
LECTURE 5: VECTOR BUNDLES, CONNECTIONS AND CURVATURE

1. VECTOR BUNDLES

An important class of fiber bundles are given by vector bundles: these are fiber bun-
dles with typical fiber a vector space V:

Definition 1.1. A vector bundle of rank r is given by a manifold E together with a smooth
map π : E → M and the structure of an r-dimensional vector space on the fibers
Ex := π−1(x) which is locally trivial in the following sense: each x ∈ M has an open
neighborhood U such that there exists a diffeomorphism ϕ : π−1(U)→ U×Cr making
the following diagram commutative

π−1(Ux)

π

��

ϕ
// U ×Cr

pr1
yy

U

and which is linear over each fiber. A line bundle is a vector bundle of rank one.

Remark 1.2. We can consider real or complex vector bundles, depending on whether
the fibers are vector spaces over R or C. With a view on applications in Quantum
Mechanics, which always works in a complex Hilbert space, our main focus will be on
complex vector bundles.

Example 1.3. Over any manifold M, we always have the trivial vector bundles M×Rr

(real case) and M×Cr (complex). A general vector bundle E need not be of this form:
although it is (by definition) locally a trivial vector bundle, globally it may not be trivial,
but “twisted”. The easiest example of a (real) twisted vector bundle is given by the
Möbius line bundle over the circle: first we write S1 = R/Z, where Z acts on R by
translations x 7→ x + n. We construct a line bundle L over S1 by taking the quotient of
the trivial line bundle over R:

L := (R×R)/Z,

where we let Z act on R×R by either

(x, y) 7→ (x + n, y), or (x, y) 7→ (x + n, (−1)ny).

In both cases, projection onto the first coordinate defines a smooth map L→ S1 turning
L into a line bundle over the circle (check!). In the first case we get the trivial line
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2 LECTURE 5: VECTOR BUNDLES, CONNECTIONS AND CURVATURE

bundle S1 ×R, in the second case not: this is the Möbius line bundle as it “flips” as we
go around the circle once.

Remark 1.4. There is a very concrete point of view on vector bundles using cocycles:
Let M =

⋃
α Uα be a cover of M such that over each Uα there is a trivialization ϕα :

π−1(Uα)
∼=−→ Uα ×Cr. (By definition, such a cover exists.) Over Uα ∩Uβ we have two

trivializations:

π−1(Uαβ)
ϕα //

ϕβ

��

Uαβ ×Cr

Uαβ ×Cr
ϕα◦ϕ−1

β

88

Since both ϕα and ϕβ are compatible with the projection to the base we can write

ϕα ◦ ϕ−1
β (x, v) = (x, ϕαβ(v)), for x ∈ Uαβ, v ∈ Cr,

with ϕαβ : Uαβ → GL(r, C). We now shift our attention to these “transition functions”
ϕαβ. The following properties are easily derived:

ϕαα = 1

ϕβα = ϕ−1
αβ

ϕαβ ϕγα ϕβγ = 1.

These transition functions completely determine the vector bundle E: Given {ϕαβ}α,β∈I

satisfying the three properties above, define

E :=

(
ä
α∈I

Uα ×Cr

)
/ ∼

where
(xα, v) ∼ (xβ, v)⇐⇒ xα = xβ ∈ Uα ∩Uβ, ϕαβ(v) = w.

The properties satisfied by the ϕαβ above guarantee that this defines an equivalence
relation making the quotient well-defined.

Example 1.5 (The tangent bundle). For any smooth manifold M, its tangent bundle is
a real vector bundle: using a coordinate chart we can define local trivializations. The
transition cocycles are given by the Jacobian matrices of the changes of coordinates.
When the tangent bundle TM is trivial (or rather isomorphic to the trivial vector bundle
of rank equal to the dimension n of M), we say that the M is parallelizable. This means
that there exist n-vector fields X1, . . . , Xn that at each point x ∈ M form a basis of Tx M.

