ (z0, . . . , zn−1, 0) induces an inclu-
sion Pn−1 ⊂ Pn. The complement U := Pn\Pn−1 is isomorphic to Cn via the map

(z0, . . . , zn) 7→ (
z0

zn , . . . ,
zn−1

zn ).

On the other hand, define V := Pn\{[0, . . . , 0, 1]}. Then U ∩V ∼= Cn\{0} ∼ S2n−1, and
the map F : V × [0, 1]→ V defined by

F([z0, . . . , zn], t) = [z0, . . . , zn−1, tzn],

defines a contraction V ∼ Pn−1. The Mayer–Vietoris sequence, together with the ho-
motopy invariance of de Rham cohomology leads to the exact sequence

. . . −→ Hk
dR(P

n) −→ Hk
dR(P

n−1) −→ Hk
dR(S

2n−1) −→ Hk+1
dR (Pn) −→ . . .

Because

Hk
dR(S

2n−1) =

R k = 2n− 1

0 k 6= 2n− 1
,

and H2n−1
dR (Pn−1) = 0 (recall that Pn−1 is 2n − 2-dimensional), the sequence above

breaks up into

0→ Hk
dR(P

n)→ Hk
dR(P

n−1)→ 0, for k < 2n− 1

0→ H2n−1
dR (Pn−1)→ 0

0→ R→ H2n
dR(P

n)→ 0

From this we see, by induction that for 0 ≤ k ≤ 2n:

Hk
dR(P

n) =

R k = even

0 k = odd.
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