Example 1.6 (The universal line bundle over Pn). Recall the manifold structure of pro-
jectve space Pn. Consider the following set:

T := {(v, L) ∈ Cn+1 ×Pn, v ∈ L}.
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There is an obvious projection T → Pn projecting onto the second component. Clearly,
the fiber TL, L ∈ Pn is a vector space of dimension 1. In order to be a line bundle, we
have to show local triviality. Over the domain Ui := {[z0, . . . , zn], zi 6= 0} of the chart
ϕi given in (??) there is an bijection

ϕi : π−1(Ui)
∼=−→ Ui ×C,

given by the fact that any vector v in the line spanned by (z0, . . . , zn) ∈ Cn+1 can be
written as

v = λ(
z0

zi
, . . . ,

zi−1

zi
, 1,

zi+1

zi
, . . .

zn

zi
), λ ∈ C.

(Dividing by zi ensures that v determines λ uniquely.) The map above maps v to λ. This
shows that T → Pn is indeed a line bundle.

To determine the cocycle ϕij ∈ C∞(Uij, C∗)1 underlying this line bundle we consider
the composition

Uij ×C
ϕ−1

j−→ π−1(Uij)
ϕi−→ Uij ×C,

which maps

([z0, . . . , zn], λ) 7→ ([z0, . . . , zn],
zi

zj
λ).

The cocycle is therefore given by ϕij([z0, . . . , zn]) =
zi
zj

.

There is a natural way to get vector bundles from principal bundles:

Remark 1.7 (Pull-back of vector bundles). Let f : M → N be a smooth map, and let
p : E→ N be a vector bundle over N. It is easy to see that

f ∗E = {(x, e) ∈ M× E, f (x) = p(e)}

has a canonical vector bundle structure over X.

Remark 1.8 (Linear algebra constructions with vector bundles). Let E and F be vector
bundles over M. It is not difficult to show that one can extend the standard construc-
tions from linear algebra to define the following vector bundles over M:

i) the direct sum: E⊕ F,
ii) the tensor product E⊗ F,

iii) Hom(E, F) ∼= E∗ ⊗ F.

A section of a vector bundle π : E→ X is a continuous map s : M→ E such that

π ◦ s = 1,

where the 1 on the right hand side means the constant function on X with that value.
Denote the space of sections of E by Γ(X, E). When E is smooth, one can require section
to be be smooth maps as well, and this defines the space of smooth sections Γ∞(X, E).

1Recall that GL(1, C) = C∗
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2. CONNECTIONS AND CURVATURE

Let M be a smooth manifold, and E → M a smooth vector bundle. We denote by
Ωk(M; E) the space of differential k-forms on M with values in E:

Ωk(M; E) := Γ∞(M, E⊗
k∧

T∗M)

The following definition is fundamental:

Definition 2.1. A connection on E is a linear map

∇ : Γ∞(M; E)→ Ω1(M; E),

satisfying the Leibniz rule
∇( f s) = f∇(s) + d f ⊗ s,

with f ∈ C∞(M) and s ∈ Γ∞(M; E).

In short: a connection on a vector bundle E → M is a gadget which allows us to
take “directional derivatives” of smooth sections of E along vector fields on M. For a
vector field X ∈ X(M), we shall write ∇X : Γ∞(M; E) → Γ∞(M; E) for this directional
derivative: ∇X(s) := ιX(∇s). If we want to stipulate for which bundle exactly ∇ is a
connection, we shall write ∇E.

Lemma 2.2. The space of connections on a vector bundle E is an affine space modeled on
Ω1(M, End(E)).

Proof. Let ∇ and ∇′ be two connections on E. It follows form the Leibniz rule that

(∇−∇′) f s = f (∇−∇′)s, for all f ∈ C∞(X), s ∈ Γ(M; E).

The operator ∇−∇′ : Γ∞(M; E)→ Ω1(M; E) is therefore C∞(M)-linear, and it follows
that ∇−∇′ ∈ Ω1(M; End(E)) �

Remark 2.3.

i) For a trivial vector bundle E = M × Cr we always have the trivial connection
given by the de Rham operator d extended to vector valued functions. By the
Lemma above, any other connection can be written as ∇ = d + A with A ∈
Ω1(M, Mr(C)) a matrix-valued one-form. (Mr(C) denotes the r × r matrices
with coefficients in C.)

ii) For a general vector bundle, we can write ∇ = d + Aα in a local trivialization
over Uα. On the overlap Uα ∩Uβ of two local trivializations the two one forms
Aα and Aβ are related by (check!)

(1) Aα = ϕαβ Aβ ϕ−1
αβ − ϕ−1

αβ dϕαβ,

with ϕαβ : Uαβ → GL(r, C) the transition function. If we adopt the “cocy-
cle point of view” on vector bundles, c.f. Remark 1.4, we can therefore think
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of a connection on a vector bundle as a collection {Aα ∈ Ω1(Uα, Mr(C))}α∈I

of matrix-valued 1-forms, which transform according to (1) under local gauge
transformations.

iii) It can be shown by a standard partition of unity argument that a connection
always exist on a vector bundle.

Remark 2.4 (Connections and the framebundle2). Consider a vector bundle E → M of
rank r. Define a space

F(E) :=
⋃

x∈M

F(Ex),

where F(Ex) is the space of all bases in Ex: a point ex ∈ F(Ex) is a basis ex := (e1
x, . . . , er

x)

of the vector space Ex. Using the local triviality of the vector bundle E → M, one
can define a smooth manifold structure on F(E), such that the obvious projection π :
F(E)→ M is smooth. There is an action of GL(r, C) on F(E) preserving the fibers which
moves one basis to another, and we have

F(E)/GL(r, C) ∼= M,

the isomorphism induced by the projection π : F(E)→ M.
Let ∇ be a connection on E and {Aα ∈ Ω1(Uα, Mr(C))}α∈I the collection of matrix-

valued 1-forms associated to a system of local trivializations. Pulling back these forms
to F(E), we obtain a collection of 1-forms {π∗Aα}α∈I on the cover {π−1(Uα)}α∈I of
F(E). On the overlap π−1(Uα) ∩ π−1(Uβ) = π−1(Uαβ) we have by (1):

π∗Aα = π∗(ϕαβ Aβ ϕ−1
αβ − ϕ−1

αβ dϕαβ)

= π∗Aβ.

(The derivation of the last equality is nontrivial.) It follows that the Aα glue together
to form a well-defined 1-form A ∈ Ω1(F(E), gl(r, C)) with values in the Lie algebra
gl(r, C) = Mr(C) of GL(r, C). One can check that this form satisfies the following
properties:

ιξFr(E)
A = ξ, for all ξ ∈ gl(r, C),(2a)

R∗g A = gAg−1, for all g ∈ GL(r, C).(2b)

Concluding we see that there are three equivalent ways of thinking about connections:

• as a first order differential operator ∇ on sections,
• as a collection of matrix valued 1-forms {Aα ∈ Ω1(Uα, Mr(C))}α∈I , satisfying

(1) on overlaps,
• a matrix valued 1-form A on F(E) satisfying (2a) and (2b).

2This can be omitted on first reading: we did not cover this in the lecture.



6 LECTURE 5: VECTOR BUNDLES, CONNECTIONS AND CURVATURE

Example 2.5. Consider (again) the universal line bundle over Pn, c.f. Remark 1.6. With
the given transition functions ϕij([z0, . . . , zn]) = zi/zj on Uij we are therefore looking
for a collection of complex 1-forms {Ai ∈ Ω1(Ui, C)}n

i=0 related to each other by

(Ai − Aj)|Uij = (dϕij)ϕ−1
ij = d log

(
zi

zj

)
=

dzi

zi
−

dzj

zj

A solution to this system of equations is given by

Ai := ∂ log

(
n

∑
`=0

|z`|2
|zi|2

)
.

This is because we can write this as Ai = ∂ log fi with fi ∈ C∞(Ui, C) satisfying fi =

|zi/zj|2 f j and ∂ log |zi/zj|2 = dzi/zi − dzj/zj.

Remark 2.6. Connections behave well with respect to the standard constructions with
vector bundles: Let E and F be vector bundles over X, with connections ∇E, ∇F.

i) On the direct sum, we have the obvious connection

∇E⊕F =

(
∇E 0
0 ∇F

)
,

ii) On the tensor product we have the connection ∇E⊗F = ∇E ⊗ 1 + 1⊗∇F,
iii) On the dual E∗, we have the connection defined by the following equation

d 〈α, s〉 = 〈∇E∗(α), s〉+ 〈α,∇E(s)〉 , α ∈ Γ∞(M; E∗), s ∈ Γ∞(M; E),

using the dual pairing 〈 , 〉 : Γ∞(M; E∗)× Γ∞(M; E)→ C∞(M) between sections
of E and E∗

iv) As a special case of iii), we obtain a connection on End(E) = E⊗ E∗, defined by

(3) ∇End(E)(A)(s) := ∇E(A(s))− A(∇E(s)) for A ∈ Γ∞(X, End(E), s ∈ Γ(X; E).

v) On the pull-back bundle f ∗E for a smooth map f : N → M, there is a natural
pull-back connection f ∗∇E.

The curvature of a connection. Using the Leibniz identity, we can extend a connection
to an operator ∇ : Ωk(M, E)→ Ωk+1(M; E) by

∇(s⊗ α) = ∇s ∧ α + s⊗ dα, s ∈ Γ∞(M, E), α ∈ Ωk(M).

The operator ∇ thus defined doesn’t turn Ω•(M; E) into a complex: ∇2 6= 0. However
we do have

∇2( f s) = f∇2(s), for all f ∈ C∞(M)

so we can define the curvature F(∇) ∈ Ω2(M, End(E)) by

F(∇)(s) := ∇2(s) ∈ Ω2(M; End(E)) for all s ∈ Γ∞(M, E).



LECTURE 5: VECTOR BUNDLES, CONNECTIONS AND CURVATURE 7

In a local trivialization ∇|Uα = d + Aα we see that

(4) Fα := F(d + Aα) = (d + Aα)
2 = dAα + Aα ∧ Aα,

where (Aα ∧ Aα)(X, Y) = 1
2 [Aα(X), Aα(Y)]. (Recall that Aα is matrix-valued. This also

explains why Aα ∧ Aα is nonzero.) Indeed with this we see that under the local gauge
transformation (1) we have

Fα = d(ϕαβ Aβ ϕ−1
αβ − (dϕαβ)ϕ−1

αβ ) + (ϕαβ Aβ ϕ−1
αβ − (dϕαβ)ϕ−1

αβ ) ∧ (ϕαβ Aβ ϕ−1
αβ − (dϕαβ)ϕ−1

αβ )

= ϕαβdAβ ϕ−1
αβ + ϕαβ(Aβ ∧ Aβ)ϕ−1

αβ

= ϕαβFβ ϕ−1
αβ .

This is precisely the transformation property of a section of the bundle End(E)→ M in
local trivializations. It is remarkable that, although a connection is not a section of any
bundle associated to E, the curvature does have this property. From the local expression
for the curvature above, together with Eq. (??), we can deduce the useful formula

F(∇)(X, Y) = [∇X,∇Y]−∇[X,Y], X, Y ∈ X(M).

Example 2.7. For line bundles, M1(C) = C is abelian, and therefore the second term in
(4) vanishes. Therefore, the curvature of the connection of Example 2.5 on the universal
bundle over Pn is given by

ωi = d∂ log

(
n

∑
`=0

|z`|2
|zi|2

)
= ∂̄∂ log

(
n

∑
`=0

|z`|2
|zi|2

)
,

because d = ∂ + ∂̄ and ∂̄ ◦ ∂̄ = 0. Indeed, for rank r = 1, gl(1, C) = C is abelian,
so the second term in (4) is automatically zero. The argument above implies that the
ωi ∈ Ω2(Ui, C) patch to a global 2-form, called the Fubini–Study form. One can also
explicitly check this:

ωj|Uij = ∂∂̄ log

(
n

∑
k=0

|zk|2
|zj|2

)

= ∂∂̄ log
(
|zi|2
|zj|2

)
+ ∂∂̄ log

(
n

∑
k=0

|zk|2
|zi|2

)

= ∂∂̄ log

(
n

∑
k=0

|zk|2
|zi|2

)
= ωi|Uij

Lemma 2.8 (Bianchi identity). The curvature of a connection satisfies:

∇End(E)(F(∇E)) = 0.
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Proof. Write out:

∇End(E)(F(∇E))(s) = ∇E(F(∇)(s))− F(∇E)(∇E(s))

= (∇E)3(s)− (∇E)3(s)

= 0.

Here we have used the definition (3) of the connection ∇End(E) on the bundle End(E)
induced by ∇E. �
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